xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 9729f076e4d93c5a37e78d427bfe0f1ab99bbcc6)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/Verifier.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include <cassert>
67 #include <cstdint>
68 #include <iterator>
69 #include <map>
70 #include <set>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 using namespace llvm::PatternMatch;
76 using ProfileCount = Function::ProfileCount;
77 
78 #define DEBUG_TYPE "code-extractor"
79 
80 // Provide a command-line option to aggregate function arguments into a struct
81 // for functions produced by the code extractor. This is useful when converting
82 // extracted functions to pthread-based code, as only one argument (void*) can
83 // be passed in to pthread_create().
84 static cl::opt<bool>
85 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
86                  cl::desc("Aggregate arguments to code-extracted functions"));
87 
88 /// Test whether a block is valid for extraction.
89 static bool isBlockValidForExtraction(const BasicBlock &BB,
90                                       const SetVector<BasicBlock *> &Result,
91                                       bool AllowVarArgs, bool AllowAlloca) {
92   // taking the address of a basic block moved to another function is illegal
93   if (BB.hasAddressTaken())
94     return false;
95 
96   // don't hoist code that uses another basicblock address, as it's likely to
97   // lead to unexpected behavior, like cross-function jumps
98   SmallPtrSet<User const *, 16> Visited;
99   SmallVector<User const *, 16> ToVisit;
100 
101   for (Instruction const &Inst : BB)
102     ToVisit.push_back(&Inst);
103 
104   while (!ToVisit.empty()) {
105     User const *Curr = ToVisit.pop_back_val();
106     if (!Visited.insert(Curr).second)
107       continue;
108     if (isa<BlockAddress const>(Curr))
109       return false; // even a reference to self is likely to be not compatible
110 
111     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
112       continue;
113 
114     for (auto const &U : Curr->operands()) {
115       if (auto *UU = dyn_cast<User>(U))
116         ToVisit.push_back(UU);
117     }
118   }
119 
120   // If explicitly requested, allow vastart and alloca. For invoke instructions
121   // verify that extraction is valid.
122   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
123     if (isa<AllocaInst>(I)) {
124        if (!AllowAlloca)
125          return false;
126        continue;
127     }
128 
129     if (const auto *II = dyn_cast<InvokeInst>(I)) {
130       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
131       // must be a part of the subgraph which is being extracted.
132       if (auto *UBB = II->getUnwindDest())
133         if (!Result.count(UBB))
134           return false;
135       continue;
136     }
137 
138     // All catch handlers of a catchswitch instruction as well as the unwind
139     // destination must be in the subgraph.
140     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
141       if (auto *UBB = CSI->getUnwindDest())
142         if (!Result.count(UBB))
143           return false;
144       for (auto *HBB : CSI->handlers())
145         if (!Result.count(const_cast<BasicBlock*>(HBB)))
146           return false;
147       continue;
148     }
149 
150     // Make sure that entire catch handler is within subgraph. It is sufficient
151     // to check that catch return's block is in the list.
152     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
153       for (const auto *U : CPI->users())
154         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
155           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
156             return false;
157       continue;
158     }
159 
160     // And do similar checks for cleanup handler - the entire handler must be
161     // in subgraph which is going to be extracted. For cleanup return should
162     // additionally check that the unwind destination is also in the subgraph.
163     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
164       for (const auto *U : CPI->users())
165         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
166           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
167             return false;
168       continue;
169     }
170     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
171       if (auto *UBB = CRI->getUnwindDest())
172         if (!Result.count(UBB))
173           return false;
174       continue;
175     }
176 
177     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
178       if (const Function *F = CI->getCalledFunction()) {
179         auto IID = F->getIntrinsicID();
180         if (IID == Intrinsic::vastart) {
181           if (AllowVarArgs)
182             continue;
183           else
184             return false;
185         }
186 
187         // Currently, we miscompile outlined copies of eh_typid_for. There are
188         // proposals for fixing this in llvm.org/PR39545.
189         if (IID == Intrinsic::eh_typeid_for)
190           return false;
191       }
192     }
193   }
194 
195   return true;
196 }
197 
198 /// Build a set of blocks to extract if the input blocks are viable.
199 static SetVector<BasicBlock *>
200 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
201                         bool AllowVarArgs, bool AllowAlloca) {
202   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
203   SetVector<BasicBlock *> Result;
204 
205   // Loop over the blocks, adding them to our set-vector, and aborting with an
206   // empty set if we encounter invalid blocks.
207   for (BasicBlock *BB : BBs) {
208     // If this block is dead, don't process it.
209     if (DT && !DT->isReachableFromEntry(BB))
210       continue;
211 
212     if (!Result.insert(BB))
213       llvm_unreachable("Repeated basic blocks in extraction input");
214   }
215 
216   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
217                     << '\n');
218 
219   for (auto *BB : Result) {
220     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
221       return {};
222 
223     // Make sure that the first block is not a landing pad.
224     if (BB == Result.front()) {
225       if (BB->isEHPad()) {
226         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
227         return {};
228       }
229       continue;
230     }
231 
232     // All blocks other than the first must not have predecessors outside of
233     // the subgraph which is being extracted.
234     for (auto *PBB : predecessors(BB))
235       if (!Result.count(PBB)) {
236         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
237                              "outside the region except for the first block!\n"
238                           << "Problematic source BB: " << BB->getName() << "\n"
239                           << "Problematic destination BB: " << PBB->getName()
240                           << "\n");
241         return {};
242       }
243   }
244 
245   return Result;
246 }
247 
248 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
249                              bool AggregateArgs, BlockFrequencyInfo *BFI,
250                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
251                              bool AllowVarArgs, bool AllowAlloca,
252                              std::string Suffix)
253     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
254       BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
255       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
256       Suffix(Suffix) {}
257 
258 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
259                              BlockFrequencyInfo *BFI,
260                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
261                              std::string Suffix)
262     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
263       BPI(BPI), AC(AC), AllowVarArgs(false),
264       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
265                                      /* AllowVarArgs */ false,
266                                      /* AllowAlloca */ false)),
267       Suffix(Suffix) {}
268 
269 /// definedInRegion - Return true if the specified value is defined in the
270 /// extracted region.
271 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
272   if (Instruction *I = dyn_cast<Instruction>(V))
273     if (Blocks.count(I->getParent()))
274       return true;
275   return false;
276 }
277 
278 /// definedInCaller - Return true if the specified value is defined in the
279 /// function being code extracted, but not in the region being extracted.
280 /// These values must be passed in as live-ins to the function.
281 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
282   if (isa<Argument>(V)) return true;
283   if (Instruction *I = dyn_cast<Instruction>(V))
284     if (!Blocks.count(I->getParent()))
285       return true;
286   return false;
287 }
288 
289 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
290   BasicBlock *CommonExitBlock = nullptr;
291   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
292     for (auto *Succ : successors(Block)) {
293       // Internal edges, ok.
