xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeLayout.cpp (revision c9539b89010900499a200cdd6c0265ea5d950875)
1 //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ExtTSP - layout of basic blocks with i-cache optimization.
10 //
11 // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
12 // optimizing jump locality and thus processor I-cache utilization. This is
13 // achieved via increasing the number of fall-through jumps and co-locating
14 // frequently executed nodes together. The name follows the underlying
15 // optimization problem, Extended-TSP, which is a generalization of classical
16 // (maximum) Traveling Salesmen Problem.
17 //
18 // The algorithm is a greedy heuristic that works with chains (ordered lists)
19 // of basic blocks. Initially all chains are isolated basic blocks. On every
20 // iteration, we pick a pair of chains whose merging yields the biggest increase
21 // in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
22 // A pair of chains giving the maximum gain is merged into a new chain. The
23 // procedure stops when there is only one chain left, or when merging does not
24 // increase ExtTSP. In the latter case, the remaining chains are sorted by
25 // density in the decreasing order.
26 //
27 // An important aspect is the way two chains are merged. Unlike earlier
28 // algorithms (e.g., based on the approach of Pettis-Hansen), two
29 // chains, X and Y, are first split into three, X1, X2, and Y. Then we
30 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
31 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
32 // This improves the quality of the final result (the search space is larger)
33 // while keeping the implementation sufficiently fast.
34 //
35 // Reference:
36 //   * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
37 //     IEEE Transactions on Computers, 2020
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/Transforms/Utils/CodeLayout.h"
42 #include "llvm/Support/CommandLine.h"
43 
44 using namespace llvm;
45 #define DEBUG_TYPE "code-layout"
46 
47 cl::opt<bool> EnableExtTspBlockPlacement(
48     "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
49     cl::desc("Enable machine block placement based on the ext-tsp model, "
50              "optimizing I-cache utilization."));
51 
52 cl::opt<bool> ApplyExtTspWithoutProfile(
53     "ext-tsp-apply-without-profile",
54     cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
55     cl::init(true), cl::Hidden);
56 
57 // Algorithm-specific constants. The values are tuned for the best performance
58 // of large-scale front-end bound binaries.
59 static cl::opt<double>
60     ForwardWeight("ext-tsp-forward-weight", cl::Hidden, cl::init(0.1),
61                   cl::desc("The weight of forward jumps for ExtTSP value"));
62 
63 static cl::opt<double>
64     BackwardWeight("ext-tsp-backward-weight", cl::Hidden, cl::init(0.1),
65                    cl::desc("The weight of backward jumps for ExtTSP value"));
66 
67 static cl::opt<unsigned> ForwardDistance(
68     "ext-tsp-forward-distance", cl::Hidden, cl::init(1024),
69     cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
70 
71 static cl::opt<unsigned> BackwardDistance(
72     "ext-tsp-backward-distance", cl::Hidden, cl::init(640),
73     cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
74 
75 // The maximum size of a chain created by the algorithm. The size is bounded
76 // so that the algorithm can efficiently process extremely large instance.
77 static cl::opt<unsigned>
78     MaxChainSize("ext-tsp-max-chain-size", cl::Hidden, cl::init(4096),
79                  cl::desc("The maximum size of a chain to create."));
80 
81 // The maximum size of a chain for splitting. Larger values of the threshold
82 // may yield better quality at the cost of worsen run-time.
83 static cl::opt<unsigned> ChainSplitThreshold(
84     "ext-tsp-chain-split-threshold", cl::Hidden, cl::init(128),
85     cl::desc("The maximum size of a chain to apply splitting"));
86 
87 // The option enables splitting (large) chains along in-coming and out-going
88 // jumps. This typically results in a better quality.
89 static cl::opt<bool> EnableChainSplitAlongJumps(
90     "ext-tsp-enable-chain-split-along-jumps", cl::Hidden, cl::init(true),
91     cl::desc("The maximum size of a chain to apply splitting"));
92 
93 namespace {
94 
95 // Epsilon for comparison of doubles.
96 constexpr double EPS = 1e-8;
97 
98 // Compute the Ext-TSP score for a jump between a given pair of blocks,
99 // using their sizes, (estimated) addresses and the jump execution count.
