1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PatternMatch.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/Verifier.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/BlockFrequency.h" 58 #include "llvm/Support/BranchProbability.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include <cassert> 67 #include <cstdint> 68 #include <iterator> 69 #include <map> 70 #include <set> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 using namespace llvm::PatternMatch; 76 using ProfileCount = Function::ProfileCount; 77 78 #define DEBUG_TYPE "code-extractor" 79 80 // Provide a command-line option to aggregate function arguments into a struct 81 // for functions produced by the code extractor. This is useful when converting 82 // extracted functions to pthread-based code, as only one argument (void*) can 83 // be passed in to pthread_create(). 84 static cl::opt<bool> 85 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 86 cl::desc("Aggregate arguments to code-extracted functions")); 87 88 /// Test whether a block is valid for extraction. 89 static bool isBlockValidForExtraction(const BasicBlock &BB, 90 const SetVector<BasicBlock *> &Result, 91 bool AllowVarArgs, bool AllowAlloca) { 92 // taking the address of a basic block moved to another function is illegal 93 if (BB.hasAddressTaken()) 94 return false; 95 96 // don't hoist code that uses another basicblock address, as it's likely to 97 // lead to unexpected behavior, like cross-function jumps 98 SmallPtrSet<User const *, 16> Visited; 99 SmallVector<User const *, 16> ToVisit; 100 101 for (Instruction const &Inst : BB) 102 ToVisit.push_back(&Inst); 103 104 while (!ToVisit.empty()) { 105 User const *Curr = ToVisit.pop_back_val(); 106 if (!Visited.insert(Curr).second) 107 continue; 108 if (isa<BlockAddress const>(Curr)) 109 return false; // even a reference to self is likely to be not compatible 110 111 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 112 continue; 113 114 for (auto const &U : Curr->operands()) { 115 if (auto *UU = dyn_cast<User>(U)) 116 ToVisit.push_back(UU); 117 } 118 } 119 120 // If explicitly requested, allow vastart and alloca. For invoke instructions 121 // verify that extraction is valid. 122 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 123 if (isa<AllocaInst>(I)) { 124 if (!AllowAlloca) 125 return false; 126 continue; 127 } 128 129 if (const auto *II = dyn_cast<InvokeInst>(I)) { 130 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 131 // must be a part of the subgraph which is being extracted. 132 if (auto *UBB = II->getUnwindDest()) 133 if (!Result.count(UBB)) 134 return false; 135 continue; 136 } 137 138 // All catch handlers of a catchswitch instruction as well as the unwind 139 // destination must be in the subgraph. 140 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 141 if (auto *UBB = CSI->getUnwindDest()) 142 if (!Result.count(UBB)) 143 return false; 144 for (auto *HBB : CSI->handlers()) 145 if (!Result.count(const_cast<BasicBlock*>(HBB))) 146 return false; 147 continue; 148 } 149 150 // Make sure that entire catch handler is within subgraph. It is sufficient 151 // to check that catch return's block is in the list. 152 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 153 for (const auto *U : CPI->users()) 154 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 155 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 156 return false; 157 continue; 158 } 159 160 // And do similar checks for cleanup handler - the entire handler must be 161 // in subgraph which is going to be extracted. For cleanup return should 162 // additionally check that the unwind destination is also in the subgraph. 163 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 164 for (const auto *U : CPI->users()) 165 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 166 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 167 return false; 168 continue; 169 } 170 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 171 if (auto *UBB = CRI->getUnwindDest()) 172 if (!Result.count(UBB)) 173 return false; 174 continue; 175 } 176 177 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 178 if (const Function *F = CI->getCalledFunction()) { 179 auto IID = F->getIntrinsicID(); 180 if (IID == Intrinsic::vastart) { 181 if (AllowVarArgs) 182 continue; 183 else 184 return false; 185 } 186 187 // Currently, we miscompile outlined copies of eh_typid_for. There are 188 // proposals for fixing this in llvm.org/PR39545. 189 if (IID == Intrinsic::eh_typeid_for) 190 return false; 191 } 192 } 193 } 194 195 return true; 196 } 197 198 /// Build a set of blocks to extract if the input blocks are viable. 199 static SetVector<BasicBlock *> 200 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 201 bool AllowVarArgs, bool AllowAlloca) { 202 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 203 SetVector<BasicBlock *> Result; 204 205 // Loop over the blocks, adding them to our set-vector, and aborting with an 206 // empty set if we encounter invalid blocks. 207 for (BasicBlock *BB : BBs) { 208 // If this block is dead, don't process it. 209 if (DT && !DT->isReachableFromEntry(BB)) 210 continue; 211 212 if (!Result.insert(BB)) 213 llvm_unreachable("Repeated basic blocks in extraction input"); 214 } 215 216 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 217 << '\n'); 218 219 for (auto *BB : Result) { 220 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 221 return {}; 222 223 // Make sure that the first block is not a landing pad. 224 if (BB == Result.front()) { 225 if (BB->isEHPad()) { 226 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 227 return {}; 228 } 229 continue; 230 } 231 232 // All blocks other than the first must not have predecessors outside of 233 // the subgraph which is being extracted. 234 for (auto *PBB : predecessors(BB)) 235 if (!Result.count(PBB)) { 236 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 237 "outside the region except for the first block!\n" 238 << "Problematic source BB: " << BB->getName() << "\n" 239 << "Problematic destination BB: " << PBB->getName() 240 << "\n"); 241 return {}; 242 } 243 } 244 245 return Result; 246 } 247 248 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 249 bool AggregateArgs, BlockFrequencyInfo *BFI, 250 BranchProbabilityInfo *BPI, AssumptionCache *AC, 251 bool AllowVarArgs, bool AllowAlloca, 252 std::string Suffix) 253 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 254 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 255 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 256 Suffix(Suffix) {} 257 258 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 259 BlockFrequencyInfo *BFI, 260 BranchProbabilityInfo *BPI, AssumptionCache *AC, 261 std::string Suffix) 262 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 263 BPI(BPI), AC(AC), AllowVarArgs(false), 264 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 265 /* AllowVarArgs */ false, 266 /* AllowAlloca */ false)), 267 Suffix(Suffix) {} 268 269 /// definedInRegion - Return true if the specified value is defined in the 270 /// extracted region. 271 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 272 if (Instruction *I = dyn_cast<Instruction>(V)) 273 if (Blocks.count(I->getParent())) 274 return true; 275 return false; 276 } 277 278 /// definedInCaller - Return true if the specified value is defined in the 279 /// function being code extracted, but not in the region being extracted. 