294       if (Blocks.count(Succ))
295         continue;
296       if (!CommonExitBlock) {
297         CommonExitBlock = Succ;
298         continue;
299       }
300       if (CommonExitBlock != Succ)
301         return true;
302     }
303     return false;
304   };
305 
306   if (any_of(Blocks, hasNonCommonExitSucc))
307     return nullptr;
308 
309   return CommonExitBlock;
310 }
311 
312 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
313   for (BasicBlock &BB : F) {
314     for (Instruction &II : BB.instructionsWithoutDebug())
315       if (auto *AI = dyn_cast<AllocaInst>(&II))
316         Allocas.push_back(AI);
317 
318     findSideEffectInfoForBlock(BB);
319   }
320 }
321 
322 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
323   for (Instruction &II : BB.instructionsWithoutDebug()) {
324     unsigned Opcode = II.getOpcode();
325     Value *MemAddr = nullptr;
326     switch (Opcode) {
327     case Instruction::Store:
328     case Instruction::Load: {
329       if (Opcode == Instruction::Store) {
330         StoreInst *SI = cast<StoreInst>(&II);
331         MemAddr = SI->getPointerOperand();
332       } else {
333         LoadInst *LI = cast<LoadInst>(&II);
334         MemAddr = LI->getPointerOperand();
335       }
336       // Global variable can not be aliased with locals.
337       if (isa<Constant>(MemAddr))
338         break;
339       Value *Base = MemAddr->stripInBoundsConstantOffsets();
340       if (!isa<AllocaInst>(Base)) {
341         SideEffectingBlocks.insert(&BB);
342         return;
343       }
344       BaseMemAddrs[&BB].insert(Base);
345       break;
346     }
347     default: {
348       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
349       if (IntrInst) {
350         if (IntrInst->isLifetimeStartOrEnd())
351           break;
352         SideEffectingBlocks.insert(&BB);
353         return;
354       }
355       // Treat all the other cases conservatively if it has side effects.
356       if (II.mayHaveSideEffects()) {
357         SideEffectingBlocks.insert(&BB);
358         return;
359       }
360     }
361     }
362   }
363 }
364 
365 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
366     BasicBlock &BB, AllocaInst *Addr) const {
367   if (SideEffectingBlocks.count(&BB))
368     return true;
369   auto It = BaseMemAddrs.find(&BB);
370   if (It != BaseMemAddrs.end())
371     return It->second.count(Addr);
372   return false;
373 }
374 
375 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
376     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
377   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
378   Function *Func = (*Blocks.begin())->getParent();
379   for (BasicBlock &BB : *Func) {
380     if (Blocks.count(&BB))
381       continue;
382     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
383       return false;
384   }
385   return true;
386 }
387 
388 BasicBlock *
389 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
390   BasicBlock *SinglePredFromOutlineRegion = nullptr;
391   assert(!Blocks.count(CommonExitBlock) &&
392          "Expect a block outside the region!");
393   for (auto *Pred : predecessors(CommonExitBlock)) {
394     if (!Blocks.count(Pred))
395       continue;
396     if (!SinglePredFromOutlineRegion) {
397       SinglePredFromOutlineRegion = Pred;
398     } else if (SinglePredFromOutlineRegion != Pred) {
399       SinglePredFromOutlineRegion = nullptr;
400       break;
401     }
402   }
403 
404   if (SinglePredFromOutlineRegion)
405     return SinglePredFromOutlineRegion;
406 
407 #ifndef NDEBUG
408   auto getFirstPHI = [](BasicBlock *BB) {
409     BasicBlock::iterator I = BB->begin();
410     PHINode *FirstPhi = nullptr;
411     while (I != BB->end()) {
412       PHINode *Phi = dyn_cast<PHINode>(I);
413       if (!Phi)
414         break;
415       if (!FirstPhi) {
416         FirstPhi = Phi;
417         break;
418       }
419     }
420     return FirstPhi;
421   };
422   // If there are any phi nodes, the single pred either exists or has already
423   // be created before code extraction.
424   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
425 #endif
426 
427   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
428       CommonExitBlock->getFirstNonPHI()->getIterator());
429 
430   for (BasicBlock *Pred :
431        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
432     if (Blocks.count(Pred))
433       continue;
434     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
435   }
436   // Now add the old exit block to the outline region.
437   Blocks.insert(CommonExitBlock);
438   OldTargets.push_back(NewExitBlock);
439   return CommonExitBlock;
440 }
441 
442 // Find the pair of life time markers for address 'Addr' that are either
443 // defined inside the outline region or can legally be shrinkwrapped into the
444 // outline region. If there are not other untracked uses of the address, return
445 // the pair of markers if found; otherwise return a pair of nullptr.
446 CodeExtractor::LifetimeMarkerInfo
447 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
448                                   Instruction *Addr,
449                                   BasicBlock *ExitBlock) const {
450   LifetimeMarkerInfo Info;
451 
452   for (User *U : Addr->users()) {
453     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
454     if (IntrInst) {
455       // We don't model addresses with multiple start/end markers, but the
456       // markers do not need to be in the region.
457       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
458         if (Info.LifeStart)
459           return {};
460         Info.LifeStart = IntrInst;
461         continue;
462       }
463       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
464         if (Info.LifeEnd)
465           return {};
466         Info.LifeEnd = IntrInst;
467         continue;
468       }
469       // At this point, permit debug uses outside of the region.
470       // This is fixed in a later call to fixupDebugInfoPostExtraction().
471       if (isa<DbgInfoIntrinsic>(IntrInst))
472         continue;
473     }
474     // Find untracked uses of the address, bail.
475     if (!definedInRegion(Blocks, U))
476       return {};
477   }
478 
479   if (!Info.LifeStart || !Info.LifeEnd)
480     return {};
481 
482   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
483   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
484   // Do legality check.
485   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
486       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
487     return {};
488 
489   // Check to see if we have a place to do hoisting, if not, bail.
490   if (Info.HoistLifeEnd && !ExitBlock)
491     return {};
492 
493   return Info;
494 }
495 
496 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
497                                 ValueSet &SinkCands, ValueSet &HoistCands,
498                                 BasicBlock *&ExitBlock) const {
499   Function *Func = (*Blocks.begin())->getParent();
500   ExitBlock = getCommonExitBlock(Blocks);
501 
502   auto moveOrIgnoreLifetimeMarkers =
503       [&](const LifetimeMarkerInfo &LMI) -> bool {
504     if (!LMI.LifeStart)
505       return false;
506     if (LMI.SinkLifeStart) {
507       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
508                         << "\n");
509       SinkCands.insert(LMI.LifeStart);
510     }
511     if (LMI.HoistLifeEnd) {
512       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
513       HoistCands.insert(LMI.LifeEnd);
514     }
515     return true;
516   };
517 
518   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
519   // this is much faster than walking all the instructions.
520   for (AllocaInst *AI : CEAC.getAllocas()) {
521     BasicBlock *BB = AI->getParent();
522     if (Blocks.count(BB))
523       continue;
524 
525     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
526     // check whether it is actually still in the original function.
527     Function *AIFunc = BB->getParent();
528     if (AIFunc != Func)
529       continue;
530 
531     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
532     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
533     if (Moved) {
534       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
535       SinkCands.insert(AI);
536       continue;
537     }
538 
539     // Find bitcasts in the outlined region that have lifetime marker users
540     // outside that region. Replace the lifetime marker use with an
541     // outside region bitcast to avoid unnecessary alloca/reload instructions
542     // and extra lifetime markers.
