xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeMoverUtils.cpp (revision b23dbabb7f3edb3f323a64f03e37be2c9a8b2a45)
1 //===- CodeMoverUtils.cpp - CodeMover Utilities ----------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform movements on basic blocks, and instructions
10 // contained within a function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/DependenceAnalysis.h"
17 #include "llvm/Analysis/PostDominators.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/Dominators.h"
20 
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "codemover-utils"
24 
25 STATISTIC(HasDependences,
26           "Cannot move across instructions that has memory dependences");
27 STATISTIC(MayThrowException, "Cannot move across instructions that may throw");
28 STATISTIC(NotControlFlowEquivalent,
29           "Instructions are not control flow equivalent");
30 STATISTIC(NotMovedPHINode, "Movement of PHINodes are not supported");
31 STATISTIC(NotMovedTerminator, "Movement of Terminator are not supported");
32 
33 namespace {
34 /// Represent a control condition. A control condition is a condition of a
35 /// terminator to decide which successors to execute. The pointer field
36 /// represents the address of the condition of the terminator. The integer field
37 /// is a bool, it is true when the basic block is executed when V is true. For
38 /// example, `br %cond, bb0, bb1` %cond is a control condition of bb0 with the
39 /// integer field equals to true, while %cond is a control condition of bb1 with
40 /// the integer field equals to false.
41 using ControlCondition = PointerIntPair<Value *, 1, bool>;
42 #ifndef NDEBUG
43 raw_ostream &operator<<(raw_ostream &OS, const ControlCondition &C) {
44   OS << "[" << *C.getPointer() << ", " << (C.getInt() ? "true" : "false")
45      << "]";
46   return OS;
47 }
48 #endif
49 
50 /// Represent a set of control conditions required to execute ToBB from FromBB.
51 class ControlConditions {
52   using ConditionVectorTy = SmallVector<ControlCondition, 6>;
53 
54   /// A SmallVector of control conditions.
55   ConditionVectorTy Conditions;
56 
57 public:
58   /// Return a ControlConditions which stores all conditions required to execute
59   /// \p BB from \p Dominator. If \p MaxLookup is non-zero, it limits the
60   /// number of conditions to collect. Return std::nullopt if not all conditions
61   /// are collected successfully, or we hit the limit.
62   static const std::optional<ControlConditions>
63   collectControlConditions(const BasicBlock &BB, const BasicBlock &Dominator,
64                            const DominatorTree &DT,
65                            const PostDominatorTree &PDT,
66                            unsigned MaxLookup = 6);
67 
68   /// Return true if there exists no control conditions required to execute ToBB
69   /// from FromBB.
70   bool isUnconditional() const { return Conditions.empty(); }
71 
72   /// Return a constant reference of Conditions.
73   const ConditionVectorTy &getControlConditions() const { return Conditions; }
74 
75   /// Add \p V as one of the ControlCondition in Condition with IsTrueCondition
76   /// equals to \p True. Return true if inserted successfully.
77   bool addControlCondition(ControlCondition C);
78 
79   /// Return true if for all control conditions in Conditions, there exists an
80   /// equivalent control condition in \p Other.Conditions.
81   bool isEquivalent(const ControlConditions &Other) const;
82 
83   /// Return true if \p C1 and \p C2 are equivalent.
84   static bool isEquivalent(const ControlCondition &C1,
85                            const ControlCondition &C2);
86 
87 private:
88   ControlConditions() = default;
89 
90   static bool isEquivalent(const Value &V1, const Value &V2);
91   static bool isInverse(const Value &V1, const Value &V2);
92 };
93 } // namespace
94 
95 static bool domTreeLevelBefore(DominatorTree *DT, const Instruction *InstA,
96                                const Instruction *InstB) {
97   // Use ordered basic block in case the 2 instructions are in the same
98   // block.