280 /// These values must be passed in as live-ins to the function. 281 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 282 if (isa<Argument>(V)) return true; 283 if (Instruction *I = dyn_cast<Instruction>(V)) 284 if (!Blocks.count(I->getParent())) 285 return true; 286 return false; 287 } 288 289 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 290 BasicBlock *CommonExitBlock = nullptr; 291 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 292 for (auto *Succ : successors(Block)) { 293 // Internal edges, ok. 294 if (Blocks.count(Succ)) 295 continue; 296 if (!CommonExitBlock) { 297 CommonExitBlock = Succ; 298 continue; 299 } 300 if (CommonExitBlock != Succ) 301 return true; 302 } 303 return false; 304 }; 305 306 if (any_of(Blocks, hasNonCommonExitSucc)) 307 return nullptr; 308 309 return CommonExitBlock; 310 } 311 312 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 313 for (BasicBlock &BB : F) { 314 for (Instruction &II : BB.instructionsWithoutDebug()) 315 if (auto *AI = dyn_cast<AllocaInst>(&II)) 316 Allocas.push_back(AI); 317 318 findSideEffectInfoForBlock(BB); 319 } 320 } 321 322 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 323 for (Instruction &II : BB.instructionsWithoutDebug()) { 324 unsigned Opcode = II.getOpcode(); 325 Value *MemAddr = nullptr; 326 switch (Opcode) { 327 case Instruction::Store: 328 case Instruction::Load: { 329 if (Opcode == Instruction::Store) { 330 StoreInst *SI = cast<StoreInst>(&II); 331 MemAddr = SI->getPointerOperand(); 332 } else { 333 LoadInst *LI = cast<LoadInst>(&II); 334 MemAddr = LI->getPointerOperand(); 335 } 336 // Global variable can not be aliased with locals. 337 if (isa<Constant>(MemAddr)) 338 break; 339 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 340 if (!isa<AllocaInst>(Base)) { 341 SideEffectingBlocks.insert(&BB); 342 return; 343 } 344 BaseMemAddrs[&BB].insert(Base); 345 break; 346 } 347 default: { 348 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 349 if (IntrInst) { 350 if (IntrInst->isLifetimeStartOrEnd()) 351 break; 352 SideEffectingBlocks.insert(&BB); 353 return; 354 } 355 // Treat all the other cases conservatively if it has side effects. 356 if (II.mayHaveSideEffects()) { 357 SideEffectingBlocks.insert(&BB); 358 return; 359 } 360 } 361 } 362 } 363 } 364 365 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 366 BasicBlock &BB, AllocaInst *Addr) const { 367 if (SideEffectingBlocks.count(&BB)) 368 return true; 369 auto It = BaseMemAddrs.find(&BB); 370 if (It != BaseMemAddrs.end()) 371 return It->second.count(Addr); 372 return false; 373 } 374 375 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 376 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 377 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 378 Function *Func = (*Blocks.begin())->getParent(); 379 for (BasicBlock &BB : *Func) { 380 if (Blocks.count(&BB)) 381 continue; 382 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 383 return false; 384 } 385 return true; 386 } 387 388 BasicBlock * 389 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 390 BasicBlock *SinglePredFromOutlineRegion = nullptr; 391 assert(!Blocks.count(CommonExitBlock) && 392 "Expect a block outside the region!"); 393 for (auto *Pred : predecessors(CommonExitBlock)) { 394 if (!Blocks.count(Pred)) 395 continue; 396 if (!SinglePredFromOutlineRegion) { 397 SinglePredFromOutlineRegion = Pred; 398 } else if (SinglePredFromOutlineRegion != Pred) { 399 SinglePredFromOutlineRegion = nullptr; 400 break; 401 } 402 } 403 404 if (SinglePredFromOutlineRegion) 405 return SinglePredFromOutlineRegion; 406 407 #ifndef NDEBUG 408 auto getFirstPHI = [](BasicBlock *BB) { 409 BasicBlock::iterator I = BB->begin(); 410 PHINode *FirstPhi = nullptr; 411 while (I != BB->end()) { 412 PHINode *Phi = dyn_cast<PHINode>(I); 413 if (!Phi) 414 break; 415 if (!FirstPhi) { 416 FirstPhi = Phi; 417 break; 418 } 419 } 420 return FirstPhi; 421 }; 422 // If there are any phi nodes, the single pred either exists or has already 423 // be created before code extraction. 424 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 425 #endif 426 427 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 428 CommonExitBlock->getFirstNonPHI()->getIterator()); 429 430 for (BasicBlock *Pred : 431 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 432 if (Blocks.count(Pred)) 433 continue; 434 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 435 } 436 // Now add the old exit block to the outline region. 437 Blocks.insert(CommonExitBlock); 438 OldTargets.push_back(NewExitBlock); 439 return CommonExitBlock; 440 } 441 442 // Find the pair of life time markers for address 'Addr' that are either 443 // defined inside the outline region or can legally be shrinkwrapped into the 444 // outline region. If there are not other untracked uses of the address, return 445 // the pair of markers if found; otherwise return a pair of nullptr. 446 CodeExtractor::LifetimeMarkerInfo 447 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 448 Instruction *Addr, 449 BasicBlock *ExitBlock) const { 450 LifetimeMarkerInfo Info; 451 452 for (User *U : Addr->users()) { 453 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 454 if (IntrInst) { 455 // We don't model addresses with multiple start/end markers, but the 456 // markers do not need to be in the region. 457 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 458 if (Info.LifeStart) 459 return {}; 460 Info.LifeStart = IntrInst; 461 continue; 462 } 463 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 464 if (Info.LifeEnd) 465 return {}; 466 Info.LifeEnd = IntrInst; 467 continue; 468 } 469 // At this point, permit debug uses outside of the region. 470 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 471 if (isa<DbgInfoIntrinsic>(IntrInst)) 472 continue; 473 } 474 // Find untracked uses of the address, bail. 475 if (!definedInRegion(Blocks, U)) 476 return {}; 477 } 478 479 if (!Info.LifeStart || !Info.LifeEnd) 480 return {}; 481 482 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 483 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 484 // Do legality check. 485 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 486 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 487 return {}; 488 489 // Check to see if we have a place to do hoisting, if not, bail. 490 if (Info.HoistLifeEnd && !ExitBlock) 491 return {}; 492 493 return Info; 494 } 495 496 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 497 ValueSet &SinkCands, ValueSet &HoistCands, 498 BasicBlock *&ExitBlock) const { 499 Function *Func = (*Blocks.begin())->getParent(); 500 ExitBlock = getCommonExitBlock(Blocks); 501 502 auto moveOrIgnoreLifetimeMarkers = 503 [&](const LifetimeMarkerInfo &LMI) -> bool { 504 if (!LMI.LifeStart) 505 return false; 506 if (LMI.SinkLifeStart) { 507 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 508 << "\n"); 509 SinkCands.insert(LMI.LifeStart); 510 } 511 if (LMI.HoistLifeEnd) { 512 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 513 HoistCands.insert(LMI.LifeEnd); 514 } 515 return true; 516 }; 517 518 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 519 // this is much faster than walking all the instructions. 520 for (AllocaInst *AI : CEAC.getAllocas()) { 521 BasicBlock *BB = AI->getParent(); 522 if (Blocks.count(BB)) 523 continue; 524 525 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 526 // check whether it is actually still in the original function. 