xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeMoverUtils.cpp (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1 //===- CodeMoverUtils.cpp - CodeMover Utilities ----------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform movements on basic blocks, and instructions
10 // contained within a function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/DependenceAnalysis.h"
18 #include "llvm/Analysis/PostDominators.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Dominators.h"
21 
22 using namespace llvm;
23 
24 #define DEBUG_TYPE "codemover-utils"
25 
26 STATISTIC(HasDependences,
27           "Cannot move across instructions that has memory dependences");
28 STATISTIC(MayThrowException, "Cannot move across instructions that may throw");
29 STATISTIC(NotControlFlowEquivalent,
30           "Instructions are not control flow equivalent");
31 STATISTIC(NotMovedPHINode, "Movement of PHINodes are not supported");
32 STATISTIC(NotMovedTerminator, "Movement of Terminator are not supported");
33 
34 namespace {
35 /// Represent a control condition. A control condition is a condition of a
36 /// terminator to decide which successors to execute. The pointer field
37 /// represents the address of the condition of the terminator. The integer field
38 /// is a bool, it is true when the basic block is executed when V is true. For
39 /// example, `br %cond, bb0, bb1` %cond is a control condition of bb0 with the
40 /// integer field equals to true, while %cond is a control condition of bb1 with
41 /// the integer field equals to false.
42 using ControlCondition = PointerIntPair<Value *, 1, bool>;
43 #ifndef NDEBUG
44 raw_ostream &operator<<(raw_ostream &OS, const ControlCondition &C) {
45   OS << "[" << *C.getPointer() << ", " << (C.getInt() ? "true" : "false")
46      << "]";
47   return OS;
48 }
49 #endif
50 
51 /// Represent a set of control conditions required to execute ToBB from FromBB.
52 class ControlConditions {
53   using ConditionVectorTy = SmallVector<ControlCondition, 6>;
54 
55   /// A SmallVector of control conditions.
56   ConditionVectorTy Conditions;
57 
58 public:
59   /// Return a ControlConditions which stores all conditions required to execute
60   /// \p BB from \p Dominator. If \p MaxLookup is non-zero, it limits the
61   /// number of conditions to collect. Return None if not all conditions are
62   /// collected successfully, or we hit the limit.
63   static const Optional<ControlConditions>
64   collectControlConditions(const BasicBlock &BB, const BasicBlock &Dominator,
65                            const DominatorTree &DT,
66                            const PostDominatorTree &PDT,
67                            unsigned MaxLookup = 6);
68 
69   /// Return true if there exists no control conditions required to execute ToBB
70   /// from FromBB.
71   bool isUnconditional() const { return Conditions.empty(); }
72 
73   /// Return a constant reference of Conditions.
74   const ConditionVectorTy &getControlConditions() const { return Conditions; }
75 
76   /// Add \p V as one of the ControlCondition in Condition with IsTrueCondition
77   /// equals to \p True. Return true if inserted successfully.
78   bool addControlCondition(ControlCondition C);
79 
80   /// Return true if for all control conditions in Conditions, there exists an
81   /// equivalent control condition in \p Other.Conditions.
82   bool isEquivalent(const ControlConditions &Other) const;
83 
84   /// Return true if \p C1 and \p C2 are equivalent.
85   static bool isEquivalent(const ControlCondition &C1,
86                            const ControlCondition &C2);
87 
88 private:
89   ControlConditions() = default;
90 
91   static bool isEquivalent(const Value &V1, const Value &V2);
92   static bool isInverse(const Value &V1, const Value &V2);
93 };
94 } // namespace
95 
96 static bool domTreeLevelBefore(DominatorTree *DT, const Instruction *InstA,
97                                const Instruction *InstB) {
98   // Use ordered basic block in case the 2 instructions are in the same
99   // block.
