xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeLayout.cpp (revision 04eeddc0aa8e0a417a16eaf9d7d095207f4a8623)
1 //===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ExtTSP - layout of basic blocks with i-cache optimization.
10 //
11 // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
12 // optimizing jump locality and thus processor I-cache utilization. This is
13 // achieved via increasing the number of fall-through jumps and co-locating
14 // frequently executed nodes together. The name follows the underlying
15 // optimization problem, Extended-TSP, which is a generalization of classical
16 // (maximum) Traveling Salesmen Problem.
17 //
18 // The algorithm is a greedy heuristic that works with chains (ordered lists)
19 // of basic blocks. Initially all chains are isolated basic blocks. On every
20 // iteration, we pick a pair of chains whose merging yields the biggest increase
21 // in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
22 // A pair of chains giving the maximum gain is merged into a new chain. The
23 // procedure stops when there is only one chain left, or when merging does not
24 // increase ExtTSP. In the latter case, the remaining chains are sorted by
25 // density in the decreasing order.
26 //
27 // An important aspect is the way two chains are merged. Unlike earlier
28 // algorithms (e.g., based on the approach of Pettis-Hansen), two
29 // chains, X and Y, are first split into three, X1, X2, and Y. Then we
30 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
31 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
32 // This improves the quality of the final result (the search space is larger)
33 // while keeping the implementation sufficiently fast.
34 //
35 // Reference:
36 //   * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
37 //     IEEE Transactions on Computers, 2020
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/Transforms/Utils/CodeLayout.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 
45 using namespace llvm;
46 #define DEBUG_TYPE "code-layout"
47 
48 // Algorithm-specific constants. The values are tuned for the best performance
49 // of large-scale front-end bound binaries.
50 static cl::opt<double>
51     ForwardWeight("ext-tsp-forward-weight", cl::Hidden, cl::init(0.1),
52                   cl::desc("The weight of forward jumps for ExtTSP value"));
53 
54 static cl::opt<double>
55     BackwardWeight("ext-tsp-backward-weight", cl::Hidden, cl::init(0.1),
56                    cl::desc("The weight of backward jumps for ExtTSP value"));
57 
58 static cl::opt<unsigned> ForwardDistance(
59     "ext-tsp-forward-distance", cl::Hidden, cl::init(1024),
60     cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
61 
62 static cl::opt<unsigned> BackwardDistance(
63     "ext-tsp-backward-distance", cl::Hidden, cl::init(640),
64     cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
65 
66 // The maximum size of a chain for splitting. Larger values of the threshold
67 // may yield better quality at the cost of worsen run-time.
68 static cl::opt<unsigned> ChainSplitThreshold(
69     "ext-tsp-chain-split-threshold", cl::Hidden, cl::init(128),
70     cl::desc("The maximum size of a chain to apply splitting"));
71 
72 // The option enables splitting (large) chains along in-coming and out-going
73 // jumps. This typically results in a better quality.
74 static cl::opt<bool> EnableChainSplitAlongJumps(
75     "ext-tsp-enable-chain-split-along-jumps", cl::Hidden, cl::init(true),
76     cl::desc("The maximum size of a chain to apply splitting"));
77 
78 namespace {
79 
80 // Epsilon for comparison of doubles.
81 constexpr double EPS = 1e-8;
82 
83 // Compute the Ext-TSP score for a jump between a given pair of blocks,
84 // using their sizes, (estimated) addresses and the jump execution count.
85 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
86                    uint64_t Count) {
87   // Fallthrough
88   if (SrcAddr + SrcSize == DstAddr) {
89     // Assume that FallthroughWeight = 1.0 after normalization
90     return static_cast<double>(Count);
91   }
92   // Forward
93   if (SrcAddr + SrcSize < DstAddr) {
94     const auto Dist = DstAddr - (SrcAddr + SrcSize);
95     if (Dist <= ForwardDistance) {
96       double Prob = 1.0 - static_cast<double>(Dist) / ForwardDistance;
97       return ForwardWeight * Prob * Count;
98     }
99     return 0;
100   }
101   // Backward
102   const auto Dist = SrcAddr + SrcSize - DstAddr;
103   if (Dist <= BackwardDistance) {
104     double Prob = 1.0 - static_cast<double>(Dist) / BackwardDistance;
105     return BackwardWeight * Prob * Count;
106   }
107   return 0;
108 }
109 
110 /// A type of merging two chains, X and Y. The former chain is split into
111 /// X1 and X2 and then concatenated with Y in the order specified by the type.