543     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
544     for (User *U : AI->users()) {
545       if (!definedInRegion(Blocks, U))
546         continue;
547 
548       if (U->stripInBoundsConstantOffsets() != AI)
549         continue;
550 
551       Instruction *Bitcast = cast<Instruction>(U);
552       for (User *BU : Bitcast->users()) {
553         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
554         if (!IntrInst)
555           continue;
556 
557         if (!IntrInst->isLifetimeStartOrEnd())
558           continue;
559 
560         if (definedInRegion(Blocks, IntrInst))
561           continue;
562 
563         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
564                           << *Bitcast << " in out-of-region lifetime marker "
565                           << *IntrInst << "\n");
566         LifetimeBitcastUsers.push_back(IntrInst);
567       }
568     }
569 
570     for (Instruction *I : LifetimeBitcastUsers) {
571       Module *M = AIFunc->getParent();
572       LLVMContext &Ctx = M->getContext();
573       auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
574       CastInst *CastI =
575           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
576       I->replaceUsesOfWith(I->getOperand(1), CastI);
577     }
578 
579     // Follow any bitcasts.
580     SmallVector<Instruction *, 2> Bitcasts;
581     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
582     for (User *U : AI->users()) {
583       if (U->stripInBoundsConstantOffsets() == AI) {
584         Instruction *Bitcast = cast<Instruction>(U);
585         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
586         if (LMI.LifeStart) {
587           Bitcasts.push_back(Bitcast);
588           BitcastLifetimeInfo.push_back(LMI);
589           continue;
590         }
591       }
592 
593       // Found unknown use of AI.
594       if (!definedInRegion(Blocks, U)) {
595         Bitcasts.clear();
596         break;
597       }
598     }
599 
600     // Either no bitcasts reference the alloca or there are unknown uses.
601     if (Bitcasts.empty())
602       continue;
603 
604     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
605     SinkCands.insert(AI);
606     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
607       Instruction *BitcastAddr = Bitcasts[I];
608       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
609       assert(LMI.LifeStart &&
610              "Unsafe to sink bitcast without lifetime markers");
611       moveOrIgnoreLifetimeMarkers(LMI);
612       if (!definedInRegion(Blocks, BitcastAddr)) {
613         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
614                           << "\n");
615         SinkCands.insert(BitcastAddr);
616       }
617     }
618   }
619 }
620 
621 bool CodeExtractor::isEligible() const {
622   if (Blocks.empty())
623     return false;
624   BasicBlock *Header = *Blocks.begin();
625   Function *F = Header->getParent();
626 
627   // For functions with varargs, check that varargs handling is only done in the
628   // outlined function, i.e vastart and vaend are only used in outlined blocks.
629   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
630     auto containsVarArgIntrinsic = [](const Instruction &I) {
631       if (const CallInst *CI = dyn_cast<CallInst>(&I))
632         if (const Function *Callee = CI->getCalledFunction())
633           return Callee->getIntrinsicID() == Intrinsic::vastart ||
634                  Callee->getIntrinsicID() == Intrinsic::vaend;
635       return false;
636     };
637 
638     for (auto &BB : *F) {
639       if (Blocks.count(&BB))
640         continue;
641       if (llvm::any_of(BB, containsVarArgIntrinsic))
642         return false;
643     }
644   }
645   return true;
646 }
647 
648 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
649                                       const ValueSet &SinkCands) const {
650   for (BasicBlock *BB : Blocks) {
651     // If a used value is defined outside the region, it's an input.  If an
652     // instruction is used outside the region, it's an output.
653     for (Instruction &II : *BB) {
654       for (auto &OI : II.operands()) {
655         Value *V = OI;
656         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
657           Inputs.insert(V);
658       }
659 
660       for (User *U : II.users())
661         if (!definedInRegion(Blocks, U)) {
662           Outputs.insert(&II);
663           break;
664         }
665     }
666   }
667 }
668 
669 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
670 /// of the region, we need to split the entry block of the region so that the
671 /// PHI node is easier to deal with.
672 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
673   unsigned NumPredsFromRegion = 0;
674   unsigned NumPredsOutsideRegion = 0;
675 
676   if (Header != &Header->getParent()->getEntryBlock()) {
677     PHINode *PN = dyn_cast<PHINode>(Header->begin());
678     if (!PN) return;  // No PHI nodes.
679 
680     // If the header node contains any PHI nodes, check to see if there is more
681     // than one entry from outside the region.  If so, we need to sever the
682     // header block into two.
683     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
684       if (Blocks.count(PN->getIncomingBlock(i)))
685         ++NumPredsFromRegion;
686       else
687         ++NumPredsOutsideRegion;
688 
689     // If there is one (or fewer) predecessor from outside the region, we don't
690     // need to do anything special.
691     if (NumPredsOutsideRegion <= 1) return;
692   }
693 
694   // Otherwise, we need to split the header block into two pieces: one
695   // containing PHI nodes merging values from outside of the region, and a
696   // second that contains all of the code for the block and merges back any
697   // incoming values from inside of the region.
698   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
699 
700   // We only want to code extract the second block now, and it becomes the new
701   // header of the region.
702   BasicBlock *OldPred = Header;
703   Blocks.remove(OldPred);
704   Blocks.insert(NewBB);
705   Header = NewBB;
706 
707   // Okay, now we need to adjust the PHI nodes and any branches from within the
708   // region to go to the new header block instead of the old header block.
709   if (NumPredsFromRegion) {
710     PHINode *PN = cast<PHINode>(OldPred->begin());
711     // Loop over all of the predecessors of OldPred that are in the region,
712     // changing them to branch to NewBB instead.
713     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
714       if (Blocks.count(PN->getIncomingBlock(i))) {
715         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
716         TI->replaceUsesOfWith(OldPred, NewBB);
717       }
718 
719     // Okay, everything within the region is now branching to the right block, we
720     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
721     BasicBlock::iterator AfterPHIs;
722     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
723       PHINode *PN = cast<PHINode>(AfterPHIs);
724       // Create a new PHI node in the new region, which has an incoming value
725       // from OldPred of PN.
726       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
727                                        PN->getName() + ".ce", &NewBB->front());
728       PN->replaceAllUsesWith(NewPN);
729       NewPN->addIncoming(PN, OldPred);
730 
731       // Loop over all of the incoming value in PN, moving them to NewPN if they
732       // are from the extracted region.
733       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
734         if (Blocks.count(PN->getIncomingBlock(i))) {
735           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
736           PN->removeIncomingValue(i);
737           --i;
738         }
739       }
740     }
741   }
742 }
743 
744 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
745 /// outlined region, we split these PHIs on two: one with inputs from region
746 /// and other with remaining incoming blocks; then first PHIs are placed in
747 /// outlined region.
748 void CodeExtractor::severSplitPHINodesOfExits(
749     const SmallPtrSetImpl<BasicBlock *> &Exits) {
750   for (BasicBlock *ExitBB : Exits) {
751     BasicBlock *NewBB = nullptr;
752 
753     for (PHINode &PN : ExitBB->phis()) {
754       // Find all incoming values from the outlining region.
755       SmallVector<unsigned, 2> IncomingVals;
756       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
757         if (Blocks.count(PN.getIncomingBlock(i)))
758           IncomingVals.push_back(i);
759 
760       // Do not process PHI if there is one (or fewer) predecessor from region.
761       // If PHI has exactly one predecessor from region, only this one incoming
762       // will be replaced on codeRepl block, so it should be safe to skip PHI.
763       if (IncomingVals.size() <= 1)
764         continue;
765 
766       // Create block for new PHIs and add it to the list of outlined if it
767       // wasn't done before.
