xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeLayout.cpp (revision 59c8e88e72633afbc47a4ace0d2170d00d51f7dc)
1 //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The file implements "cache-aware" layout algorithms of basic blocks and
10 // functions in a binary.
11 //
12 // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
13 // optimizing jump locality and thus processor I-cache utilization. This is
14 // achieved via increasing the number of fall-through jumps and co-locating
15 // frequently executed nodes together. The name follows the underlying
16 // optimization problem, Extended-TSP, which is a generalization of classical
17 // (maximum) Traveling Salesmen Problem.
18 //
19 // The algorithm is a greedy heuristic that works with chains (ordered lists)
20 // of basic blocks. Initially all chains are isolated basic blocks. On every
21 // iteration, we pick a pair of chains whose merging yields the biggest increase
22 // in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
23 // A pair of chains giving the maximum gain is merged into a new chain. The
24 // procedure stops when there is only one chain left, or when merging does not
25 // increase ExtTSP. In the latter case, the remaining chains are sorted by
26 // density in the decreasing order.
27 //
28 // An important aspect is the way two chains are merged. Unlike earlier
29 // algorithms (e.g., based on the approach of Pettis-Hansen), two
30 // chains, X and Y, are first split into three, X1, X2, and Y. Then we
31 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
32 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
33 // This improves the quality of the final result (the search space is larger)
34 // while keeping the implementation sufficiently fast.
35 //
36 // Reference:
37 //   * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
38 //     IEEE Transactions on Computers, 2020
39 //     https://arxiv.org/abs/1809.04676
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "llvm/Transforms/Utils/CodeLayout.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 
47 #include <cmath>
48 
49 using namespace llvm;
50 #define DEBUG_TYPE "code-layout"
51 
52 namespace llvm {
53 cl::opt<bool> EnableExtTspBlockPlacement(
54     "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
55     cl::desc("Enable machine block placement based on the ext-tsp model, "
56              "optimizing I-cache utilization."));
57 
58 cl::opt<bool> ApplyExtTspWithoutProfile(
59     "ext-tsp-apply-without-profile",
60     cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
61     cl::init(true), cl::Hidden);
62 } // namespace llvm
63 
64 // Algorithm-specific params. The values are tuned for the best performance
65 // of large-scale front-end bound binaries.
66 static cl::opt<double> ForwardWeightCond(
67     "ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1),
68     cl::desc("The weight of conditional forward jumps for ExtTSP value"));
69 
70 static cl::opt<double> ForwardWeightUncond(
71     "ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
72     cl::desc("The weight of unconditional forward jumps for ExtTSP value"));
73 
74 static cl::opt<double> BackwardWeightCond(
75     "ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1),
76     cl::desc("The weight of conditional backward jumps for ExtTSP value"));
77 
78 static cl::opt<double> BackwardWeightUncond(
79     "ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
80     cl::desc("The weight of unconditional backward jumps for ExtTSP value"));
81 
82 static cl::opt<double> FallthroughWeightCond(
83     "ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0),
84     cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"));
85 
86 static cl::opt<double> FallthroughWeightUncond(
87     "ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05),
88     cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"));
89 
90 static cl::opt<unsigned> ForwardDistance(
91     "ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024),
92     cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
93 
94 static cl::opt<unsigned> BackwardDistance(
95     "ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640),
96     cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
97 
98 // The maximum size of a chain created by the algorithm. The size is bounded
99 // so that the algorithm can efficiently process extremely large instance.
100 static cl::opt<unsigned>
101     MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(4096),
102                  cl::desc("The maximum size of a chain to create."));
103 
104 // The maximum size of a chain for splitting. Larger values of the threshold
105 // may yield better quality at the cost of worsen run-time.
106 static cl::opt<unsigned> ChainSplitThreshold(
107     "ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128),
108     cl::desc("The maximum size of a chain to apply splitting"));
109 
110 // The option enables splitting (large) chains along in-coming and out-going
111 // jumps. This typically results in a better quality.
112 static cl::opt<bool> EnableChainSplitAlongJumps(
113     "ext-tsp-enable-chain-split-along-jumps", cl::ReallyHidden, cl::init(true),
114     cl::desc("The maximum size of a chain to apply splitting"));
115 
116 namespace {
117 
118 // Epsilon for comparison of doubles.
119 constexpr double EPS = 1e-8;
120 
121 // Compute the Ext-TSP score for a given jump.
122 double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count,
123                        double Weight) {
124   if (JumpDist > JumpMaxDist)
125     return 0;
126   double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist;
127   return Weight * Prob * Count;
128 }
129 
130 // Compute the Ext-TSP score for a jump between a given pair of blocks,
131 // using their sizes, (estimated) addresses and the jump execution count.