112 enum class MergeTypeTy : int { X_Y, X1_Y_X2, Y_X2_X1, X2_X1_Y };
113 
114 /// The gain of merging two chains, that is, the Ext-TSP score of the merge
115 /// together with the corresponfiding merge 'type' and 'offset'.
116 class MergeGainTy {
117 public:
118   explicit MergeGainTy() {}
119   explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType)
120       : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
121 
122   double score() const { return Score; }
123 
124   size_t mergeOffset() const { return MergeOffset; }
125 
126   MergeTypeTy mergeType() const { return MergeType; }
127 
128   // Returns 'true' iff Other is preferred over this.
129   bool operator<(const MergeGainTy &Other) const {
130     return (Other.Score > EPS && Other.Score > Score + EPS);
131   }
132 
133   // Update the current gain if Other is preferred over this.
134   void updateIfLessThan(const MergeGainTy &Other) {
135     if (*this < Other)
136       *this = Other;
137   }
138 
139 private:
140   double Score{-1.0};
141   size_t MergeOffset{0};
142   MergeTypeTy MergeType{MergeTypeTy::X_Y};
143 };
144 
145 class Block;
146 class Jump;
147 class Chain;
148 class ChainEdge;
149 
150 /// A node in the graph, typically corresponding to a basic block in CFG.
151 class Block {
152 public:
153   Block(const Block &) = delete;
154   Block(Block &&) = default;
155   Block &operator=(const Block &) = delete;
156   Block &operator=(Block &&) = default;
157 
158   // The original index of the block in CFG.
159   size_t Index{0};
160   // The index of the block in the current chain.
161   size_t CurIndex{0};
162   // Size of the block in the binary.
163   uint64_t Size{0};
164   // Execution count of the block in the profile data.
165   uint64_t ExecutionCount{0};
166   // Current chain of the node.
167   Chain *CurChain{nullptr};
168   // An offset of the block in the current chain.
169   mutable uint64_t EstimatedAddr{0};
170   // Forced successor of the block in CFG.
171   Block *ForcedSucc{nullptr};
172   // Forced predecessor of the block in CFG.
173   Block *ForcedPred{nullptr};
174   // Outgoing jumps from the block.
175   std::vector<Jump *> OutJumps;
176   // Incoming jumps to the block.
177   std::vector<Jump *> InJumps;
178 
179 public:
180   explicit Block(size_t Index, uint64_t Size_, uint64_t EC)
181       : Index(Index), Size(Size_), ExecutionCount(EC) {}
182   bool isEntry() const { return Index == 0; }
183 };
184 
185 /// An arc in the graph, typically corresponding to a jump between two blocks.
186 class Jump {
187 public:
188   Jump(const Jump &) = delete;
189   Jump(Jump &&) = default;
190   Jump &operator=(const Jump &) = delete;
191   Jump &operator=(Jump &&) = default;
192 
193   // Source block of the jump.
194   Block *Source;
195   // Target block of the jump.
196   Block *Target;
197   // Execution count of the arc in the profile data.
198   uint64_t ExecutionCount{0};
199 
200 public:
201   explicit Jump(Block *Source, Block *Target, uint64_t ExecutionCount)
202       : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
203 };
204 
205 /// A chain (ordered sequence) of blocks.
206 class Chain {
207 public:
208   Chain(const Chain &) = delete;
209   Chain(Chain &&) = default;
210   Chain &operator=(const Chain &) = delete;
211   Chain &operator=(Chain &&) = default;
212 
213   explicit Chain(uint64_t Id, Block *Block)
214       : Id(Id), Score(0), Blocks(1, Block) {}
215 
216   uint64_t id() const { return Id; }
217 
218   bool isEntry() const { return Blocks[0]->Index == 0; }
219 
220   double score() const { return Score; }
221 
222   void setScore(double NewScore) { Score = NewScore; }
223 
224   const std::vector<Block *> &blocks() const { return Blocks; }
225 
226   const std::vector<std::pair<Chain *, ChainEdge *>> &edges() const {
227     return Edges;
228   }
229 
230   ChainEdge *getEdge(Chain *Other) const {
231     for (auto It : Edges) {
232       if (It.first == Other)
233         return It.second;
234     }
235     return nullptr;
236   }
237 
238   void removeEdge(Chain *Other) {
239     auto It = Edges.begin();
240     while (It != Edges.end()) {
241       if (It->first == Other) {
242         Edges.erase(It);
243         return;
244       }
245       It++;
246     }
247   }
248 
249   void addEdge(Chain *Other, ChainEdge *Edge) {
250     Edges.push_back(std::make_pair(Other, Edge));
251   }
252 
253   void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) {
254     Blocks = MergedBlocks;
255     // Update the block's chains
256     for (size_t Idx = 0; Idx < Blocks.size(); Idx++) {
257       Blocks[Idx]->CurChain = this;
258       Blocks[Idx]->CurIndex = Idx;
259     }
260   }
261 
262   void mergeEdges(Chain *Other);
263 
264   void clear() {
265     Blocks.clear();
266     Blocks.shrink_to_fit();
267     Edges.clear();
268     Edges.shrink_to_fit();
269   }
270 
271 private:
272   // Unique chain identifier.