99   if (InstA->getParent() == InstB->getParent())
100     return InstA->comesBefore(InstB);
101 
102   DomTreeNode *DA = DT->getNode(InstA->getParent());
103   DomTreeNode *DB = DT->getNode(InstB->getParent());
104   return DA->getLevel() < DB->getLevel();
105 }
106 
107 const std::optional<ControlConditions>
108 ControlConditions::collectControlConditions(const BasicBlock &BB,
109                                             const BasicBlock &Dominator,
110                                             const DominatorTree &DT,
111                                             const PostDominatorTree &PDT,
112                                             unsigned MaxLookup) {
113   assert(DT.dominates(&Dominator, &BB) && "Expecting Dominator to dominate BB");
114 
115   ControlConditions Conditions;
116   unsigned NumConditions = 0;
117 
118   // BB is executed unconditional from itself.
119   if (&Dominator == &BB)
120     return Conditions;
121 
122   const BasicBlock *CurBlock = &BB;
123   // Walk up the dominator tree from the associated DT node for BB to the
124   // associated DT node for Dominator.
125   do {
126     assert(DT.getNode(CurBlock) && "Expecting a valid DT node for CurBlock");
127     BasicBlock *IDom = DT.getNode(CurBlock)->getIDom()->getBlock();
128     assert(DT.dominates(&Dominator, IDom) &&
129            "Expecting Dominator to dominate IDom");
130 
131     // Limitation: can only handle branch instruction currently.
132     const BranchInst *BI = dyn_cast<BranchInst>(IDom->getTerminator());
133     if (!BI)
134       return std::nullopt;
135 
136     bool Inserted = false;
137     if (PDT.dominates(CurBlock, IDom)) {
138       LLVM_DEBUG(dbgs() << CurBlock->getName()
139                         << " is executed unconditionally from "
140                         << IDom->getName() << "\n");
141     } else if (PDT.dominates(CurBlock, BI->getSuccessor(0))) {
142       LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
143                         << *BI->getCondition() << "\" is true from "
144                         << IDom->getName() << "\n");
145       Inserted = Conditions.addControlCondition(
146           ControlCondition(BI->getCondition(), true));
147     } else if (PDT.dominates(CurBlock, BI->getSuccessor(1))) {
148       LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
149                         << *BI->getCondition() << "\" is false from "
150                         << IDom->getName() << "\n");
151       Inserted = Conditions.addControlCondition(
152           ControlCondition(BI->getCondition(), false));
153     } else
154       return std::nullopt;
155 
156     if (Inserted)
157       ++NumConditions;
158 
159     if (MaxLookup != 0 && NumConditions > MaxLookup)
160       return std::nullopt;
161 
162     CurBlock = IDom;
163   } while (CurBlock != &Dominator);
164 
165   return Conditions;
166 }
167 
168 bool ControlConditions::addControlCondition(ControlCondition C) {
169   bool Inserted = false;
170   if (none_of(Conditions, [&](ControlCondition &Exists) {
171         return ControlConditions::isEquivalent(C, Exists);
172       })) {
173     Conditions.push_back(C);
174     Inserted = true;
175   }
176 
177   LLVM_DEBUG(dbgs() << (Inserted ? "Inserted " : "Not inserted ") << C << "\n");
178   return Inserted;
179 }
180 
181 bool ControlConditions::isEquivalent(const ControlConditions &Other) const {
182   if (Conditions.empty() && Other.Conditions.empty())
183     return true;
184 
185   if (Conditions.size() != Other.Conditions.size())
186     return false;
187 
188   return all_of(Conditions, [&](const ControlCondition &C) {
189     return any_of(Other.Conditions, [&](const ControlCondition &OtherC) {
190       return ControlConditions::isEquivalent(C, OtherC);
191     });
192   });
193 }
194 
195 bool ControlConditions::isEquivalent(const ControlCondition &C1,
196                                      const ControlCondition &C2) {
197   if (C1.getInt() == C2.getInt()) {
198     if (isEquivalent(*C1.getPointer(), *C2.getPointer()))
199       return true;
200   } else if (isInverse(*C1.getPointer(), *C2.getPointer()))
201     return true;
202 
203   return false;
204 }
205 
206 // FIXME: Use SCEV and reuse GVN/CSE logic to check for equivalence between
207 // Values.