768       if (!NewBB) {
769         NewBB = BasicBlock::Create(ExitBB->getContext(),
770                                    ExitBB->getName() + ".split",
771                                    ExitBB->getParent(), ExitBB);
772         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
773         for (BasicBlock *PredBB : Preds)
774           if (Blocks.count(PredBB))
775             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
776         BranchInst::Create(ExitBB, NewBB);
777         Blocks.insert(NewBB);
778       }
779 
780       // Split this PHI.
781       PHINode *NewPN =
782           PHINode::Create(PN.getType(), IncomingVals.size(),
783                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
784       for (unsigned i : IncomingVals)
785         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
786       for (unsigned i : reverse(IncomingVals))
787         PN.removeIncomingValue(i, false);
788       PN.addIncoming(NewPN, NewBB);
789     }
790   }
791 }
792 
793 void CodeExtractor::splitReturnBlocks() {
794   for (BasicBlock *Block : Blocks)
795     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
796       BasicBlock *New =
797           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
798       if (DT) {
799         // Old dominates New. New node dominates all other nodes dominated
800         // by Old.
801         DomTreeNode *OldNode = DT->getNode(Block);
802         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
803                                                OldNode->end());
804 
805         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
806 
807         for (DomTreeNode *I : Children)
808           DT->changeImmediateDominator(I, NewNode);
809       }
810     }
811 }
812 
813 /// constructFunction - make a function based on inputs and outputs, as follows:
814 /// f(in0, ..., inN, out0, ..., outN)
815 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
816                                            const ValueSet &outputs,
817                                            BasicBlock *header,
818                                            BasicBlock *newRootNode,
819                                            BasicBlock *newHeader,
820                                            Function *oldFunction,
821                                            Module *M) {
822   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
823   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
824 
825   // This function returns unsigned, outputs will go back by reference.
826   switch (NumExitBlocks) {
827   case 0:
828   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
829   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
830   default: RetTy = Type::getInt16Ty(header->getContext()); break;
831   }
832 
833   std::vector<Type *> ParamTy;
834   std::vector<Type *> AggParamTy;
835   ValueSet StructValues;
836 
837   // Add the types of the input values to the function's argument list
838   for (Value *value : inputs) {
839     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
840     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
841       AggParamTy.push_back(value->getType());
842       StructValues.insert(value);
843     } else
844       ParamTy.push_back(value->getType());
845   }
846 
847   // Add the types of the output values to the function's argument list.
848   for (Value *output : outputs) {
849     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
850     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
851       AggParamTy.push_back(output->getType());
852       StructValues.insert(output);
853     } else
854       ParamTy.push_back(PointerType::getUnqual(output->getType()));
855   }
856 
857   assert(
858       (ParamTy.size() + AggParamTy.size()) ==
859           (inputs.size() + outputs.size()) &&
860       "Number of scalar and aggregate params does not match inputs, outputs");
861   assert((StructValues.empty() || AggregateArgs) &&
862          "Expeced StructValues only with AggregateArgs set");
863 
864   // Concatenate scalar and aggregate params in ParamTy.
865   size_t NumScalarParams = ParamTy.size();
866   StructType *StructTy = nullptr;
867   if (AggregateArgs && !AggParamTy.empty()) {
868     StructTy = StructType::get(M->getContext(), AggParamTy);
869     ParamTy.push_back(PointerType::getUnqual(StructTy));
870   }
871 
872   LLVM_DEBUG({
873     dbgs() << "Function type: " << *RetTy << " f(";
874     for (Type *i : ParamTy)
875       dbgs() << *i << ", ";
876     dbgs() << ")\n";
877   });
878 
879   FunctionType *funcType = FunctionType::get(
880       RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
881 
882   std::string SuffixToUse =
883       Suffix.empty()
884           ? (header->getName().empty() ? "extracted" : header->getName().str())
885           : Suffix;
886   // Create the new function
887   Function *newFunction = Function::Create(
888       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
889       oldFunction->getName() + "." + SuffixToUse, M);
890 
891   // Inherit all of the target dependent attributes and white-listed
892   // target independent attributes.
893   //  (e.g. If the extracted region contains a call to an x86.sse
894   //  instruction we need to make sure that the extracted region has the
895   //  "target-features" attribute allowing it to be lowered.
896   // FIXME: This should be changed to check to see if a specific
897   //           attribute can not be inherited.
898   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
899     if (Attr.isStringAttribute()) {
900       if (Attr.getKindAsString() == "thunk")
901         continue;
902     } else
903       switch (Attr.getKindAsEnum()) {
904       // Those attributes cannot be propagated safely. Explicitly list them
905       // here so we get a warning if new attributes are added.
906       case Attribute::AllocSize:
907       case Attribute::ArgMemOnly:
908       case Attribute::Builtin:
909       case Attribute::Convergent:
910       case Attribute::InaccessibleMemOnly:
911       case Attribute::InaccessibleMemOrArgMemOnly:
912       case Attribute::JumpTable:
913       case Attribute::Naked:
914       case Attribute::NoBuiltin:
915       case Attribute::NoMerge:
916       case Attribute::NoReturn:
917       case Attribute::NoSync:
918       case Attribute::ReadNone:
919       case Attribute::ReadOnly:
920       case Attribute::ReturnsTwice:
921       case Attribute::Speculatable:
922       case Attribute::StackAlignment:
923       case Attribute::WillReturn:
924       case Attribute::WriteOnly:
925         continue;
926       // Those attributes should be safe to propagate to the extracted function.
927       case Attribute::AlwaysInline:
928       case Attribute::Cold:
929       case Attribute::DisableSanitizerInstrumentation:
930       case Attribute::Hot:
931       case Attribute::NoRecurse:
932       case Attribute::InlineHint:
933       case Attribute::MinSize:
934       case Attribute::NoCallback:
935       case Attribute::NoDuplicate:
936       case Attribute::NoFree:
937       case Attribute::NoImplicitFloat:
938       case Attribute::NoInline:
939       case Attribute::NonLazyBind:
940       case Attribute::NoRedZone:
941       case Attribute::NoUnwind:
942       case Attribute::NoSanitizeCoverage:
943       case Attribute::NullPointerIsValid:
944       case Attribute::OptForFuzzing:
945       case Attribute::OptimizeNone:
946       case Attribute::OptimizeForSize:
947       case Attribute::SafeStack:
948       case Attribute::ShadowCallStack:
949       case Attribute::SanitizeAddress:
950       case Attribute::SanitizeMemory:
951       case Attribute::SanitizeThread:
952       case Attribute::SanitizeHWAddress:
953       case Attribute::SanitizeMemTag:
954       case Attribute::SpeculativeLoadHardening:
955       case Attribute::StackProtect:
956       case Attribute::StackProtectReq:
957       case Attribute::StackProtectStrong:
958       case Attribute::StrictFP:
959       case Attribute::UWTable:
960       case Attribute::VScaleRange:
961       case Attribute::NoCfCheck:
962       case Attribute::MustProgress:
963       case Attribute::NoProfile:
964         break;
965       // These attributes cannot be applied to functions.
966       case Attribute::Alignment:
967       case Attribute::ByVal:
968       case Attribute::Dereferenceable:
969       case Attribute::DereferenceableOrNull:
970       case Attribute::ElementType:
971       case Attribute::InAlloca:
972       case Attribute::InReg:
973       case Attribute::Nest:
974       case Attribute::NoAlias:
975       case Attribute::NoCapture:
976       case Attribute::NoUndef:
977       case Attribute::NonNull:
978       case Attribute::Preallocated:
979       case Attribute::Returned:
980       case Attribute::SExt:
981       case Attribute::StructRet:
982       case Attribute::SwiftError:
983       case Attribute::SwiftSelf:
984       case Attribute::SwiftAsync:
985       case Attribute::ZExt:
986       case Attribute::ImmArg:
987       case Attribute::ByRef:
988       //  These are not really attributes.