273   uint64_t Id;
274   // Cached ext-tsp score for the chain.
275   double Score;
276   // Blocks of the chain.
277   std::vector<Block *> Blocks;
278   // Adjacent chains and corresponding edges (lists of jumps).
279   std::vector<std::pair<Chain *, ChainEdge *>> Edges;
280 };
281 
282 /// An edge in CFG representing jumps between two chains.
283 /// When blocks are merged into chains, the edges are combined too so that
284 /// there is always at most one edge between a pair of chains
285 class ChainEdge {
286 public:
287   ChainEdge(const ChainEdge &) = delete;
288   ChainEdge(ChainEdge &&) = default;
289   ChainEdge &operator=(const ChainEdge &) = delete;
290   ChainEdge &operator=(ChainEdge &&) = default;
291 
292   explicit ChainEdge(Jump *Jump)
293       : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
294         Jumps(1, Jump) {}
295 
296   const std::vector<Jump *> &jumps() const { return Jumps; }
297 
298   void changeEndpoint(Chain *From, Chain *To) {
299     if (From == SrcChain)
300       SrcChain = To;
301     if (From == DstChain)
302       DstChain = To;
303   }
304 
305   void appendJump(Jump *Jump) { Jumps.push_back(Jump); }
306 
307   void moveJumps(ChainEdge *Other) {
308     Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
309     Other->Jumps.clear();
310     Other->Jumps.shrink_to_fit();
311   }
312 
313   bool hasCachedMergeGain(Chain *Src, Chain *Dst) const {
314     return Src == SrcChain ? CacheValidForward : CacheValidBackward;
315   }
316 
317   MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const {
318     return Src == SrcChain ? CachedGainForward : CachedGainBackward;
319   }
320 
321   void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) {
322     if (Src == SrcChain) {
323       CachedGainForward = MergeGain;
324       CacheValidForward = true;
325     } else {
326       CachedGainBackward = MergeGain;
327       CacheValidBackward = true;
328     }
329   }
330 
331   void invalidateCache() {
332     CacheValidForward = false;
333     CacheValidBackward = false;
334   }
335 
336 private:
337   // Source chain.
338   Chain *SrcChain{nullptr};
339   // Destination chain.
340   Chain *DstChain{nullptr};
341   // Original jumps in the binary with correspinding execution counts.
342   std::vector<Jump *> Jumps;
343   // Cached ext-tsp value for merging the pair of chains.
344   // Since the gain of merging (Src, Dst) and (Dst, Src) might be different,
345   // we store both values here.
346   MergeGainTy CachedGainForward;
347   MergeGainTy CachedGainBackward;
348   // Whether the cached value must be recomputed.
349   bool CacheValidForward{false};
350   bool CacheValidBackward{false};
351 };
352 
353 void Chain::mergeEdges(Chain *Other) {
354   assert(this != Other && "cannot merge a chain with itself");
355 
356   // Update edges adjacent to chain Other
357   for (auto EdgeIt : Other->Edges) {
358     const auto DstChain = EdgeIt.first;
359     const auto DstEdge = EdgeIt.second;
360     const auto TargetChain = DstChain == Other ? this : DstChain;
361     auto CurEdge = getEdge(TargetChain);
362     if (CurEdge == nullptr) {
363       DstEdge->changeEndpoint(Other, this);
364       this->addEdge(TargetChain, DstEdge);
365       if (DstChain != this && DstChain != Other) {
366         DstChain->addEdge(this, DstEdge);
367       }
368     } else {
369       CurEdge->moveJumps(DstEdge);
370     }
371     // Cleanup leftover edge
372     if (DstChain != Other) {
373       DstChain->removeEdge(Other);
374     }
375   }
376 }
377 
378 using BlockIter = std::vector<Block *>::const_iterator;
379 
380 /// A wrapper around three chains of blocks; it is used to avoid extra
381 /// instantiation of the vectors.
