xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeLayout.cpp (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1  //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // The file implements "cache-aware" layout algorithms of basic blocks and
10  // functions in a binary.
11  //
12  // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
13  // optimizing jump locality and thus processor I-cache utilization. This is
14  // achieved via increasing the number of fall-through jumps and co-locating
15  // frequently executed nodes together. The name follows the underlying
16  // optimization problem, Extended-TSP, which is a generalization of classical
17  // (maximum) Traveling Salesmen Problem.
18  //
19  // The algorithm is a greedy heuristic that works with chains (ordered lists)
20  // of basic blocks. Initially all chains are isolated basic blocks. On every
21  // iteration, we pick a pair of chains whose merging yields the biggest increase
22  // in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
23  // A pair of chains giving the maximum gain is merged into a new chain. The
24  // procedure stops when there is only one chain left, or when merging does not
25  // increase ExtTSP. In the latter case, the remaining chains are sorted by
26  // density in the decreasing order.
27  //
28  // An important aspect is the way two chains are merged. Unlike earlier
29  // algorithms (e.g., based on the approach of Pettis-Hansen), two
30  // chains, X and Y, are first split into three, X1, X2, and Y. Then we
31  // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
32  // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
33  // This improves the quality of the final result (the search space is larger)
34  // while keeping the implementation sufficiently fast.
35  //
36  // Reference:
37  //   * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
38  //     IEEE Transactions on Computers, 2020
39  //     https://arxiv.org/abs/1809.04676
40  //
41  //===----------------------------------------------------------------------===//
42  
43  #include "llvm/Transforms/Utils/CodeLayout.h"
44  #include "llvm/Support/CommandLine.h"
45  #include "llvm/Support/Debug.h"
46  
47  #include <cmath>
48  #include <set>
49  
50  using namespace llvm;
51  using namespace llvm::codelayout;
52  
53  #define DEBUG_TYPE "code-layout"
54  
55  namespace llvm {
56  cl::opt<bool> EnableExtTspBlockPlacement(
57      "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
58      cl::desc("Enable machine block placement based on the ext-tsp model, "
59               "optimizing I-cache utilization."));
60  
61  cl::opt<bool> ApplyExtTspWithoutProfile(
62      "ext-tsp-apply-without-profile",
63      cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
64      cl::init(true), cl::Hidden);
65  } // namespace llvm
66  
67  // Algorithm-specific params for Ext-TSP. The values are tuned for the best
68  // performance of large-scale front-end bound binaries.
69  static cl::opt<double> ForwardWeightCond(
70      "ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1),
71      cl::desc("The weight of conditional forward jumps for ExtTSP value"));
72  
73  static cl::opt<double> ForwardWeightUncond(
74      "ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
75      cl::desc("The weight of unconditional forward jumps for ExtTSP value"));
76  
77  static cl::opt<double> BackwardWeightCond(
78      "ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1),
79      cl::desc("The weight of conditional backward jumps for ExtTSP value"));
80  
81  static cl::opt<double> BackwardWeightUncond(
82      "ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
83      cl::desc("The weight of unconditional backward jumps for ExtTSP value"));
84  
85  static cl::opt<double> FallthroughWeightCond(
86      "ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0),
87      cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"));
88  
89  static cl::opt<double> FallthroughWeightUncond(
90      "ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05),
91      cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"));
92  
93  static cl::opt<unsigned> ForwardDistance(
94      "ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024),
95      cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
96  
97  static cl::opt<unsigned> BackwardDistance(
98      "ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640),
99      cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
100  
101  // The maximum size of a chain created by the algorithm. The size is bounded
102  // so that the algorithm can efficiently process extremely large instances.
103  static cl::opt<unsigned>
104      MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(512),
105                   cl::desc("The maximum size of a chain to create"));
106  
107  // The maximum size of a chain for splitting. Larger values of the threshold
108  // may yield better quality at the cost of worsen run-time.
109  static cl::opt<unsigned> ChainSplitThreshold(
110      "ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128),
111      cl::desc("The maximum size of a chain to apply splitting"));
112  
113  // The maximum ratio between densities of two chains for merging.
114  static cl::opt<double> MaxMergeDensityRatio(
115      "ext-tsp-max-merge-density-ratio", cl::ReallyHidden, cl::init(100),
116      cl::desc("The maximum ratio between densities of two chains for merging"));
117  
118  // Algorithm-specific options for CDSort.
119  static cl::opt<unsigned> CacheEntries("cdsort-cache-entries", cl::ReallyHidden,
120                                        cl::desc("The size of the cache"));
121  
122  static cl::opt<unsigned> CacheSize("cdsort-cache-size", cl::ReallyHidden,
123                                     cl::desc("The size of a line in the cache"));
124  
125  static cl::opt<unsigned>
126      CDMaxChainSize("cdsort-max-chain-size", cl::ReallyHidden,
127                     cl::desc("The maximum size of a chain to create"));
128  
129  static cl::opt<double> DistancePower(
130      "cdsort-distance-power", cl::ReallyHidden,
131      cl::desc("The power exponent for the distance-based locality"));
132  
133  static cl::opt<double> FrequencyScale(
134      "cdsort-frequency-scale", cl::ReallyHidden,
135      cl::desc("The scale factor for the frequency-based locality"));
136  
137  namespace {
138  
139  // Epsilon for comparison of doubles.
140  constexpr double EPS = 1e-8;
141  
142  // Compute the Ext-TSP score for a given jump.
143  double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count,
144                         double Weight) {
145    if (JumpDist > JumpMaxDist)
146      return 0;
147    double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist;
148    return Weight * Prob * Count;
149  }
150  
151  // Compute the Ext-TSP score for a jump between a given pair of blocks,
152  // using their sizes, (estimated) addresses and the jump execution count.
153  double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
154                     uint64_t Count, bool IsConditional) {
155    // Fallthrough
156    if (SrcAddr + SrcSize == DstAddr) {
157      return jumpExtTSPScore(0, 1, Count,
158                             IsConditional ? FallthroughWeightCond
159                                           : FallthroughWeightUncond);
160    }
161    // Forward
162    if (SrcAddr + SrcSize < DstAddr) {
163      const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
164      return jumpExtTSPScore(Dist, ForwardDistance, Count,
165                             IsConditional ? ForwardWeightCond
166                                           : ForwardWeightUncond);
167    }
168    // Backward
169    const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
170    return jumpExtTSPScore(Dist, BackwardDistance, Count,
171                           IsConditional ? BackwardWeightCond
172                                         : BackwardWeightUncond);
173  }
174  
175  /// A type of merging two chains, X and Y. The former chain is split into
176  /// X1 and X2 and then concatenated with Y in the order specified by the type.
177  enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y };
178  
179  /// The gain of merging two chains, that is, the Ext-TSP score of the merge
180  /// together with the corresponding merge 'type' and 'offset'.
181  struct MergeGainT {
182    explicit MergeGainT() = default;
183    explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType)
184        : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
185  
186    double score() const { return Score; }
187  
188    size_t mergeOffset() const { return MergeOffset; }
189  
190    MergeTypeT mergeType() const { return MergeType; }
191  
192    void setMergeType(MergeTypeT Ty) { MergeType = Ty; }
193  
194    // Returns 'true' iff Other is preferred over this.
195    bool operator<(const MergeGainT &Other) const {
196      return (Other.Score > EPS && Other.Score > Score + EPS);
197    }
198  
199    // Update the current gain if Other is preferred over this.
