xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision d35b039af944f68fe99bb3ad2f0c6d5ec7917096)
1  //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the interface to tear out a code region, such as an
10  // individual loop or a parallel section, into a new function, replacing it with
11  // a call to the new function.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "llvm/Transforms/Utils/CodeExtractor.h"
16  #include "llvm/ADT/ArrayRef.h"
17  #include "llvm/ADT/DenseMap.h"
18  #include "llvm/ADT/STLExtras.h"
19  #include "llvm/ADT/SetVector.h"
20  #include "llvm/ADT/SmallPtrSet.h"
21  #include "llvm/ADT/SmallVector.h"
22  #include "llvm/Analysis/AssumptionCache.h"
23  #include "llvm/Analysis/BlockFrequencyInfo.h"
24  #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25  #include "llvm/Analysis/BranchProbabilityInfo.h"
26  #include "llvm/Analysis/LoopInfo.h"
27  #include "llvm/IR/Argument.h"
28  #include "llvm/IR/Attributes.h"
29  #include "llvm/IR/BasicBlock.h"
30  #include "llvm/IR/CFG.h"
31  #include "llvm/IR/Constant.h"
32  #include "llvm/IR/Constants.h"
33  #include "llvm/IR/DIBuilder.h"
34  #include "llvm/IR/DataLayout.h"
35  #include "llvm/IR/DebugInfo.h"
36  #include "llvm/IR/DebugInfoMetadata.h"
37  #include "llvm/IR/DerivedTypes.h"
38  #include "llvm/IR/Dominators.h"
39  #include "llvm/IR/Function.h"
40  #include "llvm/IR/GlobalValue.h"
41  #include "llvm/IR/InstIterator.h"
42  #include "llvm/IR/InstrTypes.h"
43  #include "llvm/IR/Instruction.h"
44  #include "llvm/IR/Instructions.h"
45  #include "llvm/IR/IntrinsicInst.h"
46  #include "llvm/IR/Intrinsics.h"
47  #include "llvm/IR/LLVMContext.h"
48  #include "llvm/IR/MDBuilder.h"
49  #include "llvm/IR/Module.h"
50  #include "llvm/IR/PatternMatch.h"
51  #include "llvm/IR/Type.h"
52  #include "llvm/IR/User.h"
53  #include "llvm/IR/Value.h"
54  #include "llvm/IR/Verifier.h"
55  #include "llvm/Support/BlockFrequency.h"
56  #include "llvm/Support/BranchProbability.h"
57  #include "llvm/Support/Casting.h"
58  #include "llvm/Support/CommandLine.h"
59  #include "llvm/Support/Debug.h"
60  #include "llvm/Support/ErrorHandling.h"
61  #include "llvm/Support/raw_ostream.h"
62  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
63  #include <cassert>
64  #include <cstdint>
65  #include <iterator>
66  #include <map>
67  #include <utility>
68  #include <vector>
69  
70  using namespace llvm;
71  using namespace llvm::PatternMatch;
72  using ProfileCount = Function::ProfileCount;
73  
74  #define DEBUG_TYPE "code-extractor"
75  
76  // Provide a command-line option to aggregate function arguments into a struct
77  // for functions produced by the code extractor. This is useful when converting
78  // extracted functions to pthread-based code, as only one argument (void*) can
79  // be passed in to pthread_create().
80  static cl::opt<bool>
81  AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82                   cl::desc("Aggregate arguments to code-extracted functions"));
83  
84  /// Test whether a block is valid for extraction.
85  static bool isBlockValidForExtraction(const BasicBlock &BB,
86                                        const SetVector<BasicBlock *> &Result,
87                                        bool AllowVarArgs, bool AllowAlloca) {
88    // taking the address of a basic block moved to another function is illegal
89    if (BB.hasAddressTaken())
90      return false;
91  
92    // don't hoist code that uses another basicblock address, as it's likely to
93    // lead to unexpected behavior, like cross-function jumps
94    SmallPtrSet<User const *, 16> Visited;
95    SmallVector<User const *, 16> ToVisit;
96  
97    for (Instruction const &Inst : BB)
98      ToVisit.push_back(&Inst);
99  
100    while (!ToVisit.empty()) {
101      User const *Curr = ToVisit.pop_back_val();
102      if (!Visited.insert(Curr).second)
103        continue;
104      if (isa<BlockAddress const>(Curr))
105        return false; // even a reference to self is likely to be not compatible
106  
107      if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108        continue;
109  
110      for (auto const &U : Curr->operands()) {
111        if (auto *UU = dyn_cast<User>(U))
112          ToVisit.push_back(UU);
113      }
114    }
115  
116    // If explicitly requested, allow vastart and alloca. For invoke instructions
117    // verify that extraction is valid.
118    for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119      if (isa<AllocaInst>(I)) {
120         if (!AllowAlloca)
121           return false;
122         continue;
123      }
124  
125      if (const auto *II = dyn_cast<InvokeInst>(I)) {
126        // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127        // must be a part of the subgraph which is being extracted.
128        if (auto *UBB = II->getUnwindDest())
129          if (!Result.count(UBB))
130            return false;
131        continue;
132      }
133  
134      // All catch handlers of a catchswitch instruction as well as the unwind
135      // destination must be in the subgraph.
136      if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137        if (auto *UBB = CSI->getUnwindDest())
138          if (!Result.count(UBB))
139            return false;
140        for (const auto *HBB : CSI->handlers())
141          if (!Result.count(const_cast<BasicBlock*>(HBB)))
142            return false;
143        continue;
144      }
145  
146      // Make sure that entire catch handler is within subgraph. It is sufficient
147      // to check that catch return's block is in the list.
148      if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149        for (const auto *U : CPI->users())
150          if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151            if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152              return false;
153        continue;
154      }
155  
156      // And do similar checks for cleanup handler - the entire handler must be
157      // in subgraph which is going to be extracted. For cleanup return should
158      // additionally check that the unwind destination is also in the subgraph.
159      if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160        for (const auto *U : CPI->users())
161          if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162            if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163              return false;
164        continue;
165      }
166      if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167        if (auto *UBB = CRI->getUnwindDest())
168          if (!Result.count(UBB))
169            return false;
170        continue;
171      }
172  
173      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174        if (const Function *F = CI->getCalledFunction()) {
175          auto IID = F->getIntrinsicID();
176          if (IID == Intrinsic::vastart) {
177            if (AllowVarArgs)
178              continue;
179            else
180              return false;
181          }
182  
183          // Currently, we miscompile outlined copies of eh_typid_for. There are
184          // proposals for fixing this in llvm.org/PR39545.
185          if (IID == Intrinsic::eh_typeid_for)
186            return false;
187        }
188      }
189    }
190  
191    return true;
192  }
193  
194  /// Build a set of blocks to extract if the input blocks are viable.
195  static SetVector<BasicBlock *>
196  buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197                          bool AllowVarArgs, bool AllowAlloca) {
198    assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199    SetVector<BasicBlock *> Result;
200  
201    // Loop over the blocks, adding them to our set-vector, and aborting with an
202    // empty set if we encounter invalid blocks.
203    for (BasicBlock *BB : BBs) {
204      // If this block is dead, don't process it.
205      if (DT && !DT->isReachableFromEntry(BB))
206        continue;
207  
208      if (!Result.insert(BB))
209        llvm_unreachable("Repeated basic blocks in extraction input");
210    }
211  
212    LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213                      << '\n');
214  
215    for (auto *BB : Result) {
216      if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217        return {};
218  
219      // Make sure that the first block is not a landing pad.
220      if (BB == Result.front()) {
221        if (BB->isEHPad()) {
222          LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223          return {};
224        }
225        continue;
226      }
227  
228      // All blocks other than the first must not have predecessors outside of
229      // the subgraph which is being extracted.
230      for (auto *PBB : predecessors(BB))
231        if (!Result.count(PBB)) {
232          LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233                               "outside the region except for the first block!\n"
234                            << "Problematic source BB: " << BB->getName() << "\n"
235                            << "Problematic destination BB: " << PBB->getName()
236                            << "\n");
237          return {};
238        }
239    }
240  
241    return Result;
242  }
243  
244  CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245                               bool AggregateArgs, BlockFrequencyInfo *BFI,
246                               BranchProbabilityInfo *BPI, AssumptionCache *AC,
247                               bool AllowVarArgs, bool AllowAlloca,
248                               BasicBlock *AllocationBlock, std::string Suffix,
249                               bool ArgsInZeroAddressSpace)
250      : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
251        BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
252        AllowVarArgs(AllowVarArgs),
253        Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
254        Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}
255  
256  CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
257                               BlockFrequencyInfo *BFI,
258                               BranchProbabilityInfo *BPI, AssumptionCache *AC,
259                               std::string Suffix)
260      : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
261        BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
262        Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
263                                       /* AllowVarArgs */ false,
264                                       /* AllowAlloca */ false)),
265        Suffix(Suffix) {}
266  
267  /// definedInRegion - Return true if the specified value is defined in the
268  /// extracted region.