989       case Attribute::None:
990       case Attribute::EndAttrKinds:
991       case Attribute::EmptyKey:
992       case Attribute::TombstoneKey:
993         llvm_unreachable("Not a function attribute");
994       }
995 
996     newFunction->addFnAttr(Attr);
997   }
998   newFunction->getBasicBlockList().push_back(newRootNode);
999 
1000   // Create scalar and aggregate iterators to name all of the arguments we
1001   // inserted.
1002   Function::arg_iterator ScalarAI = newFunction->arg_begin();
1003   Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1004 
1005   // Rewrite all users of the inputs in the extracted region to use the
1006   // arguments (or appropriate addressing into struct) instead.
1007   for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1008     Value *RewriteVal;
1009     if (AggregateArgs && StructValues.contains(inputs[i])) {
1010       Value *Idx[2];
1011       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1012       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1013       Instruction *TI = newFunction->begin()->getTerminator();
1014       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1015           StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1016       RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1017                                 "loadgep_" + inputs[i]->getName(), TI);
1018       ++aggIdx;
1019     } else
1020       RewriteVal = &*ScalarAI++;
1021 
1022     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1023     for (User *use : Users)
1024       if (Instruction *inst = dyn_cast<Instruction>(use))
1025         if (Blocks.count(inst->getParent()))
1026           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1027   }
1028 
1029   // Set names for input and output arguments.
1030   if (NumScalarParams) {
1031     ScalarAI = newFunction->arg_begin();
1032     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1033       if (!StructValues.contains(inputs[i]))
1034         ScalarAI->setName(inputs[i]->getName());
1035     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1036       if (!StructValues.contains(outputs[i]))
1037         ScalarAI->setName(outputs[i]->getName() + ".out");
1038   }
1039 
1040   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1041   // within the new function. This must be done before we lose track of which
1042   // blocks were originally in the code region.
1043   std::vector<User *> Users(header->user_begin(), header->user_end());
1044   for (auto &U : Users)
1045     // The BasicBlock which contains the branch is not in the region
1046     // modify the branch target to a new block
1047     if (Instruction *I = dyn_cast<Instruction>(U))
1048       if (I->isTerminator() && I->getFunction() == oldFunction &&
1049           !Blocks.count(I->getParent()))
1050         I->replaceUsesOfWith(header, newHeader);
1051 
1052   return newFunction;
1053 }
1054 
1055 /// Erase lifetime.start markers which reference inputs to the extraction
1056 /// region, and insert the referenced memory into \p LifetimesStart.
1057 ///
1058 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1059 /// of allocas which will be moved from the caller function into the extracted
1060 /// function (\p SunkAllocas).
1061 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1062                                          const SetVector<Value *> &SunkAllocas,
1063                                          SetVector<Value *> &LifetimesStart) {
1064   for (BasicBlock *BB : Blocks) {
1065     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1066       auto *II = dyn_cast<IntrinsicInst>(&I);
1067       if (!II || !II->isLifetimeStartOrEnd())
1068         continue;
1069 
1070       // Get the memory operand of the lifetime marker. If the underlying
1071       // object is a sunk alloca, or is otherwise defined in the extraction
1072       // region, the lifetime marker must not be erased.
1073       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1074       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1075         continue;
1076 
1077       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1078         LifetimesStart.insert(Mem);
1079       II->eraseFromParent();
1080     }
1081   }
1082 }
1083 
1084 /// Insert lifetime start/end markers surrounding the call to the new function
1085 /// for objects defined in the caller.
1086 static void insertLifetimeMarkersSurroundingCall(
1087     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1088     CallInst *TheCall) {
1089   LLVMContext &Ctx = M->getContext();
1090   auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1091   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1092   Instruction *Term = TheCall->getParent()->getTerminator();
1093 
1094   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1095   // needed to satisfy this requirement so they may be reused.
1096   DenseMap<Value *, Value *> Bitcasts;
1097 
1098   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1099   // markers before the call if \p InsertBefore, and after the call otherwise.
1100   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1101                            bool InsertBefore) {
1102     for (Value *Mem : Objects) {
1103       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1104                                             TheCall->getFunction()) &&
1105              "Input memory not defined in original function");
1106       Value *&MemAsI8Ptr = Bitcasts[Mem];
1107       if (!MemAsI8Ptr) {
1108         if (Mem->getType() == Int8PtrTy)
1109           MemAsI8Ptr = Mem;
1110         else
1111           MemAsI8Ptr =
1112               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1113       }
1114 
1115       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1116       if (InsertBefore)
1117         Marker->insertBefore(TheCall);
1118       else
1119         Marker->insertBefore(Term);
1120     }
1121   };
1122 
1123   if (!LifetimesStart.empty()) {
1124     auto StartFn = llvm::Intrinsic::getDeclaration(
1125         M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1126     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1127   }
1128 
1129   if (!LifetimesEnd.empty()) {
1130     auto EndFn = llvm::Intrinsic::getDeclaration(
1131         M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1132     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1133   }
1134 }
1135 
1136 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1137 /// the call instruction, splitting any PHI nodes in the header block as
1138 /// necessary.
1139 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1140                                                     BasicBlock *codeReplacer,
1141                                                     ValueSet &inputs,
1142                                                     ValueSet &outputs) {
1143   // Emit a call to the new function, passing in: *pointer to struct (if
1144   // aggregating parameters), or plan inputs and allocated memory for outputs
1145   std::vector<Value *> params, ReloadOutputs, Reloads;
1146   ValueSet StructValues;
1147 
1148   Module *M = newFunction->getParent();
1149   LLVMContext &Context = M->getContext();
1150   const DataLayout &DL = M->getDataLayout();
1151   CallInst *call = nullptr;
1152 
1153   // Add inputs as params, or to be filled into the struct
1154   unsigned ScalarInputArgNo = 0;
1155   SmallVector<unsigned, 1> SwiftErrorArgs;
1156   for (Value *input : inputs) {
1157     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1158       StructValues.insert(input);
1159     else {
1160       params.push_back(input);
1161       if (input->isSwiftError())
1162         SwiftErrorArgs.push_back(ScalarInputArgNo);
1163     }
1164     ++ScalarInputArgNo;
1165   }
1166 
1167   // Create allocas for the outputs
1168   unsigned ScalarOutputArgNo = 0;
1169   for (Value *output : outputs) {
1170     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1171       StructValues.insert(output);
1172     } else {
1173       AllocaInst *alloca =
1174         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1175                        nullptr, output->getName() + ".loc",
1176                        &codeReplacer->getParent()->front().front());
1177       ReloadOutputs.push_back(alloca);
1178       params.push_back(alloca);
1179       ++ScalarOutputArgNo;
1180     }
1181   }
1182 
1183   StructType *StructArgTy = nullptr;
1184   AllocaInst *Struct = nullptr;
1185   unsigned NumAggregatedInputs = 0;
1186   if (AggregateArgs && !StructValues.empty()) {
1187     std::vector<Type *> ArgTypes;
1188     for (Value *V : StructValues)
1189       ArgTypes.push_back(V->getType());
1190 
1191     // Allocate a struct at the beginning of this function
1192     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1193     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1194                             "structArg",
1195                             &codeReplacer->getParent()->front().front());
1196     params.push_back(Struct);
1197 
1198     // Store aggregated inputs in the struct.