527 Function *AIFunc = BB->getParent(); 528 if (AIFunc != Func) 529 continue; 530 531 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 532 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 533 if (Moved) { 534 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 535 SinkCands.insert(AI); 536 continue; 537 } 538 539 // Find bitcasts in the outlined region that have lifetime marker users 540 // outside that region. Replace the lifetime marker use with an 541 // outside region bitcast to avoid unnecessary alloca/reload instructions 542 // and extra lifetime markers. 543 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 544 for (User *U : AI->users()) { 545 if (!definedInRegion(Blocks, U)) 546 continue; 547 548 if (U->stripInBoundsConstantOffsets() != AI) 549 continue; 550 551 Instruction *Bitcast = cast<Instruction>(U); 552 for (User *BU : Bitcast->users()) { 553 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 554 if (!IntrInst) 555 continue; 556 557 if (!IntrInst->isLifetimeStartOrEnd()) 558 continue; 559 560 if (definedInRegion(Blocks, IntrInst)) 561 continue; 562 563 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 564 << *Bitcast << " in out-of-region lifetime marker " 565 << *IntrInst << "\n"); 566 LifetimeBitcastUsers.push_back(IntrInst); 567 } 568 } 569 570 for (Instruction *I : LifetimeBitcastUsers) { 571 Module *M = AIFunc->getParent(); 572 LLVMContext &Ctx = M->getContext(); 573 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 574 CastInst *CastI = 575 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); 576 I->replaceUsesOfWith(I->getOperand(1), CastI); 577 } 578 579 // Follow any bitcasts. 580 SmallVector<Instruction *, 2> Bitcasts; 581 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 582 for (User *U : AI->users()) { 583 if (U->stripInBoundsConstantOffsets() == AI) { 584 Instruction *Bitcast = cast<Instruction>(U); 585 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 586 if (LMI.LifeStart) { 587 Bitcasts.push_back(Bitcast); 588 BitcastLifetimeInfo.push_back(LMI); 589 continue; 590 } 591 } 592 593 // Found unknown use of AI. 594 if (!definedInRegion(Blocks, U)) { 595 Bitcasts.clear(); 596 break; 597 } 598 } 599 600 // Either no bitcasts reference the alloca or there are unknown uses. 601 if (Bitcasts.empty()) 602 continue; 603 604 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 605 SinkCands.insert(AI); 606 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 607 Instruction *BitcastAddr = Bitcasts[I]; 608 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 609 assert(LMI.LifeStart && 610 "Unsafe to sink bitcast without lifetime markers"); 611 moveOrIgnoreLifetimeMarkers(LMI); 612 if (!definedInRegion(Blocks, BitcastAddr)) { 613 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 614 << "\n"); 615 SinkCands.insert(BitcastAddr); 616 } 617 } 618 } 619 } 620 621 bool CodeExtractor::isEligible() const { 622 if (Blocks.empty()) 623 return false; 624 BasicBlock *Header = *Blocks.begin(); 625 Function *F = Header->getParent(); 626 627 // For functions with varargs, check that varargs handling is only done in the 628 // outlined function, i.e vastart and vaend are only used in outlined blocks. 629 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 630 auto containsVarArgIntrinsic = [](const Instruction &I) { 631 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 632 if (const Function *Callee = CI->getCalledFunction()) 633 return Callee->getIntrinsicID() == Intrinsic::vastart || 634 Callee->getIntrinsicID() == Intrinsic::vaend; 635 return false; 636 }; 637 638 for (auto &BB : *F) { 639 if (Blocks.count(&BB)) 640 continue; 641 if (llvm::any_of(BB, containsVarArgIntrinsic)) 642 return false; 643 } 644 } 645 return true; 646 } 647 648 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 649 const ValueSet &SinkCands) const { 650 for (BasicBlock *BB : Blocks) { 651 // If a used value is defined outside the region, it's an input. If an 652 // instruction is used outside the region, it's an output. 653 for (Instruction &II : *BB) { 654 for (auto &OI : II.operands()) { 655 Value *V = OI; 656 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 657 Inputs.insert(V); 658 } 659 660 for (User *U : II.users()) 661 if (!definedInRegion(Blocks, U)) { 662 Outputs.insert(&II); 663 break; 664 } 665 } 666 } 667 } 668 669 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 670 /// of the region, we need to split the entry block of the region so that the 671 /// PHI node is easier to deal with. 672 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 673 unsigned NumPredsFromRegion = 0; 674 unsigned NumPredsOutsideRegion = 0; 675 676 if (Header != &Header->getParent()->getEntryBlock()) { 677 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 678 if (!PN) return; // No PHI nodes. 679 680 // If the header node contains any PHI nodes, check to see if there is more 681 // than one entry from outside the region. If so, we need to sever the 682 // header block into two. 683 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 684 if (Blocks.count(PN->getIncomingBlock(i))) 685 ++NumPredsFromRegion; 686 else 687 ++NumPredsOutsideRegion; 688 689 // If there is one (or fewer) predecessor from outside the region, we don't 690 // need to do anything special. 691 if (NumPredsOutsideRegion <= 1) return; 692 } 693 694 // Otherwise, we need to split the header block into two pieces: one 695 // containing PHI nodes merging values from outside of the region, and a 696 // second that contains all of the code for the block and merges back any 697 // incoming values from inside of the region. 698 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 699 700 // We only want to code extract the second block now, and it becomes the new 701 // header of the region. 702 BasicBlock *OldPred = Header; 703 Blocks.remove(OldPred); 704 Blocks.insert(NewBB); 705 Header = NewBB; 706 707 // Okay, now we need to adjust the PHI nodes and any branches from within the 708 // region to go to the new header block instead of the old header block. 709 if (NumPredsFromRegion) { 710 PHINode *PN = cast<PHINode>(OldPred->begin()); 711 // Loop over all of the predecessors of OldPred that are in the region, 712 // changing them to branch to NewBB instead. 713 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 714 if (Blocks.count(PN->getIncomingBlock(i))) { 715 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 716 TI->replaceUsesOfWith(OldPred, NewBB); 717 } 718 719 // Okay, everything within the region is now branching to the right block, we 720 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 721 BasicBlock::iterator AfterPHIs; 722 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 723 PHINode *PN = cast<PHINode>(AfterPHIs); 724 // Create a new PHI node in the new region, which has an incoming value 725 // from OldPred of PN. 726 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 727 PN->getName() + ".ce", &NewBB->front()); 728 PN->replaceAllUsesWith(NewPN); 729 NewPN->addIncoming(PN, OldPred); 730 731 // Loop over all of the incoming value in PN, moving them to NewPN if they 732 // are from the extracted region. 