132 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
133                    uint64_t Count, bool IsConditional) {
134   // Fallthrough
135   if (SrcAddr + SrcSize == DstAddr) {
136     return jumpExtTSPScore(0, 1, Count,
137                            IsConditional ? FallthroughWeightCond
138                                          : FallthroughWeightUncond);
139   }
140   // Forward
141   if (SrcAddr + SrcSize < DstAddr) {
142     const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
143     return jumpExtTSPScore(Dist, ForwardDistance, Count,
144                            IsConditional ? ForwardWeightCond
145                                          : ForwardWeightUncond);
146   }
147   // Backward
148   const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
149   return jumpExtTSPScore(Dist, BackwardDistance, Count,
150                          IsConditional ? BackwardWeightCond
151                                        : BackwardWeightUncond);
152 }
153 
154 /// A type of merging two chains, X and Y. The former chain is split into
155 /// X1 and X2 and then concatenated with Y in the order specified by the type.
156 enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y };
157 
158 /// The gain of merging two chains, that is, the Ext-TSP score of the merge
159 /// together with the corresponding merge 'type' and 'offset'.
160 struct MergeGainT {
161   explicit MergeGainT() = default;
162   explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType)
163       : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
164 
165   double score() const { return Score; }
166 
167   size_t mergeOffset() const { return MergeOffset; }
168 
169   MergeTypeT mergeType() const { return MergeType; }
170 
171   void setMergeType(MergeTypeT Ty) { MergeType = Ty; }
172 
173   // Returns 'true' iff Other is preferred over this.
174   bool operator<(const MergeGainT &Other) const {
175     return (Other.Score > EPS && Other.Score > Score + EPS);
176   }
177 
178   // Update the current gain if Other is preferred over this.
179   void updateIfLessThan(const MergeGainT &Other) {
180     if (*this < Other)
181       *this = Other;
182   }
183 
184 private:
185   double Score{-1.0};
186   size_t MergeOffset{0};
187   MergeTypeT MergeType{MergeTypeT::X_Y};
188 };
189 
190 struct JumpT;
191 struct ChainT;
192 struct ChainEdge;
193 
194 /// A node in the graph, typically corresponding to a basic block in the CFG or
195 /// a function in the call graph.
196 struct NodeT {
197   NodeT(const NodeT &) = delete;
198   NodeT(NodeT &&) = default;
199   NodeT &operator=(const NodeT &) = delete;
200   NodeT &operator=(NodeT &&) = default;
201 
202   explicit NodeT(size_t Index, uint64_t Size, uint64_t EC)
203       : Index(Index), Size(Size), ExecutionCount(EC) {}
204 
205   bool isEntry() const { return Index == 0; }
206 
207   // The total execution count of outgoing jumps.
208   uint64_t outCount() const;
209 
210   // The total execution count of incoming jumps.
211   uint64_t inCount() const;
212 
213   // The original index of the node in graph.
214   size_t Index{0};
215   // The index of the node in the current chain.
216   size_t CurIndex{0};
217   // The size of the node in the binary.
218   uint64_t Size{0};
219   // The execution count of the node in the profile data.
220   uint64_t ExecutionCount{0};
221   // The current chain of the node.
222   ChainT *CurChain{nullptr};
223   // The offset of the node in the current chain.
224   mutable uint64_t EstimatedAddr{0};
225   // Forced successor of the node in the graph.
226   NodeT *ForcedSucc{nullptr};
227   // Forced predecessor of the node in the graph.
228   NodeT *ForcedPred{nullptr};
229   // Outgoing jumps from the node.
230   std::vector<JumpT *> OutJumps;
231   // Incoming jumps to the node.
232   std::vector<JumpT *> InJumps;
233 };
234 
235 /// An arc in the graph, typically corresponding to a jump between two nodes.
236 struct JumpT {
237   JumpT(const JumpT &) = delete;
238   JumpT(JumpT &&) = default;
239   JumpT &operator=(const JumpT &) = delete;
240   JumpT &operator=(JumpT &&) = default;
241 
242   explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount)
243       : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
244 
245   // Source node of the jump.
246   NodeT *Source;
247   // Target node of the jump.
248   NodeT *Target;
249   // Execution count of the arc in the profile data.
250   uint64_t ExecutionCount{0};
251   // Whether the jump corresponds to a conditional branch.
252   bool IsConditional{false};
253   // The offset of the jump from the source node.
254   uint64_t Offset{0};
255 };
256 
257 /// A chain (ordered sequence) of nodes in the graph.
