xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeLayout.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ExtTSP - layout of basic blocks with i-cache optimization.
10 //
11 // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
12 // optimizing jump locality and thus processor I-cache utilization. This is
13 // achieved via increasing the number of fall-through jumps and co-locating
14 // frequently executed nodes together. The name follows the underlying
15 // optimization problem, Extended-TSP, which is a generalization of classical
16 // (maximum) Traveling Salesmen Problem.
17 //
18 // The algorithm is a greedy heuristic that works with chains (ordered lists)
19 // of basic blocks. Initially all chains are isolated basic blocks. On every
20 // iteration, we pick a pair of chains whose merging yields the biggest increase
21 // in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
22 // A pair of chains giving the maximum gain is merged into a new chain. The
23 // procedure stops when there is only one chain left, or when merging does not
24 // increase ExtTSP. In the latter case, the remaining chains are sorted by
25 // density in the decreasing order.
26 //
27 // An important aspect is the way two chains are merged. Unlike earlier
28 // algorithms (e.g., based on the approach of Pettis-Hansen), two
29 // chains, X and Y, are first split into three, X1, X2, and Y. Then we
30 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
31 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
32 // This improves the quality of the final result (the search space is larger)
33 // while keeping the implementation sufficiently fast.
34 //
35 // Reference:
36 //   * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
37 //     IEEE Transactions on Computers, 2020
38 //     https://arxiv.org/abs/1809.04676
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/Transforms/Utils/CodeLayout.h"
43 #include "llvm/Support/CommandLine.h"
44 
45 #include <cmath>
46 
47 using namespace llvm;
48 #define DEBUG_TYPE "code-layout"
49 
50 cl::opt<bool> EnableExtTspBlockPlacement(
51     "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
52     cl::desc("Enable machine block placement based on the ext-tsp model, "
53              "optimizing I-cache utilization."));
54 
55 cl::opt<bool> ApplyExtTspWithoutProfile(
56     "ext-tsp-apply-without-profile",
57     cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
58     cl::init(true), cl::Hidden);
59 
60 // Algorithm-specific params. The values are tuned for the best performance
61 // of large-scale front-end bound binaries.
62 static cl::opt<double> ForwardWeightCond(
63     "ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1),
64     cl::desc("The weight of conditional forward jumps for ExtTSP value"));
65 
66 static cl::opt<double> ForwardWeightUncond(
67     "ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
68     cl::desc("The weight of unconditional forward jumps for ExtTSP value"));
69 
70 static cl::opt<double> BackwardWeightCond(
71     "ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1),
72     cl::desc("The weight of conditonal backward jumps for ExtTSP value"));
73 
74 static cl::opt<double> BackwardWeightUncond(
75     "ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
76     cl::desc("The weight of unconditonal backward jumps for ExtTSP value"));
77 
78 static cl::opt<double> FallthroughWeightCond(
79     "ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0),
80     cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"));
81 
82 static cl::opt<double> FallthroughWeightUncond(
83     "ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05),
84     cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"));
85 
86 static cl::opt<unsigned> ForwardDistance(
87     "ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024),
88     cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
89 
90 static cl::opt<unsigned> BackwardDistance(
91     "ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640),
92     cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
93 
94 // The maximum size of a chain created by the algorithm. The size is bounded
95 // so that the algorithm can efficiently process extremely large instance.
96 static cl::opt<unsigned>
97     MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(4096),
98                  cl::desc("The maximum size of a chain to create."));
99 
100 // The maximum size of a chain for splitting. Larger values of the threshold
101 // may yield better quality at the cost of worsen run-time.
102 static cl::opt<unsigned> ChainSplitThreshold(
103     "ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128),
104     cl::desc("The maximum size of a chain to apply splitting"));
105 
106 // The option enables splitting (large) chains along in-coming and out-going
107 // jumps. This typically results in a better quality.
108 static cl::opt<bool> EnableChainSplitAlongJumps(
109     "ext-tsp-enable-chain-split-along-jumps", cl::ReallyHidden, cl::init(true),
110     cl::desc("The maximum size of a chain to apply splitting"));
111 
112 namespace {
113 
114 // Epsilon for comparison of doubles.
115 constexpr double EPS = 1e-8;
116 
117 // Compute the Ext-TSP score for a given jump.
118 double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count,
119                        double Weight) {
120   if (JumpDist > JumpMaxDist)
121     return 0;
122   double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist;
123   return Weight * Prob * Count;
124 }
125 
126 // Compute the Ext-TSP score for a jump between a given pair of blocks,
127 // using their sizes, (estimated) addresses and the jump execution count.