733 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 734 if (Blocks.count(PN->getIncomingBlock(i))) { 735 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 736 PN->removeIncomingValue(i); 737 --i; 738 } 739 } 740 } 741 } 742 } 743 744 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 745 /// outlined region, we split these PHIs on two: one with inputs from region 746 /// and other with remaining incoming blocks; then first PHIs are placed in 747 /// outlined region. 748 void CodeExtractor::severSplitPHINodesOfExits( 749 const SmallPtrSetImpl<BasicBlock *> &Exits) { 750 for (BasicBlock *ExitBB : Exits) { 751 BasicBlock *NewBB = nullptr; 752 753 for (PHINode &PN : ExitBB->phis()) { 754 // Find all incoming values from the outlining region. 755 SmallVector<unsigned, 2> IncomingVals; 756 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 757 if (Blocks.count(PN.getIncomingBlock(i))) 758 IncomingVals.push_back(i); 759 760 // Do not process PHI if there is one (or fewer) predecessor from region. 761 // If PHI has exactly one predecessor from region, only this one incoming 762 // will be replaced on codeRepl block, so it should be safe to skip PHI. 763 if (IncomingVals.size() <= 1) 764 continue; 765 766 // Create block for new PHIs and add it to the list of outlined if it 767 // wasn't done before. 768 if (!NewBB) { 769 NewBB = BasicBlock::Create(ExitBB->getContext(), 770 ExitBB->getName() + ".split", 771 ExitBB->getParent(), ExitBB); 772 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 773 for (BasicBlock *PredBB : Preds) 774 if (Blocks.count(PredBB)) 775 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 776 BranchInst::Create(ExitBB, NewBB); 777 Blocks.insert(NewBB); 778 } 779 780 // Split this PHI. 781 PHINode *NewPN = 782 PHINode::Create(PN.getType(), IncomingVals.size(), 783 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 784 for (unsigned i : IncomingVals) 785 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 786 for (unsigned i : reverse(IncomingVals)) 787 PN.removeIncomingValue(i, false); 788 PN.addIncoming(NewPN, NewBB); 789 } 790 } 791 } 792 793 void CodeExtractor::splitReturnBlocks() { 794 for (BasicBlock *Block : Blocks) 795 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 796 BasicBlock *New = 797 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 798 if (DT) { 799 // Old dominates New. New node dominates all other nodes dominated 800 // by Old. 801 DomTreeNode *OldNode = DT->getNode(Block); 802 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 803 OldNode->end()); 804 805 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 806 807 for (DomTreeNode *I : Children) 808 DT->changeImmediateDominator(I, NewNode); 809 } 810 } 811 } 812 813 /// constructFunction - make a function based on inputs and outputs, as follows: 814 /// f(in0, ..., inN, out0, ..., outN) 815 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 816 const ValueSet &outputs, 817 BasicBlock *header, 818 BasicBlock *newRootNode, 819 BasicBlock *newHeader, 820 Function *oldFunction, 821 Module *M) { 822 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 823 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 824 825 // This function returns unsigned, outputs will go back by reference. 826 switch (NumExitBlocks) { 827 case 0: 828 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 829 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 830 default: RetTy = Type::getInt16Ty(header->getContext()); break; 831 } 832 833 std::vector<Type *> ParamTy; 834 std::vector<Type *> AggParamTy; 835 ValueSet StructValues; 836 837 // Add the types of the input values to the function's argument list 838 for (Value *value : inputs) { 839 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 840 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) { 841 AggParamTy.push_back(value->getType()); 842 StructValues.insert(value); 843 } else 844 ParamTy.push_back(value->getType()); 845 } 846 847 // Add the types of the output values to the function's argument list. 848 for (Value *output : outputs) { 849 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 850 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 851 AggParamTy.push_back(output->getType()); 852 StructValues.insert(output); 853 } else 854 ParamTy.push_back(PointerType::getUnqual(output->getType())); 855 } 856 857 assert( 858 (ParamTy.size() + AggParamTy.size()) == 859 (inputs.size() + outputs.size()) && 860 "Number of scalar and aggregate params does not match inputs, outputs"); 861 assert((StructValues.empty() || AggregateArgs) && 862 "Expeced StructValues only with AggregateArgs set"); 863 864 // Concatenate scalar and aggregate params in ParamTy. 865 size_t NumScalarParams = ParamTy.size(); 866 StructType *StructTy = nullptr; 867 if (AggregateArgs && !AggParamTy.empty()) { 868 StructTy = StructType::get(M->getContext(), AggParamTy); 869 ParamTy.push_back(PointerType::getUnqual(StructTy)); 870 } 871 872 LLVM_DEBUG({ 873 dbgs() << "Function type: " << *RetTy << " f("; 874 for (Type *i : ParamTy) 875 dbgs() << *i << ", "; 876 dbgs() << ")\n"; 877 }); 878 879 FunctionType *funcType = FunctionType::get( 880 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg()); 881 882 std::string SuffixToUse = 883 Suffix.empty() 884 ? (header->getName().empty() ? "extracted" : header->getName().str()) 885 : Suffix; 886 // Create the new function 887 Function *newFunction = Function::Create( 888 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 889 oldFunction->getName() + "." + SuffixToUse, M); 890 891 // Inherit all of the target dependent attributes and white-listed 892 // target independent attributes. 893 // (e.g. If the extracted region contains a call to an x86.sse 894 // instruction we need to make sure that the extracted region has the 895 // "target-features" attribute allowing it to be lowered. 896 // FIXME: This should be changed to check to see if a specific 897 // attribute can not be inherited. 898 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { 899 if (Attr.isStringAttribute()) { 900 if (Attr.getKindAsString() == "thunk") 901 continue; 902 } else 903 switch (Attr.getKindAsEnum()) { 904 // Those attributes cannot be propagated safely. Explicitly list them 905 // here so we get a warning if new attributes are added. 906 case Attribute::AllocSize: 907 case Attribute::ArgMemOnly: 908 case Attribute::Builtin: 909 case Attribute::Convergent: 910 case Attribute::InaccessibleMemOnly: 911 case Attribute::InaccessibleMemOrArgMemOnly: 912 case Attribute::JumpTable: 913 case Attribute::Naked: 914 case Attribute::NoBuiltin: 915 case Attribute::NoMerge: 916 case Attribute::NoReturn: 917 case Attribute::NoSync: 918 case Attribute::ReadNone: 919 case Attribute::ReadOnly: 920 case Attribute::ReturnsTwice: 921 case Attribute::Speculatable: 922 case Attribute::StackAlignment: 923 case Attribute::WillReturn: 924 case Attribute::WriteOnly: 925 continue; 926 // Those attributes should be safe to propagate to the extracted function. 