258 struct ChainT {
259   ChainT(const ChainT &) = delete;
260   ChainT(ChainT &&) = default;
261   ChainT &operator=(const ChainT &) = delete;
262   ChainT &operator=(ChainT &&) = default;
263 
264   explicit ChainT(uint64_t Id, NodeT *Node)
265       : Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size),
266         Nodes(1, Node) {}
267 
268   size_t numBlocks() const { return Nodes.size(); }
269 
270   double density() const { return static_cast<double>(ExecutionCount) / Size; }
271 
272   bool isEntry() const { return Nodes[0]->Index == 0; }
273 
274   bool isCold() const {
275     for (NodeT *Node : Nodes) {
276       if (Node->ExecutionCount > 0)
277         return false;
278     }
279     return true;
280   }
281 
282   ChainEdge *getEdge(ChainT *Other) const {
283     for (auto It : Edges) {
284       if (It.first == Other)
285         return It.second;
286     }
287     return nullptr;
288   }
289 
290   void removeEdge(ChainT *Other) {
291     auto It = Edges.begin();
292     while (It != Edges.end()) {
293       if (It->first == Other) {
294         Edges.erase(It);
295         return;
296       }
297       It++;
298     }
299   }
300 
301   void addEdge(ChainT *Other, ChainEdge *Edge) {
302     Edges.push_back(std::make_pair(Other, Edge));
303   }
304 
305   void merge(ChainT *Other, const std::vector<NodeT *> &MergedBlocks) {
306     Nodes = MergedBlocks;
307     // Update the chain's data
308     ExecutionCount += Other->ExecutionCount;
309     Size += Other->Size;
310     Id = Nodes[0]->Index;
311     // Update the node's data
312     for (size_t Idx = 0; Idx < Nodes.size(); Idx++) {
313       Nodes[Idx]->CurChain = this;
314       Nodes[Idx]->CurIndex = Idx;
315     }
316   }
317 
318   void mergeEdges(ChainT *Other);
319 
320   void clear() {
321     Nodes.clear();
322     Nodes.shrink_to_fit();
323     Edges.clear();
324     Edges.shrink_to_fit();
325   }
326 
327   // Unique chain identifier.
328   uint64_t Id;
329   // Cached ext-tsp score for the chain.
330   double Score{0};
331   // The total execution count of the chain.
332   uint64_t ExecutionCount{0};
333   // The total size of the chain.
334   uint64_t Size{0};
335   // Nodes of the chain.
336   std::vector<NodeT *> Nodes;
337   // Adjacent chains and corresponding edges (lists of jumps).
338   std::vector<std::pair<ChainT *, ChainEdge *>> Edges;
339 };
340 
341 /// An edge in the graph representing jumps between two chains.
342 /// When nodes are merged into chains, the edges are combined too so that
343 /// there is always at most one edge between a pair of chains
344 struct ChainEdge {
345   ChainEdge(const ChainEdge &) = delete;
346   ChainEdge(ChainEdge &&) = default;
347   ChainEdge &operator=(const ChainEdge &) = delete;
348   ChainEdge &operator=(ChainEdge &&) = delete;
349 
350   explicit ChainEdge(JumpT *Jump)
351       : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
352         Jumps(1, Jump) {}
353 
354   ChainT *srcChain() const { return SrcChain; }
355 
356   ChainT *dstChain() const { return DstChain; }
357 
358   bool isSelfEdge() const { return SrcChain == DstChain; }
359 
360   const std::vector<JumpT *> &jumps() const { return Jumps; }
361 
362   void appendJump(JumpT *Jump) { Jumps.push_back(Jump); }
363 
364   void moveJumps(ChainEdge *Other) {
365     Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
366     Other->Jumps.clear();
367     Other->Jumps.shrink_to_fit();
368   }
369 
370   void changeEndpoint(ChainT *From, ChainT *To) {
371     if (From == SrcChain)
372       SrcChain = To;
373     if (From == DstChain)
374       DstChain = To;
375   }
376 
377   bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const {
378     return Src == SrcChain ? CacheValidForward : CacheValidBackward;
379   }
380 
381   MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const {
382     return Src == SrcChain ? CachedGainForward : CachedGainBackward;
383   }
384 
385   void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) {
386     if (Src == SrcChain) {
387       CachedGainForward = MergeGain;
388       CacheValidForward = true;
389     } else {
390       CachedGainBackward = MergeGain;
391       CacheValidBackward = true;
392     }
393   }
394 
395   void invalidateCache() {
396     CacheValidForward = false;
397     CacheValidBackward = false;
398   }
399 
400   void setMergeGain(MergeGainT Gain) { CachedGain = Gain; }
401 
402   MergeGainT getMergeGain() const { return CachedGain; }
403 
404   double gain() const { return CachedGain.score(); }
405 
406 private:
407   // Source chain.
408   ChainT *SrcChain{nullptr};
409   // Destination chain.
410   ChainT *DstChain{nullptr};
411   // Original jumps in the binary with corresponding execution counts.
412   std::vector<JumpT *> Jumps;
413   // Cached gain value for merging the pair of chains.