269  static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
270    if (Instruction *I = dyn_cast<Instruction>(V))
271      if (Blocks.count(I->getParent()))
272        return true;
273    return false;
274  }
275  
276  /// definedInCaller - Return true if the specified value is defined in the
277  /// function being code extracted, but not in the region being extracted.
278  /// These values must be passed in as live-ins to the function.
279  static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
280    if (isa<Argument>(V)) return true;
281    if (Instruction *I = dyn_cast<Instruction>(V))
282      if (!Blocks.count(I->getParent()))
283        return true;
284    return false;
285  }
286  
287  static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
288    BasicBlock *CommonExitBlock = nullptr;
289    auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
290      for (auto *Succ : successors(Block)) {
291        // Internal edges, ok.
292        if (Blocks.count(Succ))
293          continue;
294        if (!CommonExitBlock) {
295          CommonExitBlock = Succ;
296          continue;
297        }
298        if (CommonExitBlock != Succ)
299          return true;
300      }
301      return false;
302    };
303  
304    if (any_of(Blocks, hasNonCommonExitSucc))
305      return nullptr;
306  
307    return CommonExitBlock;
308  }
309  
310  CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
311    for (BasicBlock &BB : F) {
312      for (Instruction &II : BB.instructionsWithoutDebug())
313        if (auto *AI = dyn_cast<AllocaInst>(&II))
314          Allocas.push_back(AI);
315  
316      findSideEffectInfoForBlock(BB);
317    }
318  }
319  
320  void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
321    for (Instruction &II : BB.instructionsWithoutDebug()) {
322      unsigned Opcode = II.getOpcode();
323      Value *MemAddr = nullptr;
324      switch (Opcode) {
325      case Instruction::Store:
326      case Instruction::Load: {
327        if (Opcode == Instruction::Store) {
328          StoreInst *SI = cast<StoreInst>(&II);
329          MemAddr = SI->getPointerOperand();
330        } else {
331          LoadInst *LI = cast<LoadInst>(&II);
332          MemAddr = LI->getPointerOperand();
333        }
334        // Global variable can not be aliased with locals.
335        if (isa<Constant>(MemAddr))
336          break;
337        Value *Base = MemAddr->stripInBoundsConstantOffsets();
338        if (!isa<AllocaInst>(Base)) {
339          SideEffectingBlocks.insert(&BB);
340          return;
341        }
342        BaseMemAddrs[&BB].insert(Base);
343        break;
344      }
345      default: {
346        IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
347        if (IntrInst) {
348          if (IntrInst->isLifetimeStartOrEnd())
349            break;
350          SideEffectingBlocks.insert(&BB);
351          return;
352        }
353        // Treat all the other cases conservatively if it has side effects.
354        if (II.mayHaveSideEffects()) {
355          SideEffectingBlocks.insert(&BB);
356          return;
357        }
358      }
359      }
360    }
361  }
362  
363  bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
364      BasicBlock &BB, AllocaInst *Addr) const {
365    if (SideEffectingBlocks.count(&BB))
366      return true;
367    auto It = BaseMemAddrs.find(&BB);
368    if (It != BaseMemAddrs.end())
369      return It->second.count(Addr);
370    return false;
371  }
372  
373  bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
374      const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
375    AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
376    Function *Func = (*Blocks.begin())->getParent();
377    for (BasicBlock &BB : *Func) {
378      if (Blocks.count(&BB))
379        continue;
380      if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
381        return false;
382    }
383    return true;
384  }
385  
386  BasicBlock *
387  CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
388    BasicBlock *SinglePredFromOutlineRegion = nullptr;
389    assert(!Blocks.count(CommonExitBlock) &&
390           "Expect a block outside the region!");
391    for (auto *Pred : predecessors(CommonExitBlock)) {
392      if (!Blocks.count(Pred))
393        continue;
394      if (!SinglePredFromOutlineRegion) {
395        SinglePredFromOutlineRegion = Pred;
396      } else if (SinglePredFromOutlineRegion != Pred) {
397        SinglePredFromOutlineRegion = nullptr;
398        break;
399      }
400    }
401  
402    if (SinglePredFromOutlineRegion)
403      return SinglePredFromOutlineRegion;
404  
405  #ifndef NDEBUG
406    auto getFirstPHI = [](BasicBlock *BB) {
407      BasicBlock::iterator I = BB->begin();
408      PHINode *FirstPhi = nullptr;
409      while (I != BB->end()) {
410        PHINode *Phi = dyn_cast<PHINode>(I);
411        if (!Phi)
412          break;
413        if (!FirstPhi) {
414          FirstPhi = Phi;
415          break;
416        }
417      }
418      return FirstPhi;
419    };
420    // If there are any phi nodes, the single pred either exists or has already
421    // be created before code extraction.
422    assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
423  #endif
424  
425    BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
426        CommonExitBlock->getFirstNonPHI()->getIterator());
427  
428    for (BasicBlock *Pred :
429         llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
430      if (Blocks.count(Pred))
431        continue;
432      Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
433    }
434    // Now add the old exit block to the outline region.
435    Blocks.insert(CommonExitBlock);
436    OldTargets.push_back(NewExitBlock);
437    return CommonExitBlock;
438  }
439  
440  // Find the pair of life time markers for address 'Addr' that are either
441  // defined inside the outline region or can legally be shrinkwrapped into the
442  // outline region. If there are not other untracked uses of the address, return
443  // the pair of markers if found; otherwise return a pair of nullptr.
444  CodeExtractor::LifetimeMarkerInfo
445  CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
446                                    Instruction *Addr,
447                                    BasicBlock *ExitBlock) const {
448    LifetimeMarkerInfo Info;
449  
450    for (User *U : Addr->users()) {
451      IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
452      if (IntrInst) {
453        // We don't model addresses with multiple start/end markers, but the
454        // markers do not need to be in the region.
455        if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
456          if (Info.LifeStart)
457            return {};
458          Info.LifeStart = IntrInst;
459          continue;
460        }
461        if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
462          if (Info.LifeEnd)
463            return {};
464          Info.LifeEnd = IntrInst;
465          continue;
466        }
467        // At this point, permit debug uses outside of the region.
468        // This is fixed in a later call to fixupDebugInfoPostExtraction().
469        if (isa<DbgInfoIntrinsic>(IntrInst))
470          continue;
471      }
472      // Find untracked uses of the address, bail.
473      if (!definedInRegion(Blocks, U))
474        return {};
475    }
476  
477    if (!Info.LifeStart || !Info.LifeEnd)
478      return {};
479  
480    Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
481    Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
482    // Do legality check.
483    if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
484        !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
485      return {};
486  
487    // Check to see if we have a place to do hoisting, if not, bail.
488    if (Info.HoistLifeEnd && !ExitBlock)
489      return {};
490  
491    return Info;
492  }
493  
494  void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
495                                  ValueSet &SinkCands, ValueSet &HoistCands,
496                                  BasicBlock *&ExitBlock) const {
497    Function *Func = (*Blocks.begin())->getParent();
498    ExitBlock = getCommonExitBlock(Blocks);
499  
500    auto moveOrIgnoreLifetimeMarkers =
501        [&](const LifetimeMarkerInfo &LMI) -> bool {
502      if (!LMI.LifeStart)
503        return false;
504      if (LMI.SinkLifeStart) {
505        LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
506                          << "\n");
507        SinkCands.insert(LMI.LifeStart);
508      }
509      if (LMI.HoistLifeEnd) {
510        LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
511        HoistCands.insert(LMI.LifeEnd);
512      }
513      return true;
514    };
515  
516    // Look up allocas in the original function in CodeExtractorAnalysisCache, as
517    // this is much faster than walking all the instructions.
518    for (AllocaInst *AI : CEAC.getAllocas()) {
519      BasicBlock *BB = AI->getParent();
520      if (Blocks.count(BB))
521        continue;
522  
523      // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
524      // check whether it is actually still in the original function.