100   if (InstA->getParent() == InstB->getParent())
101     return InstA->comesBefore(InstB);
102 
103   DomTreeNode *DA = DT->getNode(InstA->getParent());
104   DomTreeNode *DB = DT->getNode(InstB->getParent());
105   return DA->getLevel() < DB->getLevel();
106 }
107 
108 const Optional<ControlConditions> ControlConditions::collectControlConditions(
109     const BasicBlock &BB, const BasicBlock &Dominator, const DominatorTree &DT,
110     const PostDominatorTree &PDT, unsigned MaxLookup) {
111   assert(DT.dominates(&Dominator, &BB) && "Expecting Dominator to dominate BB");
112 
113   ControlConditions Conditions;
114   unsigned NumConditions = 0;
115 
116   // BB is executed unconditional from itself.
117   if (&Dominator == &BB)
118     return Conditions;
119 
120   const BasicBlock *CurBlock = &BB;
121   // Walk up the dominator tree from the associated DT node for BB to the
122   // associated DT node for Dominator.
123   do {
124     assert(DT.getNode(CurBlock) && "Expecting a valid DT node for CurBlock");
125     BasicBlock *IDom = DT.getNode(CurBlock)->getIDom()->getBlock();
126     assert(DT.dominates(&Dominator, IDom) &&
127            "Expecting Dominator to dominate IDom");
128 
129     // Limitation: can only handle branch instruction currently.
130     const BranchInst *BI = dyn_cast<BranchInst>(IDom->getTerminator());
131     if (!BI)
132       return None;
133 
134     bool Inserted = false;
135     if (PDT.dominates(CurBlock, IDom)) {
136       LLVM_DEBUG(dbgs() << CurBlock->getName()
137                         << " is executed unconditionally from "
138                         << IDom->getName() << "\n");
139     } else if (PDT.dominates(CurBlock, BI->getSuccessor(0))) {
140       LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
141                         << *BI->getCondition() << "\" is true from "
142                         << IDom->getName() << "\n");
143       Inserted = Conditions.addControlCondition(
144           ControlCondition(BI->getCondition(), true));
145     } else if (PDT.dominates(CurBlock, BI->getSuccessor(1))) {
146       LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
147                         << *BI->getCondition() << "\" is false from "
148                         << IDom->getName() << "\n");
149       Inserted = Conditions.addControlCondition(
150           ControlCondition(BI->getCondition(), false));
151     } else
152       return None;
153 
154     if (Inserted)
155       ++NumConditions;
156 
157     if (MaxLookup != 0 && NumConditions > MaxLookup)
158       return None;
159 
160     CurBlock = IDom;
161   } while (CurBlock != &Dominator);
162 
163   return Conditions;
164 }
165 
166 bool ControlConditions::addControlCondition(ControlCondition C) {
167   bool Inserted = false;
168   if (none_of(Conditions, [&](ControlCondition &Exists) {
169         return ControlConditions::isEquivalent(C, Exists);
170       })) {
171     Conditions.push_back(C);
172     Inserted = true;
173   }
174 
175   LLVM_DEBUG(dbgs() << (Inserted ? "Inserted " : "Not inserted ") << C << "\n");
176   return Inserted;
177 }
178 
179 bool ControlConditions::isEquivalent(const ControlConditions &Other) const {
180   if (Conditions.empty() && Other.Conditions.empty())
181     return true;
182 
183   if (Conditions.size() != Other.Conditions.size())
184     return false;
185 
186   return all_of(Conditions, [&](const ControlCondition &C) {
187     return any_of(Other.Conditions, [&](const ControlCondition &OtherC) {
188       return ControlConditions::isEquivalent(C, OtherC);
189     });
190   });
191 }
192 
193 bool ControlConditions::isEquivalent(const ControlCondition &C1,
194                                      const ControlCondition &C2) {
195   if (C1.getInt() == C2.getInt()) {
196     if (isEquivalent(*C1.getPointer(), *C2.getPointer()))
197       return true;
198   } else if (isInverse(*C1.getPointer(), *C2.getPointer()))
199     return true;
200 
201   return false;
202 }
203 
204 // FIXME: Use SCEV and reuse GVN/CSE logic to check for equivalence between
205 // Values.