927 case Attribute::AlwaysInline: 928 case Attribute::Cold: 929 case Attribute::DisableSanitizerInstrumentation: 930 case Attribute::Hot: 931 case Attribute::NoRecurse: 932 case Attribute::InlineHint: 933 case Attribute::MinSize: 934 case Attribute::NoCallback: 935 case Attribute::NoDuplicate: 936 case Attribute::NoFree: 937 case Attribute::NoImplicitFloat: 938 case Attribute::NoInline: 939 case Attribute::NonLazyBind: 940 case Attribute::NoRedZone: 941 case Attribute::NoUnwind: 942 case Attribute::NoSanitizeCoverage: 943 case Attribute::NullPointerIsValid: 944 case Attribute::OptForFuzzing: 945 case Attribute::OptimizeNone: 946 case Attribute::OptimizeForSize: 947 case Attribute::SafeStack: 948 case Attribute::ShadowCallStack: 949 case Attribute::SanitizeAddress: 950 case Attribute::SanitizeMemory: 951 case Attribute::SanitizeThread: 952 case Attribute::SanitizeHWAddress: 953 case Attribute::SanitizeMemTag: 954 case Attribute::SpeculativeLoadHardening: 955 case Attribute::StackProtect: 956 case Attribute::StackProtectReq: 957 case Attribute::StackProtectStrong: 958 case Attribute::StrictFP: 959 case Attribute::UWTable: 960 case Attribute::VScaleRange: 961 case Attribute::NoCfCheck: 962 case Attribute::MustProgress: 963 case Attribute::NoProfile: 964 break; 965 // These attributes cannot be applied to functions. 966 case Attribute::Alignment: 967 case Attribute::ByVal: 968 case Attribute::Dereferenceable: 969 case Attribute::DereferenceableOrNull: 970 case Attribute::ElementType: 971 case Attribute::InAlloca: 972 case Attribute::InReg: 973 case Attribute::Nest: 974 case Attribute::NoAlias: 975 case Attribute::NoCapture: 976 case Attribute::NoUndef: 977 case Attribute::NonNull: 978 case Attribute::Preallocated: 979 case Attribute::Returned: 980 case Attribute::SExt: 981 case Attribute::StructRet: 982 case Attribute::SwiftError: 983 case Attribute::SwiftSelf: 984 case Attribute::SwiftAsync: 985 case Attribute::ZExt: 986 case Attribute::ImmArg: 987 case Attribute::ByRef: 988 // These are not really attributes. 989 case Attribute::None: 990 case Attribute::EndAttrKinds: 991 case Attribute::EmptyKey: 992 case Attribute::TombstoneKey: 993 llvm_unreachable("Not a function attribute"); 994 } 995 996 newFunction->addFnAttr(Attr); 997 } 998 newFunction->getBasicBlockList().push_back(newRootNode); 999 1000 // Create scalar and aggregate iterators to name all of the arguments we 1001 // inserted. 1002 Function::arg_iterator ScalarAI = newFunction->arg_begin(); 1003 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams); 1004 1005 // Rewrite all users of the inputs in the extracted region to use the 1006 // arguments (or appropriate addressing into struct) instead. 1007 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) { 1008 Value *RewriteVal; 1009 if (AggregateArgs && StructValues.contains(inputs[i])) { 1010 Value *Idx[2]; 1011 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 1012 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx); 1013 Instruction *TI = newFunction->begin()->getTerminator(); 1014 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1015 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI); 1016 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP, 1017 "loadgep_" + inputs[i]->getName(), TI); 1018 ++aggIdx; 1019 } else 1020 RewriteVal = &*ScalarAI++; 1021 1022 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1023 for (User *use : Users) 1024 if (Instruction *inst = dyn_cast<Instruction>(use)) 1025 if (Blocks.count(inst->getParent())) 1026 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1027 } 1028 1029 // Set names for input and output arguments. 1030 if (NumScalarParams) { 1031 ScalarAI = newFunction->arg_begin(); 1032 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI) 1033 if (!StructValues.contains(inputs[i])) 1034 ScalarAI->setName(inputs[i]->getName()); 1035 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI) 1036 if (!StructValues.contains(outputs[i])) 1037 ScalarAI->setName(outputs[i]->getName() + ".out"); 1038 } 1039 1040 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1041 // within the new function. This must be done before we lose track of which 1042 // blocks were originally in the code region. 1043 std::vector<User *> Users(header->user_begin(), header->user_end()); 1044 for (auto &U : Users) 1045 // The BasicBlock which contains the branch is not in the region 1046 // modify the branch target to a new block 1047 if (Instruction *I = dyn_cast<Instruction>(U)) 1048 if (I->isTerminator() && I->getFunction() == oldFunction && 1049 !Blocks.count(I->getParent())) 1050 I->replaceUsesOfWith(header, newHeader); 1051 1052 return newFunction; 1053 } 1054 1055 /// Erase lifetime.start markers which reference inputs to the extraction 1056 /// region, and insert the referenced memory into \p LifetimesStart. 1057 /// 1058 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1059 /// of allocas which will be moved from the caller function into the extracted 1060 /// function (\p SunkAllocas). 1061 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1062 const SetVector<Value *> &SunkAllocas, 1063 SetVector<Value *> &LifetimesStart) { 1064 for (BasicBlock *BB : Blocks) { 1065 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 1066 auto *II = dyn_cast<IntrinsicInst>(&I); 1067 if (!II || !II->isLifetimeStartOrEnd()) 1068 continue; 1069 1070 // Get the memory operand of the lifetime marker. If the underlying 1071 // object is a sunk alloca, or is otherwise defined in the extraction 1072 // region, the lifetime marker must not be erased. 1073 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1074 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1075 continue; 1076 1077 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1078 LifetimesStart.insert(Mem); 1079 II->eraseFromParent(); 1080 } 1081 } 1082 } 1083 1084 /// Insert lifetime start/end markers surrounding the call to the new function 1085 /// for objects defined in the caller. 1086 static void insertLifetimeMarkersSurroundingCall( 1087 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1088 CallInst *TheCall) { 1089 LLVMContext &Ctx = M->getContext(); 1090 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1091 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1092 Instruction *Term = TheCall->getParent()->getTerminator(); 1093 1094 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1095 // needed to satisfy this requirement so they may be reused. 1096 DenseMap<Value *, Value *> Bitcasts; 1097 1098 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1099 // markers before the call if \p InsertBefore, and after the call otherwise. 1100 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1101 bool InsertBefore) { 1102 for (Value *Mem : Objects) { 1103 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1104 TheCall->getFunction()) && 1105 "Input memory not defined in original function"); 1106 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1107 if (!MemAsI8Ptr) { 1108 if (Mem->getType() == Int8PtrTy) 1109 MemAsI8Ptr = Mem; 1110 else 1111 MemAsI8Ptr = 1112 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1113 } 1114 1115 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1116 if (InsertBefore) 1117 Marker->insertBefore(TheCall); 1118 else 1119 Marker->insertBefore(Term); 1120 } 1121 }; 1122 1123 if (!LifetimesStart.empty()) { 1124 auto StartFn = llvm::Intrinsic::getDeclaration( 1125 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1126 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1127 } 1128 1129 if (!LifetimesEnd.empty()) { 1130 auto EndFn = llvm::Intrinsic::getDeclaration( 1131 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1132 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1133 } 1134 } 1135 1136 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1137 /// the call instruction, splitting any PHI nodes in the header block as 1138 /// necessary. 