525      Function *AIFunc = BB->getParent();
526      if (AIFunc != Func)
527        continue;
528  
529      LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
530      bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
531      if (Moved) {
532        LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
533        SinkCands.insert(AI);
534        continue;
535      }
536  
537      // Find bitcasts in the outlined region that have lifetime marker users
538      // outside that region. Replace the lifetime marker use with an
539      // outside region bitcast to avoid unnecessary alloca/reload instructions
540      // and extra lifetime markers.
541      SmallVector<Instruction *, 2> LifetimeBitcastUsers;
542      for (User *U : AI->users()) {
543        if (!definedInRegion(Blocks, U))
544          continue;
545  
546        if (U->stripInBoundsConstantOffsets() != AI)
547          continue;
548  
549        Instruction *Bitcast = cast<Instruction>(U);
550        for (User *BU : Bitcast->users()) {
551          IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
552          if (!IntrInst)
553            continue;
554  
555          if (!IntrInst->isLifetimeStartOrEnd())
556            continue;
557  
558          if (definedInRegion(Blocks, IntrInst))
559            continue;
560  
561          LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
562                            << *Bitcast << " in out-of-region lifetime marker "
563                            << *IntrInst << "\n");
564          LifetimeBitcastUsers.push_back(IntrInst);
565        }
566      }
567  
568      for (Instruction *I : LifetimeBitcastUsers) {
569        Module *M = AIFunc->getParent();
570        LLVMContext &Ctx = M->getContext();
571        auto *Int8PtrTy = PointerType::getUnqual(Ctx);
572        CastInst *CastI =
573            CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator());
574        I->replaceUsesOfWith(I->getOperand(1), CastI);
575      }
576  
577      // Follow any bitcasts.
578      SmallVector<Instruction *, 2> Bitcasts;
579      SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
580      for (User *U : AI->users()) {
581        if (U->stripInBoundsConstantOffsets() == AI) {
582          Instruction *Bitcast = cast<Instruction>(U);
583          LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
584          if (LMI.LifeStart) {
585            Bitcasts.push_back(Bitcast);
586            BitcastLifetimeInfo.push_back(LMI);
587            continue;
588          }
589        }
590  
591        // Found unknown use of AI.
592        if (!definedInRegion(Blocks, U)) {
593          Bitcasts.clear();
594          break;
595        }
596      }
597  
598      // Either no bitcasts reference the alloca or there are unknown uses.
599      if (Bitcasts.empty())
600        continue;
601  
602      LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
603      SinkCands.insert(AI);
604      for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
605        Instruction *BitcastAddr = Bitcasts[I];
606        const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
607        assert(LMI.LifeStart &&
608               "Unsafe to sink bitcast without lifetime markers");
609        moveOrIgnoreLifetimeMarkers(LMI);
610        if (!definedInRegion(Blocks, BitcastAddr)) {
611          LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
612                            << "\n");
613          SinkCands.insert(BitcastAddr);
614        }
615      }
616    }
617  }
618  
619  bool CodeExtractor::isEligible() const {
620    if (Blocks.empty())
621      return false;
622    BasicBlock *Header = *Blocks.begin();
623    Function *F = Header->getParent();
624  
625    // For functions with varargs, check that varargs handling is only done in the
626    // outlined function, i.e vastart and vaend are only used in outlined blocks.
627    if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
628      auto containsVarArgIntrinsic = [](const Instruction &I) {
629        if (const CallInst *CI = dyn_cast<CallInst>(&I))
630          if (const Function *Callee = CI->getCalledFunction())
631            return Callee->getIntrinsicID() == Intrinsic::vastart ||
632                   Callee->getIntrinsicID() == Intrinsic::vaend;
633        return false;
634      };
635  
636      for (auto &BB : *F) {
637        if (Blocks.count(&BB))
638          continue;
639        if (llvm::any_of(BB, containsVarArgIntrinsic))
640          return false;
641      }
642    }
643    return true;
644  }
645  
646  void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
647                                        const ValueSet &SinkCands) const {
648    for (BasicBlock *BB : Blocks) {
649      // If a used value is defined outside the region, it's an input.  If an
650      // instruction is used outside the region, it's an output.
651      for (Instruction &II : *BB) {
652        for (auto &OI : II.operands()) {
653          Value *V = OI;
654          if (!SinkCands.count(V) && definedInCaller(Blocks, V))
655            Inputs.insert(V);
656        }
657  
658        for (User *U : II.users())
659          if (!definedInRegion(Blocks, U)) {
660            Outputs.insert(&II);
661            break;
662          }
663      }
664    }
665  }
666  
667  /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
668  /// of the region, we need to split the entry block of the region so that the
669  /// PHI node is easier to deal with.
670  void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
671    unsigned NumPredsFromRegion = 0;
672    unsigned NumPredsOutsideRegion = 0;
673  
674    if (Header != &Header->getParent()->getEntryBlock()) {
675      PHINode *PN = dyn_cast<PHINode>(Header->begin());
676      if (!PN) return;  // No PHI nodes.
677  
678      // If the header node contains any PHI nodes, check to see if there is more
679      // than one entry from outside the region.  If so, we need to sever the
680      // header block into two.
681      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
682        if (Blocks.count(PN->getIncomingBlock(i)))
683          ++NumPredsFromRegion;
684        else
685          ++NumPredsOutsideRegion;
686  
687      // If there is one (or fewer) predecessor from outside the region, we don't
688      // need to do anything special.
689      if (NumPredsOutsideRegion <= 1) return;
690    }
691  
692    // Otherwise, we need to split the header block into two pieces: one
693    // containing PHI nodes merging values from outside of the region, and a
694    // second that contains all of the code for the block and merges back any
695    // incoming values from inside of the region.
696    BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
697  
698    // We only want to code extract the second block now, and it becomes the new
699    // header of the region.
700    BasicBlock *OldPred = Header;
701    Blocks.remove(OldPred);
702    Blocks.insert(NewBB);
703    Header = NewBB;
704  
705    // Okay, now we need to adjust the PHI nodes and any branches from within the
706    // region to go to the new header block instead of the old header block.
707    if (NumPredsFromRegion) {
708      PHINode *PN = cast<PHINode>(OldPred->begin());
709      // Loop over all of the predecessors of OldPred that are in the region,
710      // changing them to branch to NewBB instead.
711      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
712        if (Blocks.count(PN->getIncomingBlock(i))) {
713          Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
714          TI->replaceUsesOfWith(OldPred, NewBB);
715        }
716  
717      // Okay, everything within the region is now branching to the right block, we
718      // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
719      BasicBlock::iterator AfterPHIs;
720      for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
721        PHINode *PN = cast<PHINode>(AfterPHIs);
722        // Create a new PHI node in the new region, which has an incoming value
723        // from OldPred of PN.
724        PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
725                                         PN->getName() + ".ce");
726        NewPN->insertBefore(NewBB->begin());
727        PN->replaceAllUsesWith(NewPN);
728        NewPN->addIncoming(PN, OldPred);
729  
730        // Loop over all of the incoming value in PN, moving them to NewPN if they
731        // are from the extracted region.
732        for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
733          if (Blocks.count(PN->getIncomingBlock(i))) {
734            NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
735            PN->removeIncomingValue(i);
736            --i;
737          }
738        }
739      }
740    }
741  }
742  
743  /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
744  /// outlined region, we split these PHIs on two: one with inputs from region
745  /// and other with remaining incoming blocks; then first PHIs are placed in
746  /// outlined region.
747  void CodeExtractor::severSplitPHINodesOfExits(
748      const SetVector<BasicBlock *> &Exits) {
749    for (BasicBlock *ExitBB : Exits) {
750      BasicBlock *NewBB = nullptr;
751  
752      for (PHINode &PN : ExitBB->phis()) {
753        // Find all incoming values from the outlining region.
754        SmallVector<unsigned, 2> IncomingVals;
755        for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
756          if (Blocks.count(PN.getIncomingBlock(i)))
757            IncomingVals.push_back(i);
758  
759        // Do not process PHI if there is one (or fewer) predecessor from region.
760        // If PHI has exactly one predecessor from region, only this one incoming
761        // will be replaced on codeRepl block, so it should be safe to skip PHI.
762        if (IncomingVals.size() <= 1)
763          continue;
764  
765        // Create block for new PHIs and add it to the list of outlined if it
766        // wasn't done before.
767        if (!NewBB) {
768          NewBB = BasicBlock::Create(ExitBB->getContext(),
769                                     ExitBB->getName() + ".split",
770                                     ExitBB->getParent(), ExitBB);
771          NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat;
772          SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
773          for (BasicBlock *PredBB : Preds)
774            if (Blocks.count(PredBB))
775              PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
776          BranchInst::Create(ExitBB, NewBB);
777          Blocks.insert(NewBB);
778        }
779  
780        // Split this PHI.
