xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision bb2d13b686e3ccf6c3ccb36209dfb7dcc108b182)
1  //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the interface to tear out a code region, such as an
10  // individual loop or a parallel section, into a new function, replacing it with
11  // a call to the new function.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "llvm/Transforms/Utils/CodeExtractor.h"
16  #include "llvm/ADT/ArrayRef.h"
17  #include "llvm/ADT/DenseMap.h"
18  #include "llvm/ADT/Optional.h"
19  #include "llvm/ADT/STLExtras.h"
20  #include "llvm/ADT/SetVector.h"
21  #include "llvm/ADT/SmallPtrSet.h"
22  #include "llvm/ADT/SmallVector.h"
23  #include "llvm/Analysis/AssumptionCache.h"
24  #include "llvm/Analysis/BlockFrequencyInfo.h"
25  #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26  #include "llvm/Analysis/BranchProbabilityInfo.h"
27  #include "llvm/Analysis/LoopInfo.h"
28  #include "llvm/IR/Argument.h"
29  #include "llvm/IR/Attributes.h"
30  #include "llvm/IR/BasicBlock.h"
31  #include "llvm/IR/CFG.h"
32  #include "llvm/IR/Constant.h"
33  #include "llvm/IR/Constants.h"
34  #include "llvm/IR/DIBuilder.h"
35  #include "llvm/IR/DataLayout.h"
36  #include "llvm/IR/DebugInfo.h"
37  #include "llvm/IR/DebugInfoMetadata.h"
38  #include "llvm/IR/DerivedTypes.h"
39  #include "llvm/IR/Dominators.h"
40  #include "llvm/IR/Function.h"
41  #include "llvm/IR/GlobalValue.h"
42  #include "llvm/IR/InstIterator.h"
43  #include "llvm/IR/InstrTypes.h"
44  #include "llvm/IR/Instruction.h"
45  #include "llvm/IR/Instructions.h"
46  #include "llvm/IR/IntrinsicInst.h"
47  #include "llvm/IR/Intrinsics.h"
48  #include "llvm/IR/LLVMContext.h"
49  #include "llvm/IR/MDBuilder.h"
50  #include "llvm/IR/Module.h"
51  #include "llvm/IR/PatternMatch.h"
52  #include "llvm/IR/Type.h"
53  #include "llvm/IR/User.h"
54  #include "llvm/IR/Value.h"
55  #include "llvm/IR/Verifier.h"
56  #include "llvm/Pass.h"
57  #include "llvm/Support/BlockFrequency.h"
58  #include "llvm/Support/BranchProbability.h"
59  #include "llvm/Support/Casting.h"
60  #include "llvm/Support/CommandLine.h"
61  #include "llvm/Support/Debug.h"
62  #include "llvm/Support/ErrorHandling.h"
63  #include "llvm/Support/raw_ostream.h"
64  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65  #include "llvm/Transforms/Utils/Local.h"
66  #include <cassert>
67  #include <cstdint>
68  #include <iterator>
69  #include <map>
70  #include <set>
71  #include <utility>
72  #include <vector>
73  
74  using namespace llvm;
75  using namespace llvm::PatternMatch;
76  using ProfileCount = Function::ProfileCount;
77  
78  #define DEBUG_TYPE "code-extractor"
79  
80  // Provide a command-line option to aggregate function arguments into a struct
81  // for functions produced by the code extractor. This is useful when converting
82  // extracted functions to pthread-based code, as only one argument (void*) can
83  // be passed in to pthread_create().
84  static cl::opt<bool>
85  AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
86                   cl::desc("Aggregate arguments to code-extracted functions"));
87  
88  /// Test whether a block is valid for extraction.
89  static bool isBlockValidForExtraction(const BasicBlock &BB,
90                                        const SetVector<BasicBlock *> &Result,
91                                        bool AllowVarArgs, bool AllowAlloca) {
92    // taking the address of a basic block moved to another function is illegal
93    if (BB.hasAddressTaken())
94      return false;
95  
96    // don't hoist code that uses another basicblock address, as it's likely to
97    // lead to unexpected behavior, like cross-function jumps
98    SmallPtrSet<User const *, 16> Visited;
99    SmallVector<User const *, 16> ToVisit;
100  
101    for (Instruction const &Inst : BB)
102      ToVisit.push_back(&Inst);
103  
104    while (!ToVisit.empty()) {
105      User const *Curr = ToVisit.pop_back_val();
106      if (!Visited.insert(Curr).second)
107        continue;
108      if (isa<BlockAddress const>(Curr))
109        return false; // even a reference to self is likely to be not compatible
110  
111      if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
112        continue;
113  
114      for (auto const &U : Curr->operands()) {
115        if (auto *UU = dyn_cast<User>(U))
116          ToVisit.push_back(UU);
117      }
118    }
119  
120    // If explicitly requested, allow vastart and alloca. For invoke instructions
121    // verify that extraction is valid.
122    for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
123      if (isa<AllocaInst>(I)) {
124         if (!AllowAlloca)
125           return false;
126         continue;
127      }
128  
129      if (const auto *II = dyn_cast<InvokeInst>(I)) {
130        // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
131        // must be a part of the subgraph which is being extracted.
132        if (auto *UBB = II->getUnwindDest())
133          if (!Result.count(UBB))
134            return false;
135        continue;
136      }
137  
138      // All catch handlers of a catchswitch instruction as well as the unwind
139      // destination must be in the subgraph.
140      if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
141        if (auto *UBB = CSI->getUnwindDest())
142          if (!Result.count(UBB))
143            return false;
144        for (auto *HBB : CSI->handlers())
145          if (!Result.count(const_cast<BasicBlock*>(HBB)))
146            return false;
147        continue;
148      }
149  
150      // Make sure that entire catch handler is within subgraph. It is sufficient
151      // to check that catch return's block is in the list.
152      if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
153        for (const auto *U : CPI->users())
154          if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
155            if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
156              return false;
157        continue;
158      }
159  
160      // And do similar checks for cleanup handler - the entire handler must be
161      // in subgraph which is going to be extracted. For cleanup return should
162      // additionally check that the unwind destination is also in the subgraph.
163      if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
164        for (const auto *U : CPI->users())
165          if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
166            if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
167              return false;
168        continue;
169      }
170      if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
171        if (auto *UBB = CRI->getUnwindDest())
172          if (!Result.count(UBB))
173            return false;
174        continue;
175      }
176  
177      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
178        if (const Function *F = CI->getCalledFunction()) {
179          auto IID = F->getIntrinsicID();
180          if (IID == Intrinsic::vastart) {
181            if (AllowVarArgs)
182              continue;
183            else
184              return false;
185          }
186  
187          // Currently, we miscompile outlined copies of eh_typid_for. There are
188          // proposals for fixing this in llvm.org/PR39545.
189          if (IID == Intrinsic::eh_typeid_for)
190            return false;
191        }
192      }
193    }
194  
195    return true;
196  }
197  
198  /// Build a set of blocks to extract if the input blocks are viable.
199  static SetVector<BasicBlock *>
200  buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
201                          bool AllowVarArgs, bool AllowAlloca) {
202    assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
203    SetVector<BasicBlock *> Result;
204  
205    // Loop over the blocks, adding them to our set-vector, and aborting with an
206    // empty set if we encounter invalid blocks.
207    for (BasicBlock *BB : BBs) {
208      // If this block is dead, don't process it.
209      if (DT && !DT->isReachableFromEntry(BB))
210        continue;
211  
212      if (!Result.insert(BB))
213        llvm_unreachable("Repeated basic blocks in extraction input");
214    }
215  
216    LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
217                      << '\n');
218  
219    for (auto *BB : Result) {
220      if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
221        return {};
222  
223      // Make sure that the first block is not a landing pad.
224      if (BB == Result.front()) {
225        if (BB->isEHPad()) {
226          LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
227          return {};
228        }
229        continue;
230      }
231  
232      // All blocks other than the first must not have predecessors outside of
233      // the subgraph which is being extracted.