100 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
101                    uint64_t Count) {
102   // Fallthrough
103   if (SrcAddr + SrcSize == DstAddr) {
104     // Assume that FallthroughWeight = 1.0 after normalization
105     return static_cast<double>(Count);
106   }
107   // Forward
108   if (SrcAddr + SrcSize < DstAddr) {
109     const auto Dist = DstAddr - (SrcAddr + SrcSize);
110     if (Dist <= ForwardDistance) {
111       double Prob = 1.0 - static_cast<double>(Dist) / ForwardDistance;
112       return ForwardWeight * Prob * Count;
113     }
114     return 0;
115   }
116   // Backward
117   const auto Dist = SrcAddr + SrcSize - DstAddr;
118   if (Dist <= BackwardDistance) {
119     double Prob = 1.0 - static_cast<double>(Dist) / BackwardDistance;
120     return BackwardWeight * Prob * Count;
121   }
122   return 0;
123 }
124 
125 /// A type of merging two chains, X and Y. The former chain is split into
126 /// X1 and X2 and then concatenated with Y in the order specified by the type.
127 enum class MergeTypeTy : int { X_Y, X1_Y_X2, Y_X2_X1, X2_X1_Y };
128 
129 /// The gain of merging two chains, that is, the Ext-TSP score of the merge
130 /// together with the corresponfiding merge 'type' and 'offset'.
131 class MergeGainTy {
132 public:
133   explicit MergeGainTy() = default;
134   explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType)
135       : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
136 
137   double score() const { return Score; }
138 
139   size_t mergeOffset() const { return MergeOffset; }
140 
141   MergeTypeTy mergeType() const { return MergeType; }
142 
143   // Returns 'true' iff Other is preferred over this.
144   bool operator<(const MergeGainTy &Other) const {
145     return (Other.Score > EPS && Other.Score > Score + EPS);
146   }
147 
148   // Update the current gain if Other is preferred over this.
149   void updateIfLessThan(const MergeGainTy &Other) {
150     if (*this < Other)
151       *this = Other;
152   }
153 
154 private:
155   double Score{-1.0};
156   size_t MergeOffset{0};
157   MergeTypeTy MergeType{MergeTypeTy::X_Y};
158 };
159 
160 class Jump;
161 class Chain;
162 class ChainEdge;
163 
164 /// A node in the graph, typically corresponding to a basic block in CFG.
165 class Block {
166 public:
167   Block(const Block &) = delete;
168   Block(Block &&) = default;
169   Block &operator=(const Block &) = delete;
170   Block &operator=(Block &&) = default;
171 
172   // The original index of the block in CFG.
173   size_t Index{0};
174   // The index of the block in the current chain.
175   size_t CurIndex{0};
176   // Size of the block in the binary.
177   uint64_t Size{0};
178   // Execution count of the block in the profile data.
179   uint64_t ExecutionCount{0};
180   // Current chain of the node.
181   Chain *CurChain{nullptr};
182   // An offset of the block in the current chain.
183   mutable uint64_t EstimatedAddr{0};
184   // Forced successor of the block in CFG.
185   Block *ForcedSucc{nullptr};
186   // Forced predecessor of the block in CFG.
187   Block *ForcedPred{nullptr};
188   // Outgoing jumps from the block.
189   std::vector<Jump *> OutJumps;
190   // Incoming jumps to the block.
191   std::vector<Jump *> InJumps;
192 
193 public:
194   explicit Block(size_t Index, uint64_t Size_, uint64_t EC)
195       : Index(Index), Size(Size_), ExecutionCount(EC) {}
196   bool isEntry() const { return Index == 0; }
197 };
198 
199 /// An arc in the graph, typically corresponding to a jump between two blocks.
200 class Jump {
201 public:
202   Jump(const Jump &) = delete;
203   Jump(Jump &&) = default;
204   Jump &operator=(const Jump &) = delete;
205   Jump &operator=(Jump &&) = default;
206 
207   // Source block of the jump.
208   Block *Source;
209   // Target block of the jump.
210   Block *Target;
211   // Execution count of the arc in the profile data.
212   uint64_t ExecutionCount{0};
213 
214 public:
215   explicit Jump(Block *Source, Block *Target, uint64_t ExecutionCount)
216       : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
217 };
218 
219 /// A chain (ordered sequence) of blocks.