128 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
129                    uint64_t Count, bool IsConditional) {
130   // Fallthrough
131   if (SrcAddr + SrcSize == DstAddr) {
132     return jumpExtTSPScore(0, 1, Count,
133                            IsConditional ? FallthroughWeightCond
134                                          : FallthroughWeightUncond);
135   }
136   // Forward
137   if (SrcAddr + SrcSize < DstAddr) {
138     const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
139     return jumpExtTSPScore(Dist, ForwardDistance, Count,
140                            IsConditional ? ForwardWeightCond
141                                          : ForwardWeightUncond);
142   }
143   // Backward
144   const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
145   return jumpExtTSPScore(Dist, BackwardDistance, Count,
146                          IsConditional ? BackwardWeightCond
147                                        : BackwardWeightUncond);
148 }
149 
150 /// A type of merging two chains, X and Y. The former chain is split into
151 /// X1 and X2 and then concatenated with Y in the order specified by the type.
152 enum class MergeTypeTy : int { X_Y, X1_Y_X2, Y_X2_X1, X2_X1_Y };
153 
154 /// The gain of merging two chains, that is, the Ext-TSP score of the merge
155 /// together with the corresponfiding merge 'type' and 'offset'.
156 class MergeGainTy {
157 public:
158   explicit MergeGainTy() = default;
159   explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType)
160       : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
161 
162   double score() const { return Score; }
163 
164   size_t mergeOffset() const { return MergeOffset; }
165 
166   MergeTypeTy mergeType() const { return MergeType; }
167 
168   // Returns 'true' iff Other is preferred over this.
169   bool operator<(const MergeGainTy &Other) const {
170     return (Other.Score > EPS && Other.Score > Score + EPS);
171   }
172 
173   // Update the current gain if Other is preferred over this.
174   void updateIfLessThan(const MergeGainTy &Other) {
175     if (*this < Other)
176       *this = Other;
177   }
178 
179 private:
180   double Score{-1.0};
181   size_t MergeOffset{0};
182   MergeTypeTy MergeType{MergeTypeTy::X_Y};
183 };
184 
185 class Jump;
186 class Chain;
187 class ChainEdge;
188 
189 /// A node in the graph, typically corresponding to a basic block in CFG.
190 class Block {
191 public:
192   Block(const Block &) = delete;
193   Block(Block &&) = default;
194   Block &operator=(const Block &) = delete;
195   Block &operator=(Block &&) = default;
196 
197   // The original index of the block in CFG.
198   size_t Index{0};
199   // The index of the block in the current chain.
200   size_t CurIndex{0};
201   // Size of the block in the binary.
202   uint64_t Size{0};
203   // Execution count of the block in the profile data.
204   uint64_t ExecutionCount{0};
205   // Current chain of the node.
206   Chain *CurChain{nullptr};
207   // An offset of the block in the current chain.
208   mutable uint64_t EstimatedAddr{0};
209   // Forced successor of the block in CFG.
210   Block *ForcedSucc{nullptr};
211   // Forced predecessor of the block in CFG.
212   Block *ForcedPred{nullptr};
213   // Outgoing jumps from the block.
214   std::vector<Jump *> OutJumps;
215   // Incoming jumps to the block.
216   std::vector<Jump *> InJumps;
217 
218 public:
219   explicit Block(size_t Index, uint64_t Size, uint64_t EC)
220       : Index(Index), Size(Size), ExecutionCount(EC) {}
221   bool isEntry() const { return Index == 0; }
222 };
223 
224 /// An arc in the graph, typically corresponding to a jump between two blocks.
225 class Jump {
226 public:
227   Jump(const Jump &) = delete;
228   Jump(Jump &&) = default;
229   Jump &operator=(const Jump &) = delete;
230   Jump &operator=(Jump &&) = default;
231 
232   // Source block of the jump.
233   Block *Source;
234   // Target block of the jump.
235   Block *Target;
236   // Execution count of the arc in the profile data.
237   uint64_t ExecutionCount{0};
238   // Whether the jump corresponds to a conditional branch.
239   bool IsConditional{false};
240 
241 public:
242   explicit Jump(Block *Source, Block *Target, uint64_t ExecutionCount)
243       : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
244 };
245 
246 /// A chain (ordered sequence) of blocks.