382 class MergedChain {
383 public:
384   MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(),
385               BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(),
386               BlockIter End3 = BlockIter())
387       : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
388         End3(End3) {}
389 
390   template <typename F> void forEach(const F &Func) const {
391     for (auto It = Begin1; It != End1; It++)
392       Func(*It);
393     for (auto It = Begin2; It != End2; It++)
394       Func(*It);
395     for (auto It = Begin3; It != End3; It++)
396       Func(*It);
397   }
398 
399   std::vector<Block *> getBlocks() const {
400     std::vector<Block *> Result;
401     Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
402                    std::distance(Begin3, End3));
403     Result.insert(Result.end(), Begin1, End1);
404     Result.insert(Result.end(), Begin2, End2);
405     Result.insert(Result.end(), Begin3, End3);
406     return Result;
407   }
408 
409   const Block *getFirstBlock() const { return *Begin1; }
410 
411 private:
412   BlockIter Begin1;
413   BlockIter End1;
414   BlockIter Begin2;
415   BlockIter End2;
416   BlockIter Begin3;
417   BlockIter End3;
418 };
419 
420 /// The implementation of the ExtTSP algorithm.
421 class ExtTSPImpl {
422   using EdgeT = std::pair<uint64_t, uint64_t>;
423   using EdgeCountMap = DenseMap<EdgeT, uint64_t>;
424 
425 public:
426   ExtTSPImpl(size_t NumNodes, const std::vector<uint64_t> &NodeSizes,
427              const std::vector<uint64_t> &NodeCounts,
428              const EdgeCountMap &EdgeCounts)
429       : NumNodes(NumNodes) {
430     initialize(NodeSizes, NodeCounts, EdgeCounts);
431   }
432 
433   /// Run the algorithm and return an optimized ordering of blocks.
434   void run(std::vector<uint64_t> &Result) {
435     // Pass 1: Merge blocks with their mutually forced successors
436     mergeForcedPairs();
437 
438     // Pass 2: Merge pairs of chains while improving the ExtTSP objective
439     mergeChainPairs();
440 
441     // Pass 3: Merge cold blocks to reduce code size
442     mergeColdChains();
443 
444     // Collect blocks from all chains
445     concatChains(Result);
446   }
447 
448 private:
449   /// Initialize the algorithm's data structures.
450   void initialize(const std::vector<uint64_t> &NodeSizes,
451                   const std::vector<uint64_t> &NodeCounts,
452                   const EdgeCountMap &EdgeCounts) {
453     // Initialize blocks
454     AllBlocks.reserve(NumNodes);
455     for (uint64_t Node = 0; Node < NumNodes; Node++) {
456       uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
457       uint64_t ExecutionCount = NodeCounts[Node];
458       // The execution count of the entry block is set to at least 1
459       if (Node == 0 && ExecutionCount == 0)
460         ExecutionCount = 1;
461       AllBlocks.emplace_back(Node, Size, ExecutionCount);
462     }
463 
464     // Initialize jumps between blocks
465     SuccNodes = std::vector<std::vector<uint64_t>>(NumNodes);
466     PredNodes = std::vector<std::vector<uint64_t>>(NumNodes);
467     AllJumps.reserve(EdgeCounts.size());
468     for (auto It : EdgeCounts) {
469       auto Pred = It.first.first;
470       auto Succ = It.first.second;
471       // Ignore self-edges
472       if (Pred == Succ)
473         continue;
474 
475       SuccNodes[Pred].push_back(Succ);
476       PredNodes[Succ].push_back(Pred);
477       auto ExecutionCount = It.second;
478       if (ExecutionCount > 0) {
479         auto &Block = AllBlocks[Pred];
480         auto &SuccBlock = AllBlocks[Succ];
481         AllJumps.emplace_back(&Block, &SuccBlock, ExecutionCount);
482         SuccBlock.InJumps.push_back(&AllJumps.back());
483         Block.OutJumps.push_back(&AllJumps.back());
484       }
485     }
486 
487     // Initialize chains
488     AllChains.reserve(NumNodes);
489     HotChains.reserve(NumNodes);
490     for (auto &Block : AllBlocks) {
491       AllChains.emplace_back(Block.Index, &Block);
492       Block.CurChain = &AllChains.back();
493       if (Block.ExecutionCount > 0) {
494         HotChains.push_back(&AllChains.back());
495       }
496     }
497 
498     // Initialize chain edges
499     AllEdges.reserve(AllJumps.size());
500     for (auto &Block : AllBlocks) {
501       for (auto &Jump : Block.OutJumps) {
502         const auto SuccBlock = Jump->Target;
503         auto CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain);
504         // this edge is already present in the graph
505         if (CurEdge != nullptr) {
506           assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr);
507           CurEdge->appendJump(Jump);
508           continue;
509         }
510         // this is a new edge
511         AllEdges.emplace_back(Jump);
512         Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back());
513         SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back());
514       }
515     }
516   }
517 
518   /// For a pair of blocks, A and B, block B is the forced successor of A,
519   /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
520   /// to B are from A. Such blocks should be adjacent in the optimal ordering;
521   /// the method finds and merges such pairs of blocks.