220 class Chain {
221 public:
222   Chain(const Chain &) = delete;
223   Chain(Chain &&) = default;
224   Chain &operator=(const Chain &) = delete;
225   Chain &operator=(Chain &&) = default;
226 
227   explicit Chain(uint64_t Id, Block *Block)
228       : Id(Id), Score(0), Blocks(1, Block) {}
229 
230   uint64_t id() const { return Id; }
231 
232   bool isEntry() const { return Blocks[0]->Index == 0; }
233 
234   double score() const { return Score; }
235 
236   void setScore(double NewScore) { Score = NewScore; }
237 
238   const std::vector<Block *> &blocks() const { return Blocks; }
239 
240   size_t numBlocks() const { return Blocks.size(); }
241 
242   const std::vector<std::pair<Chain *, ChainEdge *>> &edges() const {
243     return Edges;
244   }
245 
246   ChainEdge *getEdge(Chain *Other) const {
247     for (auto It : Edges) {
248       if (It.first == Other)
249         return It.second;
250     }
251     return nullptr;
252   }
253 
254   void removeEdge(Chain *Other) {
255     auto It = Edges.begin();
256     while (It != Edges.end()) {
257       if (It->first == Other) {
258         Edges.erase(It);
259         return;
260       }
261       It++;
262     }
263   }
264 
265   void addEdge(Chain *Other, ChainEdge *Edge) {
266     Edges.push_back(std::make_pair(Other, Edge));
267   }
268 
269   void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) {
270     Blocks = MergedBlocks;
271     // Update the block's chains
272     for (size_t Idx = 0; Idx < Blocks.size(); Idx++) {
273       Blocks[Idx]->CurChain = this;
274       Blocks[Idx]->CurIndex = Idx;
275     }
276   }
277 
278   void mergeEdges(Chain *Other);
279 
280   void clear() {
281     Blocks.clear();
282     Blocks.shrink_to_fit();
283     Edges.clear();
284     Edges.shrink_to_fit();
285   }
286 
287 private:
288   // Unique chain identifier.
289   uint64_t Id;
290   // Cached ext-tsp score for the chain.
291   double Score;
292   // Blocks of the chain.
293   std::vector<Block *> Blocks;
294   // Adjacent chains and corresponding edges (lists of jumps).
295   std::vector<std::pair<Chain *, ChainEdge *>> Edges;
296 };
297 
298 /// An edge in CFG representing jumps between two chains.
299 /// When blocks are merged into chains, the edges are combined too so that
300 /// there is always at most one edge between a pair of chains
301 class ChainEdge {
302 public:
303   ChainEdge(const ChainEdge &) = delete;
304   ChainEdge(ChainEdge &&) = default;
305   ChainEdge &operator=(const ChainEdge &) = delete;
306   ChainEdge &operator=(ChainEdge &&) = default;
307 
308   explicit ChainEdge(Jump *Jump)
309       : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
310         Jumps(1, Jump) {}
311 
312   const std::vector<Jump *> &jumps() const { return Jumps; }
313 
314   void changeEndpoint(Chain *From, Chain *To) {
315     if (From == SrcChain)
316       SrcChain = To;
317     if (From == DstChain)
318       DstChain = To;
319   }
320 
321   void appendJump(Jump *Jump) { Jumps.push_back(Jump); }
322 
323   void moveJumps(ChainEdge *Other) {
324     Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
325     Other->Jumps.clear();
326     Other->Jumps.shrink_to_fit();
327   }
328 
329   bool hasCachedMergeGain(Chain *Src, Chain *Dst) const {
330     return Src == SrcChain ? CacheValidForward : CacheValidBackward;
331   }
332 
333   MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const {
334     return Src == SrcChain ? CachedGainForward : CachedGainBackward;
335   }
336 
337   void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) {
338     if (Src == SrcChain) {
339       CachedGainForward = MergeGain;
340       CacheValidForward = true;
341     } else {
342       CachedGainBackward = MergeGain;
343       CacheValidBackward = true;
344     }
345   }
346 
347   void invalidateCache() {
348     CacheValidForward = false;
349     CacheValidBackward = false;
350   }
351 
352 private:
353   // Source chain.
354   Chain *SrcChain{nullptr};
355   // Destination chain.
356   Chain *DstChain{nullptr};
357   // Original jumps in the binary with correspinding execution counts.
358   std::vector<Jump *> Jumps;
359   // Cached ext-tsp value for merging the pair of chains.
360   // Since the gain of merging (Src, Dst) and (Dst, Src) might be different,
361   // we store both values here.
362   MergeGainTy CachedGainForward;
363   MergeGainTy CachedGainBackward;
364   // Whether the cached value must be recomputed.