247 class Chain {
248 public:
249   Chain(const Chain &) = delete;
250   Chain(Chain &&) = default;
251   Chain &operator=(const Chain &) = delete;
252   Chain &operator=(Chain &&) = default;
253 
254   explicit Chain(uint64_t Id, Block *Block)
255       : Id(Id), Score(0), Blocks(1, Block) {}
256 
257   uint64_t id() const { return Id; }
258 
259   bool isEntry() const { return Blocks[0]->Index == 0; }
260 
261   bool isCold() const {
262     for (auto *Block : Blocks) {
263       if (Block->ExecutionCount > 0)
264         return false;
265     }
266     return true;
267   }
268 
269   double score() const { return Score; }
270 
271   void setScore(double NewScore) { Score = NewScore; }
272 
273   const std::vector<Block *> &blocks() const { return Blocks; }
274 
275   size_t numBlocks() const { return Blocks.size(); }
276 
277   const std::vector<std::pair<Chain *, ChainEdge *>> &edges() const {
278     return Edges;
279   }
280 
281   ChainEdge *getEdge(Chain *Other) const {
282     for (auto It : Edges) {
283       if (It.first == Other)
284         return It.second;
285     }
286     return nullptr;
287   }
288 
289   void removeEdge(Chain *Other) {
290     auto It = Edges.begin();
291     while (It != Edges.end()) {
292       if (It->first == Other) {
293         Edges.erase(It);
294         return;
295       }
296       It++;
297     }
298   }
299 
300   void addEdge(Chain *Other, ChainEdge *Edge) {
301     Edges.push_back(std::make_pair(Other, Edge));
302   }
303 
304   void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) {
305     Blocks = MergedBlocks;
306     // Update the block's chains
307     for (size_t Idx = 0; Idx < Blocks.size(); Idx++) {
308       Blocks[Idx]->CurChain = this;
309       Blocks[Idx]->CurIndex = Idx;
310     }
311   }
312 
313   void mergeEdges(Chain *Other);
314 
315   void clear() {
316     Blocks.clear();
317     Blocks.shrink_to_fit();
318     Edges.clear();
319     Edges.shrink_to_fit();
320   }
321 
322 private:
323   // Unique chain identifier.
324   uint64_t Id;
325   // Cached ext-tsp score for the chain.
326   double Score;
327   // Blocks of the chain.
328   std::vector<Block *> Blocks;
329   // Adjacent chains and corresponding edges (lists of jumps).
330   std::vector<std::pair<Chain *, ChainEdge *>> Edges;
331 };
332 
333 /// An edge in CFG representing jumps between two chains.
334 /// When blocks are merged into chains, the edges are combined too so that
335 /// there is always at most one edge between a pair of chains
336 class ChainEdge {
337 public:
338   ChainEdge(const ChainEdge &) = delete;
339   ChainEdge(ChainEdge &&) = default;
340   ChainEdge &operator=(const ChainEdge &) = delete;
341   ChainEdge &operator=(ChainEdge &&) = default;
342 
343   explicit ChainEdge(Jump *Jump)
344       : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
345         Jumps(1, Jump) {}
346 
347   const std::vector<Jump *> &jumps() const { return Jumps; }
348 
349   void changeEndpoint(Chain *From, Chain *To) {
350     if (From == SrcChain)
351       SrcChain = To;
352     if (From == DstChain)
353       DstChain = To;
354   }
355 
356   void appendJump(Jump *Jump) { Jumps.push_back(Jump); }
357 
358   void moveJumps(ChainEdge *Other) {
359     Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
360     Other->Jumps.clear();
361     Other->Jumps.shrink_to_fit();
362   }
363 
364   bool hasCachedMergeGain(Chain *Src, Chain *Dst) const {
365     return Src == SrcChain ? CacheValidForward : CacheValidBackward;
366   }
367 
368   MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const {
369     return Src == SrcChain ? CachedGainForward : CachedGainBackward;
370   }
371 
372   void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) {
373     if (Src == SrcChain) {
374       CachedGainForward = MergeGain;
375       CacheValidForward = true;
376     } else {
377       CachedGainBackward = MergeGain;
378       CacheValidBackward = true;
379     }
380   }
381 
382   void invalidateCache() {
383     CacheValidForward = false;
384     CacheValidBackward = false;
385   }
386 
387 private:
388   // Source chain.
389   Chain *SrcChain{nullptr};
390   // Destination chain.
391   Chain *DstChain{nullptr};
392   // Original jumps in the binary with correspinding execution counts.
393   std::vector<Jump *> Jumps;
394   // Cached ext-tsp value for merging the pair of chains.
395   // Since the gain of merging (Src, Dst) and (Dst, Src) might be different,
396   // we store both values here.
397   MergeGainTy CachedGainForward;
398   MergeGainTy CachedGainBackward;
399   // Whether the cached value must be recomputed.