234      for (auto *PBB : predecessors(BB))
235        if (!Result.count(PBB)) {
236          LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
237                               "outside the region except for the first block!\n"
238                            << "Problematic source BB: " << BB->getName() << "\n"
239                            << "Problematic destination BB: " << PBB->getName()
240                            << "\n");
241          return {};
242        }
243    }
244  
245    return Result;
246  }
247  
248  CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
249                               bool AggregateArgs, BlockFrequencyInfo *BFI,
250                               BranchProbabilityInfo *BPI, AssumptionCache *AC,
251                               bool AllowVarArgs, bool AllowAlloca,
252                               std::string Suffix)
253      : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
254        BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
255        Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
256        Suffix(Suffix) {}
257  
258  CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
259                               BlockFrequencyInfo *BFI,
260                               BranchProbabilityInfo *BPI, AssumptionCache *AC,
261                               std::string Suffix)
262      : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
263        BPI(BPI), AC(AC), AllowVarArgs(false),
264        Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
265                                       /* AllowVarArgs */ false,
266                                       /* AllowAlloca */ false)),
267        Suffix(Suffix) {}
268  
269  /// definedInRegion - Return true if the specified value is defined in the
270  /// extracted region.
271  static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
272    if (Instruction *I = dyn_cast<Instruction>(V))
273      if (Blocks.count(I->getParent()))
274        return true;
275    return false;
276  }
277  
278  /// definedInCaller - Return true if the specified value is defined in the
279  /// function being code extracted, but not in the region being extracted.
280  /// These values must be passed in as live-ins to the function.
281  static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
282    if (isa<Argument>(V)) return true;
283    if (Instruction *I = dyn_cast<Instruction>(V))
284      if (!Blocks.count(I->getParent()))
285        return true;
286    return false;
287  }
288  
289  static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
290    BasicBlock *CommonExitBlock = nullptr;
291    auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
292      for (auto *Succ : successors(Block)) {
293        // Internal edges, ok.
294        if (Blocks.count(Succ))
295          continue;
296        if (!CommonExitBlock) {
297          CommonExitBlock = Succ;
298          continue;
299        }
300        if (CommonExitBlock != Succ)
301          return true;
302      }
303      return false;
304    };
305  
306    if (any_of(Blocks, hasNonCommonExitSucc))
307      return nullptr;
308  
309    return CommonExitBlock;
310  }
311  
312  CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
313    for (BasicBlock &BB : F) {
314      for (Instruction &II : BB.instructionsWithoutDebug())
315        if (auto *AI = dyn_cast<AllocaInst>(&II))
316          Allocas.push_back(AI);
317  
318      findSideEffectInfoForBlock(BB);
319    }
320  }
321  
322  void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
323    for (Instruction &II : BB.instructionsWithoutDebug()) {
324      unsigned Opcode = II.getOpcode();
325      Value *MemAddr = nullptr;
326      switch (Opcode) {
327      case Instruction::Store:
328      case Instruction::Load: {
329        if (Opcode == Instruction::Store) {
330          StoreInst *SI = cast<StoreInst>(&II);
331          MemAddr = SI->getPointerOperand();
332        } else {
333          LoadInst *LI = cast<LoadInst>(&II);
334          MemAddr = LI->getPointerOperand();
335        }
336        // Global variable can not be aliased with locals.
337        if (isa<Constant>(MemAddr))
338          break;
339        Value *Base = MemAddr->stripInBoundsConstantOffsets();
340        if (!isa<AllocaInst>(Base)) {
341          SideEffectingBlocks.insert(&BB);
342          return;
343        }
344        BaseMemAddrs[&BB].insert(Base);
345        break;
346      }
347      default: {
348        IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
349        if (IntrInst) {
350          if (IntrInst->isLifetimeStartOrEnd())
351            break;
352          SideEffectingBlocks.insert(&BB);
353          return;
354        }
355        // Treat all the other cases conservatively if it has side effects.
356        if (II.mayHaveSideEffects()) {
357          SideEffectingBlocks.insert(&BB);
358          return;
359        }
360      }
361      }
362    }
363  }
364  
365  bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
366      BasicBlock &BB, AllocaInst *Addr) const {
367    if (SideEffectingBlocks.count(&BB))
368      return true;
369    auto It = BaseMemAddrs.find(&BB);
370    if (It != BaseMemAddrs.end())
371      return It->second.count(Addr);
372    return false;
373  }
374  
375  bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
376      const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
377    AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
378    Function *Func = (*Blocks.begin())->getParent();
379    for (BasicBlock &BB : *Func) {
380      if (Blocks.count(&BB))
381        continue;
382      if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
383        return false;
384    }
385    return true;
386  }
387  
388  BasicBlock *
389  CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
390    BasicBlock *SinglePredFromOutlineRegion = nullptr;
391    assert(!Blocks.count(CommonExitBlock) &&
392           "Expect a block outside the region!");
393    for (auto *Pred : predecessors(CommonExitBlock)) {
394      if (!Blocks.count(Pred))
395        continue;
396      if (!SinglePredFromOutlineRegion) {
397        SinglePredFromOutlineRegion = Pred;
398      } else if (SinglePredFromOutlineRegion != Pred) {
399        SinglePredFromOutlineRegion = nullptr;
400        break;
401      }
402    }
403  
404    if (SinglePredFromOutlineRegion)
405      return SinglePredFromOutlineRegion;
406  
407  #ifndef NDEBUG
408    auto getFirstPHI = [](BasicBlock *BB) {
409      BasicBlock::iterator I = BB->begin();
410      PHINode *FirstPhi = nullptr;
411      while (I != BB->end()) {
412        PHINode *Phi = dyn_cast<PHINode>(I);
413        if (!Phi)
414          break;
415        if (!FirstPhi) {
416          FirstPhi = Phi;
417          break;
418        }
419      }
420      return FirstPhi;
421    };
422    // If there are any phi nodes, the single pred either exists or has already
423    // be created before code extraction.
424    assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
425  #endif
426  
427    BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
428        CommonExitBlock->getFirstNonPHI()->getIterator());
429  
430    for (BasicBlock *Pred :
431         llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
432      if (Blocks.count(Pred))
433        continue;
434      Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
435    }
436    // Now add the old exit block to the outline region.
437    Blocks.insert(CommonExitBlock);
438    OldTargets.push_back(NewExitBlock);
439    return CommonExitBlock;
440  }
441  
442  // Find the pair of life time markers for address 'Addr' that are either
443  // defined inside the outline region or can legally be shrinkwrapped into the
444  // outline region. If there are not other untracked uses of the address, return
445  // the pair of markers if found; otherwise return a pair of nullptr.
446  CodeExtractor::LifetimeMarkerInfo
447  CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
448                                    Instruction *Addr,
449                                    BasicBlock *ExitBlock) const {
450    LifetimeMarkerInfo Info;
451  
452    for (User *U : Addr->users()) {
453      IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
454      if (IntrInst) {
455        // We don't model addresses with multiple start/end markers, but the
456        // markers do not need to be in the region.
457        if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
458          if (Info.LifeStart)
459            return {};
460          Info.LifeStart = IntrInst;
461          continue;
462        }
463        if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
464          if (Info.LifeEnd)
465            return {};
466          Info.LifeEnd = IntrInst;
467          continue;
468        }
469        // At this point, permit debug uses outside of the region.
470        // This is fixed in a later call to fixupDebugInfoPostExtraction().
471        if (isa<DbgInfoIntrinsic>(IntrInst))
472          continue;
473      }
474      // Find untracked uses of the address, bail.
475      if (!definedInRegion(Blocks, U))
476        return {};
477    }
478  
479    if (!Info.LifeStart || !Info.LifeEnd)
480      return {};
481  
482    Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
483    Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
484    // Do legality check.
485    if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
486        !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
487      return {};
488  
489    // Check to see if we have a place to do hoisting, if not, bail.