522   void mergeForcedPairs() {
523     // Find fallthroughs based on edge weights
524     for (auto &Block : AllBlocks) {
525       if (SuccNodes[Block.Index].size() == 1 &&
526           PredNodes[SuccNodes[Block.Index][0]].size() == 1 &&
527           SuccNodes[Block.Index][0] != 0) {
528         size_t SuccIndex = SuccNodes[Block.Index][0];
529         Block.ForcedSucc = &AllBlocks[SuccIndex];
530         AllBlocks[SuccIndex].ForcedPred = &Block;
531       }
532     }
533 
534     // There might be 'cycles' in the forced dependencies, since profile
535     // data isn't 100% accurate. Typically this is observed in loops, when the
536     // loop edges are the hottest successors for the basic blocks of the loop.
537     // Break the cycles by choosing the block with the smallest index as the
538     // head. This helps to keep the original order of the loops, which likely
539     // have already been rotated in the optimized manner.
540     for (auto &Block : AllBlocks) {
541       if (Block.ForcedSucc == nullptr || Block.ForcedPred == nullptr)
542         continue;
543 
544       auto SuccBlock = Block.ForcedSucc;
545       while (SuccBlock != nullptr && SuccBlock != &Block) {
546         SuccBlock = SuccBlock->ForcedSucc;
547       }
548       if (SuccBlock == nullptr)
549         continue;
550       // Break the cycle
551       AllBlocks[Block.ForcedPred->Index].ForcedSucc = nullptr;
552       Block.ForcedPred = nullptr;
553     }
554 
555     // Merge blocks with their fallthrough successors
556     for (auto &Block : AllBlocks) {
557       if (Block.ForcedPred == nullptr && Block.ForcedSucc != nullptr) {
558         auto CurBlock = &Block;
559         while (CurBlock->ForcedSucc != nullptr) {
560           const auto NextBlock = CurBlock->ForcedSucc;
561           mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y);
562           CurBlock = NextBlock;
563         }
564       }
565     }
566   }
567 
568   /// Merge pairs of chains while improving the ExtTSP objective.
569   void mergeChainPairs() {
570     /// Deterministically compare pairs of chains
571     auto compareChainPairs = [](const Chain *A1, const Chain *B1,
572                                 const Chain *A2, const Chain *B2) {
573       if (A1 != A2)
574         return A1->id() < A2->id();
575       return B1->id() < B2->id();
576     };
577 
578     while (HotChains.size() > 1) {
579       Chain *BestChainPred = nullptr;
580       Chain *BestChainSucc = nullptr;
581       auto BestGain = MergeGainTy();
582       // Iterate over all pairs of chains
583       for (auto ChainPred : HotChains) {
584         // Get candidates for merging with the current chain
585         for (auto EdgeIter : ChainPred->edges()) {
586           auto ChainSucc = EdgeIter.first;
587           auto ChainEdge = EdgeIter.second;
588           // Ignore loop edges
589           if (ChainPred == ChainSucc)
590             continue;
591 
592           // Compute the gain of merging the two chains
593           auto CurGain = getBestMergeGain(ChainPred, ChainSucc, ChainEdge);
594           if (CurGain.score() <= EPS)
595             continue;
596 
597           if (BestGain < CurGain ||
598               (std::abs(CurGain.score() - BestGain.score()) < EPS &&
599                compareChainPairs(ChainPred, ChainSucc, BestChainPred,
600                                  BestChainSucc))) {
601             BestGain = CurGain;
602             BestChainPred = ChainPred;
603             BestChainSucc = ChainSucc;
604           }
605         }
606       }
607 
608       // Stop merging when there is no improvement
609       if (BestGain.score() <= EPS)
610         break;
611 
612       // Merge the best pair of chains
613       mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
614                   BestGain.mergeType());
615     }
616   }
617 
618   /// Merge cold blocks to reduce code size.