400   bool CacheValidForward{false};
401   bool CacheValidBackward{false};
402 };
403 
404 void Chain::mergeEdges(Chain *Other) {
405   assert(this != Other && "cannot merge a chain with itself");
406 
407   // Update edges adjacent to chain Other
408   for (auto EdgeIt : Other->Edges) {
409     Chain *DstChain = EdgeIt.first;
410     ChainEdge *DstEdge = EdgeIt.second;
411     Chain *TargetChain = DstChain == Other ? this : DstChain;
412     ChainEdge *CurEdge = getEdge(TargetChain);
413     if (CurEdge == nullptr) {
414       DstEdge->changeEndpoint(Other, this);
415       this->addEdge(TargetChain, DstEdge);
416       if (DstChain != this && DstChain != Other) {
417         DstChain->addEdge(this, DstEdge);
418       }
419     } else {
420       CurEdge->moveJumps(DstEdge);
421     }
422     // Cleanup leftover edge
423     if (DstChain != Other) {
424       DstChain->removeEdge(Other);
425     }
426   }
427 }
428 
429 using BlockIter = std::vector<Block *>::const_iterator;
430 
431 /// A wrapper around three chains of blocks; it is used to avoid extra
432 /// instantiation of the vectors.
433 class MergedChain {
434 public:
435   MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(),
436               BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(),
437               BlockIter End3 = BlockIter())
438       : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
439         End3(End3) {}
440 
441   template <typename F> void forEach(const F &Func) const {
442     for (auto It = Begin1; It != End1; It++)
443       Func(*It);
444     for (auto It = Begin2; It != End2; It++)
445       Func(*It);
446     for (auto It = Begin3; It != End3; It++)
447       Func(*It);
448   }
449 
450   std::vector<Block *> getBlocks() const {
451     std::vector<Block *> Result;
452     Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
453                    std::distance(Begin3, End3));
454     Result.insert(Result.end(), Begin1, End1);
455     Result.insert(Result.end(), Begin2, End2);
456     Result.insert(Result.end(), Begin3, End3);
457     return Result;
458   }
459 
460   const Block *getFirstBlock() const { return *Begin1; }
461 
462 private:
463   BlockIter Begin1;
464   BlockIter End1;
465   BlockIter Begin2;
466   BlockIter End2;
467   BlockIter Begin3;
468   BlockIter End3;
469 };
470 
471 /// The implementation of the ExtTSP algorithm.
472 class ExtTSPImpl {
473   using EdgeT = std::pair<uint64_t, uint64_t>;
474   using EdgeCountMap = std::vector<std::pair<EdgeT, uint64_t>>;
475 
476 public:
477   ExtTSPImpl(size_t NumNodes, const std::vector<uint64_t> &NodeSizes,
478              const std::vector<uint64_t> &NodeCounts,
479              const EdgeCountMap &EdgeCounts)
480       : NumNodes(NumNodes) {
481     initialize(NodeSizes, NodeCounts, EdgeCounts);
482   }
483 
484   /// Run the algorithm and return an optimized ordering of blocks.
485   void run(std::vector<uint64_t> &Result) {
486     // Pass 1: Merge blocks with their mutually forced successors
487     mergeForcedPairs();
488 
489     // Pass 2: Merge pairs of chains while improving the ExtTSP objective
490     mergeChainPairs();
491 
492     // Pass 3: Merge cold blocks to reduce code size
493     mergeColdChains();
494 
495     // Collect blocks from all chains
496     concatChains(Result);
497   }
498 
499 private:
500   /// Initialize the algorithm's data structures.
501   void initialize(const std::vector<uint64_t> &NodeSizes,
502                   const std::vector<uint64_t> &NodeCounts,
503                   const EdgeCountMap &EdgeCounts) {
504     // Initialize blocks
505     AllBlocks.reserve(NumNodes);
506     for (uint64_t Node = 0; Node < NumNodes; Node++) {
507       uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
508       uint64_t ExecutionCount = NodeCounts[Node];
509       // The execution count of the entry block is set to at least 1
510       if (Node == 0 && ExecutionCount == 0)
511         ExecutionCount = 1;
512       AllBlocks.emplace_back(Node, Size, ExecutionCount);
513     }
514 
515     // Initialize jumps between blocks
516     SuccNodes.resize(NumNodes);
517     PredNodes.resize(NumNodes);
518     std::vector<uint64_t> OutDegree(NumNodes, 0);
519     AllJumps.reserve(EdgeCounts.size());
520     for (auto It : EdgeCounts) {
