1 //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // ExtTSP - layout of basic blocks with i-cache optimization. 10 // 11 // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG 12 // optimizing jump locality and thus processor I-cache utilization. This is 13 // achieved via increasing the number of fall-through jumps and co-locating 14 // frequently executed nodes together. The name follows the underlying 15 // optimization problem, Extended-TSP, which is a generalization of classical 16 // (maximum) Traveling Salesmen Problem. 17 // 18 // The algorithm is a greedy heuristic that works with chains (ordered lists) 19 // of basic blocks. Initially all chains are isolated basic blocks. On every 20 // iteration, we pick a pair of chains whose merging yields the biggest increase 21 // in the ExtTSP score, which models how i-cache "friendly" a specific chain is. 22 // A pair of chains giving the maximum gain is merged into a new chain. The 23 // procedure stops when there is only one chain left, or when merging does not 24 // increase ExtTSP. In the latter case, the remaining chains are sorted by 25 // density in the decreasing order. 26 // 27 // An important aspect is the way two chains are merged. Unlike earlier 28 // algorithms (e.g., based on the approach of Pettis-Hansen), two 29 // chains, X and Y, are first split into three, X1, X2, and Y. Then we 30 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, 31 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. 32 // This improves the quality of the final result (the search space is larger) 33 // while keeping the implementation sufficiently fast. 34 // 35 // Reference: 36 // * A. Newell and S. Pupyrev, Improved Basic Block Reordering, 37 // IEEE Transactions on Computers, 2020 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/Transforms/Utils/CodeLayout.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 45 using namespace llvm; 46 #define DEBUG_TYPE "code-layout" 47 48 // Algorithm-specific constants. The values are tuned for the best performance 49 // of large-scale front-end bound binaries. 50 static cl::opt<double> 51 ForwardWeight("ext-tsp-forward-weight", cl::Hidden, cl::init(0.1), 52 cl::desc("The weight of forward jumps for ExtTSP value")); 53 54 static cl::opt<double> 55 BackwardWeight("ext-tsp-backward-weight", cl::Hidden, cl::init(0.1), 56 cl::desc("The weight of backward jumps for ExtTSP value")); 57 58 static cl::opt<unsigned> ForwardDistance( 59 "ext-tsp-forward-distance", cl::Hidden, cl::init(1024), 60 cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP")); 61 62 static cl::opt<unsigned> BackwardDistance( 63 "ext-tsp-backward-distance", cl::Hidden, cl::init(640), 64 cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP")); 65 66 // The maximum size of a chain for splitting. Larger values of the threshold 67 // may yield better quality at the cost of worsen run-time. 68 static cl::opt<unsigned> ChainSplitThreshold( 69 "ext-tsp-chain-split-threshold", cl::Hidden, cl::init(128), 70 cl::desc("The maximum size of a chain to apply splitting")); 71 72 // The option enables splitting (large) chains along in-coming and out-going 73 // jumps. This typically results in a better quality. 74 static cl::opt<bool> EnableChainSplitAlongJumps( 75 "ext-tsp-enable-chain-split-along-jumps", cl::Hidden, cl::init(true), 76 cl::desc("The maximum size of a chain to apply splitting")); 77 78 namespace { 79 80 // Epsilon for comparison of doubles. 81 constexpr double EPS = 1e-8; 82 83 // Compute the Ext-TSP score for a jump between a given pair of blocks, 84 // using their sizes, (estimated) addresses and the jump execution count. 