619   void mergeColdChains() {
620     for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
621       // Iterating over neighbors in the reverse order to make sure original
622       // fallthrough jumps are merged first
623       size_t NumSuccs = SuccNodes[SrcBB].size();
624       for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
625         auto DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
626         auto SrcChain = AllBlocks[SrcBB].CurChain;
627         auto DstChain = AllBlocks[DstBB].CurChain;
628         if (SrcChain != DstChain && !DstChain->isEntry() &&
629             SrcChain->blocks().back()->Index == SrcBB &&
630             DstChain->blocks().front()->Index == DstBB) {
631           mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y);
632         }
633       }
634     }
635   }
636 
637   /// Compute the Ext-TSP score for a given block order and a list of jumps.
638   double extTSPScore(const MergedChain &MergedBlocks,
639                      const std::vector<Jump *> &Jumps) const {
640     if (Jumps.empty())
641       return 0.0;
642     uint64_t CurAddr = 0;
643     MergedBlocks.forEach([&](const Block *BB) {
644       BB->EstimatedAddr = CurAddr;
645       CurAddr += BB->Size;
646     });
647 
648     double Score = 0;
649     for (auto &Jump : Jumps) {
650       const auto SrcBlock = Jump->Source;
651       const auto DstBlock = Jump->Target;
652       Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
653                              DstBlock->EstimatedAddr, Jump->ExecutionCount);
654     }
655     return Score;
656   }
657 
658   /// Compute the gain of merging two chains.
659   ///
660   /// The function considers all possible ways of merging two chains and
661   /// computes the one having the largest increase in ExtTSP objective. The
662   /// result is a pair with the first element being the gain and the second
663   /// element being the corresponding merging type.
664   MergeGainTy getBestMergeGain(Chain *ChainPred, Chain *ChainSucc,
665                                ChainEdge *Edge) const {
666     if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) {
667       return Edge->getCachedMergeGain(ChainPred, ChainSucc);
668     }
669 
670     // Precompute jumps between ChainPred and ChainSucc
671     auto Jumps = Edge->jumps();
672     auto EdgePP = ChainPred->getEdge(ChainPred);
673     if (EdgePP != nullptr) {
674       Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
675     }
676     assert(!Jumps.empty() && "trying to merge chains w/o jumps");
677 
678     // The object holds the best currently chosen gain of merging the two chains
679     MergeGainTy Gain = MergeGainTy();
680 
681     /// Given a merge offset and a list of merge types, try to merge two chains
682     /// and update Gain with a better alternative
683     auto tryChainMerging = [&](size_t Offset,
684                                const std::vector<MergeTypeTy> &MergeTypes) {
685       // Skip merging corresponding to concatenation w/o splitting
686       if (Offset == 0 || Offset == ChainPred->blocks().size())
687         return;
688       // Skip merging if it breaks Forced successors
689       auto BB = ChainPred->blocks()[Offset - 1];
690       if (BB->ForcedSucc != nullptr)
691         return;
692       // Apply the merge, compute the corresponding gain, and update the best
693       // value, if the merge is beneficial
694       for (auto &MergeType : MergeTypes) {
695         Gain.updateIfLessThan(
696             computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
697       }
698     };
699 
700     // Try to concatenate two chains w/o splitting
701     Gain.updateIfLessThan(
702         computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeTy::X_Y));
703 
704     if (EnableChainSplitAlongJumps) {
705       // Attach (a part of) ChainPred before the first block of ChainSucc
706       for (auto &Jump : ChainSucc->blocks().front()->InJumps) {
707         const auto SrcBlock = Jump->Source;
708         if (SrcBlock->CurChain != ChainPred)
709           continue;
710         size_t Offset = SrcBlock->CurIndex + 1;
711         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::X2_X1_Y});
712       }
713 
714       // Attach (a part of) ChainPred after the last block of ChainSucc
715       for (auto &Jump : ChainSucc->blocks().back()->OutJumps) {
716         const auto DstBlock = Jump->Source;
717         if (DstBlock->CurChain != ChainPred)
718           continue;
719         size_t Offset = DstBlock->CurIndex;
720         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1});
721       }
722     }
723 
724     // Try to break ChainPred in various ways and concatenate with ChainSucc
725     if (ChainPred->blocks().size() <= ChainSplitThreshold) {
726       for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) {
727         // Try to split the chain in different ways. In practice, applying
728         // X2_Y_X1 merging is almost never provides benefits; thus, we exclude
729         // it from consideration to reduce the search space
730         tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1,
731                                  MergeTypeTy::X2_X1_Y});
732       }
733     }
734     Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
735     return Gain;
736   }
737 
738   /// Compute the score gain of merging two chains, respecting a given
739   /// merge 'type' and 'offset'.