414   MergeGainT CachedGain;
415 
416   // Cached gain values for merging the pair of chains. Since the gain of
417   // merging (Src, Dst) and (Dst, Src) might be different, we store both values
418   // here and a flag indicating which of the options results in a higher gain.
419   // Cached gain values.
420   MergeGainT CachedGainForward;
421   MergeGainT CachedGainBackward;
422   // Whether the cached value must be recomputed.
423   bool CacheValidForward{false};
424   bool CacheValidBackward{false};
425 };
426 
427 uint64_t NodeT::outCount() const {
428   uint64_t Count = 0;
429   for (JumpT *Jump : OutJumps) {
430     Count += Jump->ExecutionCount;
431   }
432   return Count;
433 }
434 
435 uint64_t NodeT::inCount() const {
436   uint64_t Count = 0;
437   for (JumpT *Jump : InJumps) {
438     Count += Jump->ExecutionCount;
439   }
440   return Count;
441 }
442 
443 void ChainT::mergeEdges(ChainT *Other) {
444   // Update edges adjacent to chain Other
445   for (auto EdgeIt : Other->Edges) {
446     ChainT *DstChain = EdgeIt.first;
447     ChainEdge *DstEdge = EdgeIt.second;
448     ChainT *TargetChain = DstChain == Other ? this : DstChain;
449     ChainEdge *CurEdge = getEdge(TargetChain);
450     if (CurEdge == nullptr) {
451       DstEdge->changeEndpoint(Other, this);
452       this->addEdge(TargetChain, DstEdge);
453       if (DstChain != this && DstChain != Other) {
454         DstChain->addEdge(this, DstEdge);
455       }
456     } else {
457       CurEdge->moveJumps(DstEdge);
458     }
459     // Cleanup leftover edge
460     if (DstChain != Other) {
461       DstChain->removeEdge(Other);
462     }
463   }
464 }
465 
466 using NodeIter = std::vector<NodeT *>::const_iterator;
467 
468 /// A wrapper around three chains of nodes; it is used to avoid extra
469 /// instantiation of the vectors.
470 struct MergedChain {
471   MergedChain(NodeIter Begin1, NodeIter End1, NodeIter Begin2 = NodeIter(),
472               NodeIter End2 = NodeIter(), NodeIter Begin3 = NodeIter(),
473               NodeIter End3 = NodeIter())
474       : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
475         End3(End3) {}
476 
477   template <typename F> void forEach(const F &Func) const {
478     for (auto It = Begin1; It != End1; It++)
479       Func(*It);
480     for (auto It = Begin2; It != End2; It++)
481       Func(*It);
482     for (auto It = Begin3; It != End3; It++)
483       Func(*It);
484   }
485 
486   std::vector<NodeT *> getNodes() const {
487     std::vector<NodeT *> Result;
488     Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
489                    std::distance(Begin3, End3));
490     Result.insert(Result.end(), Begin1, End1);
491     Result.insert(Result.end(), Begin2, End2);
492     Result.insert(Result.end(), Begin3, End3);
493     return Result;
494   }
495 
496   const NodeT *getFirstNode() const { return *Begin1; }
497 
498 private:
499   NodeIter Begin1;
500   NodeIter End1;
501   NodeIter Begin2;
502   NodeIter End2;
503   NodeIter Begin3;
504   NodeIter End3;
505 };
506 
507 /// Merge two chains of nodes respecting a given 'type' and 'offset'.
508 ///
509 /// If MergeType == 0, then the result is a concatenation of two chains.
510 /// Otherwise, the first chain is cut into two sub-chains at the offset,
511 /// and merged using all possible ways of concatenating three chains.
512 MergedChain mergeNodes(const std::vector<NodeT *> &X,
513                        const std::vector<NodeT *> &Y, size_t MergeOffset,
514                        MergeTypeT MergeType) {
515   // Split the first chain, X, into X1 and X2
516   NodeIter BeginX1 = X.begin();
517   NodeIter EndX1 = X.begin() + MergeOffset;
518   NodeIter BeginX2 = X.begin() + MergeOffset;
519   NodeIter EndX2 = X.end();
520   NodeIter BeginY = Y.begin();
521   NodeIter EndY = Y.end();
522 
523   // Construct a new chain from the three existing ones
524   switch (MergeType) {
525   case MergeTypeT::X_Y:
526     return MergedChain(BeginX1, EndX2, BeginY, EndY);
527   case MergeTypeT::Y_X:
528     return MergedChain(BeginY, EndY, BeginX1, EndX2);
529   case MergeTypeT::X1_Y_X2:
530     return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
531   case MergeTypeT::Y_X2_X1:
532     return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
533   case MergeTypeT::X2_X1_Y:
534     return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
535   }
536   llvm_unreachable("unexpected chain merge type");
537 }
538 
539 /// The implementation of the ExtTSP algorithm.