490    if (Info.HoistLifeEnd && !ExitBlock)
491      return {};
492  
493    return Info;
494  }
495  
496  void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
497                                  ValueSet &SinkCands, ValueSet &HoistCands,
498                                  BasicBlock *&ExitBlock) const {
499    Function *Func = (*Blocks.begin())->getParent();
500    ExitBlock = getCommonExitBlock(Blocks);
501  
502    auto moveOrIgnoreLifetimeMarkers =
503        [&](const LifetimeMarkerInfo &LMI) -> bool {
504      if (!LMI.LifeStart)
505        return false;
506      if (LMI.SinkLifeStart) {
507        LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
508                          << "\n");
509        SinkCands.insert(LMI.LifeStart);
510      }
511      if (LMI.HoistLifeEnd) {
512        LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
513        HoistCands.insert(LMI.LifeEnd);
514      }
515      return true;
516    };
517  
518    // Look up allocas in the original function in CodeExtractorAnalysisCache, as
519    // this is much faster than walking all the instructions.
520    for (AllocaInst *AI : CEAC.getAllocas()) {
521      BasicBlock *BB = AI->getParent();
522      if (Blocks.count(BB))
523        continue;
524  
525      // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
526      // check whether it is actually still in the original function.
527      Function *AIFunc = BB->getParent();
528      if (AIFunc != Func)
529        continue;
530  
531      LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
532      bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
533      if (Moved) {
534        LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
535        SinkCands.insert(AI);
536        continue;
537      }
538  
539      // Find bitcasts in the outlined region that have lifetime marker users
540      // outside that region. Replace the lifetime marker use with an
541      // outside region bitcast to avoid unnecessary alloca/reload instructions
542      // and extra lifetime markers.
543      SmallVector<Instruction *, 2> LifetimeBitcastUsers;
544      for (User *U : AI->users()) {
545        if (!definedInRegion(Blocks, U))
546          continue;
547  
548        if (U->stripInBoundsConstantOffsets() != AI)
549          continue;
550  
551        Instruction *Bitcast = cast<Instruction>(U);
552        for (User *BU : Bitcast->users()) {
553          IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
554          if (!IntrInst)
555            continue;
556  
557          if (!IntrInst->isLifetimeStartOrEnd())
558            continue;
559  
560          if (definedInRegion(Blocks, IntrInst))
561            continue;
562  
563          LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
564                            << *Bitcast << " in out-of-region lifetime marker "
565                            << *IntrInst << "\n");
566          LifetimeBitcastUsers.push_back(IntrInst);
567        }
568      }
569  
570      for (Instruction *I : LifetimeBitcastUsers) {
571        Module *M = AIFunc->getParent();
572        LLVMContext &Ctx = M->getContext();
573        auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
574        CastInst *CastI =
575            CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
576        I->replaceUsesOfWith(I->getOperand(1), CastI);
577      }
578  
579      // Follow any bitcasts.
580      SmallVector<Instruction *, 2> Bitcasts;
581      SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
582      for (User *U : AI->users()) {
583        if (U->stripInBoundsConstantOffsets() == AI) {
584          Instruction *Bitcast = cast<Instruction>(U);
585          LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
586          if (LMI.LifeStart) {
587            Bitcasts.push_back(Bitcast);
588            BitcastLifetimeInfo.push_back(LMI);
589            continue;
590          }
591        }
592  
593        // Found unknown use of AI.
594        if (!definedInRegion(Blocks, U)) {
595          Bitcasts.clear();
596          break;
597        }
598      }
599  
600      // Either no bitcasts reference the alloca or there are unknown uses.
601      if (Bitcasts.empty())
602        continue;
603  
604      LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
605      SinkCands.insert(AI);
606      for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
607        Instruction *BitcastAddr = Bitcasts[I];
608        const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
609        assert(LMI.LifeStart &&
610               "Unsafe to sink bitcast without lifetime markers");
611        moveOrIgnoreLifetimeMarkers(LMI);
612        if (!definedInRegion(Blocks, BitcastAddr)) {
613          LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
614                            << "\n");
615          SinkCands.insert(BitcastAddr);
616        }
617      }
618    }
619  }
620  
621  bool CodeExtractor::isEligible() const {
622    if (Blocks.empty())
623      return false;
624    BasicBlock *Header = *Blocks.begin();
625    Function *F = Header->getParent();
626  
627    // For functions with varargs, check that varargs handling is only done in the
628    // outlined function, i.e vastart and vaend are only used in outlined blocks.
629    if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
630      auto containsVarArgIntrinsic = [](const Instruction &I) {
631        if (const CallInst *CI = dyn_cast<CallInst>(&I))
632          if (const Function *Callee = CI->getCalledFunction())
633            return Callee->getIntrinsicID() == Intrinsic::vastart ||
634                   Callee->getIntrinsicID() == Intrinsic::vaend;
635        return false;
636      };
637  
638      for (auto &BB : *F) {
639        if (Blocks.count(&BB))
640          continue;
641        if (llvm::any_of(BB, containsVarArgIntrinsic))
642          return false;
643      }
644    }
645    return true;
646  }
647  
648  void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
649                                        const ValueSet &SinkCands) const {
650    for (BasicBlock *BB : Blocks) {
651      // If a used value is defined outside the region, it's an input.  If an
652      // instruction is used outside the region, it's an output.
653      for (Instruction &II : *BB) {
654        for (auto &OI : II.operands()) {
655          Value *V = OI;
656          if (!SinkCands.count(V) && definedInCaller(Blocks, V))
657            Inputs.insert(V);
658        }
659  
660        for (User *U : II.users())
661          if (!definedInRegion(Blocks, U)) {
662            Outputs.insert(&II);
663            break;
664          }
665      }
666    }
667  }
668  
669  /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
670  /// of the region, we need to split the entry block of the region so that the
671  /// PHI node is easier to deal with.
672  void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
673    unsigned NumPredsFromRegion = 0;
674    unsigned NumPredsOutsideRegion = 0;
675  
676    if (Header != &Header->getParent()->getEntryBlock()) {
677      PHINode *PN = dyn_cast<PHINode>(Header->begin());
678      if (!PN) return;  // No PHI nodes.
679  
680      // If the header node contains any PHI nodes, check to see if there is more
681      // than one entry from outside the region.  If so, we need to sever the
682      // header block into two.
683      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
684        if (Blocks.count(PN->getIncomingBlock(i)))
685          ++NumPredsFromRegion;
686        else
687          ++NumPredsOutsideRegion;
688  
689      // If there is one (or fewer) predecessor from outside the region, we don't
690      // need to do anything special.
691      if (NumPredsOutsideRegion <= 1) return;
692    }
693  
694    // Otherwise, we need to split the header block into two pieces: one
695    // containing PHI nodes merging values from outside of the region, and a
696    // second that contains all of the code for the block and merges back any
697    // incoming values from inside of the region.
698    BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
699  
700    // We only want to code extract the second block now, and it becomes the new
701    // header of the region.
702    BasicBlock *OldPred = Header;
703    Blocks.remove(OldPred);
704    Blocks.insert(NewBB);
705    Header = NewBB;
706  
707    // Okay, now we need to adjust the PHI nodes and any branches from within the
708    // region to go to the new header block instead of the old header block.
709    if (NumPredsFromRegion) {
710      PHINode *PN = cast<PHINode>(OldPred->begin());
711      // Loop over all of the predecessors of OldPred that are in the region,
712      // changing them to branch to NewBB instead.
713      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
714        if (Blocks.count(PN->getIncomingBlock(i))) {
715          Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
716          TI->replaceUsesOfWith(OldPred, NewBB);
717        }
718  
719      // Okay, everything within the region is now branching to the right block, we
720      // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
721      BasicBlock::iterator AfterPHIs;
722      for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
723        PHINode *PN = cast<PHINode>(AfterPHIs);
724        // Create a new PHI node in the new region, which has an incoming value
725        // from OldPred of PN.
726        PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
727                                         PN->getName() + ".ce", &NewBB->front());
728        PN->replaceAllUsesWith(NewPN);
729        NewPN->addIncoming(PN, OldPred);
730  
731        // Loop over all of the incoming value in PN, moving them to NewPN if they
732        // are from the extracted region.