85 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr, 86 uint64_t Count) { 87 // Fallthrough 88 if (SrcAddr + SrcSize == DstAddr) { 89 // Assume that FallthroughWeight = 1.0 after normalization 90 return static_cast<double>(Count); 91 } 92 // Forward 93 if (SrcAddr + SrcSize < DstAddr) { 94 const auto Dist = DstAddr - (SrcAddr + SrcSize); 95 if (Dist <= ForwardDistance) { 96 double Prob = 1.0 - static_cast<double>(Dist) / ForwardDistance; 97 return ForwardWeight * Prob * Count; 98 } 99 return 0; 100 } 101 // Backward 102 const auto Dist = SrcAddr + SrcSize - DstAddr; 103 if (Dist <= BackwardDistance) { 104 double Prob = 1.0 - static_cast<double>(Dist) / BackwardDistance; 105 return BackwardWeight * Prob * Count; 106 } 107 return 0; 108 } 109 110 /// A type of merging two chains, X and Y. The former chain is split into 111 /// X1 and X2 and then concatenated with Y in the order specified by the type. 112 enum class MergeTypeTy : int { X_Y, X1_Y_X2, Y_X2_X1, X2_X1_Y }; 113 114 /// The gain of merging two chains, that is, the Ext-TSP score of the merge 115 /// together with the corresponfiding merge 'type' and 'offset'. 116 class MergeGainTy { 117 public: 118 explicit MergeGainTy() {} 119 explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType) 120 : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {} 121 122 double score() const { return Score; } 123 124 size_t mergeOffset() const { return MergeOffset; } 125 126 MergeTypeTy mergeType() const { return MergeType; } 127 128 // Returns 'true' iff Other is preferred over this. 129 bool operator<(const MergeGainTy &Other) const { 130 return (Other.Score > EPS && Other.Score > Score + EPS); 131 } 132 133 // Update the current gain if Other is preferred over this. 134 void updateIfLessThan(const MergeGainTy &Other) { 135 if (*this < Other) 136 *this = Other; 137 } 138 139 private: 140 double Score{-1.0}; 141 size_t MergeOffset{0}; 142 MergeTypeTy MergeType{MergeTypeTy::X_Y}; 143 }; 144 145 class Block; 146 class Jump; 147 class Chain; 148 class ChainEdge; 149 150 /// A node in the graph, typically corresponding to a basic block in CFG. 151 class Block { 152 public: 153 Block(const Block &) = delete; 154 Block(Block &&) = default; 155 Block &operator=(const Block &) = delete; 156 Block &operator=(Block &&) = default; 157 158 // The original index of the block in CFG. 159 size_t Index{0}; 160 // The index of the block in the current chain. 161 size_t CurIndex{0}; 162 // Size of the block in the binary. 163 uint64_t Size{0}; 164 // Execution count of the block in the profile data. 165 uint64_t ExecutionCount{0}; 166 // Current chain of the node. 167 Chain *CurChain{nullptr}; 168 // An offset of the block in the current chain. 169 mutable uint64_t EstimatedAddr{0}; 170 // Forced successor of the block in CFG. 171 Block *ForcedSucc{nullptr}; 172 // Forced predecessor of the block in CFG. 173 Block *ForcedPred{nullptr}; 174 // Outgoing jumps from the block. 175 std::vector<Jump *> OutJumps; 176 // Incoming jumps to the block. 177 std::vector<Jump *> InJumps; 178 179 public: 180 explicit Block(size_t Index, uint64_t Size_, uint64_t EC) 181 : Index(Index), Size(Size_), ExecutionCount(EC) {} 182 bool isEntry() const { return Index == 0; } 183 }; 184 185 /// An arc in the graph, typically corresponding to a jump between two blocks. 186 class Jump { 187 public: 188 Jump(const Jump &) = delete; 189 Jump(Jump &&) = default; 190 Jump &operator=(const Jump &) = delete; 191 Jump &operator=(Jump &&) = default; 192 193 // Source block of the jump. 194 Block *Source; 195 // Target block of the jump. 196 Block *Target; 197 // Execution count of the arc in the profile data. 198 uint64_t ExecutionCount{0}; 199 200 public: 201 explicit Jump(Block *Source, Block *Target, uint64_t ExecutionCount) 202 : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {} 203 }; 204 205 /// A chain (ordered sequence) of blocks. 