521       auto Pred = It.first.first;
522       auto Succ = It.first.second;
523       OutDegree[Pred]++;
524       // Ignore self-edges
525       if (Pred == Succ)
526         continue;
527 
528       SuccNodes[Pred].push_back(Succ);
529       PredNodes[Succ].push_back(Pred);
530       auto ExecutionCount = It.second;
531       if (ExecutionCount > 0) {
532         auto &Block = AllBlocks[Pred];
533         auto &SuccBlock = AllBlocks[Succ];
534         AllJumps.emplace_back(&Block, &SuccBlock, ExecutionCount);
535         SuccBlock.InJumps.push_back(&AllJumps.back());
536         Block.OutJumps.push_back(&AllJumps.back());
537       }
538     }
539     for (auto &Jump : AllJumps) {
540       assert(OutDegree[Jump.Source->Index] > 0);
541       Jump.IsConditional = OutDegree[Jump.Source->Index] > 1;
542     }
543 
544     // Initialize chains
545     AllChains.reserve(NumNodes);
546     HotChains.reserve(NumNodes);
547     for (Block &Block : AllBlocks) {
548       AllChains.emplace_back(Block.Index, &Block);
549       Block.CurChain = &AllChains.back();
550       if (Block.ExecutionCount > 0) {
551         HotChains.push_back(&AllChains.back());
552       }
553     }
554 
555     // Initialize chain edges
556     AllEdges.reserve(AllJumps.size());
557     for (Block &Block : AllBlocks) {
558       for (auto &Jump : Block.OutJumps) {
559         auto SuccBlock = Jump->Target;
560         ChainEdge *CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain);
561         // this edge is already present in the graph
562         if (CurEdge != nullptr) {
563           assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr);
564           CurEdge->appendJump(Jump);
565           continue;
566         }
567         // this is a new edge
568         AllEdges.emplace_back(Jump);
569         Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back());
570         SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back());
571       }
572     }
573   }
574 
575   /// For a pair of blocks, A and B, block B is the forced successor of A,
576   /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
577   /// to B are from A. Such blocks should be adjacent in the optimal ordering;
578   /// the method finds and merges such pairs of blocks.
579   void mergeForcedPairs() {
580     // Find fallthroughs based on edge weights
581     for (auto &Block : AllBlocks) {
582       if (SuccNodes[Block.Index].size() == 1 &&
583           PredNodes[SuccNodes[Block.Index][0]].size() == 1 &&
584           SuccNodes[Block.Index][0] != 0) {
585         size_t SuccIndex = SuccNodes[Block.Index][0];
586         Block.ForcedSucc = &AllBlocks[SuccIndex];
587         AllBlocks[SuccIndex].ForcedPred = &Block;
588       }
589     }
590 
591     // There might be 'cycles' in the forced dependencies, since profile
592     // data isn't 100% accurate. Typically this is observed in loops, when the
593     // loop edges are the hottest successors for the basic blocks of the loop.
594     // Break the cycles by choosing the block with the smallest index as the
595     // head. This helps to keep the original order of the loops, which likely
596     // have already been rotated in the optimized manner.
597     for (auto &Block : AllBlocks) {
598       if (Block.ForcedSucc == nullptr || Block.ForcedPred == nullptr)
599         continue;
600 
601       auto SuccBlock = Block.ForcedSucc;
602       while (SuccBlock != nullptr && SuccBlock != &Block) {
603         SuccBlock = SuccBlock->ForcedSucc;
604       }
605       if (SuccBlock == nullptr)
606         continue;
607       // Break the cycle
608       AllBlocks[Block.ForcedPred->Index].ForcedSucc = nullptr;
609       Block.ForcedPred = nullptr;
610     }
611 
612     // Merge blocks with their fallthrough successors
613     for (auto &Block : AllBlocks) {
614       if (Block.ForcedPred == nullptr && Block.ForcedSucc != nullptr) {
615         auto CurBlock = &Block;
616         while (CurBlock->ForcedSucc != nullptr) {
617           const auto NextBlock = CurBlock->ForcedSucc;
618           mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y);
619           CurBlock = NextBlock;
620         }
621       }
622     }
623   }
624 
625   /// Merge pairs of chains while improving the ExtTSP objective.