1139 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1140 BasicBlock *codeReplacer, 1141 ValueSet &inputs, 1142 ValueSet &outputs) { 1143 // Emit a call to the new function, passing in: *pointer to struct (if 1144 // aggregating parameters), or plan inputs and allocated memory for outputs 1145 std::vector<Value *> params, ReloadOutputs, Reloads; 1146 ValueSet StructValues; 1147 1148 Module *M = newFunction->getParent(); 1149 LLVMContext &Context = M->getContext(); 1150 const DataLayout &DL = M->getDataLayout(); 1151 CallInst *call = nullptr; 1152 1153 // Add inputs as params, or to be filled into the struct 1154 unsigned ScalarInputArgNo = 0; 1155 SmallVector<unsigned, 1> SwiftErrorArgs; 1156 for (Value *input : inputs) { 1157 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input)) 1158 StructValues.insert(input); 1159 else { 1160 params.push_back(input); 1161 if (input->isSwiftError()) 1162 SwiftErrorArgs.push_back(ScalarInputArgNo); 1163 } 1164 ++ScalarInputArgNo; 1165 } 1166 1167 // Create allocas for the outputs 1168 unsigned ScalarOutputArgNo = 0; 1169 for (Value *output : outputs) { 1170 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 1171 StructValues.insert(output); 1172 } else { 1173 AllocaInst *alloca = 1174 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1175 nullptr, output->getName() + ".loc", 1176 &codeReplacer->getParent()->front().front()); 1177 ReloadOutputs.push_back(alloca); 1178 params.push_back(alloca); 1179 ++ScalarOutputArgNo; 1180 } 1181 } 1182 1183 StructType *StructArgTy = nullptr; 1184 AllocaInst *Struct = nullptr; 1185 unsigned NumAggregatedInputs = 0; 1186 if (AggregateArgs && !StructValues.empty()) { 1187 std::vector<Type *> ArgTypes; 1188 for (Value *V : StructValues) 1189 ArgTypes.push_back(V->getType()); 1190 1191 // Allocate a struct at the beginning of this function 1192 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1193 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1194 "structArg", 1195 &codeReplacer->getParent()->front().front()); 1196 params.push_back(Struct); 1197 1198 // Store aggregated inputs in the struct. 1199 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) { 1200 if (inputs.contains(StructValues[i])) { 1201 Value *Idx[2]; 1202 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1203 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1204 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1205 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1206 codeReplacer->getInstList().push_back(GEP); 1207 new StoreInst(StructValues[i], GEP, codeReplacer); 1208 NumAggregatedInputs++; 1209 } 1210 } 1211 } 1212 1213 // Emit the call to the function 1214 call = CallInst::Create(newFunction, params, 1215 NumExitBlocks > 1 ? "targetBlock" : ""); 1216 // Add debug location to the new call, if the original function has debug 1217 // info. In that case, the terminator of the entry block of the extracted 1218 // function contains the first debug location of the extracted function, 1219 // set in extractCodeRegion. 1220 if (codeReplacer->getParent()->getSubprogram()) { 1221 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1222 call->setDebugLoc(DL); 1223 } 1224 codeReplacer->getInstList().push_back(call); 1225 1226 // Set swifterror parameter attributes. 1227 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1228 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1229 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1230 } 1231 1232 // Reload the outputs passed in by reference, use the struct if output is in 1233 // the aggregate or reload from the scalar argument. 1234 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0, 1235 aggIdx = NumAggregatedInputs; 1236 i != e; ++i) { 1237 Value *Output = nullptr; 1238 if (AggregateArgs && StructValues.contains(outputs[i])) { 1239 Value *Idx[2]; 1240 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1241 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1242 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1243 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1244 codeReplacer->getInstList().push_back(GEP); 1245 Output = GEP; 1246 ++aggIdx; 1247 } else { 1248 Output = ReloadOutputs[scalarIdx]; 1249 ++scalarIdx; 1250 } 1251 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1252 outputs[i]->getName() + ".reload", 1253 codeReplacer); 1254 Reloads.push_back(load); 1255 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1256 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1257 Instruction *inst = cast<Instruction>(Users[u]); 1258 if (!Blocks.count(inst->getParent())) 1259 inst->replaceUsesOfWith(outputs[i], load); 1260 } 1261 } 1262 1263 // Now we can emit a switch statement using the call as a value. 1264 SwitchInst *TheSwitch = 1265 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1266 codeReplacer, 0, codeReplacer); 1267 1268 // Since there may be multiple exits from the original region, make the new 1269 // function return an unsigned, switch on that number. This loop iterates 1270 // over all of the blocks in the extracted region, updating any terminator 1271 // instructions in the to-be-extracted region that branch to blocks that are 1272 // not in the region to be extracted. 1273 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1274 1275 // Iterate over the previously collected targets, and create new blocks inside 1276 // the function to branch to. 1277 unsigned switchVal = 0; 1278 for (BasicBlock *OldTarget : OldTargets) { 1279 if (Blocks.count(OldTarget)) 1280 continue; 1281 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1282 if (NewTarget) 1283 continue; 1284 1285 // If we don't already have an exit stub for this non-extracted 1286 // destination, create one now! 1287 NewTarget = BasicBlock::Create(Context, 1288 OldTarget->getName() + ".exitStub", 1289 newFunction); 1290 unsigned SuccNum = switchVal++; 1291 1292 Value *brVal = nullptr; 1293 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); 1294 switch (NumExitBlocks) { 1295 case 0: 1296 case 1: break; // No value needed. 1297 case 2: // Conditional branch, return a bool 1298 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1299 break; 1300 default: 1301 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1302 break; 1303 } 1304 1305 ReturnInst::Create(Context, brVal, NewTarget); 1306 1307 // Update the switch instruction. 1308 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1309 SuccNum), 1310 OldTarget); 1311 } 1312 1313 for (BasicBlock *Block : Blocks) { 1314 Instruction *TI = Block->getTerminator(); 1315 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1316 if (Blocks.count(TI->getSuccessor(i))) 1317 continue; 1318 BasicBlock *OldTarget = TI->getSuccessor(i); 1319 // add a new basic block which returns the appropriate value 1320 BasicBlock *NewTarget = ExitBlockMap[OldTarget]; 1321 assert(NewTarget && "Unknown target block!"); 1322 1323 // rewrite the original branch instruction with this new target 1324 TI->setSuccessor(i, NewTarget); 1325 } 1326 } 1327 1328 // Store the arguments right after the definition of output value. 1329 // This should be proceeded after creating exit stubs to be ensure that invoke 1330 // result restore will be placed in the outlined function. 1331 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin(); 1332 std::advance(ScalarOutputArgBegin, ScalarInputArgNo); 1333 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin(); 1334 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo); 1335 1336 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e; 1337 ++i) { 1338 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1339 if (!OutI) 1340 continue; 1341 1342 // Find proper insertion point. 