781        PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
782                                         PN.getName() + ".ce");
783        NewPN->insertBefore(NewBB->getFirstNonPHIIt());
784        for (unsigned i : IncomingVals)
785          NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
786        for (unsigned i : reverse(IncomingVals))
787          PN.removeIncomingValue(i, false);
788        PN.addIncoming(NewPN, NewBB);
789      }
790    }
791  }
792  
793  void CodeExtractor::splitReturnBlocks() {
794    for (BasicBlock *Block : Blocks)
795      if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
796        BasicBlock *New =
797            Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
798        if (DT) {
799          // Old dominates New. New node dominates all other nodes dominated
800          // by Old.
801          DomTreeNode *OldNode = DT->getNode(Block);
802          SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
803                                                 OldNode->end());
804  
805          DomTreeNode *NewNode = DT->addNewBlock(New, Block);
806  
807          for (DomTreeNode *I : Children)
808            DT->changeImmediateDominator(I, NewNode);
809        }
810      }
811  }
812  
813  /// constructFunction - make a function based on inputs and outputs, as follows:
814  /// f(in0, ..., inN, out0, ..., outN)
815  Function *CodeExtractor::constructFunction(const ValueSet &inputs,
816                                             const ValueSet &outputs,
817                                             BasicBlock *header,
818                                             BasicBlock *newRootNode,
819                                             BasicBlock *newHeader,
820                                             Function *oldFunction,
821                                             Module *M) {
822    LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
823    LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
824  
825    // This function returns unsigned, outputs will go back by reference.
826    switch (NumExitBlocks) {
827    case 0:
828    case 1: RetTy = Type::getVoidTy(header->getContext()); break;
829    case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
830    default: RetTy = Type::getInt16Ty(header->getContext()); break;
831    }
832  
833    std::vector<Type *> ParamTy;
834    std::vector<Type *> AggParamTy;
835    ValueSet StructValues;
836    const DataLayout &DL = M->getDataLayout();
837  
838    // Add the types of the input values to the function's argument list
839    for (Value *value : inputs) {
840      LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
841      if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
842        AggParamTy.push_back(value->getType());
843        StructValues.insert(value);
844      } else
845        ParamTy.push_back(value->getType());
846    }
847  
848    // Add the types of the output values to the function's argument list.
849    for (Value *output : outputs) {
850      LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
851      if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
852        AggParamTy.push_back(output->getType());
853        StructValues.insert(output);
854      } else
855        ParamTy.push_back(
856            PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
857    }
858  
859    assert(
860        (ParamTy.size() + AggParamTy.size()) ==
861            (inputs.size() + outputs.size()) &&
862        "Number of scalar and aggregate params does not match inputs, outputs");
863    assert((StructValues.empty() || AggregateArgs) &&
864           "Expeced StructValues only with AggregateArgs set");
865  
866    // Concatenate scalar and aggregate params in ParamTy.
867    size_t NumScalarParams = ParamTy.size();
868    StructType *StructTy = nullptr;
869    if (AggregateArgs && !AggParamTy.empty()) {
870      StructTy = StructType::get(M->getContext(), AggParamTy);
871      ParamTy.push_back(PointerType::get(
872          StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
873    }
874  
875    LLVM_DEBUG({
876      dbgs() << "Function type: " << *RetTy << " f(";
877      for (Type *i : ParamTy)
878        dbgs() << *i << ", ";
879      dbgs() << ")\n";
880    });
881  
882    FunctionType *funcType = FunctionType::get(
883        RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
884  
885    std::string SuffixToUse =
886        Suffix.empty()
887            ? (header->getName().empty() ? "extracted" : header->getName().str())
888            : Suffix;
889    // Create the new function
890    Function *newFunction = Function::Create(
891        funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
892        oldFunction->getName() + "." + SuffixToUse, M);
893    newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
894  
895    // Inherit all of the target dependent attributes and white-listed
896    // target independent attributes.
897    //  (e.g. If the extracted region contains a call to an x86.sse
898    //  instruction we need to make sure that the extracted region has the
899    //  "target-features" attribute allowing it to be lowered.
900    // FIXME: This should be changed to check to see if a specific
901    //           attribute can not be inherited.
902    for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
903      if (Attr.isStringAttribute()) {
904        if (Attr.getKindAsString() == "thunk")
905          continue;
906      } else
907        switch (Attr.getKindAsEnum()) {
908        // Those attributes cannot be propagated safely. Explicitly list them
909        // here so we get a warning if new attributes are added.
910        case Attribute::AllocSize:
911        case Attribute::Builtin:
912        case Attribute::Convergent:
913        case Attribute::JumpTable:
914        case Attribute::Naked:
915        case Attribute::NoBuiltin:
916        case Attribute::NoMerge:
917        case Attribute::NoReturn:
918        case Attribute::NoSync:
919        case Attribute::ReturnsTwice:
920        case Attribute::Speculatable:
921        case Attribute::StackAlignment:
922        case Attribute::WillReturn:
923        case Attribute::AllocKind:
924        case Attribute::PresplitCoroutine:
925        case Attribute::Memory:
926        case Attribute::NoFPClass:
927        case Attribute::CoroDestroyOnlyWhenComplete:
928          continue;
929        // Those attributes should be safe to propagate to the extracted function.
930        case Attribute::AlwaysInline:
931        case Attribute::Cold:
932        case Attribute::DisableSanitizerInstrumentation:
933        case Attribute::FnRetThunkExtern:
934        case Attribute::Hot:
935        case Attribute::HybridPatchable:
936        case Attribute::NoRecurse:
937        case Attribute::InlineHint:
938        case Attribute::MinSize:
939        case Attribute::NoCallback:
940        case Attribute::NoDuplicate:
941        case Attribute::NoFree:
942        case Attribute::NoImplicitFloat:
943        case Attribute::NoInline:
944        case Attribute::NonLazyBind:
945        case Attribute::NoRedZone:
946        case Attribute::NoUnwind:
947        case Attribute::NoSanitizeBounds:
948        case Attribute::NoSanitizeCoverage:
949        case Attribute::NullPointerIsValid:
950        case Attribute::OptimizeForDebugging:
951        case Attribute::OptForFuzzing:
952        case Attribute::OptimizeNone:
953        case Attribute::OptimizeForSize:
954        case Attribute::SafeStack:
955        case Attribute::ShadowCallStack:
956        case Attribute::SanitizeAddress:
957        case Attribute::SanitizeMemory:
958        case Attribute::SanitizeNumericalStability:
959        case Attribute::SanitizeThread:
960        case Attribute::SanitizeHWAddress:
961        case Attribute::SanitizeMemTag:
962        case Attribute::SpeculativeLoadHardening:
963        case Attribute::StackProtect:
964        case Attribute::StackProtectReq:
965        case Attribute::StackProtectStrong:
966        case Attribute::StrictFP:
967        case Attribute::UWTable:
968        case Attribute::VScaleRange:
969        case Attribute::NoCfCheck:
970        case Attribute::MustProgress:
971        case Attribute::NoProfile:
972        case Attribute::SkipProfile:
973          break;
974        // These attributes cannot be applied to functions.
975        case Attribute::Alignment:
976        case Attribute::AllocatedPointer:
977        case Attribute::AllocAlign:
978        case Attribute::ByVal:
979        case Attribute::Dereferenceable:
980        case Attribute::DereferenceableOrNull:
981        case Attribute::ElementType:
982        case Attribute::InAlloca:
983        case Attribute::InReg:
984        case Attribute::Nest:
985        case Attribute::NoAlias:
986        case Attribute::NoCapture:
987        case Attribute::NoUndef:
988        case Attribute::NonNull:
989        case Attribute::Preallocated:
990        case Attribute::ReadNone:
991        case Attribute::ReadOnly:
992        case Attribute::Returned:
993        case Attribute::SExt:
994        case Attribute::StructRet:
995        case Attribute::SwiftError:
996        case Attribute::SwiftSelf:
997        case Attribute::SwiftAsync:
998        case Attribute::ZExt:
999        case Attribute::ImmArg:
1000        case Attribute::ByRef:
1001        case Attribute::WriteOnly:
1002        case Attribute::Writable:
1003        case Attribute::DeadOnUnwind:
1004        case Attribute::Range:
1005        case Attribute::Initializes:
1006        //  These are not really attributes.