733        for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
734          if (Blocks.count(PN->getIncomingBlock(i))) {
735            NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
736            PN->removeIncomingValue(i);
737            --i;
738          }
739        }
740      }
741    }
742  }
743  
744  /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
745  /// outlined region, we split these PHIs on two: one with inputs from region
746  /// and other with remaining incoming blocks; then first PHIs are placed in
747  /// outlined region.
748  void CodeExtractor::severSplitPHINodesOfExits(
749      const SmallPtrSetImpl<BasicBlock *> &Exits) {
750    for (BasicBlock *ExitBB : Exits) {
751      BasicBlock *NewBB = nullptr;
752  
753      for (PHINode &PN : ExitBB->phis()) {
754        // Find all incoming values from the outlining region.
755        SmallVector<unsigned, 2> IncomingVals;
756        for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
757          if (Blocks.count(PN.getIncomingBlock(i)))
758            IncomingVals.push_back(i);
759  
760        // Do not process PHI if there is one (or fewer) predecessor from region.
761        // If PHI has exactly one predecessor from region, only this one incoming
762        // will be replaced on codeRepl block, so it should be safe to skip PHI.
763        if (IncomingVals.size() <= 1)
764          continue;
765  
766        // Create block for new PHIs and add it to the list of outlined if it
767        // wasn't done before.
768        if (!NewBB) {
769          NewBB = BasicBlock::Create(ExitBB->getContext(),
770                                     ExitBB->getName() + ".split",
771                                     ExitBB->getParent(), ExitBB);
772          SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
773          for (BasicBlock *PredBB : Preds)
774            if (Blocks.count(PredBB))
775              PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
776          BranchInst::Create(ExitBB, NewBB);
777          Blocks.insert(NewBB);
778        }
779  
780        // Split this PHI.
781        PHINode *NewPN =
782            PHINode::Create(PN.getType(), IncomingVals.size(),
783                            PN.getName() + ".ce", NewBB->getFirstNonPHI());
784        for (unsigned i : IncomingVals)
785          NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
786        for (unsigned i : reverse(IncomingVals))
787          PN.removeIncomingValue(i, false);
788        PN.addIncoming(NewPN, NewBB);
789      }
790    }
791  }
792  
793  void CodeExtractor::splitReturnBlocks() {
794    for (BasicBlock *Block : Blocks)
795      if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
796        BasicBlock *New =
797            Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
798        if (DT) {
799          // Old dominates New. New node dominates all other nodes dominated
800          // by Old.
801          DomTreeNode *OldNode = DT->getNode(Block);
802          SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
803                                                 OldNode->end());
804  
805          DomTreeNode *NewNode = DT->addNewBlock(New, Block);
806  
807          for (DomTreeNode *I : Children)
808            DT->changeImmediateDominator(I, NewNode);
809        }
810      }
811  }
812  
813  /// constructFunction - make a function based on inputs and outputs, as follows:
814  /// f(in0, ..., inN, out0, ..., outN)
815  Function *CodeExtractor::constructFunction(const ValueSet &inputs,
816                                             const ValueSet &outputs,
817                                             BasicBlock *header,
818                                             BasicBlock *newRootNode,
819                                             BasicBlock *newHeader,
820                                             Function *oldFunction,
821                                             Module *M) {
822    LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
823    LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
824  
825    // This function returns unsigned, outputs will go back by reference.
826    switch (NumExitBlocks) {
827    case 0:
828    case 1: RetTy = Type::getVoidTy(header->getContext()); break;
829    case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
830    default: RetTy = Type::getInt16Ty(header->getContext()); break;
831    }
832  
833    std::vector<Type *> ParamTy;
834    std::vector<Type *> AggParamTy;
835    ValueSet StructValues;
836  
837    // Add the types of the input values to the function's argument list
838    for (Value *value : inputs) {
839      LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
840      if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
841        AggParamTy.push_back(value->getType());
842        StructValues.insert(value);
843      } else
844        ParamTy.push_back(value->getType());
845    }
846  
847    // Add the types of the output values to the function's argument list.
848    for (Value *output : outputs) {
849      LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
850      if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
851        AggParamTy.push_back(output->getType());
852        StructValues.insert(output);
853      } else
854        ParamTy.push_back(PointerType::getUnqual(output->getType()));
855    }
856  
857    assert(
858        (ParamTy.size() + AggParamTy.size()) ==
859            (inputs.size() + outputs.size()) &&
860        "Number of scalar and aggregate params does not match inputs, outputs");
861    assert((StructValues.empty() || AggregateArgs) &&
862           "Expeced StructValues only with AggregateArgs set");
863  
864    // Concatenate scalar and aggregate params in ParamTy.
865    size_t NumScalarParams = ParamTy.size();
866    StructType *StructTy = nullptr;
867    if (AggregateArgs && !AggParamTy.empty()) {
868      StructTy = StructType::get(M->getContext(), AggParamTy);
869      ParamTy.push_back(PointerType::getUnqual(StructTy));
870    }
871  
872    LLVM_DEBUG({
873      dbgs() << "Function type: " << *RetTy << " f(";
874      for (Type *i : ParamTy)
875        dbgs() << *i << ", ";
876      dbgs() << ")\n";
877    });
878  
879    FunctionType *funcType = FunctionType::get(
880        RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
881  
882    std::string SuffixToUse =
883        Suffix.empty()
884            ? (header->getName().empty() ? "extracted" : header->getName().str())
885            : Suffix;
886    // Create the new function
887    Function *newFunction = Function::Create(
888        funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
889        oldFunction->getName() + "." + SuffixToUse, M);
890  
891    // Inherit all of the target dependent attributes and white-listed
892    // target independent attributes.
893    //  (e.g. If the extracted region contains a call to an x86.sse
894    //  instruction we need to make sure that the extracted region has the
895    //  "target-features" attribute allowing it to be lowered.
896    // FIXME: This should be changed to check to see if a specific
897    //           attribute can not be inherited.
898    for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
899      if (Attr.isStringAttribute()) {
900        if (Attr.getKindAsString() == "thunk")
901          continue;
902      } else
903        switch (Attr.getKindAsEnum()) {
904        // Those attributes cannot be propagated safely. Explicitly list them
905        // here so we get a warning if new attributes are added.
906        case Attribute::AllocSize:
907        case Attribute::ArgMemOnly:
908        case Attribute::Builtin:
909        case Attribute::Convergent:
910        case Attribute::InaccessibleMemOnly:
911        case Attribute::InaccessibleMemOrArgMemOnly:
912        case Attribute::JumpTable:
913        case Attribute::Naked:
914        case Attribute::NoBuiltin:
915        case Attribute::NoMerge:
916        case Attribute::NoReturn:
917        case Attribute::NoSync:
918        case Attribute::ReadNone:
919        case Attribute::ReadOnly:
920        case Attribute::ReturnsTwice:
921        case Attribute::Speculatable:
922        case Attribute::StackAlignment:
923        case Attribute::WillReturn:
924        case Attribute::WriteOnly:
925          continue;
926        // Those attributes should be safe to propagate to the extracted function.
927        case Attribute::AlwaysInline:
928        case Attribute::Cold:
929        case Attribute::DisableSanitizerInstrumentation:
930        case Attribute::Hot:
931        case Attribute::NoRecurse:
932        case Attribute::InlineHint:
933        case Attribute::MinSize:
934        case Attribute::NoCallback:
935        case Attribute::NoDuplicate:
936        case Attribute::NoFree:
937        case Attribute::NoImplicitFloat:
938        case Attribute::NoInline:
939        case Attribute::NonLazyBind:
940        case Attribute::NoRedZone:
941        case Attribute::NoUnwind:
942        case Attribute::NoSanitizeCoverage:
943        case Attribute::NullPointerIsValid:
944        case Attribute::OptForFuzzing:
945        case Attribute::OptimizeNone:
946        case Attribute::OptimizeForSize:
947        case Attribute::SafeStack:
948        case Attribute::ShadowCallStack:
949        case Attribute::SanitizeAddress:
950        case Attribute::SanitizeMemory:
951        case Attribute::SanitizeThread:
952        case Attribute::SanitizeHWAddress:
953        case Attribute::SanitizeMemTag:
954        case Attribute::SpeculativeLoadHardening:
955        case Attribute::StackProtect:
956        case Attribute::StackProtectReq:
957        case Attribute::StackProtectStrong:
958        case Attribute::StrictFP:
959        case Attribute::UWTable:
960        case Attribute::VScaleRange:
961        case Attribute::NoCfCheck:
962        case Attribute::MustProgress:
963        case Attribute::NoProfile:
964          break;
965        // These attributes cannot be applied to functions.