1343 BasicBlock::iterator InsertPt; 1344 // In case OutI is an invoke, we insert the store at the beginning in the 1345 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1346 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1347 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1348 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1349 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1350 else 1351 InsertPt = std::next(OutI->getIterator()); 1352 1353 Instruction *InsertBefore = &*InsertPt; 1354 assert((InsertBefore->getFunction() == newFunction || 1355 Blocks.count(InsertBefore->getParent())) && 1356 "InsertPt should be in new function"); 1357 if (AggregateArgs && StructValues.contains(outputs[i])) { 1358 assert(AggOutputArgBegin != newFunction->arg_end() && 1359 "Number of aggregate output arguments should match " 1360 "the number of defined values"); 1361 Value *Idx[2]; 1362 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1363 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1364 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1365 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(), 1366 InsertBefore); 1367 new StoreInst(outputs[i], GEP, InsertBefore); 1368 ++aggIdx; 1369 // Since there should be only one struct argument aggregating 1370 // all the output values, we shouldn't increment AggOutputArgBegin, which 1371 // always points to the struct argument, in this case. 1372 } else { 1373 assert(ScalarOutputArgBegin != newFunction->arg_end() && 1374 "Number of scalar output arguments should match " 1375 "the number of defined values"); 1376 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore); 1377 ++ScalarOutputArgBegin; 1378 } 1379 } 1380 1381 // Now that we've done the deed, simplify the switch instruction. 1382 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1383 switch (NumExitBlocks) { 1384 case 0: 1385 // There are no successors (the block containing the switch itself), which 1386 // means that previously this was the last part of the function, and hence 1387 // this should be rewritten as a `ret' 1388 1389 // Check if the function should return a value 1390 if (OldFnRetTy->isVoidTy()) { 1391 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1392 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1393 // return what we have 1394 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1395 } else { 1396 // Otherwise we must have code extracted an unwind or something, just 1397 // return whatever we want. 1398 ReturnInst::Create(Context, 1399 Constant::getNullValue(OldFnRetTy), TheSwitch); 1400 } 1401 1402 TheSwitch->eraseFromParent(); 1403 break; 1404 case 1: 1405 // Only a single destination, change the switch into an unconditional 1406 // branch. 1407 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1408 TheSwitch->eraseFromParent(); 1409 break; 1410 case 2: 1411 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1412 call, TheSwitch); 1413 TheSwitch->eraseFromParent(); 1414 break; 1415 default: 1416 // Otherwise, make the default destination of the switch instruction be one 1417 // of the other successors. 1418 TheSwitch->setCondition(call); 1419 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1420 // Remove redundant case 1421 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1422 break; 1423 } 1424 1425 // Insert lifetime markers around the reloads of any output values. The 1426 // allocas output values are stored in are only in-use in the codeRepl block. 1427 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1428 1429 return call; 1430 } 1431 1432 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1433 Function *oldFunc = (*Blocks.begin())->getParent(); 1434 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1435 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1436 1437 auto newFuncIt = newFunction->front().getIterator(); 1438 for (BasicBlock *Block : Blocks) { 1439 // Delete the basic block from the old function, and the list of blocks 1440 oldBlocks.remove(Block); 1441 1442 // Insert this basic block into the new function 1443 // Insert the original blocks after the entry block created 1444 // for the new function. The entry block may be followed 1445 // by a set of exit blocks at this point, but these exit 1446 // blocks better be placed at the end of the new function. 1447 newFuncIt = newBlocks.insertAfter(newFuncIt, Block); 1448 } 1449 } 1450 1451 void CodeExtractor::calculateNewCallTerminatorWeights( 1452 BasicBlock *CodeReplacer, 1453 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1454 BranchProbabilityInfo *BPI) { 1455 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1456 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1457 1458 // Update the branch weights for the exit block. 1459 Instruction *TI = CodeReplacer->getTerminator(); 1460 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1461 1462 // Block Frequency distribution with dummy node. 1463 Distribution BranchDist; 1464 1465 SmallVector<BranchProbability, 4> EdgeProbabilities( 1466 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1467 1468 // Add each of the frequencies of the successors. 1469 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1470 BlockNode ExitNode(i); 1471 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1472 if (ExitFreq != 0) 1473 BranchDist.addExit(ExitNode, ExitFreq); 1474 else 1475 EdgeProbabilities[i] = BranchProbability::getZero(); 1476 } 1477 1478 // Check for no total weight. 1479 if (BranchDist.Total == 0) { 1480 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1481 return; 1482 } 1483 1484 // Normalize the distribution so that they can fit in unsigned. 1485 BranchDist.normalize(); 1486 1487 // Create normalized branch weights and set the metadata. 1488 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1489 const auto &Weight = BranchDist.Weights[I]; 1490 1491 // Get the weight and update the current BFI. 1492 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1493 BranchProbability BP(Weight.Amount, BranchDist.Total); 1494 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1495 } 1496 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1497 TI->setMetadata( 1498 LLVMContext::MD_prof, 1499 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1500 } 1501 1502 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1503 /// \p F. 1504 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1505 for (Instruction &I : instructions(F)) { 1506 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1507 findDbgUsers(DbgUsers, &I); 1508 for (DbgVariableIntrinsic *DVI : DbgUsers) 1509 if (DVI->getFunction() != &F) 1510 DVI->eraseFromParent(); 1511 } 1512 } 1513 1514 /// Fix up the debug info in the old and new functions by pointing line 1515 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1516 /// intrinsics which point to values outside of the new function. 1517 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1518 CallInst &TheCall) { 1519 DISubprogram *OldSP = OldFunc.getSubprogram(); 1520 LLVMContext &Ctx = OldFunc.getContext(); 1521 1522 if (!OldSP) { 1523 // Erase any debug info the new function contains. 