208 // Currently, isEquivalent rely on other passes to ensure equivalent conditions
209 // have the same value, e.g. GVN.
210 bool ControlConditions::isEquivalent(const Value &V1, const Value &V2) {
211   return &V1 == &V2;
212 }
213 
214 bool ControlConditions::isInverse(const Value &V1, const Value &V2) {
215   if (const CmpInst *Cmp1 = dyn_cast<CmpInst>(&V1))
216     if (const CmpInst *Cmp2 = dyn_cast<CmpInst>(&V2)) {
217       if (Cmp1->getPredicate() == Cmp2->getInversePredicate() &&
218           Cmp1->getOperand(0) == Cmp2->getOperand(0) &&
219           Cmp1->getOperand(1) == Cmp2->getOperand(1))
220         return true;
221 
222       if (Cmp1->getPredicate() ==
223               CmpInst::getSwappedPredicate(Cmp2->getInversePredicate()) &&
224           Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
225           Cmp1->getOperand(1) == Cmp2->getOperand(0))
226         return true;
227     }
228   return false;
229 }
230 
231 bool llvm::isControlFlowEquivalent(const Instruction &I0, const Instruction &I1,
232                                    const DominatorTree &DT,
233                                    const PostDominatorTree &PDT) {
234   return isControlFlowEquivalent(*I0.getParent(), *I1.getParent(), DT, PDT);
235 }
236 
237 bool llvm::isControlFlowEquivalent(const BasicBlock &BB0, const BasicBlock &BB1,
238                                    const DominatorTree &DT,
239                                    const PostDominatorTree &PDT) {
240   if (&BB0 == &BB1)
241     return true;
242 
243   if ((DT.dominates(&BB0, &BB1) && PDT.dominates(&BB1, &BB0)) ||
244       (PDT.dominates(&BB0, &BB1) && DT.dominates(&BB1, &BB0)))
245     return true;
246 
247   // If the set of conditions required to execute BB0 and BB1 from their common
248   // dominator are the same, then BB0 and BB1 are control flow equivalent.
249   const BasicBlock *CommonDominator = DT.findNearestCommonDominator(&BB0, &BB1);
250   LLVM_DEBUG(dbgs() << "The nearest common dominator of " << BB0.getName()
251                     << " and " << BB1.getName() << " is "
252                     << CommonDominator->getName() << "\n");
253 
254   const std::optional<ControlConditions> BB0Conditions =
255       ControlConditions::collectControlConditions(BB0, *CommonDominator, DT,
256                                                   PDT);
257   if (BB0Conditions == std::nullopt)
258     return false;
259 
260   const std::optional<ControlConditions> BB1Conditions =
261       ControlConditions::collectControlConditions(BB1, *CommonDominator, DT,
262                                                   PDT);
263   if (BB1Conditions == std::nullopt)
264     return false;
265 
266   return BB0Conditions->isEquivalent(*BB1Conditions);
267 }
268 
269 static bool reportInvalidCandidate(const Instruction &I,
270                                    llvm::Statistic &Stat) {
271   ++Stat;
272   LLVM_DEBUG(dbgs() << "Unable to move instruction: " << I << ". "
273                     << Stat.getDesc());
274   return false;
275 }
276 
277 /// Collect all instructions in between \p StartInst and \p EndInst, and store
278 /// them in \p InBetweenInsts.
279 static void
280 collectInstructionsInBetween(Instruction &StartInst, const Instruction &EndInst,
281                              SmallPtrSetImpl<Instruction *> &InBetweenInsts) {
282   assert(InBetweenInsts.empty() && "Expecting InBetweenInsts to be empty");
283 
284   /// Get the next instructions of \p I, and push them to \p WorkList.