966        case Attribute::Alignment:
967        case Attribute::ByVal:
968        case Attribute::Dereferenceable:
969        case Attribute::DereferenceableOrNull:
970        case Attribute::ElementType:
971        case Attribute::InAlloca:
972        case Attribute::InReg:
973        case Attribute::Nest:
974        case Attribute::NoAlias:
975        case Attribute::NoCapture:
976        case Attribute::NoUndef:
977        case Attribute::NonNull:
978        case Attribute::Preallocated:
979        case Attribute::Returned:
980        case Attribute::SExt:
981        case Attribute::StructRet:
982        case Attribute::SwiftError:
983        case Attribute::SwiftSelf:
984        case Attribute::SwiftAsync:
985        case Attribute::ZExt:
986        case Attribute::ImmArg:
987        case Attribute::ByRef:
988        //  These are not really attributes.
989        case Attribute::None:
990        case Attribute::EndAttrKinds:
991        case Attribute::EmptyKey:
992        case Attribute::TombstoneKey:
993          llvm_unreachable("Not a function attribute");
994        }
995  
996      newFunction->addFnAttr(Attr);
997    }
998    newFunction->getBasicBlockList().push_back(newRootNode);
999  
1000    // Create scalar and aggregate iterators to name all of the arguments we
1001    // inserted.
1002    Function::arg_iterator ScalarAI = newFunction->arg_begin();
1003    Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1004  
1005    // Rewrite all users of the inputs in the extracted region to use the
1006    // arguments (or appropriate addressing into struct) instead.
1007    for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1008      Value *RewriteVal;
1009      if (AggregateArgs && StructValues.contains(inputs[i])) {
1010        Value *Idx[2];
1011        Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1012        Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1013        Instruction *TI = newFunction->begin()->getTerminator();
1014        GetElementPtrInst *GEP = GetElementPtrInst::Create(
1015            StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1016        RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1017                                  "loadgep_" + inputs[i]->getName(), TI);
1018        ++aggIdx;
1019      } else
1020        RewriteVal = &*ScalarAI++;
1021  
1022      std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1023      for (User *use : Users)
1024        if (Instruction *inst = dyn_cast<Instruction>(use))
1025          if (Blocks.count(inst->getParent()))
1026            inst->replaceUsesOfWith(inputs[i], RewriteVal);
1027    }
1028  
1029    // Set names for input and output arguments.
1030    if (NumScalarParams) {
1031      ScalarAI = newFunction->arg_begin();
1032      for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1033        if (!StructValues.contains(inputs[i]))
1034          ScalarAI->setName(inputs[i]->getName());
1035      for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1036        if (!StructValues.contains(outputs[i]))
1037          ScalarAI->setName(outputs[i]->getName() + ".out");
1038    }
1039  
1040    // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1041    // within the new function. This must be done before we lose track of which
1042    // blocks were originally in the code region.
1043    std::vector<User *> Users(header->user_begin(), header->user_end());
1044    for (auto &U : Users)
1045      // The BasicBlock which contains the branch is not in the region
1046      // modify the branch target to a new block
1047      if (Instruction *I = dyn_cast<Instruction>(U))
1048        if (I->isTerminator() && I->getFunction() == oldFunction &&
1049            !Blocks.count(I->getParent()))
1050          I->replaceUsesOfWith(header, newHeader);
1051  
1052    return newFunction;
1053  }
1054  
1055  /// Erase lifetime.start markers which reference inputs to the extraction
1056  /// region, and insert the referenced memory into \p LifetimesStart.
1057  ///
1058  /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1059  /// of allocas which will be moved from the caller function into the extracted
1060  /// function (\p SunkAllocas).
1061  static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1062                                           const SetVector<Value *> &SunkAllocas,
1063                                           SetVector<Value *> &LifetimesStart) {
1064    for (BasicBlock *BB : Blocks) {
1065      for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1066        auto *II = dyn_cast<IntrinsicInst>(&I);
1067        if (!II || !II->isLifetimeStartOrEnd())
1068          continue;
1069  
1070        // Get the memory operand of the lifetime marker. If the underlying
1071        // object is a sunk alloca, or is otherwise defined in the extraction
1072        // region, the lifetime marker must not be erased.
1073        Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1074        if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1075          continue;
1076  
1077        if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1078          LifetimesStart.insert(Mem);
1079        II->eraseFromParent();
1080      }
1081    }
1082  }
1083  
1084  /// Insert lifetime start/end markers surrounding the call to the new function
1085  /// for objects defined in the caller.
1086  static void insertLifetimeMarkersSurroundingCall(
1087      Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1088      CallInst *TheCall) {
1089    LLVMContext &Ctx = M->getContext();
1090    auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1091    auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1092    Instruction *Term = TheCall->getParent()->getTerminator();
1093  
1094    // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1095    // needed to satisfy this requirement so they may be reused.
1096    DenseMap<Value *, Value *> Bitcasts;
1097  
1098    // Emit lifetime markers for the pointers given in \p Objects. Insert the
1099    // markers before the call if \p InsertBefore, and after the call otherwise.
1100    auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1101                             bool InsertBefore) {
1102      for (Value *Mem : Objects) {
1103        assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1104                                              TheCall->getFunction()) &&
1105               "Input memory not defined in original function");
1106        Value *&MemAsI8Ptr = Bitcasts[Mem];
1107        if (!MemAsI8Ptr) {
1108          if (Mem->getType() == Int8PtrTy)
1109            MemAsI8Ptr = Mem;
1110          else
1111            MemAsI8Ptr =
1112                CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1113        }
1114  
1115        auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1116        if (InsertBefore)
1117          Marker->insertBefore(TheCall);
1118        else
1119          Marker->insertBefore(Term);
1120      }
1121    };
1122  
1123    if (!LifetimesStart.empty()) {
1124      auto StartFn = llvm::Intrinsic::getDeclaration(
1125          M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1126      insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1127    }
1128  
1129    if (!LifetimesEnd.empty()) {
1130      auto EndFn = llvm::Intrinsic::getDeclaration(
1131          M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1132      insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1133    }
1134  }
1135  
1136  /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1137  /// the call instruction, splitting any PHI nodes in the header block as
1138  /// necessary.
1139  CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1140                                                      BasicBlock *codeReplacer,
1141                                                      ValueSet &inputs,
1142                                                      ValueSet &outputs) {
1143    // Emit a call to the new function, passing in: *pointer to struct (if
1144    // aggregating parameters), or plan inputs and allocated memory for outputs
1145    std::vector<Value *> params, ReloadOutputs, Reloads;
1146    ValueSet StructValues;
1147  
1148    Module *M = newFunction->getParent();
1149    LLVMContext &Context = M->getContext();
1150    const DataLayout &DL = M->getDataLayout();
1151    CallInst *call = nullptr;
1152  
1153    // Add inputs as params, or to be filled into the struct
1154    unsigned ScalarInputArgNo = 0;
1155    SmallVector<unsigned, 1> SwiftErrorArgs;
1156    for (Value *input : inputs) {
1157      if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1158        StructValues.insert(input);
1159      else {
1160        params.push_back(input);
1161        if (input->isSwiftError())
1162          SwiftErrorArgs.push_back(ScalarInputArgNo);
1163      }
1164      ++ScalarInputArgNo;
1165    }
1166  
1167    // Create allocas for the outputs
1168    unsigned ScalarOutputArgNo = 0;
1169    for (Value *output : outputs) {
1170      if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1171        StructValues.insert(output);
1172      } else {
1173        AllocaInst *alloca =
1174          new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1175                         nullptr, output->getName() + ".loc",
1176                         &codeReplacer->getParent()->front().front());
1177        ReloadOutputs.push_back(alloca);
1178        params.push_back(alloca);
1179        ++ScalarOutputArgNo;
1180      }
1181    }
1182  
1183    StructType *StructArgTy = nullptr;
1184    AllocaInst *Struct = nullptr;
1185    unsigned NumAggregatedInputs = 0;
1186    if (AggregateArgs && !StructValues.empty()) {
1187      std::vector<Type *> ArgTypes;
1188      for (Value *V : StructValues)
1189        ArgTypes.push_back(V->getType());
1190  
1191      // Allocate a struct at the beginning of this function
1192      StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1193      Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1194                              "structArg",
1195                              &codeReplacer->getParent()->front().front());
1196      params.push_back(Struct);
1197  
1198      // Store aggregated inputs in the struct.