206 // Currently, isEquivalent rely on other passes to ensure equivalent conditions
207 // have the same value, e.g. GVN.
208 bool ControlConditions::isEquivalent(const Value &V1, const Value &V2) {
209   return &V1 == &V2;
210 }
211 
212 bool ControlConditions::isInverse(const Value &V1, const Value &V2) {
213   if (const CmpInst *Cmp1 = dyn_cast<CmpInst>(&V1))
214     if (const CmpInst *Cmp2 = dyn_cast<CmpInst>(&V2)) {
215       if (Cmp1->getPredicate() == Cmp2->getInversePredicate() &&
216           Cmp1->getOperand(0) == Cmp2->getOperand(0) &&
217           Cmp1->getOperand(1) == Cmp2->getOperand(1))
218         return true;
219 
220       if (Cmp1->getPredicate() ==
221               CmpInst::getSwappedPredicate(Cmp2->getInversePredicate()) &&
222           Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
223           Cmp1->getOperand(1) == Cmp2->getOperand(0))
224         return true;
225     }
226   return false;
227 }
228 
229 bool llvm::isControlFlowEquivalent(const Instruction &I0, const Instruction &I1,
230                                    const DominatorTree &DT,
231                                    const PostDominatorTree &PDT) {
232   return isControlFlowEquivalent(*I0.getParent(), *I1.getParent(), DT, PDT);
233 }
234 
235 bool llvm::isControlFlowEquivalent(const BasicBlock &BB0, const BasicBlock &BB1,
236                                    const DominatorTree &DT,
237                                    const PostDominatorTree &PDT) {
238   if (&BB0 == &BB1)
239     return true;
240 
241   if ((DT.dominates(&BB0, &BB1) && PDT.dominates(&BB1, &BB0)) ||
242       (PDT.dominates(&BB0, &BB1) && DT.dominates(&BB1, &BB0)))
243     return true;
244 
245   // If the set of conditions required to execute BB0 and BB1 from their common
246   // dominator are the same, then BB0 and BB1 are control flow equivalent.
247   const BasicBlock *CommonDominator = DT.findNearestCommonDominator(&BB0, &BB1);
248   LLVM_DEBUG(dbgs() << "The nearest common dominator of " << BB0.getName()
249                     << " and " << BB1.getName() << " is "
250                     << CommonDominator->getName() << "\n");
251 
252   const Optional<ControlConditions> BB0Conditions =
253       ControlConditions::collectControlConditions(BB0, *CommonDominator, DT,
254                                                   PDT);
255   if (BB0Conditions == None)
256     return false;
257 
258   const Optional<ControlConditions> BB1Conditions =
259       ControlConditions::collectControlConditions(BB1, *CommonDominator, DT,
260                                                   PDT);
261   if (BB1Conditions == None)
262     return false;
263 
264   return BB0Conditions->isEquivalent(*BB1Conditions);
265 }
266 
267 static bool reportInvalidCandidate(const Instruction &I,
268                                    llvm::Statistic &Stat) {
269   ++Stat;
270   LLVM_DEBUG(dbgs() << "Unable to move instruction: " << I << ". "
271                     << Stat.getDesc());
272   return false;
273 }
274 
275 /// Collect all instructions in between \p StartInst and \p EndInst, and store
276 /// them in \p InBetweenInsts.
277 static void
278 collectInstructionsInBetween(Instruction &StartInst, const Instruction &EndInst,
279                              SmallPtrSetImpl<Instruction *> &InBetweenInsts) {
280   assert(InBetweenInsts.empty() && "Expecting InBetweenInsts to be empty");
281 
282   /// Get the next instructions of \p I, and push them to \p WorkList.