1007        case Attribute::None:
1008        case Attribute::EndAttrKinds:
1009        case Attribute::EmptyKey:
1010        case Attribute::TombstoneKey:
1011          llvm_unreachable("Not a function attribute");
1012        }
1013  
1014      newFunction->addFnAttr(Attr);
1015    }
1016  
1017    if (NumExitBlocks == 0) {
1018      // Mark the new function `noreturn` if applicable. Terminators which resume
1019      // exception propagation are treated as returning instructions. This is to
1020      // avoid inserting traps after calls to outlined functions which unwind.
1021      if (none_of(Blocks, [](const BasicBlock *BB) {
1022            const Instruction *Term = BB->getTerminator();
1023            return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1024          }))
1025        newFunction->setDoesNotReturn();
1026    }
1027  
1028    newFunction->insert(newFunction->end(), newRootNode);
1029  
1030    // Create scalar and aggregate iterators to name all of the arguments we
1031    // inserted.
1032    Function::arg_iterator ScalarAI = newFunction->arg_begin();
1033    Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1034  
1035    // Rewrite all users of the inputs in the extracted region to use the
1036    // arguments (or appropriate addressing into struct) instead.
1037    for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1038      Value *RewriteVal;
1039      if (AggregateArgs && StructValues.contains(inputs[i])) {
1040        Value *Idx[2];
1041        Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1042        Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1043        BasicBlock::iterator TI = newFunction->begin()->getTerminator()->getIterator();
1044        GetElementPtrInst *GEP = GetElementPtrInst::Create(
1045            StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1046        RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1047                                  "loadgep_" + inputs[i]->getName(), TI);
1048        ++aggIdx;
1049      } else
1050        RewriteVal = &*ScalarAI++;
1051  
1052      std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1053      for (User *use : Users)
1054        if (Instruction *inst = dyn_cast<Instruction>(use))
1055          if (Blocks.count(inst->getParent()))
1056            inst->replaceUsesOfWith(inputs[i], RewriteVal);
1057    }
1058  
1059    // Set names for input and output arguments.
1060    if (NumScalarParams) {
1061      ScalarAI = newFunction->arg_begin();
1062      for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1063        if (!StructValues.contains(inputs[i]))
1064          ScalarAI->setName(inputs[i]->getName());
1065      for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1066        if (!StructValues.contains(outputs[i]))
1067          ScalarAI->setName(outputs[i]->getName() + ".out");
1068    }
1069  
1070    // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1071    // within the new function. This must be done before we lose track of which
1072    // blocks were originally in the code region.
1073    std::vector<User *> Users(header->user_begin(), header->user_end());
1074    for (auto &U : Users)
1075      // The BasicBlock which contains the branch is not in the region
1076      // modify the branch target to a new block
1077      if (Instruction *I = dyn_cast<Instruction>(U))
1078        if (I->isTerminator() && I->getFunction() == oldFunction &&
1079            !Blocks.count(I->getParent()))
1080          I->replaceUsesOfWith(header, newHeader);
1081  
1082    return newFunction;
1083  }
1084  
1085  /// Erase lifetime.start markers which reference inputs to the extraction
1086  /// region, and insert the referenced memory into \p LifetimesStart.
1087  ///
1088  /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1089  /// of allocas which will be moved from the caller function into the extracted
1090  /// function (\p SunkAllocas).
1091  static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1092                                           const SetVector<Value *> &SunkAllocas,
1093                                           SetVector<Value *> &LifetimesStart) {
1094    for (BasicBlock *BB : Blocks) {
1095      for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1096        auto *II = dyn_cast<IntrinsicInst>(&I);
1097        if (!II || !II->isLifetimeStartOrEnd())
1098          continue;
1099  
1100        // Get the memory operand of the lifetime marker. If the underlying
1101        // object is a sunk alloca, or is otherwise defined in the extraction
1102        // region, the lifetime marker must not be erased.
1103        Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1104        if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1105          continue;
1106  
1107        if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1108          LifetimesStart.insert(Mem);
1109        II->eraseFromParent();
1110      }
1111    }
1112  }
1113  
1114  /// Insert lifetime start/end markers surrounding the call to the new function
1115  /// for objects defined in the caller.
1116  static void insertLifetimeMarkersSurroundingCall(
1117      Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1118      CallInst *TheCall) {
1119    LLVMContext &Ctx = M->getContext();
1120    auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1121    Instruction *Term = TheCall->getParent()->getTerminator();
1122  
1123    // Emit lifetime markers for the pointers given in \p Objects. Insert the
1124    // markers before the call if \p InsertBefore, and after the call otherwise.
1125    auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1126                             bool InsertBefore) {
1127      for (Value *Mem : Objects) {
1128        assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1129                                              TheCall->getFunction()) &&
1130               "Input memory not defined in original function");
1131  
1132        Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType());
1133        auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1134        if (InsertBefore)
1135          Marker->insertBefore(TheCall);
1136        else
1137          Marker->insertBefore(Term);
1138      }
1139    };
1140  
1141    if (!LifetimesStart.empty()) {
1142      insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1143                    /*InsertBefore=*/true);
1144    }
1145  
1146    if (!LifetimesEnd.empty()) {
1147      insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1148                    /*InsertBefore=*/false);
1149    }
1150  }
1151  
1152  /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1153  /// the call instruction, splitting any PHI nodes in the header block as
1154  /// necessary.
1155  CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1156                                                      BasicBlock *codeReplacer,
1157                                                      ValueSet &inputs,
1158                                                      ValueSet &outputs) {
1159    // Emit a call to the new function, passing in: *pointer to struct (if
1160    // aggregating parameters), or plan inputs and allocated memory for outputs
1161    std::vector<Value *> params, ReloadOutputs, Reloads;
1162    ValueSet StructValues;
1163  
1164    Module *M = newFunction->getParent();
1165    LLVMContext &Context = M->getContext();
1166    const DataLayout &DL = M->getDataLayout();
1167    CallInst *call = nullptr;
1168  
1169    // Add inputs as params, or to be filled into the struct
1170    unsigned ScalarInputArgNo = 0;
1171    SmallVector<unsigned, 1> SwiftErrorArgs;
1172    for (Value *input : inputs) {
1173      if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1174        StructValues.insert(input);
1175      else {
1176        params.push_back(input);
1177        if (input->isSwiftError())
1178          SwiftErrorArgs.push_back(ScalarInputArgNo);
1179      }
1180      ++ScalarInputArgNo;
1181    }
1182  
1183    // Create allocas for the outputs
1184    unsigned ScalarOutputArgNo = 0;
1185    for (Value *output : outputs) {
1186      if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1187        StructValues.insert(output);
1188      } else {
1189        AllocaInst *alloca =
1190          new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1191                         nullptr, output->getName() + ".loc",
1192                         codeReplacer->getParent()->front().begin());
1193        ReloadOutputs.push_back(alloca);
1194        params.push_back(alloca);
1195        ++ScalarOutputArgNo;
1196      }
1197    }
1198  
1199    StructType *StructArgTy = nullptr;
1200    AllocaInst *Struct = nullptr;
1201    unsigned NumAggregatedInputs = 0;
1202    if (AggregateArgs && !StructValues.empty()) {
1203      std::vector<Type *> ArgTypes;
1204      for (Value *V : StructValues)
1205        ArgTypes.push_back(V->getType());
1206  
1207      // Allocate a struct at the beginning of this function
1208      StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1209      Struct = new AllocaInst(
1210          StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1211          AllocationBlock ? AllocationBlock->getFirstInsertionPt()
1212                          : codeReplacer->getParent()->front().begin());
1213  
1214      if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
1215        auto *StructSpaceCast = new AddrSpaceCastInst(
1216            Struct, PointerType ::get(Context, 0), "structArg.ascast");
1217        StructSpaceCast->insertAfter(Struct);
1218        params.push_back(StructSpaceCast);
1219      } else {
1220        params.push_back(Struct);
1221      }
1222      // Store aggregated inputs in the struct.
1223      for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1224        if (inputs.contains(StructValues[i])) {
1225          Value *Idx[2];
1226          Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1227          Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1228          GetElementPtrInst *GEP = GetElementPtrInst::Create(
1229              StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1230          GEP->insertInto(codeReplacer, codeReplacer->end());
1231          new StoreInst(StructValues[i], GEP, codeReplacer);
1232          NumAggregatedInputs++;
1233        }
1234      }
1235    }
1236  
1237    // Emit the call to the function
1238    call = CallInst::Create(newFunction, params,
1239                            NumExitBlocks > 1 ? "targetBlock" : "");
1240    // Add debug location to the new call, if the original function has debug
1241    // info. In that case, the terminator of the entry block of the extracted
1242    // function contains the first debug location of the extracted function,
1243    // set in extractCodeRegion.