1199      for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1200        if (inputs.contains(StructValues[i])) {
1201          Value *Idx[2];
1202          Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1203          Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1204          GetElementPtrInst *GEP = GetElementPtrInst::Create(
1205              StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1206          codeReplacer->getInstList().push_back(GEP);
1207          new StoreInst(StructValues[i], GEP, codeReplacer);
1208          NumAggregatedInputs++;
1209        }
1210      }
1211    }
1212  
1213    // Emit the call to the function
1214    call = CallInst::Create(newFunction, params,
1215                            NumExitBlocks > 1 ? "targetBlock" : "");
1216    // Add debug location to the new call, if the original function has debug
1217    // info. In that case, the terminator of the entry block of the extracted
1218    // function contains the first debug location of the extracted function,
1219    // set in extractCodeRegion.
1220    if (codeReplacer->getParent()->getSubprogram()) {
1221      if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1222        call->setDebugLoc(DL);
1223    }
1224    codeReplacer->getInstList().push_back(call);
1225  
1226    // Set swifterror parameter attributes.
1227    for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1228      call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1229      newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1230    }
1231  
1232    // Reload the outputs passed in by reference, use the struct if output is in
1233    // the aggregate or reload from the scalar argument.
1234    for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1235                  aggIdx = NumAggregatedInputs;
1236         i != e; ++i) {
1237      Value *Output = nullptr;
1238      if (AggregateArgs && StructValues.contains(outputs[i])) {
1239        Value *Idx[2];
1240        Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1241        Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1242        GetElementPtrInst *GEP = GetElementPtrInst::Create(
1243            StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1244        codeReplacer->getInstList().push_back(GEP);
1245        Output = GEP;
1246        ++aggIdx;
1247      } else {
1248        Output = ReloadOutputs[scalarIdx];
1249        ++scalarIdx;
1250      }
1251      LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1252                                    outputs[i]->getName() + ".reload",
1253                                    codeReplacer);
1254      Reloads.push_back(load);
1255      std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1256      for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1257        Instruction *inst = cast<Instruction>(Users[u]);
1258        if (!Blocks.count(inst->getParent()))
1259          inst->replaceUsesOfWith(outputs[i], load);
1260      }
1261    }
1262  
1263    // Now we can emit a switch statement using the call as a value.
1264    SwitchInst *TheSwitch =
1265        SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1266                           codeReplacer, 0, codeReplacer);
1267  
1268    // Since there may be multiple exits from the original region, make the new
1269    // function return an unsigned, switch on that number.  This loop iterates
1270    // over all of the blocks in the extracted region, updating any terminator
1271    // instructions in the to-be-extracted region that branch to blocks that are
1272    // not in the region to be extracted.
1273    std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1274  
1275    // Iterate over the previously collected targets, and create new blocks inside
1276    // the function to branch to.
1277    unsigned switchVal = 0;
1278    for (BasicBlock *OldTarget : OldTargets) {
1279      if (Blocks.count(OldTarget))
1280        continue;
1281      BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1282      if (NewTarget)
1283        continue;
1284  
1285      // If we don't already have an exit stub for this non-extracted
1286      // destination, create one now!
1287      NewTarget = BasicBlock::Create(Context,
1288                                      OldTarget->getName() + ".exitStub",
1289                                      newFunction);
1290      unsigned SuccNum = switchVal++;
1291  
1292      Value *brVal = nullptr;
1293      assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1294      switch (NumExitBlocks) {
1295      case 0:
1296      case 1: break;  // No value needed.
1297      case 2:         // Conditional branch, return a bool
1298        brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1299        break;
1300      default:
1301        brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1302        break;
1303      }
1304  
1305      ReturnInst::Create(Context, brVal, NewTarget);
1306  
1307      // Update the switch instruction.
1308      TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1309                                          SuccNum),
1310                          OldTarget);
1311    }
1312  
1313    for (BasicBlock *Block : Blocks) {
1314      Instruction *TI = Block->getTerminator();
1315      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1316        if (Blocks.count(TI->getSuccessor(i)))
1317          continue;
1318        BasicBlock *OldTarget = TI->getSuccessor(i);
1319        // add a new basic block which returns the appropriate value
1320        BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1321        assert(NewTarget && "Unknown target block!");
1322  
1323        // rewrite the original branch instruction with this new target
1324        TI->setSuccessor(i, NewTarget);
1325     }
1326    }
1327  
1328    // Store the arguments right after the definition of output value.
1329    // This should be proceeded after creating exit stubs to be ensure that invoke
1330    // result restore will be placed in the outlined function.
1331    Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1332    std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1333    Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1334    std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1335  
1336    for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1337         ++i) {
1338      auto *OutI = dyn_cast<Instruction>(outputs[i]);
1339      if (!OutI)
1340        continue;
1341  
1342      // Find proper insertion point.
1343      BasicBlock::iterator InsertPt;
1344      // In case OutI is an invoke, we insert the store at the beginning in the
1345      // 'normal destination' BB. Otherwise we insert the store right after OutI.
1346      if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1347        InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1348      else if (auto *Phi = dyn_cast<PHINode>(OutI))
1349        InsertPt = Phi->getParent()->getFirstInsertionPt();
1350      else
1351        InsertPt = std::next(OutI->getIterator());
1352  
1353      Instruction *InsertBefore = &*InsertPt;
1354      assert((InsertBefore->getFunction() == newFunction ||
1355              Blocks.count(InsertBefore->getParent())) &&
1356             "InsertPt should be in new function");
1357      if (AggregateArgs && StructValues.contains(outputs[i])) {
1358        assert(AggOutputArgBegin != newFunction->arg_end() &&
1359               "Number of aggregate output arguments should match "
1360               "the number of defined values");
1361        Value *Idx[2];
1362        Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1363        Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1364        GetElementPtrInst *GEP = GetElementPtrInst::Create(
1365            StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1366            InsertBefore);
1367        new StoreInst(outputs[i], GEP, InsertBefore);
1368        ++aggIdx;
1369        // Since there should be only one struct argument aggregating
1370        // all the output values, we shouldn't increment AggOutputArgBegin, which
1371        // always points to the struct argument, in this case.
1372      } else {
1373        assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1374               "Number of scalar output arguments should match "
1375               "the number of defined values");
1376        new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore);
1377        ++ScalarOutputArgBegin;
1378      }
1379    }
1380  
1381    // Now that we've done the deed, simplify the switch instruction.
1382    Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1383    switch (NumExitBlocks) {
1384    case 0:
1385      // There are no successors (the block containing the switch itself), which
1386      // means that previously this was the last part of the function, and hence
1387      // this should be rewritten as a `ret'
1388  
1389      // Check if the function should return a value
1390      if (OldFnRetTy->isVoidTy()) {
1391        ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1392      } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1393        // return what we have
1394        ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1395      } else {
1396        // Otherwise we must have code extracted an unwind or something, just
1397        // return whatever we want.
1398        ReturnInst::Create(Context,
1399                           Constant::getNullValue(OldFnRetTy), TheSwitch);
1400      }
1401  
1402      TheSwitch->eraseFromParent();
1403      break;
1404    case 1:
1405      // Only a single destination, change the switch into an unconditional
1406      // branch.