1199     for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1200       if (inputs.contains(StructValues[i])) {
1201         Value *Idx[2];
1202         Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1203         Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1204         GetElementPtrInst *GEP = GetElementPtrInst::Create(
1205             StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1206         codeReplacer->getInstList().push_back(GEP);
1207         new StoreInst(StructValues[i], GEP, codeReplacer);
1208         NumAggregatedInputs++;
1209       }
1210     }
1211   }
1212 
1213   // Emit the call to the function
1214   call = CallInst::Create(newFunction, params,
1215                           NumExitBlocks > 1 ? "targetBlock" : "");
1216   // Add debug location to the new call, if the original function has debug
1217   // info. In that case, the terminator of the entry block of the extracted
1218   // function contains the first debug location of the extracted function,
1219   // set in extractCodeRegion.
1220   if (codeReplacer->getParent()->getSubprogram()) {
1221     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1222       call->setDebugLoc(DL);
1223   }
1224   codeReplacer->getInstList().push_back(call);
1225 
1226   // Set swifterror parameter attributes.
1227   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1228     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1229     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1230   }
1231 
1232   // Reload the outputs passed in by reference, use the struct if output is in
1233   // the aggregate or reload from the scalar argument.
1234   for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1235                 aggIdx = NumAggregatedInputs;
1236        i != e; ++i) {
1237     Value *Output = nullptr;
1238     if (AggregateArgs && StructValues.contains(outputs[i])) {
1239       Value *Idx[2];
1240       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1241       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1242       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1243           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1244       codeReplacer->getInstList().push_back(GEP);
1245       Output = GEP;
1246       ++aggIdx;
1247     } else {
1248       Output = ReloadOutputs[scalarIdx];
1249       ++scalarIdx;
1250     }
1251     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1252                                   outputs[i]->getName() + ".reload",
1253                                   codeReplacer);
1254     Reloads.push_back(load);
1255     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1256     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1257       Instruction *inst = cast<Instruction>(Users[u]);
1258       if (!Blocks.count(inst->getParent()))
1259         inst->replaceUsesOfWith(outputs[i], load);
1260     }
1261   }
1262 
1263   // Now we can emit a switch statement using the call as a value.
1264   SwitchInst *TheSwitch =
1265       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1266                          codeReplacer, 0, codeReplacer);
1267 
1268   // Since there may be multiple exits from the original region, make the new
1269   // function return an unsigned, switch on that number.  This loop iterates
1270   // over all of the blocks in the extracted region, updating any terminator
1271   // instructions in the to-be-extracted region that branch to blocks that are
1272   // not in the region to be extracted.
1273   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1274 
1275   // Iterate over the previously collected targets, and create new blocks inside
1276   // the function to branch to.
1277   unsigned switchVal = 0;
1278   for (BasicBlock *OldTarget : OldTargets) {
1279     if (Blocks.count(OldTarget))
1280       continue;
1281     BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1282     if (NewTarget)
1283       continue;
1284 
1285     // If we don't already have an exit stub for this non-extracted
1286     // destination, create one now!
1287     NewTarget = BasicBlock::Create(Context,
1288                                     OldTarget->getName() + ".exitStub",
1289                                     newFunction);
1290     unsigned SuccNum = switchVal++;
1291 
1292     Value *brVal = nullptr;
1293     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1294     switch (NumExitBlocks) {
1295     case 0:
1296     case 1: break;  // No value needed.
1297     case 2:         // Conditional branch, return a bool
1298       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1299       break;
1300     default:
1301       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1302       break;
1303     }
1304 
1305     ReturnInst::Create(Context, brVal, NewTarget);
1306 
1307     // Update the switch instruction.
1308     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1309                                         SuccNum),
1310                         OldTarget);
1311   }
1312 
1313   for (BasicBlock *Block : Blocks) {
1314     Instruction *TI = Block->getTerminator();
1315     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1316       if (Blocks.count(TI->getSuccessor(i)))
1317         continue;
1318       BasicBlock *OldTarget = TI->getSuccessor(i);
1319       // add a new basic block which returns the appropriate value
1320       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1321       assert(NewTarget && "Unknown target block!");
1322 
1323       // rewrite the original branch instruction with this new target
1324       TI->setSuccessor(i, NewTarget);
1325    }
1326   }
1327 
1328   // Store the arguments right after the definition of output value.
1329   // This should be proceeded after creating exit stubs to be ensure that invoke
1330   // result restore will be placed in the outlined function.
1331   Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1332   std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1333   Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1334   std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1335 
1336   for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1337        ++i) {
1338     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1339     if (!OutI)
1340       continue;
1341 
1342     // Find proper insertion point.
1343     BasicBlock::iterator InsertPt;
1344     // In case OutI is an invoke, we insert the store at the beginning in the
1345     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1346     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1347       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1348     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1349       InsertPt = Phi->getParent()->getFirstInsertionPt();
1350     else
1351       InsertPt = std::next(OutI->getIterator());
1352 
1353     Instruction *InsertBefore = &*InsertPt;
1354     assert((InsertBefore->getFunction() == newFunction ||
1355             Blocks.count(InsertBefore->getParent())) &&
1356            "InsertPt should be in new function");
1357     if (AggregateArgs && StructValues.contains(outputs[i])) {
1358       assert(AggOutputArgBegin != newFunction->arg_end() &&
1359              "Number of aggregate output arguments should match "
1360              "the number of defined values");
1361       Value *Idx[2];
1362       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1363       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1364       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1365           StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1366           InsertBefore);
1367       new StoreInst(outputs[i], GEP, InsertBefore);
1368       ++aggIdx;
1369       // Since there should be only one struct argument aggregating
1370       // all the output values, we shouldn't increment AggOutputArgBegin, which
1371       // always points to the struct argument, in this case.
1372     } else {
1373       assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1374              "Number of scalar output arguments should match "
1375              "the number of defined values");
1376       new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore);
1377       ++ScalarOutputArgBegin;
1378     }
1379   }
1380 
1381   // Now that we've done the deed, simplify the switch instruction.
1382   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1383   switch (NumExitBlocks) {
1384   case 0:
1385     // There are no successors (the block containing the switch itself), which
1386     // means that previously this was the last part of the function, and hence
1387     // this should be rewritten as a `ret'
1388 
1389     // Check if the function should return a value
1390     if (OldFnRetTy->isVoidTy()) {
1391       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1392     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1393       // return what we have
1394       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1395     } else {
1396       // Otherwise we must have code extracted an unwind or something, just
1397       // return whatever we want.
1398       ReturnInst::Create(Context,
1399                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1400     }
1401 
1402     TheSwitch->eraseFromParent();
1403     break;
1404   case 1:
1405     // Only a single destination, change the switch into an unconditional
1406     // branch.
1407     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1408     TheSwitch->eraseFromParent();
1409     break;
1410   case 2:
1411     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1412                        call, TheSwitch);
1413     TheSwitch->eraseFromParent();
1414     break;
1415   default:
1416     // Otherwise, make the default destination of the switch instruction be one
1417     // of the other successors.
1418     TheSwitch->setCondition(call);
1419     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1420     // Remove redundant case
1421     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1422     break;
1423   }
1424 
1425   // Insert lifetime markers around the reloads of any output values. The
1426   // allocas output values are stored in are only in-use in the codeRepl block.