540 class ExtTSPImpl {
541 public:
542   ExtTSPImpl(const std::vector<uint64_t> &NodeSizes,
543              const std::vector<uint64_t> &NodeCounts,
544              const std::vector<EdgeCountT> &EdgeCounts)
545       : NumNodes(NodeSizes.size()) {
546     initialize(NodeSizes, NodeCounts, EdgeCounts);
547   }
548 
549   /// Run the algorithm and return an optimized ordering of nodes.
550   void run(std::vector<uint64_t> &Result) {
551     // Pass 1: Merge nodes with their mutually forced successors
552     mergeForcedPairs();
553 
554     // Pass 2: Merge pairs of chains while improving the ExtTSP objective
555     mergeChainPairs();
556 
557     // Pass 3: Merge cold nodes to reduce code size
558     mergeColdChains();
559 
560     // Collect nodes from all chains
561     concatChains(Result);
562   }
563 
564 private:
565   /// Initialize the algorithm's data structures.
566   void initialize(const std::vector<uint64_t> &NodeSizes,
567                   const std::vector<uint64_t> &NodeCounts,
568                   const std::vector<EdgeCountT> &EdgeCounts) {
569     // Initialize nodes
570     AllNodes.reserve(NumNodes);
571     for (uint64_t Idx = 0; Idx < NumNodes; Idx++) {
572       uint64_t Size = std::max<uint64_t>(NodeSizes[Idx], 1ULL);
573       uint64_t ExecutionCount = NodeCounts[Idx];
574       // The execution count of the entry node is set to at least one
575       if (Idx == 0 && ExecutionCount == 0)
576         ExecutionCount = 1;
577       AllNodes.emplace_back(Idx, Size, ExecutionCount);
578     }
579 
580     // Initialize jumps between nodes
581     SuccNodes.resize(NumNodes);
582     PredNodes.resize(NumNodes);
583     std::vector<uint64_t> OutDegree(NumNodes, 0);
584     AllJumps.reserve(EdgeCounts.size());
585     for (auto It : EdgeCounts) {
586       uint64_t Pred = It.first.first;
587       uint64_t Succ = It.first.second;
588       OutDegree[Pred]++;
589       // Ignore self-edges
590       if (Pred == Succ)
591         continue;
592 
593       SuccNodes[Pred].push_back(Succ);
594       PredNodes[Succ].push_back(Pred);
595       uint64_t ExecutionCount = It.second;
596       if (ExecutionCount > 0) {
597         NodeT &PredNode = AllNodes[Pred];
598         NodeT &SuccNode = AllNodes[Succ];
599         AllJumps.emplace_back(&PredNode, &SuccNode, ExecutionCount);
600         SuccNode.InJumps.push_back(&AllJumps.back());
601         PredNode.OutJumps.push_back(&AllJumps.back());
602       }
603     }
604     for (JumpT &Jump : AllJumps) {
605       assert(OutDegree[Jump.Source->Index] > 0);
606       Jump.IsConditional = OutDegree[Jump.Source->Index] > 1;
607     }
608 
609     // Initialize chains
610     AllChains.reserve(NumNodes);
611     HotChains.reserve(NumNodes);
612     for (NodeT &Node : AllNodes) {
613       AllChains.emplace_back(Node.Index, &Node);
614       Node.CurChain = &AllChains.back();
615       if (Node.ExecutionCount > 0) {
616         HotChains.push_back(&AllChains.back());
617       }
618     }
619 
620     // Initialize chain edges
621     AllEdges.reserve(AllJumps.size());
622     for (NodeT &PredNode : AllNodes) {
623       for (JumpT *Jump : PredNode.OutJumps) {
624         NodeT *SuccNode = Jump->Target;
625         ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
626         // this edge is already present in the graph
627         if (CurEdge != nullptr) {
628           assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
629           CurEdge->appendJump(Jump);
630           continue;
631         }
632         // this is a new edge
633         AllEdges.emplace_back(Jump);
634         PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
635         SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
636       }
637     }
638   }
639 
640   /// For a pair of nodes, A and B, node B is the forced successor of A,
641   /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
642   /// to B are from A. Such nodes should be adjacent in the optimal ordering;
643   /// the method finds and merges such pairs of nodes.
644   void mergeForcedPairs() {
645     // Find fallthroughs based on edge weights
646     for (NodeT &Node : AllNodes) {
647       if (SuccNodes[Node.Index].size() == 1 &&
648           PredNodes[SuccNodes[Node.Index][0]].size() == 1 &&
649           SuccNodes[Node.Index][0] != 0) {
650         size_t SuccIndex = SuccNodes[Node.Index][0];
651         Node.ForcedSucc = &AllNodes[SuccIndex];
652         AllNodes[SuccIndex].ForcedPred = &Node;
653       }
654     }
655 
656     // There might be 'cycles' in the forced dependencies, since profile
657     // data isn't 100% accurate. Typically this is observed in loops, when the
658     // loop edges are the hottest successors for the basic blocks of the loop.