365   bool CacheValidForward{false};
366   bool CacheValidBackward{false};
367 };
368 
369 void Chain::mergeEdges(Chain *Other) {
370   assert(this != Other && "cannot merge a chain with itself");
371 
372   // Update edges adjacent to chain Other
373   for (auto EdgeIt : Other->Edges) {
374     const auto DstChain = EdgeIt.first;
375     const auto DstEdge = EdgeIt.second;
376     const auto TargetChain = DstChain == Other ? this : DstChain;
377     auto CurEdge = getEdge(TargetChain);
378     if (CurEdge == nullptr) {
379       DstEdge->changeEndpoint(Other, this);
380       this->addEdge(TargetChain, DstEdge);
381       if (DstChain != this && DstChain != Other) {
382         DstChain->addEdge(this, DstEdge);
383       }
384     } else {
385       CurEdge->moveJumps(DstEdge);
386     }
387     // Cleanup leftover edge
388     if (DstChain != Other) {
389       DstChain->removeEdge(Other);
390     }
391   }
392 }
393 
394 using BlockIter = std::vector<Block *>::const_iterator;
395 
396 /// A wrapper around three chains of blocks; it is used to avoid extra
397 /// instantiation of the vectors.
398 class MergedChain {
399 public:
400   MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(),
401               BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(),
402               BlockIter End3 = BlockIter())
403       : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
404         End3(End3) {}
405 
406   template <typename F> void forEach(const F &Func) const {
407     for (auto It = Begin1; It != End1; It++)
408       Func(*It);
409     for (auto It = Begin2; It != End2; It++)
410       Func(*It);
411     for (auto It = Begin3; It != End3; It++)
412       Func(*It);
413   }
414 
415   std::vector<Block *> getBlocks() const {
416     std::vector<Block *> Result;
417     Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
418                    std::distance(Begin3, End3));
419     Result.insert(Result.end(), Begin1, End1);
420     Result.insert(Result.end(), Begin2, End2);
421     Result.insert(Result.end(), Begin3, End3);
422     return Result;
423   }
424 
425   const Block *getFirstBlock() const { return *Begin1; }
426 
427 private:
428   BlockIter Begin1;
429   BlockIter End1;
430   BlockIter Begin2;
431   BlockIter End2;
432   BlockIter Begin3;
433   BlockIter End3;
434 };
435 
436 /// The implementation of the ExtTSP algorithm.
437 class ExtTSPImpl {
438   using EdgeT = std::pair<uint64_t, uint64_t>;
439   using EdgeCountMap = DenseMap<EdgeT, uint64_t>;
440 
441 public:
442   ExtTSPImpl(size_t NumNodes, const std::vector<uint64_t> &NodeSizes,
443              const std::vector<uint64_t> &NodeCounts,
444              const EdgeCountMap &EdgeCounts)
445       : NumNodes(NumNodes) {
446     initialize(NodeSizes, NodeCounts, EdgeCounts);
447   }
448 
449   /// Run the algorithm and return an optimized ordering of blocks.
450   void run(std::vector<uint64_t> &Result) {
451     // Pass 1: Merge blocks with their mutually forced successors
452     mergeForcedPairs();
453 
454     // Pass 2: Merge pairs of chains while improving the ExtTSP objective
455     mergeChainPairs();
456 
457     // Pass 3: Merge cold blocks to reduce code size
458     mergeColdChains();
459 
460     // Collect blocks from all chains
461     concatChains(Result);
462   }
463 
464 private:
465   /// Initialize the algorithm's data structures.