1407      BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1408      TheSwitch->eraseFromParent();
1409      break;
1410    case 2:
1411      BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1412                         call, TheSwitch);
1413      TheSwitch->eraseFromParent();
1414      break;
1415    default:
1416      // Otherwise, make the default destination of the switch instruction be one
1417      // of the other successors.
1418      TheSwitch->setCondition(call);
1419      TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1420      // Remove redundant case
1421      TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1422      break;
1423    }
1424  
1425    // Insert lifetime markers around the reloads of any output values. The
1426    // allocas output values are stored in are only in-use in the codeRepl block.
1427    insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1428  
1429    return call;
1430  }
1431  
1432  void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1433    Function *oldFunc = (*Blocks.begin())->getParent();
1434    Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1435    Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1436  
1437    auto newFuncIt = newFunction->front().getIterator();
1438    for (BasicBlock *Block : Blocks) {
1439      // Delete the basic block from the old function, and the list of blocks
1440      oldBlocks.remove(Block);
1441  
1442      // Insert this basic block into the new function
1443      // Insert the original blocks after the entry block created
1444      // for the new function. The entry block may be followed
1445      // by a set of exit blocks at this point, but these exit
1446      // blocks better be placed at the end of the new function.
1447      newFuncIt = newBlocks.insertAfter(newFuncIt, Block);
1448    }
1449  }
1450  
1451  void CodeExtractor::calculateNewCallTerminatorWeights(
1452      BasicBlock *CodeReplacer,
1453      DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1454      BranchProbabilityInfo *BPI) {
1455    using Distribution = BlockFrequencyInfoImplBase::Distribution;
1456    using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1457  
1458    // Update the branch weights for the exit block.
1459    Instruction *TI = CodeReplacer->getTerminator();
1460    SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1461  
1462    // Block Frequency distribution with dummy node.
1463    Distribution BranchDist;
1464  
1465    SmallVector<BranchProbability, 4> EdgeProbabilities(
1466        TI->getNumSuccessors(), BranchProbability::getUnknown());
1467  
1468    // Add each of the frequencies of the successors.
1469    for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1470      BlockNode ExitNode(i);
1471      uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1472      if (ExitFreq != 0)
1473        BranchDist.addExit(ExitNode, ExitFreq);
1474      else
1475        EdgeProbabilities[i] = BranchProbability::getZero();
1476    }
1477  
1478    // Check for no total weight.
1479    if (BranchDist.Total == 0) {
1480      BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1481      return;
1482    }
1483  
1484    // Normalize the distribution so that they can fit in unsigned.
1485    BranchDist.normalize();
1486  
1487    // Create normalized branch weights and set the metadata.
1488    for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1489      const auto &Weight = BranchDist.Weights[I];
1490  
1491      // Get the weight and update the current BFI.
1492      BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1493      BranchProbability BP(Weight.Amount, BranchDist.Total);
1494      EdgeProbabilities[Weight.TargetNode.Index] = BP;
1495    }
1496    BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1497    TI->setMetadata(
1498        LLVMContext::MD_prof,
1499        MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1500  }
1501  
1502  /// Erase debug info intrinsics which refer to values in \p F but aren't in
1503  /// \p F.
1504  static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1505    for (Instruction &I : instructions(F)) {
1506      SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1507      findDbgUsers(DbgUsers, &I);
1508      for (DbgVariableIntrinsic *DVI : DbgUsers)
1509        if (DVI->getFunction() != &F)
1510          DVI->eraseFromParent();
1511    }
1512  }
1513  
1514  /// Fix up the debug info in the old and new functions by pointing line
1515  /// locations and debug intrinsics to the new subprogram scope, and by deleting
1516  /// intrinsics which point to values outside of the new function.
1517  static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1518                                           CallInst &TheCall) {
1519    DISubprogram *OldSP = OldFunc.getSubprogram();
1520    LLVMContext &Ctx = OldFunc.getContext();
1521  
1522    if (!OldSP) {
1523      // Erase any debug info the new function contains.
1524      stripDebugInfo(NewFunc);
1525      // Make sure the old function doesn't contain any non-local metadata refs.
1526      eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1527      return;
1528    }
1529  
1530    // Create a subprogram for the new function. Leave out a description of the
1531    // function arguments, as the parameters don't correspond to anything at the
1532    // source level.
1533    assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1534    DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1535                  OldSP->getUnit());
1536    auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
1537    DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1538                                      DISubprogram::SPFlagOptimized |
1539                                      DISubprogram::SPFlagLocalToUnit;
1540    auto NewSP = DIB.createFunction(
1541        OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1542        /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1543    NewFunc.setSubprogram(NewSP);
1544  
1545    // Debug intrinsics in the new function need to be updated in one of two
1546    // ways:
1547    //  1) They need to be deleted, because they describe a value in the old
1548    //     function.
1549    //  2) They need to point to fresh metadata, e.g. because they currently
1550    //     point to a variable in the wrong scope.
1551    SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1552    SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1553    for (Instruction &I : instructions(NewFunc)) {
1554      auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1555      if (!DII)
1556        continue;
1557  
1558      // Point the intrinsic to a fresh label within the new function.
1559      if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1560        DILabel *OldLabel = DLI->getLabel();
1561        DINode *&NewLabel = RemappedMetadata[OldLabel];
1562        if (!NewLabel)
1563          NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
1564                                  OldLabel->getFile(), OldLabel->getLine());
1565        DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1566        continue;
1567      }
1568  
1569      auto IsInvalidLocation = [&NewFunc](Value *Location) {
1570        // Location is invalid if it isn't a constant or an instruction, or is an
1571        // instruction but isn't in the new function.
1572        if (!Location ||
1573            (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1574          return true;
1575        Instruction *LocationInst = dyn_cast<Instruction>(Location);
1576        return LocationInst && LocationInst->getFunction() != &NewFunc;
1577      };
1578  
1579      auto *DVI = cast<DbgVariableIntrinsic>(DII);
1580      // If any of the used locations are invalid, delete the intrinsic.
1581      if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1582        DebugIntrinsicsToDelete.push_back(DVI);
1583        continue;
1584      }
1585  
1586      // Point the intrinsic to a fresh variable within the new function.
1587      DILocalVariable *OldVar = DVI->getVariable();
1588      DINode *&NewVar = RemappedMetadata[OldVar];
1589      if (!NewVar)
1590        NewVar = DIB.createAutoVariable(
1591            NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1592            OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1593            OldVar->getAlignInBits());
1594      DVI->setVariable(cast<DILocalVariable>(NewVar));
1595    }
1596    for (auto *DII : DebugIntrinsicsToDelete)
1597      DII->eraseFromParent();
1598    DIB.finalizeSubprogram(NewSP);
1599  
1600    // Fix up the scope information attached to the line locations in the new
1601    // function.
1602    for (Instruction &I : instructions(NewFunc)) {
1603      if (const DebugLoc &DL = I.getDebugLoc())
1604        I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP));
1605  
1606      // Loop info metadata may contain line locations. Fix them up.
1607      auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * {
1608        if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1609          return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP,
1610                                 nullptr);
1611        return MD;
1612      };
1613      updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1614    }
1615    if (!TheCall.getDebugLoc())
1616      TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1617  
1618    eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1619  }
1620  
1621  Function *
1622  CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1623    ValueSet Inputs, Outputs;
1624    return extractCodeRegion(CEAC, Inputs, Outputs);
1625  }
1626  
1627  Function *
1628  CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1629                                   ValueSet &inputs, ValueSet &outputs) {
1630    if (!isEligible())
1631      return nullptr;
1632  
1633    // Assumption: this is a single-entry code region, and the header is the first
1634    // block in the region.
1635    BasicBlock *header = *Blocks.begin();
1636    Function *oldFunction = header->getParent();
1637  
1638    // Calculate the entry frequency of the new function before we change the root
1639    //   block.
1640    BlockFrequency EntryFreq;
1641    if (BFI) {
1642      assert(BPI && "Both BPI and BFI are required to preserve profile info");
1643      for (BasicBlock *Pred : predecessors(header)) {
1644        if (Blocks.count(Pred))
1645          continue;
1646        EntryFreq +=
1647            BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1648      }
1649    }
1650  
1651    // Remove @llvm.assume calls that will be moved to the new function from the
1652    // old function's assumption cache.