200    void updateIfLessThan(const MergeGainT &Other) {
201      if (*this < Other)
202        *this = Other;
203    }
204  
205  private:
206    double Score{-1.0};
207    size_t MergeOffset{0};
208    MergeTypeT MergeType{MergeTypeT::X_Y};
209  };
210  
211  struct JumpT;
212  struct ChainT;
213  struct ChainEdge;
214  
215  /// A node in the graph, typically corresponding to a basic block in the CFG or
216  /// a function in the call graph.
217  struct NodeT {
218    NodeT(const NodeT &) = delete;
219    NodeT(NodeT &&) = default;
220    NodeT &operator=(const NodeT &) = delete;
221    NodeT &operator=(NodeT &&) = default;
222  
223    explicit NodeT(size_t Index, uint64_t Size, uint64_t Count)
224        : Index(Index), Size(Size), ExecutionCount(Count) {}
225  
226    bool isEntry() const { return Index == 0; }
227  
228    // Check if Other is a successor of the node.
229    bool isSuccessor(const NodeT *Other) const;
230  
231    // The total execution count of outgoing jumps.
232    uint64_t outCount() const;
233  
234    // The total execution count of incoming jumps.
235    uint64_t inCount() const;
236  
237    // The original index of the node in graph.
238    size_t Index{0};
239    // The index of the node in the current chain.
240    size_t CurIndex{0};
241    // The size of the node in the binary.
242    uint64_t Size{0};
243    // The execution count of the node in the profile data.
244    uint64_t ExecutionCount{0};
245    // The current chain of the node.
246    ChainT *CurChain{nullptr};
247    // The offset of the node in the current chain.
248    mutable uint64_t EstimatedAddr{0};
249    // Forced successor of the node in the graph.
250    NodeT *ForcedSucc{nullptr};
251    // Forced predecessor of the node in the graph.
252    NodeT *ForcedPred{nullptr};
253    // Outgoing jumps from the node.
254    std::vector<JumpT *> OutJumps;
255    // Incoming jumps to the node.
256    std::vector<JumpT *> InJumps;
257  };
258  
259  /// An arc in the graph, typically corresponding to a jump between two nodes.
260  struct JumpT {
261    JumpT(const JumpT &) = delete;
262    JumpT(JumpT &&) = default;
263    JumpT &operator=(const JumpT &) = delete;
264    JumpT &operator=(JumpT &&) = default;
265  
266    explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount)
267        : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
268  
269    // Source node of the jump.
270    NodeT *Source;
271    // Target node of the jump.
272    NodeT *Target;
273    // Execution count of the arc in the profile data.
274    uint64_t ExecutionCount{0};
275    // Whether the jump corresponds to a conditional branch.
276    bool IsConditional{false};
277    // The offset of the jump from the source node.
278    uint64_t Offset{0};
279  };
280  
281  /// A chain (ordered sequence) of nodes in the graph.
282  struct ChainT {
283    ChainT(const ChainT &) = delete;
284    ChainT(ChainT &&) = default;
285    ChainT &operator=(const ChainT &) = delete;
286    ChainT &operator=(ChainT &&) = default;
287  
288    explicit ChainT(uint64_t Id, NodeT *Node)
289        : Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size),
290          Nodes(1, Node) {}
291  
292    size_t numBlocks() const { return Nodes.size(); }
293  
294    double density() const { return ExecutionCount / Size; }
295  
296    bool isEntry() const { return Nodes[0]->Index == 0; }
297  
298    bool isCold() const {
299      for (NodeT *Node : Nodes) {
300        if (Node->ExecutionCount > 0)
301          return false;
302      }
303      return true;
304    }
305  
306    ChainEdge *getEdge(ChainT *Other) const {
307      for (const auto &[Chain, ChainEdge] : Edges) {
308        if (Chain == Other)
309          return ChainEdge;
310      }
311      return nullptr;
312    }
313  
314    void removeEdge(ChainT *Other) {
315      auto It = Edges.begin();
316      while (It != Edges.end()) {
317        if (It->first == Other) {
318          Edges.erase(It);
319          return;
320        }
321        It++;
322      }
323    }
324  
325    void addEdge(ChainT *Other, ChainEdge *Edge) {
326      Edges.push_back(std::make_pair(Other, Edge));
327    }
328  
329    void merge(ChainT *Other, std::vector<NodeT *> MergedBlocks) {
330      Nodes = std::move(MergedBlocks);
331      // Update the chain's data.
332      ExecutionCount += Other->ExecutionCount;
333      Size += Other->Size;
334      Id = Nodes[0]->Index;
335      // Update the node's data.
336      for (size_t Idx = 0; Idx < Nodes.size(); Idx++) {
337        Nodes[Idx]->CurChain = this;
338        Nodes[Idx]->CurIndex = Idx;
339      }
340    }
341  
342    void mergeEdges(ChainT *Other);
343  
344    void clear() {
345      Nodes.clear();
346      Nodes.shrink_to_fit();
347      Edges.clear();
348      Edges.shrink_to_fit();
349    }
350  
351    // Unique chain identifier.
352    uint64_t Id;
353    // Cached ext-tsp score for the chain.
354    double Score{0};
355    // The total execution count of the chain. Since the execution count of
356    // a basic block is uint64_t, using doubles here to avoid overflow.
357    double ExecutionCount{0};
358    // The total size of the chain.
359    uint64_t Size{0};
360    // Nodes of the chain.
361    std::vector<NodeT *> Nodes;
362    // Adjacent chains and corresponding edges (lists of jumps).
363    std::vector<std::pair<ChainT *, ChainEdge *>> Edges;
364  };
365  
366  /// An edge in the graph representing jumps between two chains.
367  /// When nodes are merged into chains, the edges are combined too so that
368  /// there is always at most one edge between a pair of chains.
369  struct ChainEdge {
370    ChainEdge(const ChainEdge &) = delete;
371    ChainEdge(ChainEdge &&) = default;
372    ChainEdge &operator=(const ChainEdge &) = delete;
373    ChainEdge &operator=(ChainEdge &&) = delete;
374  
375    explicit ChainEdge(JumpT *Jump)
376        : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
377          Jumps(1, Jump) {}
378  
379    ChainT *srcChain() const { return SrcChain; }
380  
381    ChainT *dstChain() const { return DstChain; }
382  
383    bool isSelfEdge() const { return SrcChain == DstChain; }
384  
385    const std::vector<JumpT *> &jumps() const { return Jumps; }
386  
387    void appendJump(JumpT *Jump) { Jumps.push_back(Jump); }
388  
389    void moveJumps(ChainEdge *Other) {
390      Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
391      Other->Jumps.clear();
392      Other->Jumps.shrink_to_fit();
393    }
394  
395    void changeEndpoint(ChainT *From, ChainT *To) {
396      if (From == SrcChain)
397        SrcChain = To;
398      if (From == DstChain)
399        DstChain = To;
400    }
401  
402    bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const {
403      return Src == SrcChain ? CacheValidForward : CacheValidBackward;
404    }
405  
406    MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const {
407      return Src == SrcChain ? CachedGainForward : CachedGainBackward;
408    }
409  
410    void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) {
411      if (Src == SrcChain) {
412        CachedGainForward = MergeGain;
413        CacheValidForward = true;
414      } else {
415        CachedGainBackward = MergeGain;
416        CacheValidBackward = true;
417      }
418    }
419  
420    void invalidateCache() {
421      CacheValidForward = false;
422      CacheValidBackward = false;
423    }
424  
425    void setMergeGain(MergeGainT Gain) { CachedGain = Gain; }
426  
427    MergeGainT getMergeGain() const { return CachedGain; }
428  
429    double gain() const { return CachedGain.score(); }
430  
431  private:
432    // Source chain.