283   auto getNextInsts = [](Instruction &I,
284                          SmallPtrSetImpl<Instruction *> &WorkList) {
285     if (Instruction *NextInst = I.getNextNode())
286       WorkList.insert(NextInst);
287     else {
288       assert(I.isTerminator() && "Expecting a terminator instruction");
289       for (BasicBlock *Succ : successors(&I))
290         WorkList.insert(&Succ->front());
291     }
292   };
293 
294   SmallPtrSet<Instruction *, 10> WorkList;
295   getNextInsts(StartInst, WorkList);
296   while (!WorkList.empty()) {
297     Instruction *CurInst = *WorkList.begin();
298     WorkList.erase(CurInst);
299 
300     if (CurInst == &EndInst)
301       continue;
302 
303     if (!InBetweenInsts.insert(CurInst).second)
304       continue;
305 
306     getNextInsts(*CurInst, WorkList);
307   }
308 }
309 
310 bool llvm::isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint,
311                               DominatorTree &DT, const PostDominatorTree *PDT,
312                               DependenceInfo *DI, bool CheckForEntireBlock) {
313   // Skip tests when we don't have PDT or DI
314   if (!PDT || !DI)
315     return false;
316 
317   // Cannot move itself before itself.
318   if (&I == &InsertPoint)
319     return false;
320 
321   // Not moved.
322   if (I.getNextNode() == &InsertPoint)
323     return true;
324 
325   if (isa<PHINode>(I) || isa<PHINode>(InsertPoint))
326     return reportInvalidCandidate(I, NotMovedPHINode);
327 
328   if (I.isTerminator())
329     return reportInvalidCandidate(I, NotMovedTerminator);
330 
331   // TODO remove this limitation.
332   if (!isControlFlowEquivalent(I, InsertPoint, DT, *PDT))
333     return reportInvalidCandidate(I, NotControlFlowEquivalent);
334 
335   if (isReachedBefore(&I, &InsertPoint, &DT, PDT))
336     for (const Use &U : I.uses())
337       if (auto *UserInst = dyn_cast<Instruction>(U.getUser()))
338         if (UserInst != &InsertPoint && !DT.dominates(&InsertPoint, U))
339           return false;
340   if (isReachedBefore(&InsertPoint, &I, &DT, PDT))
341     for (const Value *Op : I.operands())
342       if (auto *OpInst = dyn_cast<Instruction>(Op)) {
343         if (&InsertPoint == OpInst)
344           return false;
345         // If OpInst is an instruction that appears earlier in the same BB as
346         // I, then it is okay to move since OpInst will still be available.
347         if (CheckForEntireBlock && I.getParent() == OpInst->getParent() &&
348             DT.dominates(OpInst, &I))
349           continue;
350         if (!DT.dominates(OpInst, &InsertPoint))
351           return false;
352       }
353 
354   DT.updateDFSNumbers();
355   const bool MoveForward = domTreeLevelBefore(&DT, &I, &InsertPoint);
356   Instruction &StartInst = (MoveForward ? I : InsertPoint);
357   Instruction &EndInst = (MoveForward ? InsertPoint : I);
358   SmallPtrSet<Instruction *, 10> InstsToCheck;
359   collectInstructionsInBetween(StartInst, EndInst, InstsToCheck);
360   if (!MoveForward)
361     InstsToCheck.insert(&InsertPoint);
362 
363   // Check if there exists instructions which may throw, may synchonize, or may
364   // never return, from I to InsertPoint.
365   if (!isSafeToSpeculativelyExecute(&I))
366     if (llvm::any_of(InstsToCheck, [](Instruction *I) {
367           if (I->mayThrow())
368             return true;
369 
370           const CallBase *CB = dyn_cast<CallBase>(I);
371           if (!CB)
372             return false;
373           if (!CB->hasFnAttr(Attribute::WillReturn))
374             return true;
375           if (!CB->hasFnAttr(Attribute::NoSync))
376             return true;
377 
378           return false;
379         })) {
380       return reportInvalidCandidate(I, MayThrowException);
381     }
382 
383   // Check if I has any output/flow/anti dependences with instructions from \p
384   // StartInst to \p EndInst.