466   void initialize(const std::vector<uint64_t> &NodeSizes,
467                   const std::vector<uint64_t> &NodeCounts,
468                   const EdgeCountMap &EdgeCounts) {
469     // Initialize blocks
470     AllBlocks.reserve(NumNodes);
471     for (uint64_t Node = 0; Node < NumNodes; Node++) {
472       uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
473       uint64_t ExecutionCount = NodeCounts[Node];
474       // The execution count of the entry block is set to at least 1
475       if (Node == 0 && ExecutionCount == 0)
476         ExecutionCount = 1;
477       AllBlocks.emplace_back(Node, Size, ExecutionCount);
478     }
479 
480     // Initialize jumps between blocks
481     SuccNodes = std::vector<std::vector<uint64_t>>(NumNodes);
482     PredNodes = std::vector<std::vector<uint64_t>>(NumNodes);
483     AllJumps.reserve(EdgeCounts.size());
484     for (auto It : EdgeCounts) {
485       auto Pred = It.first.first;
486       auto Succ = It.first.second;
487       // Ignore self-edges
488       if (Pred == Succ)
489         continue;
490 
491       SuccNodes[Pred].push_back(Succ);
492       PredNodes[Succ].push_back(Pred);
493       auto ExecutionCount = It.second;
494       if (ExecutionCount > 0) {
495         auto &Block = AllBlocks[Pred];
496         auto &SuccBlock = AllBlocks[Succ];
497         AllJumps.emplace_back(&Block, &SuccBlock, ExecutionCount);
498         SuccBlock.InJumps.push_back(&AllJumps.back());
499         Block.OutJumps.push_back(&AllJumps.back());
500       }
501     }
502 
503     // Initialize chains
504     AllChains.reserve(NumNodes);
505     HotChains.reserve(NumNodes);
506     for (auto &Block : AllBlocks) {
507       AllChains.emplace_back(Block.Index, &Block);
508       Block.CurChain = &AllChains.back();
509       if (Block.ExecutionCount > 0) {
510         HotChains.push_back(&AllChains.back());
511       }
512     }
513 
514     // Initialize chain edges
515     AllEdges.reserve(AllJumps.size());
516     for (auto &Block : AllBlocks) {
517       for (auto &Jump : Block.OutJumps) {
518         auto SuccBlock = Jump->Target;
519         auto CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain);
520         // this edge is already present in the graph
521         if (CurEdge != nullptr) {
522           assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr);
523           CurEdge->appendJump(Jump);
524           continue;
525         }
526         // this is a new edge
527         AllEdges.emplace_back(Jump);
528         Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back());
529         SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back());
530       }
531     }
532   }
533 
534   /// For a pair of blocks, A and B, block B is the forced successor of A,
535   /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
536   /// to B are from A. Such blocks should be adjacent in the optimal ordering;
537   /// the method finds and merges such pairs of blocks.
538   void mergeForcedPairs() {
539     // Find fallthroughs based on edge weights
540     for (auto &Block : AllBlocks) {
541       if (SuccNodes[Block.Index].size() == 1 &&
542           PredNodes[SuccNodes[Block.Index][0]].size() == 1 &&
543           SuccNodes[Block.Index][0] != 0) {
544         size_t SuccIndex = SuccNodes[Block.Index][0];
545         Block.ForcedSucc = &AllBlocks[SuccIndex];
546         AllBlocks[SuccIndex].ForcedPred = &Block;
547       }
548     }
549 
550     // There might be 'cycles' in the forced dependencies, since profile
551     // data isn't 100% accurate. Typically this is observed in loops, when the
552     // loop edges are the hottest successors for the basic blocks of the loop.
553     // Break the cycles by choosing the block with the smallest index as the
554     // head. This helps to keep the original order of the loops, which likely
555     // have already been rotated in the optimized manner.
556     for (auto &Block : AllBlocks) {
557       if (Block.ForcedSucc == nullptr || Block.ForcedPred == nullptr)
558         continue;
559 
560       auto SuccBlock = Block.ForcedSucc;
561       while (SuccBlock != nullptr && SuccBlock != &Block) {
562         SuccBlock = SuccBlock->ForcedSucc;
563       }
564       if (SuccBlock == nullptr)
565         continue;
566       // Break the cycle
567       AllBlocks[Block.ForcedPred->Index].ForcedSucc = nullptr;
568       Block.ForcedPred = nullptr;
569     }
570 
571     // Merge blocks with their fallthrough successors
572     for (auto &Block : AllBlocks) {
573       if (Block.ForcedPred == nullptr && Block.ForcedSucc != nullptr) {
574         auto CurBlock = &Block;
575         while (CurBlock->ForcedSucc != nullptr) {
576           const auto NextBlock = CurBlock->ForcedSucc;
577           mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y);
578           CurBlock = NextBlock;
579         }
580       }
581     }
582   }
583 
584   /// Merge pairs of chains while improving the ExtTSP objective.