659     // Break the cycles by choosing the node with the smallest index as the
660     // head. This helps to keep the original order of the loops, which likely
661     // have already been rotated in the optimized manner.
662     for (NodeT &Node : AllNodes) {
663       if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr)
664         continue;
665 
666       NodeT *SuccNode = Node.ForcedSucc;
667       while (SuccNode != nullptr && SuccNode != &Node) {
668         SuccNode = SuccNode->ForcedSucc;
669       }
670       if (SuccNode == nullptr)
671         continue;
672       // Break the cycle
673       AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr;
674       Node.ForcedPred = nullptr;
675     }
676 
677     // Merge nodes with their fallthrough successors
678     for (NodeT &Node : AllNodes) {
679       if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) {
680         const NodeT *CurBlock = &Node;
681         while (CurBlock->ForcedSucc != nullptr) {
682           const NodeT *NextBlock = CurBlock->ForcedSucc;
683           mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y);
684           CurBlock = NextBlock;
685         }
686       }
687     }
688   }
689 
690   /// Merge pairs of chains while improving the ExtTSP objective.
691   void mergeChainPairs() {
692     /// Deterministically compare pairs of chains
693     auto compareChainPairs = [](const ChainT *A1, const ChainT *B1,
694                                 const ChainT *A2, const ChainT *B2) {
695       if (A1 != A2)
696         return A1->Id < A2->Id;
697       return B1->Id < B2->Id;
698     };
699 
700     while (HotChains.size() > 1) {
701       ChainT *BestChainPred = nullptr;
702       ChainT *BestChainSucc = nullptr;
703       MergeGainT BestGain;
704       // Iterate over all pairs of chains
705       for (ChainT *ChainPred : HotChains) {
706         // Get candidates for merging with the current chain
707         for (auto EdgeIt : ChainPred->Edges) {
708           ChainT *ChainSucc = EdgeIt.first;
709           ChainEdge *Edge = EdgeIt.second;
710           // Ignore loop edges
711           if (ChainPred == ChainSucc)
712             continue;
713 
714           // Stop early if the combined chain violates the maximum allowed size
715           if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
716             continue;
717 
718           // Compute the gain of merging the two chains
719           MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge);
720           if (CurGain.score() <= EPS)
721             continue;
722 
723           if (BestGain < CurGain ||
724               (std::abs(CurGain.score() - BestGain.score()) < EPS &&
725                compareChainPairs(ChainPred, ChainSucc, BestChainPred,
726                                  BestChainSucc))) {
727             BestGain = CurGain;
728             BestChainPred = ChainPred;
729             BestChainSucc = ChainSucc;
730           }
731         }
732       }
733 
734       // Stop merging when there is no improvement
735       if (BestGain.score() <= EPS)
736         break;
737 
738       // Merge the best pair of chains
739       mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
740                   BestGain.mergeType());
741     }
742   }
743 
744   /// Merge remaining nodes into chains w/o taking jump counts into
745   /// consideration. This allows to maintain the original node order in the
746   /// absence of profile data
747   void mergeColdChains() {
748     for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
749       // Iterating in reverse order to make sure original fallthrough jumps are
750       // merged first; this might be beneficial for code size.
751       size_t NumSuccs = SuccNodes[SrcBB].size();
752       for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
753         size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
754         ChainT *SrcChain = AllNodes[SrcBB].CurChain;
755         ChainT *DstChain = AllNodes[DstBB].CurChain;
756         if (SrcChain != DstChain && !DstChain->isEntry() &&
757             SrcChain->Nodes.back()->Index == SrcBB &&
758             DstChain->Nodes.front()->Index == DstBB &&
759             SrcChain->isCold() == DstChain->isCold()) {
760           mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y);
761         }
762       }
763     }
764   }
765 
766   /// Compute the Ext-TSP score for a given node order and a list of jumps.
767   double extTSPScore(const MergedChain &MergedBlocks,
768                      const std::vector<JumpT *> &Jumps) const {
769     if (Jumps.empty())
770       return 0.0;
771     uint64_t CurAddr = 0;
772     MergedBlocks.forEach([&](const NodeT *Node) {
773       Node->EstimatedAddr = CurAddr;
774       CurAddr += Node->Size;
775     });
776 
777     double Score = 0;
778     for (JumpT *Jump : Jumps) {
779       const NodeT *SrcBlock = Jump->Source;
780       const NodeT *DstBlock = Jump->Target;
781       Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
782                              DstBlock->EstimatedAddr, Jump->ExecutionCount,
783                              Jump->IsConditional);
784     }
785     return Score;
786   }
787 
788   /// Compute the gain of merging two chains.