1244    if (codeReplacer->getParent()->getSubprogram()) {
1245      if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1246        call->setDebugLoc(DL);
1247    }
1248    call->insertInto(codeReplacer, codeReplacer->end());
1249  
1250    // Set swifterror parameter attributes.
1251    for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1252      call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1253      newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1254    }
1255  
1256    // Reload the outputs passed in by reference, use the struct if output is in
1257    // the aggregate or reload from the scalar argument.
1258    for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1259                  aggIdx = NumAggregatedInputs;
1260         i != e; ++i) {
1261      Value *Output = nullptr;
1262      if (AggregateArgs && StructValues.contains(outputs[i])) {
1263        Value *Idx[2];
1264        Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1265        Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1266        GetElementPtrInst *GEP = GetElementPtrInst::Create(
1267            StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1268        GEP->insertInto(codeReplacer, codeReplacer->end());
1269        Output = GEP;
1270        ++aggIdx;
1271      } else {
1272        Output = ReloadOutputs[scalarIdx];
1273        ++scalarIdx;
1274      }
1275      LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1276                                    outputs[i]->getName() + ".reload",
1277                                    codeReplacer);
1278      Reloads.push_back(load);
1279      std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1280      for (User *U : Users) {
1281        Instruction *inst = cast<Instruction>(U);
1282        if (!Blocks.count(inst->getParent()))
1283          inst->replaceUsesOfWith(outputs[i], load);
1284      }
1285    }
1286  
1287    // Now we can emit a switch statement using the call as a value.
1288    SwitchInst *TheSwitch =
1289        SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1290                           codeReplacer, 0, codeReplacer);
1291  
1292    // Since there may be multiple exits from the original region, make the new
1293    // function return an unsigned, switch on that number.  This loop iterates
1294    // over all of the blocks in the extracted region, updating any terminator
1295    // instructions in the to-be-extracted region that branch to blocks that are
1296    // not in the region to be extracted.
1297    std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1298  
1299    // Iterate over the previously collected targets, and create new blocks inside
1300    // the function to branch to.
1301    unsigned switchVal = 0;
1302    for (BasicBlock *OldTarget : OldTargets) {
1303      if (Blocks.count(OldTarget))
1304        continue;
1305      BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1306      if (NewTarget)
1307        continue;
1308  
1309      // If we don't already have an exit stub for this non-extracted
1310      // destination, create one now!
1311      NewTarget = BasicBlock::Create(Context,
1312                                      OldTarget->getName() + ".exitStub",
1313                                      newFunction);
1314      unsigned SuccNum = switchVal++;
1315  
1316      Value *brVal = nullptr;
1317      assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1318      switch (NumExitBlocks) {
1319      case 0:
1320      case 1: break;  // No value needed.
1321      case 2:         // Conditional branch, return a bool
1322        brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1323        break;
1324      default:
1325        brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1326        break;
1327      }
1328  
1329      ReturnInst::Create(Context, brVal, NewTarget);
1330  
1331      // Update the switch instruction.
1332      TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1333                                          SuccNum),
1334                          OldTarget);
1335    }
1336  
1337    for (BasicBlock *Block : Blocks) {
1338      Instruction *TI = Block->getTerminator();
1339      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1340        if (Blocks.count(TI->getSuccessor(i)))
1341          continue;
1342        BasicBlock *OldTarget = TI->getSuccessor(i);
1343        // add a new basic block which returns the appropriate value
1344        BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1345        assert(NewTarget && "Unknown target block!");
1346  
1347        // rewrite the original branch instruction with this new target
1348        TI->setSuccessor(i, NewTarget);
1349     }
1350    }
1351  
1352    // Store the arguments right after the definition of output value.
1353    // This should be proceeded after creating exit stubs to be ensure that invoke
1354    // result restore will be placed in the outlined function.
1355    Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1356    std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1357    Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1358    std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1359  
1360    for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1361         ++i) {
1362      auto *OutI = dyn_cast<Instruction>(outputs[i]);
1363      if (!OutI)
1364        continue;
1365  
1366      // Find proper insertion point.
1367      BasicBlock::iterator InsertPt;
1368      // In case OutI is an invoke, we insert the store at the beginning in the
1369      // 'normal destination' BB. Otherwise we insert the store right after OutI.
1370      if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1371        InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1372      else if (auto *Phi = dyn_cast<PHINode>(OutI))
1373        InsertPt = Phi->getParent()->getFirstInsertionPt();
1374      else
1375        InsertPt = std::next(OutI->getIterator());
1376  
1377      assert((InsertPt->getFunction() == newFunction ||
1378              Blocks.count(InsertPt->getParent())) &&
1379             "InsertPt should be in new function");
1380      if (AggregateArgs && StructValues.contains(outputs[i])) {
1381        assert(AggOutputArgBegin != newFunction->arg_end() &&
1382               "Number of aggregate output arguments should match "
1383               "the number of defined values");
1384        Value *Idx[2];
1385        Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1386        Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1387        GetElementPtrInst *GEP = GetElementPtrInst::Create(
1388            StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1389            InsertPt);
1390        new StoreInst(outputs[i], GEP, InsertPt);
1391        ++aggIdx;
1392        // Since there should be only one struct argument aggregating
1393        // all the output values, we shouldn't increment AggOutputArgBegin, which
1394        // always points to the struct argument, in this case.
1395      } else {
1396        assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1397               "Number of scalar output arguments should match "
1398               "the number of defined values");
1399        new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertPt);
1400        ++ScalarOutputArgBegin;
1401      }
1402    }
1403  
1404    // Now that we've done the deed, simplify the switch instruction.
1405    Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1406    switch (NumExitBlocks) {
1407    case 0:
1408      // There are no successors (the block containing the switch itself), which
1409      // means that previously this was the last part of the function, and hence
1410      // this should be rewritten as a `ret` or `unreachable`.
1411      if (newFunction->doesNotReturn()) {
1412        // If fn is no return, end with an unreachable terminator.
1413        (void)new UnreachableInst(Context, TheSwitch->getIterator());
1414      } else if (OldFnRetTy->isVoidTy()) {
1415        // We have no return value.
1416        ReturnInst::Create(Context, nullptr,
1417                           TheSwitch->getIterator()); // Return void
1418      } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1419        // return what we have
1420        ReturnInst::Create(Context, TheSwitch->getCondition(),
1421                           TheSwitch->getIterator());
1422      } else {
1423        // Otherwise we must have code extracted an unwind or something, just
1424        // return whatever we want.
1425        ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy),
1426                           TheSwitch->getIterator());
1427      }
1428  
1429      TheSwitch->eraseFromParent();
1430      break;
1431    case 1:
1432      // Only a single destination, change the switch into an unconditional
1433      // branch.
1434      BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator());
1435      TheSwitch->eraseFromParent();
1436      break;
1437    case 2:
1438      BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1439                         call, TheSwitch->getIterator());
1440      TheSwitch->eraseFromParent();
1441      break;
1442    default:
1443      // Otherwise, make the default destination of the switch instruction be one
1444      // of the other successors.
1445      TheSwitch->setCondition(call);
1446      TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1447      // Remove redundant case
1448      TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1449      break;
1450    }
1451  
1452    // Insert lifetime markers around the reloads of any output values. The
1453    // allocas output values are stored in are only in-use in the codeRepl block.
1454    insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1455  
1456    return call;
1457  }
1458  
1459  void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1460    auto newFuncIt = newFunction->front().getIterator();
1461    for (BasicBlock *Block : Blocks) {
1462      // Delete the basic block from the old function, and the list of blocks
1463      Block->removeFromParent();
1464  
1465      // Insert this basic block into the new function
1466      // Insert the original blocks after the entry block created
1467      // for the new function. The entry block may be followed
1468      // by a set of exit blocks at this point, but these exit
1469      // blocks better be placed at the end of the new function.
1470      newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1471    }
1472  }
1473  
1474  void CodeExtractor::calculateNewCallTerminatorWeights(
1475      BasicBlock *CodeReplacer,
1476      DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1477      BranchProbabilityInfo *BPI) {
1478    using Distribution = BlockFrequencyInfoImplBase::Distribution;
1479    using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1480  
1481    // Update the branch weights for the exit block.
1482    Instruction *TI = CodeReplacer->getTerminator();
1483    SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1484  
1485    // Block Frequency distribution with dummy node.