585   void mergeChainPairs() {
586     /// Deterministically compare pairs of chains
587     auto compareChainPairs = [](const Chain *A1, const Chain *B1,
588                                 const Chain *A2, const Chain *B2) {
589       if (A1 != A2)
590         return A1->id() < A2->id();
591       return B1->id() < B2->id();
592     };
593 
594     while (HotChains.size() > 1) {
595       Chain *BestChainPred = nullptr;
596       Chain *BestChainSucc = nullptr;
597       auto BestGain = MergeGainTy();
598       // Iterate over all pairs of chains
599       for (auto ChainPred : HotChains) {
600         // Get candidates for merging with the current chain
601         for (auto EdgeIter : ChainPred->edges()) {
602           auto ChainSucc = EdgeIter.first;
603           auto ChainEdge = EdgeIter.second;
604           // Ignore loop edges
605           if (ChainPred == ChainSucc)
606             continue;
607 
608           // Stop early if the combined chain violates the maximum allowed size
609           if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
610             continue;
611 
612           // Compute the gain of merging the two chains
613           auto CurGain = getBestMergeGain(ChainPred, ChainSucc, ChainEdge);
614           if (CurGain.score() <= EPS)
615             continue;
616 
617           if (BestGain < CurGain ||
618               (std::abs(CurGain.score() - BestGain.score()) < EPS &&
619                compareChainPairs(ChainPred, ChainSucc, BestChainPred,
620                                  BestChainSucc))) {
621             BestGain = CurGain;
622             BestChainPred = ChainPred;
623             BestChainSucc = ChainSucc;
624           }
625         }
626       }
627 
628       // Stop merging when there is no improvement
629       if (BestGain.score() <= EPS)
630         break;
631 
632       // Merge the best pair of chains
633       mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
634                   BestGain.mergeType());
635     }
636   }
637 
638   /// Merge cold blocks to reduce code size.
639   void mergeColdChains() {
640     for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
641       // Iterating over neighbors in the reverse order to make sure original
642       // fallthrough jumps are merged first
643       size_t NumSuccs = SuccNodes[SrcBB].size();
644       for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
645         auto DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
646         auto SrcChain = AllBlocks[SrcBB].CurChain;
647         auto DstChain = AllBlocks[DstBB].CurChain;
648         if (SrcChain != DstChain && !DstChain->isEntry() &&
649             SrcChain->blocks().back()->Index == SrcBB &&
650             DstChain->blocks().front()->Index == DstBB) {
651           mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y);
652         }
653       }
654     }
655   }
656 
657   /// Compute the Ext-TSP score for a given block order and a list of jumps.
658   double extTSPScore(const MergedChain &MergedBlocks,
659                      const std::vector<Jump *> &Jumps) const {
660     if (Jumps.empty())
661       return 0.0;
662     uint64_t CurAddr = 0;
663     MergedBlocks.forEach([&](const Block *BB) {
664       BB->EstimatedAddr = CurAddr;
665       CurAddr += BB->Size;
666     });
667 
668     double Score = 0;
669     for (auto &Jump : Jumps) {
670       const auto SrcBlock = Jump->Source;
671       const auto DstBlock = Jump->Target;
672       Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
673                              DstBlock->EstimatedAddr, Jump->ExecutionCount);
674     }
675     return Score;
676   }
677 
678   /// Compute the gain of merging two chains.
679   ///
680   /// The function considers all possible ways of merging two chains and
681   /// computes the one having the largest increase in ExtTSP objective. The
682   /// result is a pair with the first element being the gain and the second
683   /// element being the corresponding merging type.
684   MergeGainTy getBestMergeGain(Chain *ChainPred, Chain *ChainSucc,
685                                ChainEdge *Edge) const {
686     if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) {
687       return Edge->getCachedMergeGain(ChainPred, ChainSucc);
688     }
689 
690     // Precompute jumps between ChainPred and ChainSucc
691     auto Jumps = Edge->jumps();
692     auto EdgePP = ChainPred->getEdge(ChainPred);
693     if (EdgePP != nullptr) {
694       Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
695     }
696     assert(!Jumps.empty() && "trying to merge chains w/o jumps");
697 
698     // The object holds the best currently chosen gain of merging the two chains
699     MergeGainTy Gain = MergeGainTy();
700 
701     /// Given a merge offset and a list of merge types, try to merge two chains
702     /// and update Gain with a better alternative
703     auto tryChainMerging = [&](size_t Offset,
704                                const std::vector<MergeTypeTy> &MergeTypes) {
705       // Skip merging corresponding to concatenation w/o splitting
706       if (Offset == 0 || Offset == ChainPred->blocks().size())
707         return;
708       // Skip merging if it breaks Forced successors
709       auto BB = ChainPred->blocks()[Offset - 1];
710       if (BB->ForcedSucc != nullptr)
711         return;
712       // Apply the merge, compute the corresponding gain, and update the best
713       // value, if the merge is beneficial
714       for (auto &MergeType : MergeTypes) {
715         Gain.updateIfLessThan(
716             computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
717       }
718     };
719 
720     // Try to concatenate two chains w/o splitting
721     Gain.updateIfLessThan(
722         computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeTy::X_Y));
723 
724     if (EnableChainSplitAlongJumps) {
725       // Attach (a part of) ChainPred before the first block of ChainSucc
726       for (auto &Jump : ChainSucc->blocks().front()->InJumps) {
727         const auto SrcBlock = Jump->Source;
728         if (SrcBlock->CurChain != ChainPred)
729           continue;
730         size_t Offset = SrcBlock->CurIndex + 1;
731         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::X2_X1_Y});
732       }
733 
734       // Attach (a part of) ChainPred after the last block of ChainSucc
735       for (auto &Jump : ChainSucc->blocks().back()->OutJumps) {
736         const auto DstBlock = Jump->Source;
737         if (DstBlock->CurChain != ChainPred)
738           continue;
739         size_t Offset = DstBlock->CurIndex;
740         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1});
741       }
742     }
743 
744     // Try to break ChainPred in various ways and concatenate with ChainSucc
745     if (ChainPred->blocks().size() <= ChainSplitThreshold) {
746       for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) {
747         // Try to split the chain in different ways. In practice, applying
748         // X2_Y_X1 merging is almost never provides benefits; thus, we exclude
749         // it from consideration to reduce the search space
750         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1,
751                                  MergeTypeTy::X2_X1_Y});
752       }
753     }
754     Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
755     return Gain;
756   }
757 
758   /// Compute the score gain of merging two chains, respecting a given
759   /// merge 'type' and 'offset'.