789   ///
790   /// The function considers all possible ways of merging two chains and
791   /// computes the one having the largest increase in ExtTSP objective. The
792   /// result is a pair with the first element being the gain and the second
793   /// element being the corresponding merging type.
794   MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
795                               ChainEdge *Edge) const {
796     if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) {
797       return Edge->getCachedMergeGain(ChainPred, ChainSucc);
798     }
799 
800     // Precompute jumps between ChainPred and ChainSucc
801     auto Jumps = Edge->jumps();
802     ChainEdge *EdgePP = ChainPred->getEdge(ChainPred);
803     if (EdgePP != nullptr) {
804       Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
805     }
806     assert(!Jumps.empty() && "trying to merge chains w/o jumps");
807 
808     // The object holds the best currently chosen gain of merging the two chains
809     MergeGainT Gain = MergeGainT();
810 
811     /// Given a merge offset and a list of merge types, try to merge two chains
812     /// and update Gain with a better alternative
813     auto tryChainMerging = [&](size_t Offset,
814                                const std::vector<MergeTypeT> &MergeTypes) {
815       // Skip merging corresponding to concatenation w/o splitting
816       if (Offset == 0 || Offset == ChainPred->Nodes.size())
817         return;
818       // Skip merging if it breaks Forced successors
819       NodeT *Node = ChainPred->Nodes[Offset - 1];
820       if (Node->ForcedSucc != nullptr)
821         return;
822       // Apply the merge, compute the corresponding gain, and update the best
823       // value, if the merge is beneficial
824       for (const MergeTypeT &MergeType : MergeTypes) {
825         Gain.updateIfLessThan(
826             computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
827       }
828     };
829 
830     // Try to concatenate two chains w/o splitting
831     Gain.updateIfLessThan(
832         computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y));
833 
834     if (EnableChainSplitAlongJumps) {
835       // Attach (a part of) ChainPred before the first node of ChainSucc
836       for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) {
837         const NodeT *SrcBlock = Jump->Source;
838         if (SrcBlock->CurChain != ChainPred)
839           continue;
840         size_t Offset = SrcBlock->CurIndex + 1;
841         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y});
842       }
843 
844       // Attach (a part of) ChainPred after the last node of ChainSucc
845       for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) {
846         const NodeT *DstBlock = Jump->Source;
847         if (DstBlock->CurChain != ChainPred)
848           continue;
849         size_t Offset = DstBlock->CurIndex;
850         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1});
851       }
852     }
853 
854     // Try to break ChainPred in various ways and concatenate with ChainSucc
855     if (ChainPred->Nodes.size() <= ChainSplitThreshold) {
856       for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) {
857         // Try to split the chain in different ways. In practice, applying
858         // X2_Y_X1 merging is almost never provides benefits; thus, we exclude
859         // it from consideration to reduce the search space
860         tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1,
861                                  MergeTypeT::X2_X1_Y});
862       }
863     }
864     Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
865     return Gain;
866   }
867 
868   /// Compute the score gain of merging two chains, respecting a given
869   /// merge 'type' and 'offset'.
870   ///
871   /// The two chains are not modified in the method.
872   MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc,
873                               const std::vector<JumpT *> &Jumps,
874                               size_t MergeOffset, MergeTypeT MergeType) const {
875     auto MergedBlocks =
876         mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
877 
878     // Do not allow a merge that does not preserve the original entry point
879     if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
880         !MergedBlocks.getFirstNode()->isEntry())
881       return MergeGainT();
882 
883     // The gain for the new chain
884     auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->Score;
885     return MergeGainT(NewGainScore, MergeOffset, MergeType);
886   }
887 
888   /// Merge chain From into chain Into, update the list of active chains,
889   /// adjacency information, and the corresponding cached values.
890   void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
891                    MergeTypeT MergeType) {
892     assert(Into != From && "a chain cannot be merged with itself");
893 
894     // Merge the nodes
895     MergedChain MergedNodes =
896         mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
897     Into->merge(From, MergedNodes.getNodes());
898 
899     // Merge the edges
900     Into->mergeEdges(From);
901     From->clear();
902 
903     // Update cached ext-tsp score for the new chain
904     ChainEdge *SelfEdge = Into->getEdge(Into);
905     if (SelfEdge != nullptr) {
906       MergedNodes = MergedChain(Into->Nodes.begin(), Into->Nodes.end());
907       Into->Score = extTSPScore(MergedNodes, SelfEdge->jumps());
908     }
909 
910     // Remove the chain from the list of active chains
911     llvm::erase_value(HotChains, From);
912 
913     // Invalidate caches
914     for (auto EdgeIt : Into->Edges)
915       EdgeIt.second->invalidateCache();
916   }
917 
918   /// Concatenate all chains into the final order.