626   void mergeChainPairs() {
627     /// Deterministically compare pairs of chains
628     auto compareChainPairs = [](const Chain *A1, const Chain *B1,
629                                 const Chain *A2, const Chain *B2) {
630       if (A1 != A2)
631         return A1->id() < A2->id();
632       return B1->id() < B2->id();
633     };
634 
635     while (HotChains.size() > 1) {
636       Chain *BestChainPred = nullptr;
637       Chain *BestChainSucc = nullptr;
638       auto BestGain = MergeGainTy();
639       // Iterate over all pairs of chains
640       for (Chain *ChainPred : HotChains) {
641         // Get candidates for merging with the current chain
642         for (auto EdgeIter : ChainPred->edges()) {
643           Chain *ChainSucc = EdgeIter.first;
644           class ChainEdge *ChainEdge = EdgeIter.second;
645           // Ignore loop edges
646           if (ChainPred == ChainSucc)
647             continue;
648 
649           // Stop early if the combined chain violates the maximum allowed size
650           if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
651             continue;
652 
653           // Compute the gain of merging the two chains
654           MergeGainTy CurGain =
655               getBestMergeGain(ChainPred, ChainSucc, ChainEdge);
656           if (CurGain.score() <= EPS)
657             continue;
658 
659           if (BestGain < CurGain ||
660               (std::abs(CurGain.score() - BestGain.score()) < EPS &&
661                compareChainPairs(ChainPred, ChainSucc, BestChainPred,
662                                  BestChainSucc))) {
663             BestGain = CurGain;
664             BestChainPred = ChainPred;
665             BestChainSucc = ChainSucc;
666           }
667         }
668       }
669 
670       // Stop merging when there is no improvement
671       if (BestGain.score() <= EPS)
672         break;
673 
674       // Merge the best pair of chains
675       mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
676                   BestGain.mergeType());
677     }
678   }
679 
680   /// Merge remaining blocks into chains w/o taking jump counts into
681   /// consideration. This allows to maintain the original block order in the
682   /// absense of profile data
683   void mergeColdChains() {
684     for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
685       // Iterating in reverse order to make sure original fallthrough jumps are
686       // merged first; this might be beneficial for code size.
687       size_t NumSuccs = SuccNodes[SrcBB].size();
688       for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
689         auto DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
690         auto SrcChain = AllBlocks[SrcBB].CurChain;
691         auto DstChain = AllBlocks[DstBB].CurChain;
692         if (SrcChain != DstChain && !DstChain->isEntry() &&
693             SrcChain->blocks().back()->Index == SrcBB &&
694             DstChain->blocks().front()->Index == DstBB &&
695             SrcChain->isCold() == DstChain->isCold()) {
696           mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y);
697         }
698       }
699     }
700   }
701 
702   /// Compute the Ext-TSP score for a given block order and a list of jumps.
703   double extTSPScore(const MergedChain &MergedBlocks,
704                      const std::vector<Jump *> &Jumps) const {
705     if (Jumps.empty())
706       return 0.0;
707     uint64_t CurAddr = 0;
708     MergedBlocks.forEach([&](const Block *BB) {
709       BB->EstimatedAddr = CurAddr;
710       CurAddr += BB->Size;
711     });
712 
713     double Score = 0;
714     for (auto &Jump : Jumps) {
715       const Block *SrcBlock = Jump->Source;
716       const Block *DstBlock = Jump->Target;
717       Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
718                              DstBlock->EstimatedAddr, Jump->ExecutionCount,
719                              Jump->IsConditional);
720     }
721     return Score;
722   }
723 
724   /// Compute the gain of merging two chains.
725   ///
726   /// The function considers all possible ways of merging two chains and
727   /// computes the one having the largest increase in ExtTSP objective. The
728   /// result is a pair with the first element being the gain and the second
729   /// element being the corresponding merging type.
730   MergeGainTy getBestMergeGain(Chain *ChainPred, Chain *ChainSucc,
731                                ChainEdge *Edge) const {
732     if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) {
733       return Edge->getCachedMergeGain(ChainPred, ChainSucc);
734     }
735 
736     // Precompute jumps between ChainPred and ChainSucc
737     auto Jumps = Edge->jumps();
738     ChainEdge *EdgePP = ChainPred->getEdge(ChainPred);
739     if (EdgePP != nullptr) {
740       Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
741     }
742     assert(!Jumps.empty() && "trying to merge chains w/o jumps");
743 
744     // The object holds the best currently chosen gain of merging the two chains
745     MergeGainTy Gain = MergeGainTy();
746 
747     /// Given a merge offset and a list of merge types, try to merge two chains
748     /// and update Gain with a better alternative
749     auto tryChainMerging = [&](size_t Offset,
750                                const std::vector<MergeTypeTy> &MergeTypes) {
751       // Skip merging corresponding to concatenation w/o splitting
752       if (Offset == 0 || Offset == ChainPred->blocks().size())
753         return;
754       // Skip merging if it breaks Forced successors
755       auto BB = ChainPred->blocks()[Offset - 1];
756       if (BB->ForcedSucc != nullptr)
757         return;
758       // Apply the merge, compute the corresponding gain, and update the best
759       // value, if the merge is beneficial
760       for (const auto &MergeType : MergeTypes) {
761         Gain.updateIfLessThan(
762             computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
763       }
764     };
765 
766     // Try to concatenate two chains w/o splitting
767     Gain.updateIfLessThan(
768         computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeTy::X_Y));
769 
770     if (EnableChainSplitAlongJumps) {
771       // Attach (a part of) ChainPred before the first block of ChainSucc
772       for (auto &Jump : ChainSucc->blocks().front()->InJumps) {
773         const auto SrcBlock = Jump->Source;
774         if (SrcBlock->CurChain != ChainPred)
775           continue;
776         size_t Offset = SrcBlock->CurIndex + 1;
777         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::X2_X1_Y});
778       }
779 
780       // Attach (a part of) ChainPred after the last block of ChainSucc
781       for (auto &Jump : ChainSucc->blocks().back()->OutJumps) {
782         const auto DstBlock = Jump->Source;
783         if (DstBlock->CurChain != ChainPred)
784           continue;
785         size_t Offset = DstBlock->CurIndex;
786         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1});
787       }
788     }
789 
790     // Try to break ChainPred in various ways and concatenate with ChainSucc
791     if (ChainPred->blocks().size() <= ChainSplitThreshold) {
792       for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) {
793         // Try to split the chain in different ways. In practice, applying
794         // X2_Y_X1 merging is almost never provides benefits; thus, we exclude
795         // it from consideration to reduce the search space
796         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1,
797                                  MergeTypeTy::X2_X1_Y});
798       }
799     }
800     Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
801     return Gain;
802   }
803 
804   /// Compute the score gain of merging two chains, respecting a given
805   /// merge 'type' and 'offset'.