433    ChainT *SrcChain{nullptr};
434    // Destination chain.
435    ChainT *DstChain{nullptr};
436    // Original jumps in the binary with corresponding execution counts.
437    std::vector<JumpT *> Jumps;
438    // Cached gain value for merging the pair of chains.
439    MergeGainT CachedGain;
440  
441    // Cached gain values for merging the pair of chains. Since the gain of
442    // merging (Src, Dst) and (Dst, Src) might be different, we store both values
443    // here and a flag indicating which of the options results in a higher gain.
444    // Cached gain values.
445    MergeGainT CachedGainForward;
446    MergeGainT CachedGainBackward;
447    // Whether the cached value must be recomputed.
448    bool CacheValidForward{false};
449    bool CacheValidBackward{false};
450  };
451  
452  bool NodeT::isSuccessor(const NodeT *Other) const {
453    for (JumpT *Jump : OutJumps)
454      if (Jump->Target == Other)
455        return true;
456    return false;
457  }
458  
459  uint64_t NodeT::outCount() const {
460    uint64_t Count = 0;
461    for (JumpT *Jump : OutJumps)
462      Count += Jump->ExecutionCount;
463    return Count;
464  }
465  
466  uint64_t NodeT::inCount() const {
467    uint64_t Count = 0;
468    for (JumpT *Jump : InJumps)
469      Count += Jump->ExecutionCount;
470    return Count;
471  }
472  
473  void ChainT::mergeEdges(ChainT *Other) {
474    // Update edges adjacent to chain Other.
475    for (const auto &[DstChain, DstEdge] : Other->Edges) {
476      ChainT *TargetChain = DstChain == Other ? this : DstChain;
477      ChainEdge *CurEdge = getEdge(TargetChain);
478      if (CurEdge == nullptr) {
479        DstEdge->changeEndpoint(Other, this);
480        this->addEdge(TargetChain, DstEdge);
481        if (DstChain != this && DstChain != Other)
482          DstChain->addEdge(this, DstEdge);
483      } else {
484        CurEdge->moveJumps(DstEdge);
485      }
486      // Cleanup leftover edge.
487      if (DstChain != Other)
488        DstChain->removeEdge(Other);
489    }
490  }
491  
492  using NodeIter = std::vector<NodeT *>::const_iterator;
493  static std::vector<NodeT *> EmptyList;
494  
495  /// A wrapper around three concatenated vectors (chains) of nodes; it is used
496  /// to avoid extra instantiation of the vectors.
497  struct MergedNodesT {
498    MergedNodesT(NodeIter Begin1, NodeIter End1,
499                 NodeIter Begin2 = EmptyList.begin(),
500                 NodeIter End2 = EmptyList.end(),
501                 NodeIter Begin3 = EmptyList.begin(),
502                 NodeIter End3 = EmptyList.end())
503        : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
504          End3(End3) {}
505  
506    template <typename F> void forEach(const F &Func) const {
507      for (auto It = Begin1; It != End1; It++)
508        Func(*It);
509      for (auto It = Begin2; It != End2; It++)
510        Func(*It);
511      for (auto It = Begin3; It != End3; It++)
512        Func(*It);
513    }
514  
515    std::vector<NodeT *> getNodes() const {
516      std::vector<NodeT *> Result;
517      Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
518                     std::distance(Begin3, End3));
519      Result.insert(Result.end(), Begin1, End1);
520      Result.insert(Result.end(), Begin2, End2);
521      Result.insert(Result.end(), Begin3, End3);
522      return Result;
523    }
524  
525    const NodeT *getFirstNode() const { return *Begin1; }
526  
527  private:
528    NodeIter Begin1;
529    NodeIter End1;
530    NodeIter Begin2;
531    NodeIter End2;
532    NodeIter Begin3;
533    NodeIter End3;
534  };
535  
536  /// A wrapper around two concatenated vectors (chains) of jumps.
537  struct MergedJumpsT {
538    MergedJumpsT(const std::vector<JumpT *> *Jumps1,
539                 const std::vector<JumpT *> *Jumps2 = nullptr) {
540      assert(!Jumps1->empty() && "cannot merge empty jump list");
541      JumpArray[0] = Jumps1;
542      JumpArray[1] = Jumps2;
543    }
544  
545    template <typename F> void forEach(const F &Func) const {
546      for (auto Jumps : JumpArray)
547        if (Jumps != nullptr)
548          for (JumpT *Jump : *Jumps)
549            Func(Jump);
550    }
551  
552  private:
553    std::array<const std::vector<JumpT *> *, 2> JumpArray{nullptr, nullptr};
554  };
555  
556  /// Merge two chains of nodes respecting a given 'type' and 'offset'.
557  ///
558  /// If MergeType == 0, then the result is a concatenation of two chains.
559  /// Otherwise, the first chain is cut into two sub-chains at the offset,
560  /// and merged using all possible ways of concatenating three chains.
561  MergedNodesT mergeNodes(const std::vector<NodeT *> &X,
562                          const std::vector<NodeT *> &Y, size_t MergeOffset,
563                          MergeTypeT MergeType) {
564    // Split the first chain, X, into X1 and X2.
565    NodeIter BeginX1 = X.begin();
566    NodeIter EndX1 = X.begin() + MergeOffset;
567    NodeIter BeginX2 = X.begin() + MergeOffset;
568    NodeIter EndX2 = X.end();
569    NodeIter BeginY = Y.begin();
570    NodeIter EndY = Y.end();
571  
572    // Construct a new chain from the three existing ones.
573    switch (MergeType) {
574    case MergeTypeT::X_Y:
575      return MergedNodesT(BeginX1, EndX2, BeginY, EndY);
576    case MergeTypeT::Y_X:
577      return MergedNodesT(BeginY, EndY, BeginX1, EndX2);
578    case MergeTypeT::X1_Y_X2:
579      return MergedNodesT(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
580    case MergeTypeT::Y_X2_X1:
581      return MergedNodesT(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
582    case MergeTypeT::X2_X1_Y:
583      return MergedNodesT(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
584    }
585    llvm_unreachable("unexpected chain merge type");
586  }
587  
588  /// The implementation of the ExtTSP algorithm.
589  class ExtTSPImpl {
590  public:
591    ExtTSPImpl(ArrayRef<uint64_t> NodeSizes, ArrayRef<uint64_t> NodeCounts,
592               ArrayRef<EdgeCount> EdgeCounts)
593        : NumNodes(NodeSizes.size()) {
594      initialize(NodeSizes, NodeCounts, EdgeCounts);
595    }
596  
597    /// Run the algorithm and return an optimized ordering of nodes.
598    std::vector<uint64_t> run() {
599      // Pass 1: Merge nodes with their mutually forced successors
600      mergeForcedPairs();
601  
602      // Pass 2: Merge pairs of chains while improving the ExtTSP objective
603      mergeChainPairs();
604  
605      // Pass 3: Merge cold nodes to reduce code size
606      mergeColdChains();
607  
608      // Collect nodes from all chains
609      return concatChains();
610    }
611  
612  private:
613    /// Initialize the algorithm's data structures.
614    void initialize(const ArrayRef<uint64_t> &NodeSizes,
615                    const ArrayRef<uint64_t> &NodeCounts,
616                    const ArrayRef<EdgeCount> &EdgeCounts) {
617      // Initialize nodes.