206 class Chain { 207 public: 208 Chain(const Chain &) = delete; 209 Chain(Chain &&) = default; 210 Chain &operator=(const Chain &) = delete; 211 Chain &operator=(Chain &&) = default; 212 213 explicit Chain(uint64_t Id, Block *Block) 214 : Id(Id), Score(0), Blocks(1, Block) {} 215 216 uint64_t id() const { return Id; } 217 218 bool isEntry() const { return Blocks[0]->Index == 0; } 219 220 double score() const { return Score; } 221 222 void setScore(double NewScore) { Score = NewScore; } 223 224 const std::vector<Block *> &blocks() const { return Blocks; } 225 226 const std::vector<std::pair<Chain *, ChainEdge *>> &edges() const { 227 return Edges; 228 } 229 230 ChainEdge *getEdge(Chain *Other) const { 231 for (auto It : Edges) { 232 if (It.first == Other) 233 return It.second; 234 } 235 return nullptr; 236 } 237 238 void removeEdge(Chain *Other) { 239 auto It = Edges.begin(); 240 while (It != Edges.end()) { 241 if (It->first == Other) { 242 Edges.erase(It); 243 return; 244 } 245 It++; 246 } 247 } 248 249 void addEdge(Chain *Other, ChainEdge *Edge) { 250 Edges.push_back(std::make_pair(Other, Edge)); 251 } 252 253 void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) { 254 Blocks = MergedBlocks; 255 // Update the block's chains 256 for (size_t Idx = 0; Idx < Blocks.size(); Idx++) { 257 Blocks[Idx]->CurChain = this; 258 Blocks[Idx]->CurIndex = Idx; 259 } 260 } 261 262 void mergeEdges(Chain *Other); 263 264 void clear() { 265 Blocks.clear(); 266 Blocks.shrink_to_fit(); 267 Edges.clear(); 268 Edges.shrink_to_fit(); 269 } 270 271 private: 272 // Unique chain identifier. 273 uint64_t Id; 274 // Cached ext-tsp score for the chain. 275 double Score; 276 // Blocks of the chain. 277 std::vector<Block *> Blocks; 278 // Adjacent chains and corresponding edges (lists of jumps). 279 std::vector<std::pair<Chain *, ChainEdge *>> Edges; 280 }; 281 282 /// An edge in CFG representing jumps between two chains. 283 /// When blocks are merged into chains, the edges are combined too so that 284 /// there is always at most one edge between a pair of chains 285 class ChainEdge { 286 public: 287 ChainEdge(const ChainEdge &) = delete; 288 ChainEdge(ChainEdge &&) = default; 289 ChainEdge &operator=(const ChainEdge &) = delete; 290 ChainEdge &operator=(ChainEdge &&) = default; 291 292 explicit ChainEdge(Jump *Jump) 293 : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain), 294 Jumps(1, Jump) {} 295 296 const std::vector<Jump *> &jumps() const { return Jumps; } 297 298 void changeEndpoint(Chain *From, Chain *To) { 299 if (From == SrcChain) 300 SrcChain = To; 301 if (From == DstChain) 302 DstChain = To; 303 } 304 305 void appendJump(Jump *Jump) { Jumps.push_back(Jump); } 306 307 void moveJumps(ChainEdge *Other) { 308 Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end()); 309 Other->Jumps.clear(); 310 Other->Jumps.shrink_to_fit(); 311 } 312 313 bool hasCachedMergeGain(Chain *Src, Chain *Dst) const { 314 return Src == SrcChain ? CacheValidForward : CacheValidBackward; 315 } 316 317 MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const { 318 return Src == SrcChain ? CachedGainForward : CachedGainBackward; 319 } 320 321 void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) { 322 if (Src == SrcChain) { 323 CachedGainForward = MergeGain; 324 CacheValidForward = true; 325 } else { 326 CachedGainBackward = MergeGain; 327 CacheValidBackward = true; 328 } 329 } 330 331 void invalidateCache() { 332 CacheValidForward = false; 333 CacheValidBackward = false; 334 } 335 336 private: 337 // Source chain. 338 Chain *SrcChain{nullptr}; 339 // Destination chain. 340 Chain *DstChain{nullptr}; 341 // Original jumps in the binary with correspinding execution counts. 342 std::vector<Jump *> Jumps; 343 // Cached ext-tsp value for merging the pair of chains. 344 // Since the gain of merging (Src, Dst) and (Dst, Src) might be different, 345 // we store both values here. 346 MergeGainTy CachedGainForward; 347 MergeGainTy CachedGainBackward; 348 // Whether the cached value must be recomputed. 349 bool CacheValidForward{false}; 350 bool CacheValidBackward{false}; 351 }; 352 353 void Chain::mergeEdges(Chain *Other) { 354 assert(this != Other && "cannot merge a chain with itself"); 355 356 // Update edges adjacent to chain Other 357 for (auto EdgeIt : Other->Edges) { 358 const auto DstChain = EdgeIt.first; 359 const auto DstEdge = EdgeIt.second; 360 const auto TargetChain = DstChain == Other ? this : DstChain; 361 auto CurEdge = getEdge(TargetChain); 362 if (CurEdge == nullptr) { 363 DstEdge->changeEndpoint(Other, this); 364 this->addEdge(TargetChain, DstEdge); 365 if (DstChain != this && DstChain != Other) { 366 DstChain->addEdge(this, DstEdge); 367 } 368 } else { 369 CurEdge->moveJumps(DstEdge); 370 } 371 // Cleanup leftover edge 372 if (DstChain != Other) { 373 DstChain->removeEdge(Other); 374 } 375 } 376 } 377 378 using BlockIter = std::vector<Block *>::const_iterator; 379 380 /// A wrapper around three chains of blocks; it is used to avoid extra 381 /// instantiation of the vectors. 