806   ///
807   /// The two chains are not modified in the method.
808   MergeGainTy computeMergeGain(const Chain *ChainPred, const Chain *ChainSucc,
809                                const std::vector<Jump *> &Jumps,
810                                size_t MergeOffset,
811                                MergeTypeTy MergeType) const {
812     auto MergedBlocks = mergeBlocks(ChainPred->blocks(), ChainSucc->blocks(),
813                                     MergeOffset, MergeType);
814 
815     // Do not allow a merge that does not preserve the original entry block
816     if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
817         !MergedBlocks.getFirstBlock()->isEntry())
818       return MergeGainTy();
819 
820     // The gain for the new chain
821     auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->score();
822     return MergeGainTy(NewGainScore, MergeOffset, MergeType);
823   }
824 
825   /// Merge two chains of blocks respecting a given merge 'type' and 'offset'.
826   ///
827   /// If MergeType == 0, then the result is a concatenation of two chains.
828   /// Otherwise, the first chain is cut into two sub-chains at the offset,
829   /// and merged using all possible ways of concatenating three chains.
830   MergedChain mergeBlocks(const std::vector<Block *> &X,
831                           const std::vector<Block *> &Y, size_t MergeOffset,
832                           MergeTypeTy MergeType) const {
833     // Split the first chain, X, into X1 and X2
834     BlockIter BeginX1 = X.begin();
835     BlockIter EndX1 = X.begin() + MergeOffset;
836     BlockIter BeginX2 = X.begin() + MergeOffset;
837     BlockIter EndX2 = X.end();
838     BlockIter BeginY = Y.begin();
839     BlockIter EndY = Y.end();
840 
841     // Construct a new chain from the three existing ones
842     switch (MergeType) {
843     case MergeTypeTy::X_Y:
844       return MergedChain(BeginX1, EndX2, BeginY, EndY);
845     case MergeTypeTy::X1_Y_X2:
846       return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
847     case MergeTypeTy::Y_X2_X1:
848       return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
849     case MergeTypeTy::X2_X1_Y:
850       return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
851     }
852     llvm_unreachable("unexpected chain merge type");
853   }
854 
855   /// Merge chain From into chain Into, update the list of active chains,
856   /// adjacency information, and the corresponding cached values.
857   void mergeChains(Chain *Into, Chain *From, size_t MergeOffset,
858                    MergeTypeTy MergeType) {
859     assert(Into != From && "a chain cannot be merged with itself");
860 
861     // Merge the blocks
862     MergedChain MergedBlocks =
863         mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType);
864     Into->merge(From, MergedBlocks.getBlocks());
865     Into->mergeEdges(From);
866     From->clear();
867 
868     // Update cached ext-tsp score for the new chain
869     ChainEdge *SelfEdge = Into->getEdge(Into);
870     if (SelfEdge != nullptr) {
871       MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end());
872       Into->setScore(extTSPScore(MergedBlocks, SelfEdge->jumps()));
873     }
874 
875     // Remove chain From from the list of active chains
876     llvm::erase_value(HotChains, From);
877 
878     // Invalidate caches
879     for (auto EdgeIter : Into->edges()) {
880       EdgeIter.second->invalidateCache();
881     }
882   }
883 
884   /// Concatenate all chains into a final order of blocks.