618      AllNodes.reserve(NumNodes);
619      for (uint64_t Idx = 0; Idx < NumNodes; Idx++) {
620        uint64_t Size = std::max<uint64_t>(NodeSizes[Idx], 1ULL);
621        uint64_t ExecutionCount = NodeCounts[Idx];
622        // The execution count of the entry node is set to at least one.
623        if (Idx == 0 && ExecutionCount == 0)
624          ExecutionCount = 1;
625        AllNodes.emplace_back(Idx, Size, ExecutionCount);
626      }
627  
628      // Initialize jumps between the nodes.
629      SuccNodes.resize(NumNodes);
630      PredNodes.resize(NumNodes);
631      std::vector<uint64_t> OutDegree(NumNodes, 0);
632      AllJumps.reserve(EdgeCounts.size());
633      for (auto Edge : EdgeCounts) {
634        ++OutDegree[Edge.src];
635        // Ignore self-edges.
636        if (Edge.src == Edge.dst)
637          continue;
638  
639        SuccNodes[Edge.src].push_back(Edge.dst);
640        PredNodes[Edge.dst].push_back(Edge.src);
641        if (Edge.count > 0) {
642          NodeT &PredNode = AllNodes[Edge.src];
643          NodeT &SuccNode = AllNodes[Edge.dst];
644          AllJumps.emplace_back(&PredNode, &SuccNode, Edge.count);
645          SuccNode.InJumps.push_back(&AllJumps.back());
646          PredNode.OutJumps.push_back(&AllJumps.back());
647          // Adjust execution counts.
648          PredNode.ExecutionCount = std::max(PredNode.ExecutionCount, Edge.count);
649          SuccNode.ExecutionCount = std::max(SuccNode.ExecutionCount, Edge.count);
650        }
651      }
652      for (JumpT &Jump : AllJumps) {
653        assert(OutDegree[Jump.Source->Index] > 0 &&
654               "incorrectly computed out-degree of the block");
655        Jump.IsConditional = OutDegree[Jump.Source->Index] > 1;
656      }
657  
658      // Initialize chains.
659      AllChains.reserve(NumNodes);
660      HotChains.reserve(NumNodes);
661      for (NodeT &Node : AllNodes) {
662        // Create a chain.
663        AllChains.emplace_back(Node.Index, &Node);
664        Node.CurChain = &AllChains.back();
665        if (Node.ExecutionCount > 0)
666          HotChains.push_back(&AllChains.back());
667      }
668  
669      // Initialize chain edges.
670      AllEdges.reserve(AllJumps.size());
671      for (NodeT &PredNode : AllNodes) {
672        for (JumpT *Jump : PredNode.OutJumps) {
673          assert(Jump->ExecutionCount > 0 && "incorrectly initialized jump");
674          NodeT *SuccNode = Jump->Target;
675          ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
676          // This edge is already present in the graph.
677          if (CurEdge != nullptr) {
678            assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
679            CurEdge->appendJump(Jump);
680            continue;
681          }
682          // This is a new edge.
683          AllEdges.emplace_back(Jump);
684          PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
685          SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
686        }
687      }
688    }
689  
690    /// For a pair of nodes, A and B, node B is the forced successor of A,
691    /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
692    /// to B are from A. Such nodes should be adjacent in the optimal ordering;
693    /// the method finds and merges such pairs of nodes.
694    void mergeForcedPairs() {
695      // Find forced pairs of blocks.
696      for (NodeT &Node : AllNodes) {
697        if (SuccNodes[Node.Index].size() == 1 &&
698            PredNodes[SuccNodes[Node.Index][0]].size() == 1 &&
699            SuccNodes[Node.Index][0] != 0) {
700          size_t SuccIndex = SuccNodes[Node.Index][0];
701          Node.ForcedSucc = &AllNodes[SuccIndex];
702          AllNodes[SuccIndex].ForcedPred = &Node;
703        }
704      }
705  
706      // There might be 'cycles' in the forced dependencies, since profile
707      // data isn't 100% accurate. Typically this is observed in loops, when the
708      // loop edges are the hottest successors for the basic blocks of the loop.
709      // Break the cycles by choosing the node with the smallest index as the
710      // head. This helps to keep the original order of the loops, which likely
711      // have already been rotated in the optimized manner.
712      for (NodeT &Node : AllNodes) {
713        if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr)
714          continue;
715  
716        NodeT *SuccNode = Node.ForcedSucc;
717        while (SuccNode != nullptr && SuccNode != &Node) {
718          SuccNode = SuccNode->ForcedSucc;
719        }
720        if (SuccNode == nullptr)
721          continue;
722        // Break the cycle.
723        AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr;
724        Node.ForcedPred = nullptr;
725      }
726  
727      // Merge nodes with their fallthrough successors.
728      for (NodeT &Node : AllNodes) {
729        if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) {
730          const NodeT *CurBlock = &Node;
731          while (CurBlock->ForcedSucc != nullptr) {
732            const NodeT *NextBlock = CurBlock->ForcedSucc;
733            mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y);
734            CurBlock = NextBlock;
735          }
736        }
737      }
738    }
739  
740    /// Merge pairs of chains while improving the ExtTSP objective.
741    void mergeChainPairs() {
742      /// Deterministically compare pairs of chains.
743      auto compareChainPairs = [](const ChainT *A1, const ChainT *B1,
744                                  const ChainT *A2, const ChainT *B2) {
745        return std::make_tuple(A1->Id, B1->Id) < std::make_tuple(A2->Id, B2->Id);
746      };
747  
748      while (HotChains.size() > 1) {
749        ChainT *BestChainPred = nullptr;
750        ChainT *BestChainSucc = nullptr;
751        MergeGainT BestGain;
752        // Iterate over all pairs of chains.
753        for (ChainT *ChainPred : HotChains) {
754          // Get candidates for merging with the current chain.
755          for (const auto &[ChainSucc, Edge] : ChainPred->Edges) {
756            // Ignore loop edges.
757            if (Edge->isSelfEdge())
758              continue;
759            // Skip the merge if the combined chain violates the maximum specified
760            // size.
761            if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
762              continue;
763            // Don't merge the chains if they have vastly different densities.
764            // Skip the merge if the ratio between the densities exceeds
765            // MaxMergeDensityRatio. Smaller values of the option result in fewer
766            // merges, and hence, more chains.
767            const double ChainPredDensity = ChainPred->density();
768            const double ChainSuccDensity = ChainSucc->density();
769            assert(ChainPredDensity > 0.0 && ChainSuccDensity > 0.0 &&
770                   "incorrectly computed chain densities");
771            auto [MinDensity, MaxDensity] =
772                std::minmax(ChainPredDensity, ChainSuccDensity);
773            const double Ratio = MaxDensity / MinDensity;
774            if (Ratio > MaxMergeDensityRatio)
775              continue;
776  
777            // Compute the gain of merging the two chains.
778            MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge);
779            if (CurGain.score() <= EPS)
780              continue;
781  
782            if (BestGain < CurGain ||
783                (std::abs(CurGain.score() - BestGain.score()) < EPS &&
784                 compareChainPairs(ChainPred, ChainSucc, BestChainPred,
785                                   BestChainSucc))) {
786              BestGain = CurGain;
787              BestChainPred = ChainPred;
788              BestChainSucc = ChainSucc;
789            }
790          }
791        }
792  
793        // Stop merging when there is no improvement.