382 class MergedChain { 383 public: 384 MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(), 385 BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(), 386 BlockIter End3 = BlockIter()) 387 : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3), 388 End3(End3) {} 389 390 template <typename F> void forEach(const F &Func) const { 391 for (auto It = Begin1; It != End1; It++) 392 Func(*It); 393 for (auto It = Begin2; It != End2; It++) 394 Func(*It); 395 for (auto It = Begin3; It != End3; It++) 396 Func(*It); 397 } 398 399 std::vector<Block *> getBlocks() const { 400 std::vector<Block *> Result; 401 Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) + 402 std::distance(Begin3, End3)); 403 Result.insert(Result.end(), Begin1, End1); 404 Result.insert(Result.end(), Begin2, End2); 405 Result.insert(Result.end(), Begin3, End3); 406 return Result; 407 } 408 409 const Block *getFirstBlock() const { return *Begin1; } 410 411 private: 412 BlockIter Begin1; 413 BlockIter End1; 414 BlockIter Begin2; 415 BlockIter End2; 416 BlockIter Begin3; 417 BlockIter End3; 418 }; 419 420 /// The implementation of the ExtTSP algorithm. 421 class ExtTSPImpl { 422 using EdgeT = std::pair<uint64_t, uint64_t>; 423 using EdgeCountMap = DenseMap<EdgeT, uint64_t>; 424 425 public: 426 ExtTSPImpl(size_t NumNodes, const std::vector<uint64_t> &NodeSizes, 427 const std::vector<uint64_t> &NodeCounts, 428 const EdgeCountMap &EdgeCounts) 429 : NumNodes(NumNodes) { 430 initialize(NodeSizes, NodeCounts, EdgeCounts); 431 } 432 433 /// Run the algorithm and return an optimized ordering of blocks. 434 void run(std::vector<uint64_t> &Result) { 435 // Pass 1: Merge blocks with their mutually forced successors 436 mergeForcedPairs(); 437 438 // Pass 2: Merge pairs of chains while improving the ExtTSP objective 439 mergeChainPairs(); 440 441 // Pass 3: Merge cold blocks to reduce code size 442 mergeColdChains(); 443 444 // Collect blocks from all chains 445 concatChains(Result); 446 } 447 448 private: 449 /// Initialize the algorithm's data structures. 450 void initialize(const std::vector<uint64_t> &NodeSizes, 451 const std::vector<uint64_t> &NodeCounts, 452 const EdgeCountMap &EdgeCounts) { 453 // Initialize blocks 454 AllBlocks.reserve(NumNodes); 455 for (uint64_t Node = 0; Node < NumNodes; Node++) { 456 uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL); 457 uint64_t ExecutionCount = NodeCounts[Node]; 458 // The execution count of the entry block is set to at least 1 459 if (Node == 0 && ExecutionCount == 0) 460 ExecutionCount = 1; 461 AllBlocks.emplace_back(Node, Size, ExecutionCount); 462 } 463 464 // Initialize jumps between blocks 465 SuccNodes = std::vector<std::vector<uint64_t>>(NumNodes); 466 PredNodes = std::vector<std::vector<uint64_t>>(NumNodes); 467 AllJumps.reserve(EdgeCounts.size()); 468 for (auto It : EdgeCounts) { 469 auto Pred = It.first.first; 470 auto Succ = It.first.second; 471 // Ignore self-edges 472 if (Pred == Succ) 473 continue; 474 475 SuccNodes[Pred].push_back(Succ); 476 PredNodes[Succ].push_back(Pred); 477 auto ExecutionCount = It.second; 478 if (ExecutionCount > 0) { 479 auto &Block = AllBlocks[Pred]; 480 auto &SuccBlock = AllBlocks[Succ]; 481 AllJumps.emplace_back(&Block, &SuccBlock, ExecutionCount); 482 SuccBlock.InJumps.push_back(&AllJumps.back()); 483 Block.OutJumps.push_back(&AllJumps.back()); 484 } 485 } 486 487 // Initialize chains 488 AllChains.reserve(NumNodes); 489 HotChains.reserve(NumNodes); 490 for (auto &Block : AllBlocks) { 491 AllChains.emplace_back(Block.Index, &Block); 492 Block.CurChain = &AllChains.back(); 493 if (Block.ExecutionCount > 0) { 494 HotChains.push_back(&AllChains.back()); 