740   ///
741   /// The two chains are not modified in the method.
742   MergeGainTy computeMergeGain(const Chain *ChainPred, const Chain *ChainSucc,
743                                const std::vector<Jump *> &Jumps,
744                                size_t MergeOffset,
745                                MergeTypeTy MergeType) const {
746     auto MergedBlocks = mergeBlocks(ChainPred->blocks(), ChainSucc->blocks(),
747                                     MergeOffset, MergeType);
748 
749     // Do not allow a merge that does not preserve the original entry block
750     if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
751         !MergedBlocks.getFirstBlock()->isEntry())
752       return MergeGainTy();
753 
754     // The gain for the new chain
755     auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->score();
756     return MergeGainTy(NewGainScore, MergeOffset, MergeType);
757   }
758 
759   /// Merge two chains of blocks respecting a given merge 'type' and 'offset'.
760   ///
761   /// If MergeType == 0, then the result is a concatentation of two chains.
762   /// Otherwise, the first chain is cut into two sub-chains at the offset,
763   /// and merged using all possible ways of concatenating three chains.
764   MergedChain mergeBlocks(const std::vector<Block *> &X,
765                           const std::vector<Block *> &Y, size_t MergeOffset,
766                           MergeTypeTy MergeType) const {
767     // Split the first chain, X, into X1 and X2
768     BlockIter BeginX1 = X.begin();
769     BlockIter EndX1 = X.begin() + MergeOffset;
770     BlockIter BeginX2 = X.begin() + MergeOffset;
771     BlockIter EndX2 = X.end();
772     BlockIter BeginY = Y.begin();
773     BlockIter EndY = Y.end();
774 
775     // Construct a new chain from the three existing ones
776     switch (MergeType) {
777     case MergeTypeTy::X_Y:
778       return MergedChain(BeginX1, EndX2, BeginY, EndY);
779     case MergeTypeTy::X1_Y_X2:
780       return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
781     case MergeTypeTy::Y_X2_X1:
782       return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
783     case MergeTypeTy::X2_X1_Y:
784       return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
785     }
786     llvm_unreachable("unexpected chain merge type");
787   }
788 
789   /// Merge chain From into chain Into, update the list of active chains,
790   /// adjacency information, and the corresponding cached values.
791   void mergeChains(Chain *Into, Chain *From, size_t MergeOffset,
792                    MergeTypeTy MergeType) {
793     assert(Into != From && "a chain cannot be merged with itself");
794 
795     // Merge the blocks
796     auto MergedBlocks =
797         mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType);
798     Into->merge(From, MergedBlocks.getBlocks());
799     Into->mergeEdges(From);
800     From->clear();
801 
802     // Update cached ext-tsp score for the new chain
803     auto SelfEdge = Into->getEdge(Into);
804     if (SelfEdge != nullptr) {
805       MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end());
806       Into->setScore(extTSPScore(MergedBlocks, SelfEdge->jumps()));
807     }
808 
809     // Remove chain From from the list of active chains
810     auto Iter = std::remove(HotChains.begin(), HotChains.end(), From);
811     HotChains.erase(Iter, HotChains.end());
812 
813     // Invalidate caches
814     for (auto EdgeIter : Into->edges()) {
815       EdgeIter.second->invalidateCache();
816     }
817   }
818 
819   /// Concatenate all chains into a final order of blocks.