794        if (BestGain.score() <= EPS)
795          break;
796  
797        // Merge the best pair of chains.
798        mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
799                    BestGain.mergeType());
800      }
801    }
802  
803    /// Merge remaining nodes into chains w/o taking jump counts into
804    /// consideration. This allows to maintain the original node order in the
805    /// absence of profile data.
806    void mergeColdChains() {
807      for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
808        // Iterating in reverse order to make sure original fallthrough jumps are
809        // merged first; this might be beneficial for code size.
810        size_t NumSuccs = SuccNodes[SrcBB].size();
811        for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
812          size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
813          ChainT *SrcChain = AllNodes[SrcBB].CurChain;
814          ChainT *DstChain = AllNodes[DstBB].CurChain;
815          if (SrcChain != DstChain && !DstChain->isEntry() &&
816              SrcChain->Nodes.back()->Index == SrcBB &&
817              DstChain->Nodes.front()->Index == DstBB &&
818              SrcChain->isCold() == DstChain->isCold()) {
819            mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y);
820          }
821        }
822      }
823    }
824  
825    /// Compute the Ext-TSP score for a given node order and a list of jumps.
826    double extTSPScore(const MergedNodesT &Nodes,
827                       const MergedJumpsT &Jumps) const {
828      uint64_t CurAddr = 0;
829      Nodes.forEach([&](const NodeT *Node) {
830        Node->EstimatedAddr = CurAddr;
831        CurAddr += Node->Size;
832      });
833  
834      double Score = 0;
835      Jumps.forEach([&](const JumpT *Jump) {
836        const NodeT *SrcBlock = Jump->Source;
837        const NodeT *DstBlock = Jump->Target;
838        Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
839                               DstBlock->EstimatedAddr, Jump->ExecutionCount,
840                               Jump->IsConditional);
841      });
842      return Score;
843    }
844  
845    /// Compute the gain of merging two chains.
846    ///
847    /// The function considers all possible ways of merging two chains and
848    /// computes the one having the largest increase in ExtTSP objective. The
849    /// result is a pair with the first element being the gain and the second
850    /// element being the corresponding merging type.
851    MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
852                                ChainEdge *Edge) const {
853      if (Edge->hasCachedMergeGain(ChainPred, ChainSucc))
854        return Edge->getCachedMergeGain(ChainPred, ChainSucc);
855  
856      assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps");
857      // Precompute jumps between ChainPred and ChainSucc.
858      ChainEdge *EdgePP = ChainPred->getEdge(ChainPred);
859      MergedJumpsT Jumps(&Edge->jumps(), EdgePP ? &EdgePP->jumps() : nullptr);
860  
861      // This object holds the best chosen gain of merging two chains.
862      MergeGainT Gain = MergeGainT();
863  
864      /// Given a merge offset and a list of merge types, try to merge two chains
865      /// and update Gain with a better alternative.
866      auto tryChainMerging = [&](size_t Offset,
867                                 const std::vector<MergeTypeT> &MergeTypes) {
868        // Skip merging corresponding to concatenation w/o splitting.
869        if (Offset == 0 || Offset == ChainPred->Nodes.size())
870          return;
871        // Skip merging if it breaks Forced successors.
872        NodeT *Node = ChainPred->Nodes[Offset - 1];
873        if (Node->ForcedSucc != nullptr)
874          return;
875        // Apply the merge, compute the corresponding gain, and update the best
876        // value, if the merge is beneficial.
877        for (const MergeTypeT &MergeType : MergeTypes) {
878          Gain.updateIfLessThan(
879              computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
880        }
881      };
882  
883      // Try to concatenate two chains w/o splitting.
884      Gain.updateIfLessThan(
885          computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y));
886  
887      // Attach (a part of) ChainPred before the first node of ChainSucc.
888      for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) {
889        const NodeT *SrcBlock = Jump->Source;
890        if (SrcBlock->CurChain != ChainPred)
891          continue;
892        size_t Offset = SrcBlock->CurIndex + 1;
893        tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y});
894      }
895  
896      // Attach (a part of) ChainPred after the last node of ChainSucc.
897      for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) {
898        const NodeT *DstBlock = Jump->Target;
899        if (DstBlock->CurChain != ChainPred)
900          continue;
901        size_t Offset = DstBlock->CurIndex;
902        tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1});
903      }
904  
905      // Try to break ChainPred in various ways and concatenate with ChainSucc.
906      if (ChainPred->Nodes.size() <= ChainSplitThreshold) {
907        for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) {
908          // Do not split the chain along a fall-through jump. One of the two
909          // loops above may still "break" such a jump whenever it results in a
910          // new fall-through.
911          const NodeT *BB = ChainPred->Nodes[Offset - 1];
912          const NodeT *BB2 = ChainPred->Nodes[Offset];
913          if (BB->isSuccessor(BB2))
914            continue;
915  
916          // In practice, applying X2_Y_X1 merging almost never provides benefits;
917          // thus, we exclude it from consideration to reduce the search space.
918          tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1,
919                                   MergeTypeT::X2_X1_Y});
920        }
921      }
922  
923      Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
924      return Gain;
925    }
926  
927    /// Compute the score gain of merging two chains, respecting a given
928    /// merge 'type' and 'offset'.
929    ///
930    /// The two chains are not modified in the method.
931    MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc,
932                                const MergedJumpsT &Jumps, size_t MergeOffset,
933                                MergeTypeT MergeType) const {
934      MergedNodesT MergedNodes =
935          mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
936  
937      // Do not allow a merge that does not preserve the original entry point.
938      if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
939          !MergedNodes.getFirstNode()->isEntry())
940        return MergeGainT();
941  
942      // The gain for the new chain.
943      double NewScore = extTSPScore(MergedNodes, Jumps);
944      double CurScore = ChainPred->Score;
945      return MergeGainT(NewScore - CurScore, MergeOffset, MergeType);
946    }
947  
948    /// Merge chain From into chain Into, update the list of active chains,
949    /// adjacency information, and the corresponding cached values.
950    void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
951                     MergeTypeT MergeType) {
952      assert(Into != From && "a chain cannot be merged with itself");
953  
954      // Merge the nodes.
955      MergedNodesT MergedNodes =
956          mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
957      Into->merge(From, MergedNodes.getNodes());
958  
959      // Merge the edges.
960      Into->mergeEdges(From);
961      From->clear();
962  
963      // Update cached ext-tsp score for the new chain.
964      ChainEdge *SelfEdge = Into->getEdge(Into);
965      if (SelfEdge != nullptr) {
966        MergedNodes = MergedNodesT(Into->Nodes.begin(), Into->Nodes.end());
967        MergedJumpsT MergedJumps(&SelfEdge->jumps());
968        Into->Score = extTSPScore(MergedNodes, MergedJumps);
969      }
970  
971      // Remove the chain from the list of active chains.
972      llvm::erase(HotChains, From);
973  
974      // Invalidate caches.
975      for (auto EdgeIt : Into->Edges)
976        EdgeIt.second->invalidateCache();
977    }
978  
979    /// Concatenate all chains into the final order.
980    std::vector<uint64_t> concatChains() {
981      // Collect non-empty chains.
982      std::vector<const ChainT *> SortedChains;
983      for (ChainT &Chain : AllChains) {
984        if (!Chain.Nodes.empty())
985          SortedChains.push_back(&Chain);
986      }
987  
988      // Sorting chains by density in the decreasing order.