495 } 496 } 497 498 // Initialize chain edges 499 AllEdges.reserve(AllJumps.size()); 500 for (auto &Block : AllBlocks) { 501 for (auto &Jump : Block.OutJumps) { 502 const auto SuccBlock = Jump->Target; 503 auto CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain); 504 // this edge is already present in the graph 505 if (CurEdge != nullptr) { 506 assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr); 507 CurEdge->appendJump(Jump); 508 continue; 509 } 510 // this is a new edge 511 AllEdges.emplace_back(Jump); 512 Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back()); 513 SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back()); 514 } 515 } 516 } 517 518 /// For a pair of blocks, A and B, block B is the forced successor of A, 519 /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps 520 /// to B are from A. Such blocks should be adjacent in the optimal ordering; 521 /// the method finds and merges such pairs of blocks. 522 void mergeForcedPairs() { 523 // Find fallthroughs based on edge weights 524 for (auto &Block : AllBlocks) { 525 if (SuccNodes[Block.Index].size() == 1 && 526 PredNodes[SuccNodes[Block.Index][0]].size() == 1 && 527 SuccNodes[Block.Index][0] != 0) { 528 size_t SuccIndex = SuccNodes[Block.Index][0]; 529 Block.ForcedSucc = &AllBlocks[SuccIndex]; 530 AllBlocks[SuccIndex].ForcedPred = &Block; 531 } 532 } 533 534 // There might be 'cycles' in the forced dependencies, since profile 535 // data isn't 100% accurate. Typically this is observed in loops, when the 536 // loop edges are the hottest successors for the basic blocks of the loop. 537 // Break the cycles by choosing the block with the smallest index as the 538 // head. This helps to keep the original order of the loops, which likely 539 // have already been rotated in the optimized manner. 540 for (auto &Block : AllBlocks) { 541 if (Block.ForcedSucc == nullptr || Block.ForcedPred == nullptr) 542 continue; 543 544 auto SuccBlock = Block.ForcedSucc; 545 while (SuccBlock != nullptr && SuccBlock != &Block) { 546 SuccBlock = SuccBlock->ForcedSucc; 547 } 548 if (SuccBlock == nullptr) 549 continue; 550 // Break the cycle 551 AllBlocks[Block.ForcedPred->Index].ForcedSucc = nullptr; 552 Block.ForcedPred = nullptr; 553 } 554 555 // Merge blocks with their fallthrough successors 556 for (auto &Block : AllBlocks) { 557 if (Block.ForcedPred == nullptr && Block.ForcedSucc != nullptr) { 558 auto CurBlock = &Block; 559 while (CurBlock->ForcedSucc != nullptr) { 560 const auto NextBlock = CurBlock->ForcedSucc; 561 mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y); 562 CurBlock = NextBlock; 563 } 564 } 565 } 566 } 567 568 /// Merge pairs of chains while improving the ExtTSP objective. 569 void mergeChainPairs() { 570 /// Deterministically compare pairs of chains 571 auto compareChainPairs = [](const Chain *A1, const Chain *B1, 572 const Chain *A2, const Chain *B2) { 573 if (A1 != A2) 574 return A1->id() < A2->id(); 575 return B1->id() < B2->id(); 576 }; 577 578 while (HotChains.size() > 1) { 579 Chain *BestChainPred = nullptr; 580 Chain *BestChainSucc = nullptr; 581 auto BestGain = MergeGainTy(); 582 // Iterate over all pairs of chains 583 for (auto ChainPred : HotChains) { 584 // Get candidates for merging with the current chain 585 for (auto EdgeIter : ChainPred->edges()) { 586 auto ChainSucc = EdgeIter.first; 587 auto ChainEdge = EdgeIter.second; 588 // Ignore loop edges 589 if (ChainPred == ChainSucc) 590 continue; 591 592 // Compute the gain of merging the two chains 593 auto CurGain = getBestMergeGain(ChainPred, ChainSucc, ChainEdge); 594 if (CurGain.score() <= EPS) 595 continue; 596 597 if (BestGain < CurGain || 598 (std::abs(CurGain.score() - BestGain.score()) < EPS && 599 compareChainPairs(ChainPred, ChainSucc, BestChainPred, 600 BestChainSucc))) { 601 BestGain = CurGain; 602 BestChainPred = ChainPred; 603 BestChainSucc = ChainSucc; 604 } 605 } 606 } 607 608 // Stop merging when there is no improvement 609 if (BestGain.score() <= EPS) 610 break; 611 612 // Merge the best pair of chains 613 mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(), 614 BestGain.mergeType()); 615 } 616 } 617 618 /// Merge cold blocks to reduce code size. 619 void mergeColdChains() { 620 for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) { 621 // Iterating over neighbors in the reverse order to make sure original 622 // fallthrough jumps are merged first 623 size_t NumSuccs = SuccNodes[SrcBB].size(); 624 for (size_t Idx = 0; Idx < NumSuccs; Idx++) { 625 auto DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1]; 626 auto SrcChain = AllBlocks[SrcBB].CurChain; 627 auto DstChain = AllBlocks[DstBB].CurChain; 628 if (SrcChain != DstChain && !DstChain->isEntry() && 629 SrcChain->blocks().back()->Index == SrcBB && 630 DstChain->blocks().front()->Index == DstBB) { 631 mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y); 632 } 633 } 634 } 635 } 636 637 /// Compute the Ext-TSP score for a given block order and a list of jumps. 638 double extTSPScore(const MergedChain &MergedBlocks, 639 const std::vector<Jump *> &Jumps) const { 640 if (Jumps.empty()) 641 return 0.0; 642 uint64_t CurAddr = 0; 643 MergedBlocks.forEach([&](const Block *BB) { 644 BB->EstimatedAddr = CurAddr; 645 CurAddr += BB->Size; 646 }); 647 648 double Score = 0; 649 for (auto &Jump : Jumps) { 650 const auto SrcBlock = Jump->Source; 651 const auto DstBlock = Jump->Target; 652 Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size, 653 DstBlock->EstimatedAddr, Jump->ExecutionCount); 654 } 655 return Score; 656 } 657 658 /// Compute the gain of merging two chains. 659 /// 660 /// The function considers all possible ways of merging two chains and 661 /// computes the one having the largest increase in ExtTSP objective. The 662 /// result is a pair with the first element being the gain and the second 663 /// element being the corresponding merging type. 664 MergeGainTy getBestMergeGain(Chain *ChainPred, Chain *ChainSucc, 665 ChainEdge *Edge) const { 666 if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) { 667 return Edge->getCachedMergeGain(ChainPred, ChainSucc); 668 } 669 670 // Precompute jumps between ChainPred and ChainSucc 671 auto Jumps = Edge->jumps(); 672 auto EdgePP = ChainPred->getEdge(ChainPred); 673 if (EdgePP != nullptr) { 674 Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end()); 675 } 676 assert(!Jumps.empty() && "trying to merge chains w/o jumps"); 677 678 // The object holds the best currently chosen gain of merging the two chains 679 MergeGainTy Gain = MergeGainTy(); 680 681 /// Given a merge offset and a list of merge types, try to merge two chains 682 /// and update Gain with a better alternative 683 auto tryChainMerging = [&](size_t Offset, 684 const std::vector<MergeTypeTy> &MergeTypes) { 685 // Skip merging corresponding to concatenation w/o splitting 686 if (Offset == 0 || Offset == ChainPred->blocks().size()) 687 return; 688 // Skip merging if it breaks Forced successors 689 auto BB = ChainPred->blocks()[Offset - 1]; 690 if (BB->ForcedSucc != nullptr) 691 return; 692 // Apply the merge, compute the corresponding gain, and update the best 693 // value, if the merge is beneficial 694 for (auto &MergeType : MergeTypes) { 695 Gain.updateIfLessThan( 696 computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType)); 697 } 698 }; 699 700 // Try to concatenate two chains w/o splitting 701 Gain.updateIfLessThan( 702 computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeTy::X_Y)); 703 704 if (EnableChainSplitAlongJumps) { 705 // Attach (a part of) ChainPred before the first block of ChainSucc 706 for (auto &Jump : ChainSucc->blocks().front()->InJumps) { 707 const auto SrcBlock = Jump->Source; 708 if (SrcBlock->CurChain != ChainPred) 709 continue; 710 size_t Offset = SrcBlock->CurIndex + 1; 711 tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::X2_X1_Y}); 712 } 713 714 // Attach (a part of) ChainPred after the last block of ChainSucc 715 for (auto &Jump : ChainSucc->blocks().back()->OutJumps) { 716 const auto DstBlock = Jump->Source; 717 if (DstBlock->CurChain != ChainPred) 718 continue; 719 size_t