919   void concatChains(std::vector<uint64_t> &Order) {
920     // Collect chains and calculate density stats for their sorting
921     std::vector<const ChainT *> SortedChains;
922     DenseMap<const ChainT *, double> ChainDensity;
923     for (ChainT &Chain : AllChains) {
924       if (!Chain.Nodes.empty()) {
925         SortedChains.push_back(&Chain);
926         // Using doubles to avoid overflow of ExecutionCounts
927         double Size = 0;
928         double ExecutionCount = 0;
929         for (NodeT *Node : Chain.Nodes) {
930           Size += static_cast<double>(Node->Size);
931           ExecutionCount += static_cast<double>(Node->ExecutionCount);
932         }
933         assert(Size > 0 && "a chain of zero size");
934         ChainDensity[&Chain] = ExecutionCount / Size;
935       }
936     }
937 
938     // Sorting chains by density in the decreasing order
939     std::stable_sort(SortedChains.begin(), SortedChains.end(),
940                      [&](const ChainT *L, const ChainT *R) {
941                        // Make sure the original entry point is at the
942                        // beginning of the order
943                        if (L->isEntry() != R->isEntry())
944                          return L->isEntry();
945 
946                        const double DL = ChainDensity[L];
947                        const double DR = ChainDensity[R];
948                        // Compare by density and break ties by chain identifiers
949                        return (DL != DR) ? (DL > DR) : (L->Id < R->Id);
950                      });
951 
952     // Collect the nodes in the order specified by their chains
953     Order.reserve(NumNodes);
954     for (const ChainT *Chain : SortedChains) {
955       for (NodeT *Node : Chain->Nodes) {
956         Order.push_back(Node->Index);
957       }
958     }
959   }
960 
961 private:
962   /// The number of nodes in the graph.
963   const size_t NumNodes;
964 
965   /// Successors of each node.
966   std::vector<std::vector<uint64_t>> SuccNodes;
967 
968   /// Predecessors of each node.
969   std::vector<std::vector<uint64_t>> PredNodes;
970 
971   /// All nodes (basic blocks) in the graph.
972   std::vector<NodeT> AllNodes;
973 
974   /// All jumps between the nodes.
975   std::vector<JumpT> AllJumps;
976 
977   /// All chains of nodes.
978   std::vector<ChainT> AllChains;
979 
980   /// All edges between the chains.
981   std::vector<ChainEdge> AllEdges;
982 
983   /// Active chains. The vector gets updated at runtime when chains are merged.
984   std::vector<ChainT *> HotChains;
985 };
986 
987 } // end of anonymous namespace
988 
989 std::vector<uint64_t>
990 llvm::applyExtTspLayout(const std::vector<uint64_t> &NodeSizes,
991                         const std::vector<uint64_t> &NodeCounts,
992                         const std::vector<EdgeCountT> &EdgeCounts) {
993   // Verify correctness of the input data
994   assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
995   assert(NodeSizes.size() > 2 && "Incorrect input");
996 
997   // Apply the reordering algorithm
998   ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts);
999   std::vector<uint64_t> Result;
1000   Alg.run(Result);
1001 
1002   // Verify correctness of the output
1003   assert(Result.front() == 0 && "Original entry point is not preserved");
1004   assert(Result.size() == NodeSizes.size() && "Incorrect size of layout");
1005   return Result;
1006 }
1007 
1008 double llvm::calcExtTspScore(const std::vector<uint64_t> &Order,
1009                              const std::vector<uint64_t> &NodeSizes,
1010                              const std::vector<uint64_t> &NodeCounts,
1011                              const std::vector<EdgeCountT> &EdgeCounts) {
1012   // Estimate addresses of the blocks in memory
1013   std::vector<uint64_t> Addr(NodeSizes.size(), 0);
1014   for (size_t Idx = 1; Idx < Order.size(); Idx++) {
1015     Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
1016   }
1017   std::vector<uint64_t> OutDegree(NodeSizes.size(), 0);
1018   for (auto It : EdgeCounts) {
1019     uint64_t Pred = It.first.first;
1020     OutDegree[Pred]++;
1021   }
1022 
1023   // Increase the score for each jump
1024   double Score = 0;
1025   for (auto It : EdgeCounts) {
1026     uint64_t Pred = It.first.first;
1027     uint64_t Succ = It.first.second;
1028     uint64_t Count = It.second;
1029     bool IsConditional = OutDegree[Pred] > 1;
1030     Score += ::extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count,
1031                            IsConditional);
1032   }
1033   return Score;
1034 }
1035 
1036 double llvm::calcExtTspScore(const std::vector<uint64_t> &NodeSizes,
1037                              const std::vector<uint64_t> &NodeCounts,
1038                              const std::vector<EdgeCountT> &EdgeCounts) {
1039   std::vector<uint64_t> Order(NodeSizes.size());
1040   for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
1041     Order[Idx] = Idx;
1042   }
1043   return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
1044 }
1045