760   ///
761   /// The two chains are not modified in the method.
762   MergeGainTy computeMergeGain(const Chain *ChainPred, const Chain *ChainSucc,
763                                const std::vector<Jump *> &Jumps,
764                                size_t MergeOffset,
765                                MergeTypeTy MergeType) const {
766     auto MergedBlocks = mergeBlocks(ChainPred->blocks(), ChainSucc->blocks(),
767                                     MergeOffset, MergeType);
768 
769     // Do not allow a merge that does not preserve the original entry block
770     if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
771         !MergedBlocks.getFirstBlock()->isEntry())
772       return MergeGainTy();
773 
774     // The gain for the new chain
775     auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->score();
776     return MergeGainTy(NewGainScore, MergeOffset, MergeType);
777   }
778 
779   /// Merge two chains of blocks respecting a given merge 'type' and 'offset'.
780   ///
781   /// If MergeType == 0, then the result is a concatentation of two chains.
782   /// Otherwise, the first chain is cut into two sub-chains at the offset,
783   /// and merged using all possible ways of concatenating three chains.
784   MergedChain mergeBlocks(const std::vector<Block *> &X,
785                           const std::vector<Block *> &Y, size_t MergeOffset,
786                           MergeTypeTy MergeType) const {
787     // Split the first chain, X, into X1 and X2
788     BlockIter BeginX1 = X.begin();
789     BlockIter EndX1 = X.begin() + MergeOffset;
790     BlockIter BeginX2 = X.begin() + MergeOffset;
791     BlockIter EndX2 = X.end();
792     BlockIter BeginY = Y.begin();
793     BlockIter EndY = Y.end();
794 
795     // Construct a new chain from the three existing ones
796     switch (MergeType) {
797     case MergeTypeTy::X_Y:
798       return MergedChain(BeginX1, EndX2, BeginY, EndY);
799     case MergeTypeTy::X1_Y_X2:
800       return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
801     case MergeTypeTy::Y_X2_X1:
802       return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
803     case MergeTypeTy::X2_X1_Y:
804       return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
805     }
806     llvm_unreachable("unexpected chain merge type");
807   }
808 
809   /// Merge chain From into chain Into, update the list of active chains,
810   /// adjacency information, and the corresponding cached values.
811   void mergeChains(Chain *Into, Chain *From, size_t MergeOffset,
812                    MergeTypeTy MergeType) {
813     assert(Into != From && "a chain cannot be merged with itself");
814 
815     // Merge the blocks
816     auto MergedBlocks =
817         mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType);
818     Into->merge(From, MergedBlocks.getBlocks());
819     Into->mergeEdges(From);
820     From->clear();
821 
822     // Update cached ext-tsp score for the new chain
823     auto SelfEdge = Into->getEdge(Into);
824     if (SelfEdge != nullptr) {
825       MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end());
826       Into->setScore(extTSPScore(MergedBlocks, SelfEdge->jumps()));
827     }
828 
829     // Remove chain From from the list of active chains
830     auto Iter = std::remove(HotChains.begin(), HotChains.end(), From);
831     HotChains.erase(Iter, HotChains.end());
832 
833     // Invalidate caches
834     for (auto EdgeIter : Into->edges()) {
835       EdgeIter.second->invalidateCache();
836     }
837   }
838 
839   /// Concatenate all chains into a final order of blocks.