Offset = DstBlock->CurIndex; 720 tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1}); 721 } 722 } 723 724 // Try to break ChainPred in various ways and concatenate with ChainSucc 725 if (ChainPred->blocks().size() <= ChainSplitThreshold) { 726 for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) { 727 // Try to split the chain in different ways. In practice, applying 728 // X2_Y_X1 merging is almost never provides benefits; thus, we exclude 729 // it from consideration to reduce the search space 730 tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1, 731 MergeTypeTy::X2_X1_Y}); 732 } 733 } 734 Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain); 735 return Gain; 736 } 737 738 /// Compute the score gain of merging two chains, respecting a given 739 /// merge 'type' and 'offset'. 740 /// 741 /// The two chains are not modified in the method. 742 MergeGainTy computeMergeGain(const Chain *ChainPred, const Chain *ChainSucc, 743 const std::vector<Jump *> &Jumps, 744 size_t MergeOffset, 745 MergeTypeTy MergeType) const { 746 auto MergedBlocks = mergeBlocks(ChainPred->blocks(), ChainSucc->blocks(), 747 MergeOffset, MergeType); 748 749 // Do not allow a merge that does not preserve the original entry block 750 if ((ChainPred->isEntry() || ChainSucc->isEntry()) && 751 !MergedBlocks.getFirstBlock()->isEntry()) 752 return MergeGainTy(); 753 754 // The gain for the new chain 755 auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->score(); 756 return MergeGainTy(NewGainScore, MergeOffset, MergeType); 757 } 758 759 /// Merge two chains of blocks respecting a given merge 'type' and 'offset'. 760 /// 761 /// If MergeType == 0, then the result is a concatentation of two chains. 762 /// Otherwise, the first chain is cut into two sub-chains at the offset, 763 /// and merged using all possible ways of concatenating three chains. 764 MergedChain mergeBlocks(const std::vector<Block *> &X, 765 const std::vector<Block *> &Y, size_t MergeOffset, 766 MergeTypeTy MergeType) const { 767 // Split the first chain, X, into X1 and X2 768 BlockIter BeginX1 = X.begin(); 769 BlockIter EndX1 = X.begin() + MergeOffset; 770 BlockIter BeginX2 = X.begin() + MergeOffset; 771 BlockIter EndX2 = X.end(); 772 BlockIter BeginY = Y.begin(); 773 BlockIter EndY = Y.end(); 774 775 // Construct a new chain from the three existing ones 776 switch (MergeType) { 777 case MergeTypeTy::X_Y: 778 return MergedChain(BeginX1, EndX2, BeginY, EndY); 779 case MergeTypeTy::X1_Y_X2: 780 return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2); 781 case MergeTypeTy::Y_X2_X1: 782 return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1); 783 case MergeTypeTy::X2_X1_Y: 784 return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY); 785 } 786 llvm_unreachable("unexpected chain merge type"); 787 } 788 789 /// Merge chain From into chain Into, update the list of active chains, 790 /// adjacency information, and the corresponding cached values. 791 void mergeChains(Chain *Into, Chain *From, size_t MergeOffset, 792 MergeTypeTy MergeType) { 793 assert(Into != From && "a chain cannot be merged with itself"); 794 795 // Merge the blocks 796 auto MergedBlocks = 797 mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType); 798 Into->merge(From, MergedBlocks.getBlocks()); 799 Into->mergeEdges(From); 800 From->clear(); 801 802 // Update cached ext-tsp score for the new chain 803 auto SelfEdge = Into->getEdge(Into); 804 if (SelfEdge != nullptr) { 805 MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end()); 806 Into->setScore(extTSPScore(MergedBlocks, SelfEdge->jumps())); 807 } 808 809 // Remove chain From from the list of active chains 810 auto Iter = std::remove(HotChains.begin(), HotChains.end(), From); 811 HotChains.erase(Iter, HotChains.end()); 812 813 // Invalidate caches 814 for (auto EdgeIter : Into->edges()) { 815 EdgeIter.second->invalidateCache(); 816 } 817 } 818 819 /// Concatenate all chains into a final order of blocks. 