820   void concatChains(std::vector<uint64_t> &Order) {
821     // Collect chains and calculate some stats for their sorting
822     std::vector<Chain *> SortedChains;
823     DenseMap<const Chain *, double> ChainDensity;
824     for (auto &Chain : AllChains) {
825       if (!Chain.blocks().empty()) {
826         SortedChains.push_back(&Chain);
827         // Using doubles to avoid overflow of ExecutionCount
828         double Size = 0;
829         double ExecutionCount = 0;
830         for (auto Block : Chain.blocks()) {
831           Size += static_cast<double>(Block->Size);
832           ExecutionCount += static_cast<double>(Block->ExecutionCount);
833         }
834         assert(Size > 0 && "a chain of zero size");
835         ChainDensity[&Chain] = ExecutionCount / Size;
836       }
837     }
838 
839     // Sorting chains by density in the decreasing order
840     std::stable_sort(SortedChains.begin(), SortedChains.end(),
841                      [&](const Chain *C1, const Chain *C2) {
842                        // Makre sure the original entry block is at the
843                        // beginning of the order
844                        if (C1->isEntry() != C2->isEntry()) {
845                          return C1->isEntry();
846                        }
847 
848                        const double D1 = ChainDensity[C1];
849                        const double D2 = ChainDensity[C2];
850                        // Compare by density and break ties by chain identifiers
851                        return (D1 != D2) ? (D1 > D2) : (C1->id() < C2->id());
852                      });
853 
854     // Collect the blocks in the order specified by their chains
855     Order.reserve(NumNodes);
856     for (auto Chain : SortedChains) {
857       for (auto Block : Chain->blocks()) {
858         Order.push_back(Block->Index);
859       }
860     }
861   }
862 
863 private:
864   /// The number of nodes in the graph.
865   const size_t NumNodes;
866 
867   /// Successors of each node.
868   std::vector<std::vector<uint64_t>> SuccNodes;
869 
870   /// Predecessors of each node.
871   std::vector<std::vector<uint64_t>> PredNodes;
872 
873   /// All basic blocks.
874   std::vector<Block> AllBlocks;
875 
876   /// All jumps between blocks.
877   std::vector<Jump> AllJumps;
878 
879   /// All chains of basic blocks.
880   std::vector<Chain> AllChains;
881 
882   /// All edges between chains.
883   std::vector<ChainEdge> AllEdges;
884 
885   /// Active chains. The vector gets updated at runtime when chains are merged.
886   std::vector<Chain *> HotChains;
887 };
888 
889 } // end of anonymous namespace
890 
891 std::vector<uint64_t> llvm::applyExtTspLayout(
892     const std::vector<uint64_t> &NodeSizes,
893     const std::vector<uint64_t> &NodeCounts,
894     const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
895   size_t NumNodes = NodeSizes.size();
896 
897   // Verify correctness of the input data.
898   assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
899   assert(NumNodes > 2 && "Incorrect input");
900 
901   // Apply the reordering algorithm.
902   auto Alg = ExtTSPImpl(NumNodes, NodeSizes, NodeCounts, EdgeCounts);
903   std::vector<uint64_t> Result;
904   Alg.run(Result);
905 
906   // Verify correctness of the output.
907   assert(Result.front() == 0 && "Original entry point is not preserved");
908   assert(Result.size() == NumNodes && "Incorrect size of reordered layout");
909   return Result;
910 }
911 
912 double llvm::calcExtTspScore(
913     const std::vector<uint64_t> &Order, const std::vector<uint64_t> &NodeSizes,
914     const std::vector<uint64_t> &NodeCounts,
915     const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
916   // Estimate addresses of the blocks in memory
917   auto Addr = std::vector<uint64_t>(NodeSizes.size(), 0);
918   for (size_t Idx = 1; Idx < Order.size(); Idx++) {
919     Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
920   }
921 
922   // Increase the score for each jump
923   double Score = 0;
924   for (auto It : EdgeCounts) {
925     auto Pred = It.first.first;
926     auto Succ = It.first.second;
927     uint64_t Count = It.second;
928     Score += extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count);
929   }
930   return Score;
931 }
932 
933 double llvm::calcExtTspScore(
934     const std::vector<uint64_t> &NodeSizes,
935     const std::vector<uint64_t> &NodeCounts,
936     const DenseMap<std::pair<uint64_t, uint64_t>, uint64_t> &EdgeCounts) {
937   auto Order = std::vector<uint64_t>(NodeSizes.size());
938   for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
939     Order[Idx] = Idx;
940   }
941   return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
942 }
943