1427   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1428 
1429   return call;
1430 }
1431 
1432 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1433   Function *oldFunc = (*Blocks.begin())->getParent();
1434   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1435   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1436 
1437   auto newFuncIt = newFunction->front().getIterator();
1438   for (BasicBlock *Block : Blocks) {
1439     // Delete the basic block from the old function, and the list of blocks
1440     oldBlocks.remove(Block);
1441 
1442     // Insert this basic block into the new function
1443     // Insert the original blocks after the entry block created
1444     // for the new function. The entry block may be followed
1445     // by a set of exit blocks at this point, but these exit
1446     // blocks better be placed at the end of the new function.
1447     newFuncIt = newBlocks.insertAfter(newFuncIt, Block);
1448   }
1449 }
1450 
1451 void CodeExtractor::calculateNewCallTerminatorWeights(
1452     BasicBlock *CodeReplacer,
1453     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1454     BranchProbabilityInfo *BPI) {
1455   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1456   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1457 
1458   // Update the branch weights for the exit block.
1459   Instruction *TI = CodeReplacer->getTerminator();
1460   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1461 
1462   // Block Frequency distribution with dummy node.
1463   Distribution BranchDist;
1464 
1465   SmallVector<BranchProbability, 4> EdgeProbabilities(
1466       TI->getNumSuccessors(), BranchProbability::getUnknown());
1467 
1468   // Add each of the frequencies of the successors.
1469   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1470     BlockNode ExitNode(i);
1471     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1472     if (ExitFreq != 0)
1473       BranchDist.addExit(ExitNode, ExitFreq);
1474     else
1475       EdgeProbabilities[i] = BranchProbability::getZero();
1476   }
1477 
1478   // Check for no total weight.
1479   if (BranchDist.Total == 0) {
1480     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1481     return;
1482   }
1483 
1484   // Normalize the distribution so that they can fit in unsigned.
1485   BranchDist.normalize();
1486 
1487   // Create normalized branch weights and set the metadata.
1488   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1489     const auto &Weight = BranchDist.Weights[I];
1490 
1491     // Get the weight and update the current BFI.
1492     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1493     BranchProbability BP(Weight.Amount, BranchDist.Total);
1494     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1495   }
1496   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1497   TI->setMetadata(
1498       LLVMContext::MD_prof,
1499       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1500 }
1501 
1502 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1503 /// \p F.
1504 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1505   for (Instruction &I : instructions(F)) {
1506     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1507     findDbgUsers(DbgUsers, &I);
1508     for (DbgVariableIntrinsic *DVI : DbgUsers)
1509       if (DVI->getFunction() != &F)
1510         DVI->eraseFromParent();
1511   }
1512 }
1513 
1514 /// Fix up the debug info in the old and new functions by pointing line
1515 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1516 /// intrinsics which point to values outside of the new function.
1517 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1518                                          CallInst &TheCall) {
1519   DISubprogram *OldSP = OldFunc.getSubprogram();
1520   LLVMContext &Ctx = OldFunc.getContext();
1521 
1522   if (!OldSP) {
1523     // Erase any debug info the new function contains.
1524     stripDebugInfo(NewFunc);
1525     // Make sure the old function doesn't contain any non-local metadata refs.
1526     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1527     return;
1528   }
1529 
1530   // Create a subprogram for the new function. Leave out a description of the
1531   // function arguments, as the parameters don't correspond to anything at the
1532   // source level.
1533   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1534   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1535                 OldSP->getUnit());
1536   auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
1537   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1538                                     DISubprogram::SPFlagOptimized |
1539                                     DISubprogram::SPFlagLocalToUnit;
1540   auto NewSP = DIB.createFunction(
1541       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1542       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1543   NewFunc.setSubprogram(NewSP);
1544 
1545   // Debug intrinsics in the new function need to be updated in one of two
1546   // ways:
1547   //  1) They need to be deleted, because they describe a value in the old
1548   //     function.
1549   //  2) They need to point to fresh metadata, e.g. because they currently
1550   //     point to a variable in the wrong scope.
1551   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1552   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1553   for (Instruction &I : instructions(NewFunc)) {
1554     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1555     if (!DII)
1556       continue;
1557 
1558     // Point the intrinsic to a fresh label within the new function.
1559     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1560       DILabel *OldLabel = DLI->getLabel();
1561       DINode *&NewLabel = RemappedMetadata[OldLabel];
1562       if (!NewLabel)
1563         NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
1564                                 OldLabel->getFile(), OldLabel->getLine());
1565       DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1566       continue;
1567     }
1568 
1569     auto IsInvalidLocation = [&NewFunc](Value *Location) {
1570       // Location is invalid if it isn't a constant or an instruction, or is an
1571       // instruction but isn't in the new function.
1572       if (!Location ||
1573           (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1574         return true;
1575       Instruction *LocationInst = dyn_cast<Instruction>(Location);
1576       return LocationInst && LocationInst->getFunction() != &NewFunc;
1577     };
1578 
1579     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1580     // If any of the used locations are invalid, delete the intrinsic.
1581     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1582       DebugIntrinsicsToDelete.push_back(DVI);
1583       continue;
1584     }
1585 
1586     // Point the intrinsic to a fresh variable within the new function.
1587     DILocalVariable *OldVar = DVI->getVariable();
1588     DINode *&NewVar = RemappedMetadata[OldVar];
1589     if (!NewVar)
1590       NewVar = DIB.createAutoVariable(
1591           NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1592           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1593           OldVar->getAlignInBits());
1594     DVI->setVariable(cast<DILocalVariable>(NewVar));
1595   }
1596   for (auto *DII : DebugIntrinsicsToDelete)
1597     DII->eraseFromParent();
1598   DIB.finalizeSubprogram(NewSP);
1599 
1600   // Fix up the scope information attached to the line locations in the new
1601   // function.
1602   for (Instruction &I : instructions(NewFunc)) {
1603     if (const DebugLoc &DL = I.getDebugLoc())
1604       I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP));
1605 
1606     // Loop info metadata may contain line locations. Fix them up.
1607     auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * {
1608       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1609         return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP,
1610                                nullptr);
1611       return MD;
1612     };
1613     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1614   }
1615   if (!TheCall.getDebugLoc())
1616     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1617 
1618   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1619 }
1620 
1621 Function *
1622 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1623   ValueSet Inputs, Outputs;
1624   return extractCodeRegion(CEAC, Inputs, Outputs);
1625 }
1626 
1627 Function *
1628 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1629                                  ValueSet &inputs, ValueSet &outputs) {
1630   if (!isEligible())
1631     return nullptr;
1632 
1633   // Assumption: this is a single-entry code region, and the header is the first
1634   // block in the region.
1635   BasicBlock *header = *Blocks.begin();
1636   Function *oldFunction = header->getParent();
1637 
1638   // Calculate the entry frequency of the new function before we change the root
1639   //   block.
1640   BlockFrequency EntryFreq;
1641   if (BFI) {
1642     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1643     for (BasicBlock *Pred : predecessors(header)) {
1644       if (Blocks.count(Pred))
1645         continue;
1646       EntryFreq +=
1647           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1648     }
1649   }
1650 
1651   // Remove @llvm.assume calls that will be moved to the new function from the
1652   // old function's assumption cache.