820 void concatChains(std::vector<uint64_t> &Order) { 821 // Collect chains and calculate some stats for their sorting 822 std::vector<Chain *> SortedChains; 823 DenseMap<const Chain *, double> ChainDensity; 824 for (auto &Chain : AllChains) { 825 if (!Chain.blocks().empty()) { 826 SortedChains.push_back(&Chain); 827 // Using doubles to avoid overflow of ExecutionCount 828 double Size = 0; 829 double ExecutionCount = 0; 830 for (auto Block : Chain.blocks()) { 831 Size += static_cast<double>(Block->Size); 832 ExecutionCount += static_cast<double>(Block->ExecutionCount); 833 } 834 assert(Size > 0 && "a chain of zero size"); 835 ChainDensity[&Chain] = ExecutionCount / Size; 836 } 837 } 838 839 // Sorting chains by density in the decreasing order 840 std::stable_sort(SortedChains.begin(), SortedChains.end(), 841 [&](const Chain *C1, const Chain *C2) { 842 // Makre sure the original entry block is at the 843 // beginning of the order 844 if (C1->isEntry() != C2->isEntry()) { 845 return C1->isEntry(); 846 } 847 848 const double D1 = ChainDensity[C1]; 849 const double D2 = ChainDensity[C2]; 850 // Compare by density and break ties by chain identifiers 851 return (D1 != D2) ? (D1 > D2) : (C1->id() < C2->id()); 852 }); 853 854 // Collect the blocks in the order specified by their chains 855 Order.reserve(NumNodes); 856 for (auto Chain : SortedChains) { 857 for (auto Block : Chain->blocks()) { 858 Order.push_back(Block->Index); 859 } 860 } 861 } 862 863 private: 864 /// The number of nodes in the graph. 865 const size_t NumNodes; 866 867 /// Successors of each node. 868 std::vector<std::vector<uint64_t>> SuccNodes; 869 870 /// Predecessors of each node. 871 std::vector<std::vector<uint64_t>> PredNodes; 872 873 /// All basic blocks. 874 std::vector<Block> AllBlocks; 875 876 /// All jumps between blocks. 877 std::vector<Jump> AllJumps; 878 879 /// All chains of basic blocks. 880 std::vector<Chain> AllChains; 881 882 /// All edges between chains. 883 std::vector<ChainEdge> AllEdges; 884 885 /// Active chains. The vector gets updated at runtime when chains are merged. 886 std::vector<Chain *> HotChains; 887 }; 888 889 } // end of anonymous namespace 890 891 std::vector<uint64_t> llvm::applyExtTspLayout( 892 const std::vector<uint64_t> &NodeSizes, 893 const std::vector<uint64_t> &NodeCounts, 894 const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) { 895 size_t NumNodes = NodeSizes.size(); 896 897 // Verify correctness of the input data. 898 assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input"); 899 assert(NumNodes > 2 && "Incorrect input"); 900 901 // Apply the reordering algorithm. 902 auto Alg = ExtTSPImpl(NumNodes, NodeSizes, NodeCounts, EdgeCounts); 903 std::vector<uint64_t> Result; 904 Alg.run(Result); 905 906 // Verify correctness of the output. 907 assert(Result.front() == 0 && "Original entry point is not preserved"); 908 assert(Result.size() == NumNodes && "Incorrect size of reordered layout"); 909 return Result; 910 } 911 912 double llvm::calcExtTspScore( 913 const std::vector<uint64_t> &Order, const std::vector<uint64_t> &NodeSizes, 914 const std::vector<uint64_t> &NodeCounts, 915 const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) { 916 // Estimate addresses of the blocks in memory 917 auto Addr = std::vector<uint64_t>(NodeSizes.size(), 0); 918 for (size_t Idx = 1; Idx < Order.size(); Idx++) { 919 Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]]; 920 } 921 922 // Increase the score for each jump 923 double Score = 0; 924 for (auto It : EdgeCounts) { 925 auto Pred = It.first.first; 926 auto Succ = It.first.second; 927 uint64_t Count = It.second; 928 Score += extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count); 929 } 930 return Score; 931 } 932 933 double llvm::calcExtTspScore( 934 const std::vector<uint64_t> &NodeSizes, 935 const std::vector<uint64_t> &NodeCounts, 936 const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) { 937 auto Order = std::vector<uint64_t>(NodeSizes.size()); 938 for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) { 939 Order[Idx] = Idx; 940 } 941 return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts); 942 } 943