385   if (llvm::any_of(InstsToCheck, [&DI, &I](Instruction *CurInst) {
386         auto DepResult = DI->depends(&I, CurInst, true);
387         if (DepResult && (DepResult->isOutput() || DepResult->isFlow() ||
388                           DepResult->isAnti()))
389           return true;
390         return false;
391       }))
392     return reportInvalidCandidate(I, HasDependences);
393 
394   return true;
395 }
396 
397 bool llvm::isSafeToMoveBefore(BasicBlock &BB, Instruction &InsertPoint,
398                               DominatorTree &DT, const PostDominatorTree *PDT,
399                               DependenceInfo *DI) {
400   return llvm::all_of(BB, [&](Instruction &I) {
401     if (BB.getTerminator() == &I)
402       return true;
403 
404     return isSafeToMoveBefore(I, InsertPoint, DT, PDT, DI,
405                               /*CheckForEntireBlock=*/true);
406   });
407 }
408 
409 void llvm::moveInstructionsToTheBeginning(BasicBlock &FromBB, BasicBlock &ToBB,
410                                           DominatorTree &DT,
411                                           const PostDominatorTree &PDT,
412                                           DependenceInfo &DI) {
413   for (Instruction &I :
414        llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(FromBB)))) {
415     Instruction *MovePos = ToBB.getFirstNonPHIOrDbg();
416 
417     if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
418       I.moveBefore(MovePos);
419   }
420 }
421 
422 void llvm::moveInstructionsToTheEnd(BasicBlock &FromBB, BasicBlock &ToBB,
423                                     DominatorTree &DT,
424                                     const PostDominatorTree &PDT,
425                                     DependenceInfo &DI) {
426   Instruction *MovePos = ToBB.getTerminator();
427   while (FromBB.size() > 1) {
428     Instruction &I = FromBB.front();
429     if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
430       I.moveBefore(MovePos);
431   }
432 }
433 
434 bool llvm::nonStrictlyPostDominate(const BasicBlock *ThisBlock,
435                                    const BasicBlock *OtherBlock,
436                                    const DominatorTree *DT,
437                                    const PostDominatorTree *PDT) {
438   assert(isControlFlowEquivalent(*ThisBlock, *OtherBlock, *DT, *PDT) &&
439          "ThisBlock and OtherBlock must be CFG equivalent!");
440   const BasicBlock *CommonDominator =
441       DT->findNearestCommonDominator(ThisBlock, OtherBlock);
442   if (CommonDominator == nullptr)
443     return false;
444 
445   /// Recursively check the predecessors of \p ThisBlock up to
446   /// their common dominator, and see if any of them post-dominates
447   /// \p OtherBlock.
448   SmallVector<const BasicBlock *, 8> WorkList;
449   SmallPtrSet<const BasicBlock *, 8> Visited;
450   WorkList.push_back(ThisBlock);
451   while (!WorkList.empty()) {
452     const BasicBlock *CurBlock = WorkList.back();
453     WorkList.pop_back();
454     Visited.insert(CurBlock);
455     if (PDT->dominates(CurBlock, OtherBlock))
456       return true;
457 
458     for (auto *Pred : predecessors(CurBlock)) {
459       if (Pred == CommonDominator || Visited.count(Pred))
460         continue;
461       WorkList.push_back(Pred);
462     }
463   }
464   return false;
465 }
466 
467 bool llvm::isReachedBefore(const Instruction *I0, const Instruction *I1,
468                            const DominatorTree *DT,
469                            const PostDominatorTree *PDT) {
470   const BasicBlock *BB0 = I0->getParent();
471   const BasicBlock *BB1 = I1->getParent();
472   if (BB0 == BB1)
473     return DT->dominates(I0, I1);
474 
475   return nonStrictlyPostDominate(BB1, BB0, DT, PDT);
476 }
477