1653   for (BasicBlock *Block : Blocks) {
1654     for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1655       if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1656         if (AC)
1657           AC->unregisterAssumption(AI);
1658         AI->eraseFromParent();
1659       }
1660     }
1661   }
1662 
1663   // If we have any return instructions in the region, split those blocks so
1664   // that the return is not in the region.
1665   splitReturnBlocks();
1666 
1667   // Calculate the exit blocks for the extracted region and the total exit
1668   // weights for each of those blocks.
1669   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1670   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1671   for (BasicBlock *Block : Blocks) {
1672     for (BasicBlock *Succ : successors(Block)) {
1673       if (!Blocks.count(Succ)) {
1674         // Update the branch weight for this successor.
1675         if (BFI) {
1676           BlockFrequency &BF = ExitWeights[Succ];
1677           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1678         }
1679         ExitBlocks.insert(Succ);
1680       }
1681     }
1682   }
1683   NumExitBlocks = ExitBlocks.size();
1684 
1685   for (BasicBlock *Block : Blocks) {
1686     Instruction *TI = Block->getTerminator();
1687     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1688       if (Blocks.count(TI->getSuccessor(i)))
1689         continue;
1690       BasicBlock *OldTarget = TI->getSuccessor(i);
1691       OldTargets.push_back(OldTarget);
1692     }
1693   }
1694 
1695   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1696   severSplitPHINodesOfEntry(header);
1697   severSplitPHINodesOfExits(ExitBlocks);
1698 
1699   // This takes place of the original loop
1700   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1701                                                 "codeRepl", oldFunction,
1702                                                 header);
1703 
1704   // The new function needs a root node because other nodes can branch to the
1705   // head of the region, but the entry node of a function cannot have preds.
1706   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1707                                                "newFuncRoot");
1708   auto *BranchI = BranchInst::Create(header);
1709   // If the original function has debug info, we have to add a debug location
1710   // to the new branch instruction from the artificial entry block.
1711   // We use the debug location of the first instruction in the extracted
1712   // blocks, as there is no other equivalent line in the source code.
1713   if (oldFunction->getSubprogram()) {
1714     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1715       return any_of(*BB, [&BranchI](const Instruction &I) {
1716         if (!I.getDebugLoc())
1717           return false;
1718         BranchI->setDebugLoc(I.getDebugLoc());
1719         return true;
1720       });
1721     });
1722   }
1723   newFuncRoot->getInstList().push_back(BranchI);
1724 
1725   ValueSet SinkingCands, HoistingCands;
1726   BasicBlock *CommonExit = nullptr;
1727   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1728   assert(HoistingCands.empty() || CommonExit);
1729 
1730   // Find inputs to, outputs from the code region.
1731   findInputsOutputs(inputs, outputs, SinkingCands);
1732 
1733   // Now sink all instructions which only have non-phi uses inside the region.
1734   // Group the allocas at the start of the block, so that any bitcast uses of
1735   // the allocas are well-defined.
1736   AllocaInst *FirstSunkAlloca = nullptr;
1737   for (auto *II : SinkingCands) {
1738     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1739       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1740       if (!FirstSunkAlloca)
1741         FirstSunkAlloca = AI;
1742     }
1743   }
1744   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1745          "Did not expect a sink candidate without any allocas");
1746   for (auto *II : SinkingCands) {
1747     if (!isa<AllocaInst>(II)) {
1748       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1749     }
1750   }
1751 
1752   if (!HoistingCands.empty()) {
1753     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1754     Instruction *TI = HoistToBlock->getTerminator();
1755     for (auto *II : HoistingCands)
1756       cast<Instruction>(II)->moveBefore(TI);
1757   }
1758 
1759   // Collect objects which are inputs to the extraction region and also
1760   // referenced by lifetime start markers within it. The effects of these
1761   // markers must be replicated in the calling function to prevent the stack
1762   // coloring pass from merging slots which store input objects.
1763   ValueSet LifetimesStart;
1764   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1765 
1766   // Construct new function based on inputs/outputs & add allocas for all defs.
1767   Function *newFunction =
1768       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1769                         oldFunction, oldFunction->getParent());
1770 
1771   // Update the entry count of the function.
1772   if (BFI) {
1773     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1774     if (Count.hasValue())
1775       newFunction->setEntryCount(
1776           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1777     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1778   }
1779 
1780   CallInst *TheCall =
1781       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1782 
1783   moveCodeToFunction(newFunction);
1784 
1785   // Replicate the effects of any lifetime start/end markers which referenced
1786   // input objects in the extraction region by placing markers around the call.
1787   insertLifetimeMarkersSurroundingCall(
1788       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1789 
1790   // Propagate personality info to the new function if there is one.
1791   if (oldFunction->hasPersonalityFn())
1792     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1793 
1794   // Update the branch weights for the exit block.
1795   if (BFI && NumExitBlocks > 1)
1796     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1797 
1798   // Loop over all of the PHI nodes in the header and exit blocks, and change
1799   // any references to the old incoming edge to be the new incoming edge.
1800   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1801     PHINode *PN = cast<PHINode>(I);
1802     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1803       if (!Blocks.count(PN->getIncomingBlock(i)))
1804         PN->setIncomingBlock(i, newFuncRoot);
1805   }
1806 
1807   for (BasicBlock *ExitBB : ExitBlocks)
1808     for (PHINode &PN : ExitBB->phis()) {
1809       Value *IncomingCodeReplacerVal = nullptr;
1810       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1811         // Ignore incoming values from outside of the extracted region.
1812         if (!Blocks.count(PN.getIncomingBlock(i)))
1813           continue;
1814 
1815         // Ensure that there is only one incoming value from codeReplacer.
1816         if (!IncomingCodeReplacerVal) {
1817           PN.setIncomingBlock(i, codeReplacer);
1818           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1819         } else
1820           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1821                  "PHI has two incompatbile incoming values from codeRepl");
1822       }
1823     }
1824 
1825   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1826 
1827   // Mark the new function `noreturn` if applicable. Terminators which resume
1828   // exception propagation are treated as returning instructions. This is to
1829   // avoid inserting traps after calls to outlined functions which unwind.
1830   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1831     const Instruction *Term = BB.getTerminator();
1832     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1833   });
1834   if (doesNotReturn)
1835     newFunction->setDoesNotReturn();
1836 
1837   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1838     newFunction->dump();
1839     report_fatal_error("verification of newFunction failed!");
1840   });
1841   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1842              report_fatal_error("verification of oldFunction failed!"));
1843   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1844                  report_fatal_error("Stale Asumption cache for old Function!"));
1845   return newFunction;
1846 }
1847 
1848 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1849                                           const Function &NewFunc,
1850                                           AssumptionCache *AC) {
1851   for (auto AssumeVH : AC->assumptions()) {
1852     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1853     if (!I)
1854       continue;
1855 
1856     // There shouldn't be any llvm.assume intrinsics in the new function.
1857     if (I->getFunction() != &OldFunc)
1858       return true;
1859 
1860     // There shouldn't be any stale affected values in the assumption cache
1861     // that were previously in the old function, but that have now been moved
1862     // to the new function.
1863     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1864       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1865       if (!AffectedCI)
1866         continue;
1867       if (AffectedCI->getFunction() != &OldFunc)
1868         return true;
1869       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1870       if (AssumedInst->getFunction() != &OldFunc)
1871         return true;
1872     }
1873   }
1874   return false;
1875 }
1876 
1877 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1878   ExcludeArgsFromAggregate.insert(Arg);
1879 }
1880