885   void concatChains(std::vector<uint64_t> &Order) {
886     // Collect chains and calculate some stats for their sorting
887     std::vector<Chain *> SortedChains;
888     DenseMap<const Chain *, double> ChainDensity;
889     for (auto &Chain : AllChains) {
890       if (!Chain.blocks().empty()) {
891         SortedChains.push_back(&Chain);
892         // Using doubles to avoid overflow of ExecutionCount
893         double Size = 0;
894         double ExecutionCount = 0;
895         for (auto *Block : Chain.blocks()) {
896           Size += static_cast<double>(Block->Size);
897           ExecutionCount += static_cast<double>(Block->ExecutionCount);
898         }
899         assert(Size > 0 && "a chain of zero size");
900         ChainDensity[&Chain] = ExecutionCount / Size;
901       }
902     }
903 
904     // Sorting chains by density in the decreasing order
905     std::stable_sort(SortedChains.begin(), SortedChains.end(),
906                      [&](const Chain *C1, const Chain *C2) {
907                        // Make sure the original entry block is at the
908                        // beginning of the order
909                        if (C1->isEntry() != C2->isEntry()) {
910                          return C1->isEntry();
911                        }
912 
913                        const double D1 = ChainDensity[C1];
914                        const double D2 = ChainDensity[C2];
915                        // Compare by density and break ties by chain identifiers
916                        return (D1 != D2) ? (D1 > D2) : (C1->id() < C2->id());
917                      });
918 
919     // Collect the blocks in the order specified by their chains
920     Order.reserve(NumNodes);
921     for (Chain *Chain : SortedChains) {
922       for (Block *Block : Chain->blocks()) {
923         Order.push_back(Block->Index);
924       }
925     }
926   }
927 
928 private:
929   /// The number of nodes in the graph.
930   const size_t NumNodes;
931 
932   /// Successors of each node.
933   std::vector<std::vector<uint64_t>> SuccNodes;
934 
935   /// Predecessors of each node.
936   std::vector<std::vector<uint64_t>> PredNodes;
937 
938   /// All basic blocks.
939   std::vector<Block> AllBlocks;
940 
941   /// All jumps between blocks.
942   std::vector<Jump> AllJumps;
943 
944   /// All chains of basic blocks.
945   std::vector<Chain> AllChains;
946 
947   /// All edges between chains.
948   std::vector<ChainEdge> AllEdges;
949 
950   /// Active chains. The vector gets updated at runtime when chains are merged.
951   std::vector<Chain *> HotChains;
952 };
953 
954 } // end of anonymous namespace
955 
956 std::vector<uint64_t> llvm::applyExtTspLayout(
957     const std::vector<uint64_t> &NodeSizes,
958     const std::vector<uint64_t> &NodeCounts,
959     const std::vector<std::pair<EdgeT, uint64_t>> &EdgeCounts) {
960   size_t NumNodes = NodeSizes.size();
961 
962   // Verify correctness of the input data.
963   assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
964   assert(NumNodes > 2 && "Incorrect input");
965 
966   // Apply the reordering algorithm.
967   auto Alg = ExtTSPImpl(NumNodes, NodeSizes, NodeCounts, EdgeCounts);
968   std::vector<uint64_t> Result;
969   Alg.run(Result);
970 
971   // Verify correctness of the output.
972   assert(Result.front() == 0 && "Original entry point is not preserved");
973   assert(Result.size() == NumNodes && "Incorrect size of reordered layout");
974   return Result;
975 }
976 
977 double llvm::calcExtTspScore(
978     const std::vector<uint64_t> &Order, const std::vector<uint64_t> &NodeSizes,
979     const std::vector<uint64_t> &NodeCounts,
980     const std::vector<std::pair<EdgeT, uint64_t>> &EdgeCounts) {
981   // Estimate addresses of the blocks in memory
982   std::vector<uint64_t> Addr(NodeSizes.size(), 0);
983   for (size_t Idx = 1; Idx < Order.size(); Idx++) {
984     Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
985   }
986   std::vector<uint64_t> OutDegree(NodeSizes.size(), 0);
987   for (auto It : EdgeCounts) {
988     auto Pred = It.first.first;
989     OutDegree[Pred]++;
990   }
991 
992   // Increase the score for each jump
993   double Score = 0;
994   for (auto It : EdgeCounts) {
995     auto Pred = It.first.first;
996     auto Succ = It.first.second;
997     uint64_t Count = It.second;
998     bool IsConditional = OutDegree[Pred] > 1;
999     Score += ::extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count,
1000                            IsConditional);
1001   }
1002   return Score;
1003 }
1004 
1005 double llvm::calcExtTspScore(
1006     const std::vector<uint64_t> &NodeSizes,
1007     const std::vector<uint64_t> &NodeCounts,
1008     const std::vector<std::pair<EdgeT, uint64_t>> &EdgeCounts) {
1009   std::vector<uint64_t> Order(NodeSizes.size());
1010   for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
1011     Order[Idx] = Idx;
1012   }
1013   return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
1014 }
1015