989      std::sort(SortedChains.begin(), SortedChains.end(),
990                [&](const ChainT *L, const ChainT *R) {
991                  // Place the entry point at the beginning of the order.
992                  if (L->isEntry() != R->isEntry())
993                    return L->isEntry();
994  
995                  // Compare by density and break ties by chain identifiers.
996                  return std::make_tuple(-L->density(), L->Id) <
997                         std::make_tuple(-R->density(), R->Id);
998                });
999  
1000      // Collect the nodes in the order specified by their chains.
1001      std::vector<uint64_t> Order;
1002      Order.reserve(NumNodes);
1003      for (const ChainT *Chain : SortedChains)
1004        for (NodeT *Node : Chain->Nodes)
1005          Order.push_back(Node->Index);
1006      return Order;
1007    }
1008  
1009  private:
1010    /// The number of nodes in the graph.
1011    const size_t NumNodes;
1012  
1013    /// Successors of each node.
1014    std::vector<std::vector<uint64_t>> SuccNodes;
1015  
1016    /// Predecessors of each node.
1017    std::vector<std::vector<uint64_t>> PredNodes;
1018  
1019    /// All nodes (basic blocks) in the graph.
1020    std::vector<NodeT> AllNodes;
1021  
1022    /// All jumps between the nodes.
1023    std::vector<JumpT> AllJumps;
1024  
1025    /// All chains of nodes.
1026    std::vector<ChainT> AllChains;
1027  
1028    /// All edges between the chains.
1029    std::vector<ChainEdge> AllEdges;
1030  
1031    /// Active chains. The vector gets updated at runtime when chains are merged.
1032    std::vector<ChainT *> HotChains;
1033  };
1034  
1035  /// The implementation of the Cache-Directed Sort (CDSort) algorithm for
1036  /// ordering functions represented by a call graph.
1037  class CDSortImpl {
1038  public:
1039    CDSortImpl(const CDSortConfig &Config, ArrayRef<uint64_t> NodeSizes,
1040               ArrayRef<uint64_t> NodeCounts, ArrayRef<EdgeCount> EdgeCounts,
1041               ArrayRef<uint64_t> EdgeOffsets)
1042        : Config(Config), NumNodes(NodeSizes.size()) {
1043      initialize(NodeSizes, NodeCounts, EdgeCounts, EdgeOffsets);
1044    }
1045  
1046    /// Run the algorithm and return an ordered set of function clusters.
1047    std::vector<uint64_t> run() {
1048      // Merge pairs of chains while improving the objective.
1049      mergeChainPairs();
1050  
1051      // Collect nodes from all the chains.
1052      return concatChains();
1053    }
1054  
1055  private:
1056    /// Initialize the algorithm's data structures.
1057    void initialize(const ArrayRef<uint64_t> &NodeSizes,
1058                    const ArrayRef<uint64_t> &NodeCounts,
1059                    const ArrayRef<EdgeCount> &EdgeCounts,
1060                    const ArrayRef<uint64_t> &EdgeOffsets) {
1061      // Initialize nodes.
1062      AllNodes.reserve(NumNodes);
1063      for (uint64_t Node = 0; Node < NumNodes; Node++) {
1064        uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
1065        uint64_t ExecutionCount = NodeCounts[Node];
1066        AllNodes.emplace_back(Node, Size, ExecutionCount);
1067        TotalSamples += ExecutionCount;
1068        if (ExecutionCount > 0)
1069          TotalSize += Size;
1070      }
1071  
1072      // Initialize jumps between the nodes.
1073      SuccNodes.resize(NumNodes);
1074      PredNodes.resize(NumNodes);
1075      AllJumps.reserve(EdgeCounts.size());
1076      for (size_t I = 0; I < EdgeCounts.size(); I++) {
1077        auto [Pred, Succ, Count] = EdgeCounts[I];
1078        // Ignore recursive calls.
1079        if (Pred == Succ)
1080          continue;
1081  
1082        SuccNodes[Pred].push_back(Succ);
1083        PredNodes[Succ].push_back(Pred);
1084        if (Count > 0) {
1085          NodeT &PredNode = AllNodes[Pred];
1086          NodeT &SuccNode = AllNodes[Succ];
1087          AllJumps.emplace_back(&PredNode, &SuccNode, Count);
1088          AllJumps.back().Offset = EdgeOffsets[I];
1089          SuccNode.InJumps.push_back(&AllJumps.back());
1090          PredNode.OutJumps.push_back(&AllJumps.back());
1091          // Adjust execution counts.
1092          PredNode.ExecutionCount = std::max(PredNode.ExecutionCount, Count);
1093          SuccNode.ExecutionCount = std::max(SuccNode.ExecutionCount, Count);
1094        }
1095      }
1096  
1097      // Initialize chains.
1098      AllChains.reserve(NumNodes);
1099      for (NodeT &Node : AllNodes) {
1100        // Adjust execution counts.
1101        Node.ExecutionCount = std::max(Node.ExecutionCount, Node.inCount());
1102        Node.ExecutionCount = std::max(Node.ExecutionCount, Node.outCount());
1103        // Create chain.
1104        AllChains.emplace_back(Node.Index, &Node);
1105        Node.CurChain = &AllChains.back();
1106      }
1107  
1108      // Initialize chain edges.
1109      AllEdges.reserve(AllJumps.size());
1110      for (NodeT &PredNode : AllNodes) {
1111        for (JumpT *Jump : PredNode.OutJumps) {
1112          NodeT *SuccNode = Jump->Target;
1113          ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
1114          // This edge is already present in the graph.
1115          if (CurEdge != nullptr) {
1116            assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
1117            CurEdge->appendJump(Jump);
1118            continue;
1119          }
1120          // This is a new edge.
1121          AllEdges.emplace_back(Jump);
1122          PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
1123          SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
1124        }
1125      }
1126    }
1127  
1128    /// Merge pairs of chains while there is an improvement in the objective.
1129    void mergeChainPairs() {
1130      // Create a priority queue containing all edges ordered by the merge gain.
1131      auto GainComparator = [](ChainEdge *L, ChainEdge *R) {
1132        return std::make_tuple(-L->gain(), L->srcChain()->Id, L->dstChain()->Id) <
1133               std::make_tuple(-R->gain(), R->srcChain()->Id, R->dstChain()->Id);
1134      };
1135      std::set<ChainEdge *, decltype(GainComparator)> Queue(GainComparator);
1136  
1137      // Insert the edges into the queue.
1138      [[maybe_unused]] size_t NumActiveChains = 0;
1139      for (NodeT &Node : AllNodes) {
1140        if (Node.ExecutionCount == 0)
1141          continue;
1142        ++NumActiveChains;
1143        for (const auto &[_, Edge] : Node.CurChain->Edges) {
1144          // Ignore self-edges.
1145          if (Edge->isSelfEdge())
1146            continue;
1147          // Ignore already processed edges.
1148          if (Edge->gain() != -1.0)
1149            continue;
1150  
1151          // Compute the gain of merging the two chains.
1152          MergeGainT Gain = getBestMergeGain(Edge);
1153          Edge->setMergeGain(Gain);
1154  
1155          if (Edge->gain() > EPS)
1156            Queue.insert(Edge);
1157        }
1158      }
1159  
1160      // Merge the chains while the gain of merging is positive.
1161      while (!Queue.empty()) {
1162        // Extract the best (top) edge for merging.