285   auto getNextInsts = [](Instruction &I,
286                          SmallPtrSetImpl<Instruction *> &WorkList) {
287     if (Instruction *NextInst = I.getNextNode())
288       WorkList.insert(NextInst);
289     else {
290       assert(I.isTerminator() && "Expecting a terminator instruction");
291       for (BasicBlock *Succ : successors(&I))
292         WorkList.insert(&Succ->front());
293     }
294   };
295 
296   SmallPtrSet<Instruction *, 10> WorkList;
297   getNextInsts(StartInst, WorkList);
298   while (!WorkList.empty()) {
299     Instruction *CurInst = *WorkList.begin();
300     WorkList.erase(CurInst);
301 
302     if (CurInst == &EndInst)
303       continue;
304 
305     if (!InBetweenInsts.insert(CurInst).second)
306       continue;
307 
308     getNextInsts(*CurInst, WorkList);
309   }
310 }
311 
312 bool llvm::isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint,
313                               DominatorTree &DT, const PostDominatorTree *PDT,
314                               DependenceInfo *DI, bool CheckForEntireBlock) {
315   // Skip tests when we don't have PDT or DI
316   if (!PDT || !DI)
317     return false;
318 
319   // Cannot move itself before itself.
320   if (&I == &InsertPoint)
321     return false;
322 
323   // Not moved.
324   if (I.getNextNode() == &InsertPoint)
325     return true;
326 
327   if (isa<PHINode>(I) || isa<PHINode>(InsertPoint))
328     return reportInvalidCandidate(I, NotMovedPHINode);
329 
330   if (I.isTerminator())
331     return reportInvalidCandidate(I, NotMovedTerminator);
332 
333   // TODO remove this limitation.
334   if (!isControlFlowEquivalent(I, InsertPoint, DT, *PDT))
335     return reportInvalidCandidate(I, NotControlFlowEquivalent);
336 
337   if (isReachedBefore(&I, &InsertPoint, &DT, PDT))
338     for (const Use &U : I.uses())
339       if (auto *UserInst = dyn_cast<Instruction>(U.getUser()))
340         if (UserInst != &InsertPoint && !DT.dominates(&InsertPoint, U))
341           return false;
342   if (isReachedBefore(&InsertPoint, &I, &DT, PDT))
343     for (const Value *Op : I.operands())
344       if (auto *OpInst = dyn_cast<Instruction>(Op)) {
345         if (&InsertPoint == OpInst)
346           return false;
347         // If OpInst is an instruction that appears earlier in the same BB as
348         // I, then it is okay to move since OpInst will still be available.
349         if (CheckForEntireBlock && I.getParent() == OpInst->getParent() &&
350             DT.dominates(OpInst, &I))
351           continue;
352         if (!DT.dominates(OpInst, &InsertPoint))
353           return false;
354       }
355 
356   DT.updateDFSNumbers();
357   const bool MoveForward = domTreeLevelBefore(&DT, &I, &InsertPoint);
358   Instruction &StartInst = (MoveForward ? I : InsertPoint);
359   Instruction &EndInst = (MoveForward ? InsertPoint : I);
360   SmallPtrSet<Instruction *, 10> InstsToCheck;
361   collectInstructionsInBetween(StartInst, EndInst, InstsToCheck);
362   if (!MoveForward)
363     InstsToCheck.insert(&InsertPoint);
364 
365   // Check if there exists instructions which may throw, may synchonize, or may
366   // never return, from I to InsertPoint.
367   if (!isSafeToSpeculativelyExecute(&I))
368     if (llvm::any_of(InstsToCheck, [](Instruction *I) {
369           if (I->mayThrow())
370             return true;
371 
372           const CallBase *CB = dyn_cast<CallBase>(I);
373           if (!CB)
374             return false;
375           if (!CB->hasFnAttr(Attribute::WillReturn))
376             return true;
377           if (!CB->hasFnAttr(Attribute::NoSync))
378             return true;
379 
380           return false;
381         })) {
382       return reportInvalidCandidate(I, MayThrowException);
383     }
384 
385   // Check if I has any output/flow/anti dependences with instructions from \p
386   // StartInst to \p EndInst.