1486    Distribution BranchDist;
1487  
1488    SmallVector<BranchProbability, 4> EdgeProbabilities(
1489        TI->getNumSuccessors(), BranchProbability::getUnknown());
1490  
1491    // Add each of the frequencies of the successors.
1492    for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1493      BlockNode ExitNode(i);
1494      uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1495      if (ExitFreq != 0)
1496        BranchDist.addExit(ExitNode, ExitFreq);
1497      else
1498        EdgeProbabilities[i] = BranchProbability::getZero();
1499    }
1500  
1501    // Check for no total weight.
1502    if (BranchDist.Total == 0) {
1503      BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1504      return;
1505    }
1506  
1507    // Normalize the distribution so that they can fit in unsigned.
1508    BranchDist.normalize();
1509  
1510    // Create normalized branch weights and set the metadata.
1511    for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1512      const auto &Weight = BranchDist.Weights[I];
1513  
1514      // Get the weight and update the current BFI.
1515      BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1516      BranchProbability BP(Weight.Amount, BranchDist.Total);
1517      EdgeProbabilities[Weight.TargetNode.Index] = BP;
1518    }
1519    BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1520    TI->setMetadata(
1521        LLVMContext::MD_prof,
1522        MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1523  }
1524  
1525  /// Erase debug info intrinsics which refer to values in \p F but aren't in
1526  /// \p F.
1527  static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1528    for (Instruction &I : instructions(F)) {
1529      SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1530      SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1531      findDbgUsers(DbgUsers, &I, &DbgVariableRecords);
1532      for (DbgVariableIntrinsic *DVI : DbgUsers)
1533        if (DVI->getFunction() != &F)
1534          DVI->eraseFromParent();
1535      for (DbgVariableRecord *DVR : DbgVariableRecords)
1536        if (DVR->getFunction() != &F)
1537          DVR->eraseFromParent();
1538    }
1539  }
1540  
1541  /// Fix up the debug info in the old and new functions by pointing line
1542  /// locations and debug intrinsics to the new subprogram scope, and by deleting
1543  /// intrinsics which point to values outside of the new function.
1544  static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1545                                           CallInst &TheCall) {
1546    DISubprogram *OldSP = OldFunc.getSubprogram();
1547    LLVMContext &Ctx = OldFunc.getContext();
1548  
1549    if (!OldSP) {
1550      // Erase any debug info the new function contains.
1551      stripDebugInfo(NewFunc);
1552      // Make sure the old function doesn't contain any non-local metadata refs.
1553      eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1554      return;
1555    }
1556  
1557    // Create a subprogram for the new function. Leave out a description of the
1558    // function arguments, as the parameters don't correspond to anything at the
1559    // source level.
1560    assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1561    DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1562                  OldSP->getUnit());
1563    auto SPType =
1564        DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt));
1565    DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1566                                      DISubprogram::SPFlagOptimized |
1567                                      DISubprogram::SPFlagLocalToUnit;
1568    auto NewSP = DIB.createFunction(
1569        OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1570        /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1571    NewFunc.setSubprogram(NewSP);
1572  
1573    auto IsInvalidLocation = [&NewFunc](Value *Location) {
1574      // Location is invalid if it isn't a constant or an instruction, or is an
1575      // instruction but isn't in the new function.
1576      if (!Location ||
1577          (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1578        return true;
1579      Instruction *LocationInst = dyn_cast<Instruction>(Location);
1580      return LocationInst && LocationInst->getFunction() != &NewFunc;
1581    };
1582  
1583    // Debug intrinsics in the new function need to be updated in one of two
1584    // ways:
1585    //  1) They need to be deleted, because they describe a value in the old
1586    //     function.
1587    //  2) They need to point to fresh metadata, e.g. because they currently
1588    //     point to a variable in the wrong scope.
1589    SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1590    SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1591    SmallVector<DbgVariableRecord *, 4> DVRsToDelete;
1592    DenseMap<const MDNode *, MDNode *> Cache;
1593  
1594    auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) {
1595      DINode *&NewVar = RemappedMetadata[OldVar];
1596      if (!NewVar) {
1597        DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1598            *OldVar->getScope(), *NewSP, Ctx, Cache);
1599        NewVar = DIB.createAutoVariable(
1600            NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1601            OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1602            OldVar->getAlignInBits());
1603      }
1604      return cast<DILocalVariable>(NewVar);
1605    };
1606  
1607    auto UpdateDbgLabel = [&](auto *LabelRecord) {
1608      // Point the label record to a fresh label within the new function if
1609      // the record was not inlined from some other function.
1610      if (LabelRecord->getDebugLoc().getInlinedAt())
1611        return;
1612      DILabel *OldLabel = LabelRecord->getLabel();
1613      DINode *&NewLabel = RemappedMetadata[OldLabel];
1614      if (!NewLabel) {
1615        DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1616            *OldLabel->getScope(), *NewSP, Ctx, Cache);
1617        NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1618                                OldLabel->getFile(), OldLabel->getLine());
1619      }
1620      LabelRecord->setLabel(cast<DILabel>(NewLabel));
1621    };
1622  
1623    auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void {
1624      for (DbgRecord &DR : I.getDbgRecordRange()) {
1625        if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1626          UpdateDbgLabel(DLR);
1627          continue;
1628        }
1629  
1630        DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1631        // Apply the two updates that dbg.values get: invalid operands, and
1632        // variable metadata fixup.
1633        if (any_of(DVR.location_ops(), IsInvalidLocation)) {
1634          DVRsToDelete.push_back(&DVR);
1635          continue;
1636        }
1637        if (DVR.isDbgAssign() && IsInvalidLocation(DVR.getAddress())) {
1638          DVRsToDelete.push_back(&DVR);
1639          continue;
1640        }
1641        if (!DVR.getDebugLoc().getInlinedAt())
1642          DVR.setVariable(GetUpdatedDIVariable(DVR.getVariable()));
1643      }
1644    };
1645  
1646    for (Instruction &I : instructions(NewFunc)) {
1647      UpdateDbgRecordsOnInst(I);
1648  
1649      auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1650      if (!DII)
1651        continue;
1652  
1653      // Point the intrinsic to a fresh label within the new function if the
1654      // intrinsic was not inlined from some other function.
1655      if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1656        UpdateDbgLabel(DLI);
1657        continue;
1658      }
1659  
1660      auto *DVI = cast<DbgVariableIntrinsic>(DII);
1661      // If any of the used locations are invalid, delete the intrinsic.
1662      if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1663        DebugIntrinsicsToDelete.push_back(DVI);
1664        continue;
1665      }
1666      // DbgAssign intrinsics have an extra Value argument:
1667      if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1668          DAI && IsInvalidLocation(DAI->getAddress())) {
1669        DebugIntrinsicsToDelete.push_back(DVI);
1670        continue;
1671      }
1672      // If the variable was in the scope of the old function, i.e. it was not
1673      // inlined, point the intrinsic to a fresh variable within the new function.
1674      if (!DVI->getDebugLoc().getInlinedAt())
1675        DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable()));
1676    }
1677  
1678    for (auto *DII : DebugIntrinsicsToDelete)
1679      DII->eraseFromParent();
1680    for (auto *DVR : DVRsToDelete)
1681      DVR->getMarker()->MarkedInstr->dropOneDbgRecord(DVR);
1682    DIB.finalizeSubprogram(NewSP);
1683  
1684    // Fix up the scope information attached to the line locations and the
1685    // debug assignment metadata in the new function.
1686    DenseMap<DIAssignID *, DIAssignID *> AssignmentIDMap;
1687    for (Instruction &I : instructions(NewFunc)) {
1688      if (const DebugLoc &DL = I.getDebugLoc())
1689        I.setDebugLoc(
1690            DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1691      for (DbgRecord &DR : I.getDbgRecordRange())
1692        DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(),
1693                                                            *NewSP, Ctx, Cache));
1694  
1695      // Loop info metadata may contain line locations. Fix them up.
1696      auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1697        if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1698          return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1699        return MD;
1700      };
1701      updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1702      at::remapAssignID(AssignmentIDMap, I);
1703    }
1704    if (!TheCall.getDebugLoc())
1705      TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1706  
1707    eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1708  }
1709  
1710  Function *
1711  CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1712    ValueSet Inputs, Outputs;
1713    return extractCodeRegion(CEAC, Inputs, Outputs);
1714  }
1715  
1716  Function *
1717  CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1718                                   ValueSet &inputs, ValueSet &outputs) {
1719    if (!isEligible())
1720      return nullptr;
1721  
1722    // Assumption: this is a single-entry code region, and the header is the first
1723    // block in the region.