1163        ChainEdge *BestEdge = *Queue.begin();
1164        Queue.erase(Queue.begin());
1165        ChainT *BestSrcChain = BestEdge->srcChain();
1166        ChainT *BestDstChain = BestEdge->dstChain();
1167  
1168        // Remove outdated edges from the queue.
1169        for (const auto &[_, ChainEdge] : BestSrcChain->Edges)
1170          Queue.erase(ChainEdge);
1171        for (const auto &[_, ChainEdge] : BestDstChain->Edges)
1172          Queue.erase(ChainEdge);
1173  
1174        // Merge the best pair of chains.
1175        MergeGainT BestGain = BestEdge->getMergeGain();
1176        mergeChains(BestSrcChain, BestDstChain, BestGain.mergeOffset(),
1177                    BestGain.mergeType());
1178        --NumActiveChains;
1179  
1180        // Insert newly created edges into the queue.
1181        for (const auto &[_, Edge] : BestSrcChain->Edges) {
1182          // Ignore loop edges.
1183          if (Edge->isSelfEdge())
1184            continue;
1185          if (Edge->srcChain()->numBlocks() + Edge->dstChain()->numBlocks() >
1186              Config.MaxChainSize)
1187            continue;
1188  
1189          // Compute the gain of merging the two chains.
1190          MergeGainT Gain = getBestMergeGain(Edge);
1191          Edge->setMergeGain(Gain);
1192  
1193          if (Edge->gain() > EPS)
1194            Queue.insert(Edge);
1195        }
1196      }
1197  
1198      LLVM_DEBUG(dbgs() << "Cache-directed function sorting reduced the number"
1199                        << " of chains from " << NumNodes << " to "
1200                        << NumActiveChains << "\n");
1201    }
1202  
1203    /// Compute the gain of merging two chains.
1204    ///
1205    /// The function considers all possible ways of merging two chains and
1206    /// computes the one having the largest increase in ExtTSP objective. The
1207    /// result is a pair with the first element being the gain and the second
1208    /// element being the corresponding merging type.
1209    MergeGainT getBestMergeGain(ChainEdge *Edge) const {
1210      assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps");
1211      // Precompute jumps between ChainPred and ChainSucc.
1212      MergedJumpsT Jumps(&Edge->jumps());
1213      ChainT *SrcChain = Edge->srcChain();
1214      ChainT *DstChain = Edge->dstChain();
1215  
1216      // This object holds the best currently chosen gain of merging two chains.
1217      MergeGainT Gain = MergeGainT();
1218  
1219      /// Given a list of merge types, try to merge two chains and update Gain
1220      /// with a better alternative.
1221      auto tryChainMerging = [&](const std::vector<MergeTypeT> &MergeTypes) {
1222        // Apply the merge, compute the corresponding gain, and update the best
1223        // value, if the merge is beneficial.
1224        for (const MergeTypeT &MergeType : MergeTypes) {
1225          MergeGainT NewGain =
1226              computeMergeGain(SrcChain, DstChain, Jumps, MergeType);
1227  
1228          // When forward and backward gains are the same, prioritize merging that
1229          // preserves the original order of the functions in the binary.
1230          if (std::abs(Gain.score() - NewGain.score()) < EPS) {
1231            if ((MergeType == MergeTypeT::X_Y && SrcChain->Id < DstChain->Id) ||
1232                (MergeType == MergeTypeT::Y_X && SrcChain->Id > DstChain->Id)) {
1233              Gain = NewGain;
1234            }
1235          } else if (NewGain.score() > Gain.score() + EPS) {
1236            Gain = NewGain;
1237          }
1238        }
1239      };
1240  
1241      // Try to concatenate two chains w/o splitting.
1242      tryChainMerging({MergeTypeT::X_Y, MergeTypeT::Y_X});
1243  
1244      return Gain;
1245    }
1246  
1247    /// Compute the score gain of merging two chains, respecting a given type.
1248    ///
1249    /// The two chains are not modified in the method.
1250    MergeGainT computeMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
1251                                const MergedJumpsT &Jumps,
1252                                MergeTypeT MergeType) const {
1253      // This doesn't depend on the ordering of the nodes
1254      double FreqGain = freqBasedLocalityGain(ChainPred, ChainSucc);
1255  
1256      // Merge offset is always 0, as the chains are not split.
1257      size_t MergeOffset = 0;
1258      auto MergedBlocks =
1259          mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
1260      double DistGain = distBasedLocalityGain(MergedBlocks, Jumps);
1261  
1262      double GainScore = DistGain + Config.FrequencyScale * FreqGain;
1263      // Scale the result to increase the importance of merging short chains.
1264      if (GainScore >= 0.0)
1265        GainScore /= std::min(ChainPred->Size, ChainSucc->Size);
1266  
1267      return MergeGainT(GainScore, MergeOffset, MergeType);
1268    }
1269  
1270    /// Compute the change of the frequency locality after merging the chains.
1271    double freqBasedLocalityGain(ChainT *ChainPred, ChainT *ChainSucc) const {
1272      auto missProbability = [&](double ChainDensity) {
1273        double PageSamples = ChainDensity * Config.CacheSize;
1274        if (PageSamples >= TotalSamples)
1275          return 0.0;
1276        double P = PageSamples / TotalSamples;
1277        return pow(1.0 - P, static_cast<double>(Config.CacheEntries));
1278      };
1279  
1280      // Cache misses on the chains before merging.
1281      double CurScore =
1282          ChainPred->ExecutionCount * missProbability(ChainPred->density()) +
1283          ChainSucc->ExecutionCount * missProbability(ChainSucc->density());
1284  
1285      // Cache misses on the merged chain
1286      double MergedCounts = ChainPred->ExecutionCount + ChainSucc->ExecutionCount;
1287      double MergedSize = ChainPred->Size + ChainSucc->Size;
1288      double MergedDensity = static_cast<double>(MergedCounts) / MergedSize;
1289      double NewScore = MergedCounts * missProbability(MergedDensity);
1290  
1291      return CurScore - NewScore;
1292    }
1293  
1294    /// Compute the distance locality for a jump / call.
1295    double distScore(uint64_t SrcAddr, uint64_t DstAddr, uint64_t Count) const {
1296      uint64_t Dist = SrcAddr <= DstAddr ? DstAddr - SrcAddr : SrcAddr - DstAddr;
1297      double D = Dist == 0 ? 0.1 : static_cast<double>(Dist);
1298      return static_cast<double>(Count) * std::pow(D, -Config.DistancePower);
1299    }
1300  
1301    /// Compute the change of the distance locality after merging the chains.
1302    double distBasedLocalityGain(const MergedNodesT &Nodes,
1303                                 const MergedJumpsT &Jumps) const {
1304      uint64_t CurAddr = 0;
1305      Nodes.forEach([&](const NodeT *Node) {
1306        Node->EstimatedAddr = CurAddr;
1307        CurAddr += Node->Size;
1308      });
1309  
1310      double CurScore = 0;
1311      double NewScore = 0;
1312      Jumps.forEach([&](const JumpT *Jump) {
1313        uint64_t SrcAddr = Jump->Source->EstimatedAddr + Jump->Offset;
1314        uint64_t DstAddr = Jump->Target->EstimatedAddr;
1315        NewScore += distScore(SrcAddr, DstAddr, Jump->ExecutionCount);
1316        CurScore += distScore(0, TotalSize, Jump->ExecutionCount);
1317      });
1318      return NewScore - CurScore;
1319    }
1320  
1321    /// Merge chain From into chain Into, update the list of active chains,
1322    /// adjacency information, and the corresponding cached values.