387   if (llvm::any_of(InstsToCheck, [&DI, &I](Instruction *CurInst) {
388         auto DepResult = DI->depends(&I, CurInst, true);
389         if (DepResult && (DepResult->isOutput() || DepResult->isFlow() ||
390                           DepResult->isAnti()))
391           return true;
392         return false;
393       }))
394     return reportInvalidCandidate(I, HasDependences);
395 
396   return true;
397 }
398 
399 bool llvm::isSafeToMoveBefore(BasicBlock &BB, Instruction &InsertPoint,
400                               DominatorTree &DT, const PostDominatorTree *PDT,
401                               DependenceInfo *DI) {
402   return llvm::all_of(BB, [&](Instruction &I) {
403     if (BB.getTerminator() == &I)
404       return true;
405 
406     return isSafeToMoveBefore(I, InsertPoint, DT, PDT, DI,
407                               /*CheckForEntireBlock=*/true);
408   });
409 }
410 
411 void llvm::moveInstructionsToTheBeginning(BasicBlock &FromBB, BasicBlock &ToBB,
412                                           DominatorTree &DT,
413                                           const PostDominatorTree &PDT,
414                                           DependenceInfo &DI) {
415   for (Instruction &I :
416        llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(FromBB)))) {
417     Instruction *MovePos = ToBB.getFirstNonPHIOrDbg();
418 
419     if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
420       I.moveBefore(MovePos);
421   }
422 }
423 
424 void llvm::moveInstructionsToTheEnd(BasicBlock &FromBB, BasicBlock &ToBB,
425                                     DominatorTree &DT,
426                                     const PostDominatorTree &PDT,
427                                     DependenceInfo &DI) {
428   Instruction *MovePos = ToBB.getTerminator();
429   while (FromBB.size() > 1) {
430     Instruction &I = FromBB.front();
431     if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
432       I.moveBefore(MovePos);
433   }
434 }
435 
436 bool llvm::nonStrictlyPostDominate(const BasicBlock *ThisBlock,
437                                    const BasicBlock *OtherBlock,
438                                    const DominatorTree *DT,
439                                    const PostDominatorTree *PDT) {
440   assert(isControlFlowEquivalent(*ThisBlock, *OtherBlock, *DT, *PDT) &&
441          "ThisBlock and OtherBlock must be CFG equivalent!");
442   const BasicBlock *CommonDominator =
443       DT->findNearestCommonDominator(ThisBlock, OtherBlock);
444   if (CommonDominator == nullptr)
445     return false;
446 
447   /// Recursively check the predecessors of \p ThisBlock up to
448   /// their common dominator, and see if any of them post-dominates
449   /// \p OtherBlock.
450   SmallVector<const BasicBlock *, 8> WorkList;
451   SmallPtrSet<const BasicBlock *, 8> Visited;
452   WorkList.push_back(ThisBlock);
453   while (!WorkList.empty()) {
454     const BasicBlock *CurBlock = WorkList.back();
455     WorkList.pop_back();
456     Visited.insert(CurBlock);
457     if (PDT->dominates(CurBlock, OtherBlock))
458       return true;
459 
460     for (const auto *Pred : predecessors(CurBlock)) {
461       if (Pred == CommonDominator || Visited.count(Pred))
462         continue;
463       WorkList.push_back(Pred);
464     }
465   }
466   return false;
467 }
468 
469 bool llvm::isReachedBefore(const Instruction *I0, const Instruction *I1,
470                            const DominatorTree *DT,
471                            const PostDominatorTree *PDT) {
472   const BasicBlock *BB0 = I0->getParent();
473   const BasicBlock *BB1 = I1->getParent();
474   if (BB0 == BB1)
475     return DT->dominates(I0, I1);
476 
477   return nonStrictlyPostDominate(BB1, BB0, DT, PDT);
478 }
479