840   void concatChains(std::vector<uint64_t> &Order) {
841     // Collect chains and calculate some stats for their sorting
842     std::vector<Chain *> SortedChains;
843     DenseMap<const Chain *, double> ChainDensity;
844     for (auto &Chain : AllChains) {
845       if (!Chain.blocks().empty()) {
846         SortedChains.push_back(&Chain);
847         // Using doubles to avoid overflow of ExecutionCount
848         double Size = 0;
849         double ExecutionCount = 0;
850         for (auto Block : Chain.blocks()) {
851           Size += static_cast<double>(Block->Size);
852           ExecutionCount += static_cast<double>(Block->ExecutionCount);
853         }
854         assert(Size > 0 && "a chain of zero size");
855         ChainDensity[&Chain] = ExecutionCount / Size;
856       }
857     }
858 
859     // Sorting chains by density in the decreasing order
860     std::stable_sort(SortedChains.begin(), SortedChains.end(),
861                      [&](const Chain *C1, const Chain *C2) {
862                        // Makre sure the original entry block is at the
863                        // beginning of the order
864                        if (C1->isEntry() != C2->isEntry()) {
865                          return C1->isEntry();
866                        }
867 
868                        const double D1 = ChainDensity[C1];
869                        const double D2 = ChainDensity[C2];
870                        // Compare by density and break ties by chain identifiers
871                        return (D1 != D2) ? (D1 > D2) : (C1->id() < C2->id());
872                      });
873 
874     // Collect the blocks in the order specified by their chains
875     Order.reserve(NumNodes);
876     for (auto Chain : SortedChains) {
877       for (auto Block : Chain->blocks()) {
878         Order.push_back(Block->Index);
879       }
880     }
881   }
882 
883 private:
884   /// The number of nodes in the graph.
885   const size_t NumNodes;
886 
887   /// Successors of each node.
888   std::vector<std::vector<uint64_t>> SuccNodes;
889 
890   /// Predecessors of each node.
891   std::vector<std::vector<uint64_t>> PredNodes;
892 
893   /// All basic blocks.
894   std::vector<Block> AllBlocks;
895 
896   /// All jumps between blocks.
897   std::vector<Jump> AllJumps;
898 
899   /// All chains of basic blocks.
900   std::vector<Chain> AllChains;
901 
902   /// All edges between chains.
903   std::vector<ChainEdge> AllEdges;
904 
905   /// Active chains. The vector gets updated at runtime when chains are merged.
906   std::vector<Chain *> HotChains;
907 };
908 
909 } // end of anonymous namespace
910 
911 std::vector<uint64_t> llvm::applyExtTspLayout(
912     const std::vector<uint64_t> &NodeSizes,
913     const std::vector<uint64_t> &NodeCounts,
914     const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
915   size_t NumNodes = NodeSizes.size();
916 
917   // Verify correctness of the input data.
918   assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
919   assert(NumNodes > 2 && "Incorrect input");
920 
921   // Apply the reordering algorithm.
922   auto Alg = ExtTSPImpl(NumNodes, NodeSizes, NodeCounts, EdgeCounts);
923   std::vector<uint64_t> Result;
924   Alg.run(Result);
925 
926   // Verify correctness of the output.
927   assert(Result.front() == 0 && "Original entry point is not preserved");
928   assert(Result.size() == NumNodes && "Incorrect size of reordered layout");
929   return Result;
930 }
931 
932 double llvm::calcExtTspScore(
933     const std::vector<uint64_t> &Order, const std::vector<uint64_t> &NodeSizes,
934     const std::vector<uint64_t> &NodeCounts,
935     const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
936   // Estimate addresses of the blocks in memory
937   auto Addr = std::vector<uint64_t>(NodeSizes.size(), 0);
938   for (size_t Idx = 1; Idx < Order.size(); Idx++) {
939     Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
940   }
941 
942   // Increase the score for each jump
943   double Score = 0;
944   for (auto It : EdgeCounts) {
945     auto Pred = It.first.first;
946     auto Succ = It.first.second;
947     uint64_t Count = It.second;
948     Score += extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count);
949   }
950   return Score;
951 }
952 
953 double llvm::calcExtTspScore(
954     const std::vector<uint64_t> &NodeSizes,
955     const std::vector<uint64_t> &NodeCounts,
956     const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
957   auto Order = std::vector<uint64_t>(NodeSizes.size());
958   for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
959     Order[Idx] = Idx;
960   }
961   return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
962 }
963