xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeMoverUtils.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===- CodeMoverUtils.cpp - CodeMover Utilities ----------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform movements on basic blocks, and instructions
10 // contained within a function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/DependenceAnalysis.h"
17 #include "llvm/Analysis/PostDominators.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/Dominators.h"
20 
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "codemover-utils"
24 
25 STATISTIC(HasDependences,
26           "Cannot move across instructions that has memory dependences");
27 STATISTIC(MayThrowException, "Cannot move across instructions that may throw");
28 STATISTIC(NotControlFlowEquivalent,
29           "Instructions are not control flow equivalent");
30 STATISTIC(NotMovedPHINode, "Movement of PHINodes are not supported");
31 STATISTIC(NotMovedTerminator, "Movement of Terminator are not supported");
32 
33 bool llvm::isControlFlowEquivalent(const Instruction &I0, const Instruction &I1,
34                                    const DominatorTree &DT,
35                                    const PostDominatorTree &PDT) {
36   return isControlFlowEquivalent(*I0.getParent(), *I1.getParent(), DT, PDT);
37 }
38 
39 bool llvm::isControlFlowEquivalent(const BasicBlock &BB0, const BasicBlock &BB1,
40                                    const DominatorTree &DT,
41                                    const PostDominatorTree &PDT) {
42   if (&BB0 == &BB1)
43     return true;
44 
45   return ((DT.dominates(&BB0, &BB1) && PDT.dominates(&BB1, &BB0)) ||
46           (PDT.dominates(&BB0, &BB1) && DT.dominates(&BB1, &BB0)));
47 }
48 
49 static bool reportInvalidCandidate(const Instruction &I,
50                                    llvm::Statistic &Stat) {
51   ++Stat;
52   LLVM_DEBUG(dbgs() << "Unable to move instruction: " << I << ". "
53                     << Stat.getDesc());
54   return false;
55 }
56 
57 /// Collect all instructions in between \p StartInst and \p EndInst, and store
58 /// them in \p InBetweenInsts.
59 static void
60 collectInstructionsInBetween(Instruction &StartInst, const Instruction &EndInst,
61                              SmallPtrSetImpl<Instruction *> &InBetweenInsts) {
62   assert(InBetweenInsts.empty() && "Expecting InBetweenInsts to be empty");
63 
64   /// Get the next instructions of \p I, and push them to \p WorkList.
65   auto getNextInsts = [](Instruction &I,
66                          SmallPtrSetImpl<Instruction *> &WorkList) {
67     if (Instruction *NextInst = I.getNextNode())
68       WorkList.insert(NextInst);
69     else {
70       assert(I.isTerminator() && "Expecting a terminator instruction");
71       for (BasicBlock *Succ : successors(&I))
72         WorkList.insert(&Succ->front());
73     }
74   };
75 
76   SmallPtrSet<Instruction *, 10> WorkList;
77   getNextInsts(StartInst, WorkList);
78   while (!WorkList.empty()) {
79     Instruction *CurInst = *WorkList.begin();
80     WorkList.erase(CurInst);
81 
82     if (CurInst == &EndInst)
83       continue;
84 
85     if (!InBetweenInsts.insert(CurInst).second)
86       continue;
87 
88     getNextInsts(*CurInst, WorkList);
89   }
90 }
91 
92 bool llvm::isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint,
93                               const DominatorTree &DT,
94                               const PostDominatorTree &PDT,
95                               DependenceInfo &DI) {
96   // Cannot move itself before itself.
97   if (&I == &InsertPoint)
98     return false;
99 
100   // Not moved.
101   if (I.getNextNode() == &InsertPoint)
102     return true;
103 
104   if (isa<PHINode>(I) || isa<PHINode>(InsertPoint))
105     return reportInvalidCandidate(I, NotMovedPHINode);
106 
107   if (I.isTerminator())
108     return reportInvalidCandidate(I, NotMovedTerminator);
109 
110   // TODO remove this limitation.
111   if (!isControlFlowEquivalent(I, InsertPoint, DT, PDT))
112     return reportInvalidCandidate(I, NotControlFlowEquivalent);
113 
114   // As I and InsertPoint are control flow equivalent, if I dominates
115   // InsertPoint, then I comes before InsertPoint.
116   const bool MoveForward = DT.dominates(&I, &InsertPoint);
117   if (MoveForward) {
118     // When I is being moved forward, we need to make sure the InsertPoint
119     // dominates every users. Or else, a user may be using an undefined I.
120     for (const Use &U : I.uses())
121       if (auto *UserInst = dyn_cast<Instruction>(U.getUser()))
122         if (UserInst != &InsertPoint && !DT.dominates(&InsertPoint, U))
123           return false;
124   } else {
125     // When I is being moved backward, we need to make sure all its opernads
126     // dominates the InsertPoint. Or else, an operand may be undefined for I.
127     for (const Value *Op : I.operands())
128       if (auto *OpInst = dyn_cast<Instruction>(Op))
129         if (&InsertPoint == OpInst || !DT.dominates(OpInst, &InsertPoint))
130           return false;
131   }
132 
133   Instruction &StartInst = (MoveForward ? I : InsertPoint);
134   Instruction &EndInst = (MoveForward ? InsertPoint : I);
135   SmallPtrSet<Instruction *, 10> InstsToCheck;
136   collectInstructionsInBetween(StartInst, EndInst, InstsToCheck);
137   if (!MoveForward)
138     InstsToCheck.insert(&InsertPoint);
139 
140   // Check if there exists instructions which may throw, may synchonize, or may
141   // never return, from I to InsertPoint.
142   if (!isSafeToSpeculativelyExecute(&I))
143     if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(),
144                     [](Instruction *I) {
145                       if (I->mayThrow())
146                         return true;
147 
148                       const CallBase *CB = dyn_cast<CallBase>(I);
149                       if (!CB)
150                         return false;
151                       if (!CB->hasFnAttr(Attribute::WillReturn))
152                         return true;
153                       if (!CB->hasFnAttr(Attribute::NoSync))
154                         return true;
155 
156                       return false;
157                     })) {
158       return reportInvalidCandidate(I, MayThrowException);
159     }
160 
161   // Check if I has any output/flow/anti dependences with instructions from \p
162   // StartInst to \p EndInst.
163   if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(),
164                   [&DI, &I](Instruction *CurInst) {
165                     auto DepResult = DI.depends(&I, CurInst, true);
166                     if (DepResult &&
167                         (DepResult->isOutput() || DepResult->isFlow() ||
168                          DepResult->isAnti()))
169                       return true;
170                     return false;
171                   }))
172     return reportInvalidCandidate(I, HasDependences);
173 
174   return true;
175 }
176 
177 void llvm::moveInstsBottomUp(BasicBlock &FromBB, BasicBlock &ToBB,
178                              const DominatorTree &DT,
179                              const PostDominatorTree &PDT, DependenceInfo &DI) {
180   for (auto It = ++FromBB.rbegin(); It != FromBB.rend();) {
181     Instruction *MovePos = ToBB.getFirstNonPHIOrDbg();
182     Instruction &I = *It;
183     // Increment the iterator before modifying FromBB.
184     ++It;
185 
186     if (isSafeToMoveBefore(I, *MovePos, DT, PDT, DI))
187       I.moveBefore(MovePos);
188   }
189 }
190