1724    BasicBlock *header = *Blocks.begin();
1725    Function *oldFunction = header->getParent();
1726  
1727    // Calculate the entry frequency of the new function before we change the root
1728    //   block.
1729    BlockFrequency EntryFreq;
1730    if (BFI) {
1731      assert(BPI && "Both BPI and BFI are required to preserve profile info");
1732      for (BasicBlock *Pred : predecessors(header)) {
1733        if (Blocks.count(Pred))
1734          continue;
1735        EntryFreq +=
1736            BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1737      }
1738    }
1739  
1740    // Remove @llvm.assume calls that will be moved to the new function from the
1741    // old function's assumption cache.
1742    for (BasicBlock *Block : Blocks) {
1743      for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1744        if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1745          if (AC)
1746            AC->unregisterAssumption(AI);
1747          AI->eraseFromParent();
1748        }
1749      }
1750    }
1751  
1752    // If we have any return instructions in the region, split those blocks so
1753    // that the return is not in the region.
1754    splitReturnBlocks();
1755  
1756    // Calculate the exit blocks for the extracted region and the total exit
1757    // weights for each of those blocks.
1758    DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1759    SetVector<BasicBlock *> ExitBlocks;
1760    for (BasicBlock *Block : Blocks) {
1761      for (BasicBlock *Succ : successors(Block)) {
1762        if (!Blocks.count(Succ)) {
1763          // Update the branch weight for this successor.
1764          if (BFI) {
1765            BlockFrequency &BF = ExitWeights[Succ];
1766            BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1767          }
1768          ExitBlocks.insert(Succ);
1769        }
1770      }
1771    }
1772    NumExitBlocks = ExitBlocks.size();
1773  
1774    for (BasicBlock *Block : Blocks) {
1775      for (BasicBlock *OldTarget : successors(Block))
1776        if (!Blocks.contains(OldTarget))
1777          OldTargets.push_back(OldTarget);
1778    }
1779  
1780    // If we have to split PHI nodes of the entry or exit blocks, do so now.
1781    severSplitPHINodesOfEntry(header);
1782    severSplitPHINodesOfExits(ExitBlocks);
1783  
1784    // This takes place of the original loop
1785    BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1786                                                  "codeRepl", oldFunction,
1787                                                  header);
1788    codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1789  
1790    // The new function needs a root node because other nodes can branch to the
1791    // head of the region, but the entry node of a function cannot have preds.
1792    BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1793                                                 "newFuncRoot");
1794    newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1795  
1796    auto *BranchI = BranchInst::Create(header);
1797    // If the original function has debug info, we have to add a debug location
1798    // to the new branch instruction from the artificial entry block.
1799    // We use the debug location of the first instruction in the extracted
1800    // blocks, as there is no other equivalent line in the source code.
1801    if (oldFunction->getSubprogram()) {
1802      any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1803        return any_of(*BB, [&BranchI](const Instruction &I) {
1804          if (!I.getDebugLoc())
1805            return false;
1806          // Don't use source locations attached to debug-intrinsics: they could
1807          // be from completely unrelated scopes.
1808          if (isa<DbgInfoIntrinsic>(I))
1809            return false;
1810          BranchI->setDebugLoc(I.getDebugLoc());
1811          return true;
1812        });
1813      });
1814    }
1815    BranchI->insertInto(newFuncRoot, newFuncRoot->end());
1816  
1817    ValueSet SinkingCands, HoistingCands;
1818    BasicBlock *CommonExit = nullptr;
1819    findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1820    assert(HoistingCands.empty() || CommonExit);
1821  
1822    // Find inputs to, outputs from the code region.
1823    findInputsOutputs(inputs, outputs, SinkingCands);
1824  
1825    // Now sink all instructions which only have non-phi uses inside the region.
1826    // Group the allocas at the start of the block, so that any bitcast uses of
1827    // the allocas are well-defined.
1828    AllocaInst *FirstSunkAlloca = nullptr;
1829    for (auto *II : SinkingCands) {
1830      if (auto *AI = dyn_cast<AllocaInst>(II)) {
1831        AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1832        if (!FirstSunkAlloca)
1833          FirstSunkAlloca = AI;
1834      }
1835    }
1836    assert((SinkingCands.empty() || FirstSunkAlloca) &&
1837           "Did not expect a sink candidate without any allocas");
1838    for (auto *II : SinkingCands) {
1839      if (!isa<AllocaInst>(II)) {
1840        cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1841      }
1842    }
1843  
1844    if (!HoistingCands.empty()) {
1845      auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1846      Instruction *TI = HoistToBlock->getTerminator();
1847      for (auto *II : HoistingCands)
1848        cast<Instruction>(II)->moveBefore(TI);
1849    }
1850  
1851    // Collect objects which are inputs to the extraction region and also
1852    // referenced by lifetime start markers within it. The effects of these
1853    // markers must be replicated in the calling function to prevent the stack
1854    // coloring pass from merging slots which store input objects.
1855    ValueSet LifetimesStart;
1856    eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1857  
1858    // Construct new function based on inputs/outputs & add allocas for all defs.
1859    Function *newFunction =
1860        constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1861                          oldFunction, oldFunction->getParent());
1862  
1863    // Update the entry count of the function.
1864    if (BFI) {
1865      auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1866      if (Count)
1867        newFunction->setEntryCount(
1868            ProfileCount(*Count, Function::PCT_Real)); // FIXME
1869      BFI->setBlockFreq(codeReplacer, EntryFreq);
1870    }
1871  
1872    CallInst *TheCall =
1873        emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1874  
1875    moveCodeToFunction(newFunction);
1876  
1877    // Replicate the effects of any lifetime start/end markers which referenced
1878    // input objects in the extraction region by placing markers around the call.
1879    insertLifetimeMarkersSurroundingCall(
1880        oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1881  
1882    // Propagate personality info to the new function if there is one.
1883    if (oldFunction->hasPersonalityFn())
1884      newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1885  
1886    // Update the branch weights for the exit block.
1887    if (BFI && NumExitBlocks > 1)
1888      calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1889  
1890    // Loop over all of the PHI nodes in the header and exit blocks, and change
1891    // any references to the old incoming edge to be the new incoming edge.
1892    for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1893      PHINode *PN = cast<PHINode>(I);
1894      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1895        if (!Blocks.count(PN->getIncomingBlock(i)))
1896          PN->setIncomingBlock(i, newFuncRoot);
1897    }
1898  
1899    for (BasicBlock *ExitBB : ExitBlocks)
1900      for (PHINode &PN : ExitBB->phis()) {
1901        Value *IncomingCodeReplacerVal = nullptr;
1902        for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1903          // Ignore incoming values from outside of the extracted region.
1904          if (!Blocks.count(PN.getIncomingBlock(i)))
1905            continue;
1906  
1907          // Ensure that there is only one incoming value from codeReplacer.
1908          if (!IncomingCodeReplacerVal) {
1909            PN.setIncomingBlock(i, codeReplacer);
1910            IncomingCodeReplacerVal = PN.getIncomingValue(i);
1911          } else
1912            assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1913                   "PHI has two incompatbile incoming values from codeRepl");
1914        }
1915      }
1916  
1917    fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1918  
1919    LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1920      newFunction->dump();
1921      report_fatal_error("verification of newFunction failed!");
1922    });
1923    LLVM_DEBUG(if (verifyFunction(*oldFunction))
1924               report_fatal_error("verification of oldFunction failed!"));
1925    LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1926                   report_fatal_error("Stale Asumption cache for old Function!"));
1927    return newFunction;
1928  }
1929  
1930  bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1931                                            const Function &NewFunc,
1932                                            AssumptionCache *AC) {
1933    for (auto AssumeVH : AC->assumptions()) {
1934      auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1935      if (!I)
1936        continue;
1937  
1938      // There shouldn't be any llvm.assume intrinsics in the new function.
1939      if (I->getFunction() != &OldFunc)
1940        return true;
1941  
1942      // There shouldn't be any stale affected values in the assumption cache
1943      // that were previously in the old function, but that have now been moved
1944      // to the new function.
1945      for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1946        auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1947        if (!AffectedCI)
1948          continue;
1949        if (AffectedCI->getFunction() != &OldFunc)
1950          return true;
1951        auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1952        if (AssumedInst->getFunction() != &OldFunc)
1953          return true;
1954      }
1955    }
1956    return false;
1957  }
1958  
1959  void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1960    ExcludeArgsFromAggregate.insert(Arg);
1961  }
1962