1323    void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
1324                     MergeTypeT MergeType) {
1325      assert(Into != From && "a chain cannot be merged with itself");
1326  
1327      // Merge the nodes.
1328      MergedNodesT MergedNodes =
1329          mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
1330      Into->merge(From, MergedNodes.getNodes());
1331  
1332      // Merge the edges.
1333      Into->mergeEdges(From);
1334      From->clear();
1335    }
1336  
1337    /// Concatenate all chains into the final order.
1338    std::vector<uint64_t> concatChains() {
1339      // Collect chains and calculate density stats for their sorting.
1340      std::vector<const ChainT *> SortedChains;
1341      DenseMap<const ChainT *, double> ChainDensity;
1342      for (ChainT &Chain : AllChains) {
1343        if (!Chain.Nodes.empty()) {
1344          SortedChains.push_back(&Chain);
1345          // Using doubles to avoid overflow of ExecutionCounts.
1346          double Size = 0;
1347          double ExecutionCount = 0;
1348          for (NodeT *Node : Chain.Nodes) {
1349            Size += static_cast<double>(Node->Size);
1350            ExecutionCount += static_cast<double>(Node->ExecutionCount);
1351          }
1352          assert(Size > 0 && "a chain of zero size");
1353          ChainDensity[&Chain] = ExecutionCount / Size;
1354        }
1355      }
1356  
1357      // Sort chains by density in the decreasing order.
1358      std::sort(SortedChains.begin(), SortedChains.end(),
1359                [&](const ChainT *L, const ChainT *R) {
1360                  const double DL = ChainDensity[L];
1361                  const double DR = ChainDensity[R];
1362                  // Compare by density and break ties by chain identifiers.
1363                  return std::make_tuple(-DL, L->Id) <
1364                         std::make_tuple(-DR, R->Id);
1365                });
1366  
1367      // Collect the nodes in the order specified by their chains.
1368      std::vector<uint64_t> Order;
1369      Order.reserve(NumNodes);
1370      for (const ChainT *Chain : SortedChains)
1371        for (NodeT *Node : Chain->Nodes)
1372          Order.push_back(Node->Index);
1373      return Order;
1374    }
1375  
1376  private:
1377    /// Config for the algorithm.
1378    const CDSortConfig Config;
1379  
1380    /// The number of nodes in the graph.
1381    const size_t NumNodes;
1382  
1383    /// Successors of each node.
1384    std::vector<std::vector<uint64_t>> SuccNodes;
1385  
1386    /// Predecessors of each node.
1387    std::vector<std::vector<uint64_t>> PredNodes;
1388  
1389    /// All nodes (functions) in the graph.
1390    std::vector<NodeT> AllNodes;
1391  
1392    /// All jumps (function calls) between the nodes.
1393    std::vector<JumpT> AllJumps;
1394  
1395    /// All chains of nodes.
1396    std::vector<ChainT> AllChains;
1397  
1398    /// All edges between the chains.
1399    std::vector<ChainEdge> AllEdges;
1400  
1401    /// The total number of samples in the graph.
1402    uint64_t TotalSamples{0};
1403  
1404    /// The total size of the nodes in the graph.
1405    uint64_t TotalSize{0};
1406  };
1407  
1408  } // end of anonymous namespace
1409  
1410  std::vector<uint64_t>
1411  codelayout::computeExtTspLayout(ArrayRef<uint64_t> NodeSizes,
1412                                  ArrayRef<uint64_t> NodeCounts,
1413                                  ArrayRef<EdgeCount> EdgeCounts) {
1414    // Verify correctness of the input data.
1415    assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
1416    assert(NodeSizes.size() > 2 && "Incorrect input");
1417  
1418    // Apply the reordering algorithm.
1419    ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts);
1420    std::vector<uint64_t> Result = Alg.run();
1421  
1422    // Verify correctness of the output.
1423    assert(Result.front() == 0 && "Original entry point is not preserved");
1424    assert(Result.size() == NodeSizes.size() && "Incorrect size of layout");
1425    return Result;
1426  }
1427  
1428  double codelayout::calcExtTspScore(ArrayRef<uint64_t> Order,
1429                                     ArrayRef<uint64_t> NodeSizes,
1430                                     ArrayRef<uint64_t> NodeCounts,
1431                                     ArrayRef<EdgeCount> EdgeCounts) {
1432    // Estimate addresses of the blocks in memory.
1433    std::vector<uint64_t> Addr(NodeSizes.size(), 0);
1434    for (size_t Idx = 1; Idx < Order.size(); Idx++) {
1435      Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
1436    }
1437    std::vector<uint64_t> OutDegree(NodeSizes.size(), 0);
1438    for (auto Edge : EdgeCounts)
1439      ++OutDegree[Edge.src];
1440  
1441    // Increase the score for each jump.
1442    double Score = 0;
1443    for (auto Edge : EdgeCounts) {
1444      bool IsConditional = OutDegree[Edge.src] > 1;
1445      Score += ::extTSPScore(Addr[Edge.src], NodeSizes[Edge.src], Addr[Edge.dst],
1446                             Edge.count, IsConditional);
1447    }
1448    return Score;
1449  }
1450  
1451  double codelayout::calcExtTspScore(ArrayRef<uint64_t> NodeSizes,
1452                                     ArrayRef<uint64_t> NodeCounts,
1453                                     ArrayRef<EdgeCount> EdgeCounts) {
1454    std::vector<uint64_t> Order(NodeSizes.size());
1455    for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
1456      Order[Idx] = Idx;
1457    }
1458    return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
1459  }
1460  
1461  std::vector<uint64_t> codelayout::computeCacheDirectedLayout(
1462      const CDSortConfig &Config, ArrayRef<uint64_t> FuncSizes,
1463      ArrayRef<uint64_t> FuncCounts, ArrayRef<EdgeCount> CallCounts,
1464      ArrayRef<uint64_t> CallOffsets) {
1465    // Verify correctness of the input data.
1466    assert(FuncCounts.size() == FuncSizes.size() && "Incorrect input");
1467  
1468    // Apply the reordering algorithm.
1469    CDSortImpl Alg(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets);
1470    std::vector<uint64_t> Result = Alg.run();
1471    assert(Result.size() == FuncSizes.size() && "Incorrect size of layout");
1472    return Result;
1473  }
1474  
1475  std::vector<uint64_t> codelayout::computeCacheDirectedLayout(
1476      ArrayRef<uint64_t> FuncSizes, ArrayRef<uint64_t> FuncCounts,
1477      ArrayRef<EdgeCount> CallCounts, ArrayRef<uint64_t> CallOffsets) {
1478    CDSortConfig Config;
1479    // Populate the config from the command-line options.
1480    if (CacheEntries.getNumOccurrences() > 0)
1481      Config.CacheEntries = CacheEntries;
1482    if (CacheSize.getNumOccurrences() > 0)
1483      Config.CacheSize = CacheSize;
1484    if (CDMaxChainSize.getNumOccurrences() > 0)
1485      Config.MaxChainSize = CDMaxChainSize;
1486    if (DistancePower.getNumOccurrences() > 0)
1487      Config.DistancePower = DistancePower;
1488    if (FrequencyScale.getNumOccurrences() > 0)
1489      Config.FrequencyScale = FrequencyScale;
1490    return computeCacheDirectedLayout(Config, FuncSizes, FuncCounts, CallCounts,
1491                                      CallOffsets);
1492  }
1493