1653    for (BasicBlock *Block : Blocks) {
1654      for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1655        if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1656          if (AC)
1657            AC->unregisterAssumption(AI);
1658          AI->eraseFromParent();
1659        }
1660      }
1661    }
1662  
1663    // If we have any return instructions in the region, split those blocks so
1664    // that the return is not in the region.
1665    splitReturnBlocks();
1666  
1667    // Calculate the exit blocks for the extracted region and the total exit
1668    // weights for each of those blocks.
1669    DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1670    SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1671    for (BasicBlock *Block : Blocks) {
1672      for (BasicBlock *Succ : successors(Block)) {
1673        if (!Blocks.count(Succ)) {
1674          // Update the branch weight for this successor.
1675          if (BFI) {
1676            BlockFrequency &BF = ExitWeights[Succ];
1677            BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1678          }
1679          ExitBlocks.insert(Succ);
1680        }
1681      }
1682    }
1683    NumExitBlocks = ExitBlocks.size();
1684  
1685    for (BasicBlock *Block : Blocks) {
1686      Instruction *TI = Block->getTerminator();
1687      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1688        if (Blocks.count(TI->getSuccessor(i)))
1689          continue;
1690        BasicBlock *OldTarget = TI->getSuccessor(i);
1691        OldTargets.push_back(OldTarget);
1692      }
1693    }
1694  
1695    // If we have to split PHI nodes of the entry or exit blocks, do so now.
1696    severSplitPHINodesOfEntry(header);
1697    severSplitPHINodesOfExits(ExitBlocks);
1698  
1699    // This takes place of the original loop
1700    BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1701                                                  "codeRepl", oldFunction,
1702                                                  header);
1703  
1704    // The new function needs a root node because other nodes can branch to the
1705    // head of the region, but the entry node of a function cannot have preds.
1706    BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1707                                                 "newFuncRoot");
1708    auto *BranchI = BranchInst::Create(header);
1709    // If the original function has debug info, we have to add a debug location
1710    // to the new branch instruction from the artificial entry block.
1711    // We use the debug location of the first instruction in the extracted
1712    // blocks, as there is no other equivalent line in the source code.
1713    if (oldFunction->getSubprogram()) {
1714      any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1715        return any_of(*BB, [&BranchI](const Instruction &I) {
1716          if (!I.getDebugLoc())
1717            return false;
1718          BranchI->setDebugLoc(I.getDebugLoc());
1719          return true;
1720        });
1721      });
1722    }
1723    newFuncRoot->getInstList().push_back(BranchI);
1724  
1725    ValueSet SinkingCands, HoistingCands;
1726    BasicBlock *CommonExit = nullptr;
1727    findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1728    assert(HoistingCands.empty() || CommonExit);
1729  
1730    // Find inputs to, outputs from the code region.
1731    findInputsOutputs(inputs, outputs, SinkingCands);
1732  
1733    // Now sink all instructions which only have non-phi uses inside the region.
1734    // Group the allocas at the start of the block, so that any bitcast uses of
1735    // the allocas are well-defined.
1736    AllocaInst *FirstSunkAlloca = nullptr;
1737    for (auto *II : SinkingCands) {
1738      if (auto *AI = dyn_cast<AllocaInst>(II)) {
1739        AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1740        if (!FirstSunkAlloca)
1741          FirstSunkAlloca = AI;
1742      }
1743    }
1744    assert((SinkingCands.empty() || FirstSunkAlloca) &&
1745           "Did not expect a sink candidate without any allocas");
1746    for (auto *II : SinkingCands) {
1747      if (!isa<AllocaInst>(II)) {
1748        cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1749      }
1750    }
1751  
1752    if (!HoistingCands.empty()) {
1753      auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1754      Instruction *TI = HoistToBlock->getTerminator();
1755      for (auto *II : HoistingCands)
1756        cast<Instruction>(II)->moveBefore(TI);
1757    }
1758  
1759    // Collect objects which are inputs to the extraction region and also
1760    // referenced by lifetime start markers within it. The effects of these
1761    // markers must be replicated in the calling function to prevent the stack
1762    // coloring pass from merging slots which store input objects.
1763    ValueSet LifetimesStart;
1764    eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1765  
1766    // Construct new function based on inputs/outputs & add allocas for all defs.
1767    Function *newFunction =
1768        constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1769                          oldFunction, oldFunction->getParent());
1770  
1771    // Update the entry count of the function.
1772    if (BFI) {
1773      auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1774      if (Count.hasValue())
1775        newFunction->setEntryCount(
1776            ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1777      BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1778    }
1779  
1780    CallInst *TheCall =
1781        emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1782  
1783    moveCodeToFunction(newFunction);
1784  
1785    // Replicate the effects of any lifetime start/end markers which referenced
1786    // input objects in the extraction region by placing markers around the call.
1787    insertLifetimeMarkersSurroundingCall(
1788        oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1789  
1790    // Propagate personality info to the new function if there is one.
1791    if (oldFunction->hasPersonalityFn())
1792      newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1793  
1794    // Update the branch weights for the exit block.
1795    if (BFI && NumExitBlocks > 1)
1796      calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1797  
1798    // Loop over all of the PHI nodes in the header and exit blocks, and change
1799    // any references to the old incoming edge to be the new incoming edge.
1800    for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1801      PHINode *PN = cast<PHINode>(I);
1802      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1803        if (!Blocks.count(PN->getIncomingBlock(i)))
1804          PN->setIncomingBlock(i, newFuncRoot);
1805    }
1806  
1807    for (BasicBlock *ExitBB : ExitBlocks)
1808      for (PHINode &PN : ExitBB->phis()) {
1809        Value *IncomingCodeReplacerVal = nullptr;
1810        for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1811          // Ignore incoming values from outside of the extracted region.
1812          if (!Blocks.count(PN.getIncomingBlock(i)))
1813            continue;
1814  
1815          // Ensure that there is only one incoming value from codeReplacer.
1816          if (!IncomingCodeReplacerVal) {
1817            PN.setIncomingBlock(i, codeReplacer);
1818            IncomingCodeReplacerVal = PN.getIncomingValue(i);
1819          } else
1820            assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1821                   "PHI has two incompatbile incoming values from codeRepl");
1822        }
1823      }
1824  
1825    fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1826  
1827    // Mark the new function `noreturn` if applicable. Terminators which resume
1828    // exception propagation are treated as returning instructions. This is to
1829    // avoid inserting traps after calls to outlined functions which unwind.
1830    bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1831      const Instruction *Term = BB.getTerminator();
1832      return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1833    });
1834    if (doesNotReturn)
1835      newFunction->setDoesNotReturn();
1836  
1837    LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1838      newFunction->dump();
1839      report_fatal_error("verification of newFunction failed!");
1840    });
1841    LLVM_DEBUG(if (verifyFunction(*oldFunction))
1842               report_fatal_error("verification of oldFunction failed!"));
1843    LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1844                   report_fatal_error("Stale Asumption cache for old Function!"));
1845    return newFunction;
1846  }
1847  
1848  bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1849                                            const Function &NewFunc,
1850                                            AssumptionCache *AC) {
1851    for (auto AssumeVH : AC->assumptions()) {
1852      auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1853      if (!I)
1854        continue;
1855  
1856      // There shouldn't be any llvm.assume intrinsics in the new function.
1857      if (I->getFunction() != &OldFunc)
1858        return true;
1859  
1860      // There shouldn't be any stale affected values in the assumption cache
1861      // that were previously in the old function, but that have now been moved
1862      // to the new function.
1863      for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1864        auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1865        if (!AffectedCI)
1866          continue;
1867        if (AffectedCI->getFunction() != &OldFunc)
1868          return true;
1869        auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1870        if (AssumedInst->getFunction() != &OldFunc)
1871          return true;
1872      }
1873    }
1874    return false;
1875  }
1876  
1877  void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1878    ExcludeArgsFromAggregate.insert(Arg);
1879  }
1880