1524 stripDebugInfo(NewFunc); 1525 // Make sure the old function doesn't contain any non-local metadata refs. 1526 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1527 return; 1528 } 1529 1530 // Create a subprogram for the new function. Leave out a description of the 1531 // function arguments, as the parameters don't correspond to anything at the 1532 // source level. 1533 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1534 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1535 OldSP->getUnit()); 1536 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1537 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1538 DISubprogram::SPFlagOptimized | 1539 DISubprogram::SPFlagLocalToUnit; 1540 auto NewSP = DIB.createFunction( 1541 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1542 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1543 NewFunc.setSubprogram(NewSP); 1544 1545 // Debug intrinsics in the new function need to be updated in one of two 1546 // ways: 1547 // 1) They need to be deleted, because they describe a value in the old 1548 // function. 1549 // 2) They need to point to fresh metadata, e.g. because they currently 1550 // point to a variable in the wrong scope. 1551 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1552 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1553 for (Instruction &I : instructions(NewFunc)) { 1554 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1555 if (!DII) 1556 continue; 1557 1558 // Point the intrinsic to a fresh label within the new function. 1559 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1560 DILabel *OldLabel = DLI->getLabel(); 1561 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1562 if (!NewLabel) 1563 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1564 OldLabel->getFile(), OldLabel->getLine()); 1565 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1566 continue; 1567 } 1568 1569 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1570 // Location is invalid if it isn't a constant or an instruction, or is an 1571 // instruction but isn't in the new function. 1572 if (!Location || 1573 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1574 return true; 1575 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1576 return LocationInst && LocationInst->getFunction() != &NewFunc; 1577 }; 1578 1579 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1580 // If any of the used locations are invalid, delete the intrinsic. 1581 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1582 DebugIntrinsicsToDelete.push_back(DVI); 1583 continue; 1584 } 1585 1586 // Point the intrinsic to a fresh variable within the new function. 1587 DILocalVariable *OldVar = DVI->getVariable(); 1588 DINode *&NewVar = RemappedMetadata[OldVar]; 1589 if (!NewVar) 1590 NewVar = DIB.createAutoVariable( 1591 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1592 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1593 OldVar->getAlignInBits()); 1594 DVI->setVariable(cast<DILocalVariable>(NewVar)); 1595 } 1596 for (auto *DII : DebugIntrinsicsToDelete) 1597 DII->eraseFromParent(); 1598 DIB.finalizeSubprogram(NewSP); 1599 1600 // Fix up the scope information attached to the line locations in the new 1601 // function. 1602 for (Instruction &I : instructions(NewFunc)) { 1603 if (const DebugLoc &DL = I.getDebugLoc()) 1604 I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP)); 1605 1606 // Loop info metadata may contain line locations. Fix them up. 1607 auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * { 1608 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1609 return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP, 1610 nullptr); 1611 return MD; 1612 }; 1613 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1614 } 1615 if (!TheCall.getDebugLoc()) 1616 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1617 1618 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1619 } 1620 1621 Function * 1622 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1623 ValueSet Inputs, Outputs; 1624 return extractCodeRegion(CEAC, Inputs, Outputs); 1625 } 1626 1627 Function * 1628 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, 1629 ValueSet &inputs, ValueSet &outputs) { 1630 if (!isEligible()) 1631 return nullptr; 1632 1633 // Assumption: this is a single-entry code region, and the header is the first 1634 // block in the region. 1635 BasicBlock *header = *Blocks.begin(); 1636 Function *oldFunction = header->getParent(); 1637 1638 // Calculate the entry frequency of the new function before we change the root 1639 // block. 1640 BlockFrequency EntryFreq; 1641 if (BFI) { 1642 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1643 for (BasicBlock *Pred : predecessors(header)) { 1644 if (Blocks.count(Pred)) 1645 continue; 1646 EntryFreq += 1647 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1648 } 1649 } 1650 1651 // Remove @llvm.assume calls that will be moved to the new function from the 1652 // old function's assumption cache. 1653 for (BasicBlock *Block : Blocks) { 1654 for (Instruction &I : llvm::make_early_inc_range(*Block)) { 1655 if (auto *AI = dyn_cast<AssumeInst>(&I)) { 1656 if (AC) 1657 AC->unregisterAssumption(AI); 1658 AI->eraseFromParent(); 1659 } 1660 } 1661 } 1662 1663 // If we have any return instructions in the region, split those blocks so 1664 // that the return is not in the region. 1665 splitReturnBlocks(); 1666 1667 // Calculate the exit blocks for the extracted region and the total exit 1668 // weights for each of those blocks. 1669 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1670 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1671 for (BasicBlock *Block : Blocks) { 1672 for (BasicBlock *Succ : successors(Block)) { 1673 if (!Blocks.count(Succ)) { 1674 // Update the branch weight for this successor. 1675 if (BFI) { 1676 BlockFrequency &BF = ExitWeights[Succ]; 1677 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1678 } 1679 ExitBlocks.insert(Succ); 1680 } 1681 } 1682 } 1683 NumExitBlocks = ExitBlocks.size(); 1684 1685 for (BasicBlock *Block : Blocks) { 1686 Instruction *TI = Block->getTerminator(); 1687 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1688 if (Blocks.count(TI->getSuccessor(i))) 1689 continue; 1690 BasicBlock *OldTarget = TI->getSuccessor(i); 1691 OldTargets.push_back(OldTarget); 1692 } 1693 } 1694 1695 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1696 severSplitPHINodesOfEntry(header); 1697 severSplitPHINodesOfExits(ExitBlocks); 1698 1699 // This takes place of the original loop 1700 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1701 "codeRepl", oldFunction, 1702 header); 1703 1704 // The new function needs a root node because other nodes can branch to the 1705 // head of the region, but the entry node of a function cannot have preds. 1706 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1707 "newFuncRoot"); 1708 auto *BranchI = BranchInst::Create(header); 1709 // If the original function has debug info, we have to add a debug location 1710 // to the new branch instruction from the artificial entry block. 1711 // We use the debug location of the first instruction in the extracted 1712 // blocks, as there is no other equivalent line in the source code. 1713 if (oldFunction->getSubprogram()) { 1714 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1715 return any_of(*BB, [&BranchI](const Instruction &I) { 1716 if (!I.getDebugLoc()) 1717 return false; 1718 BranchI->setDebugLoc(I.getDebugLoc()); 1719 return true; 1720 }); 1721 }); 1722 } 1723 newFuncRoot->getInstList().push_back(BranchI); 1724 1725 ValueSet SinkingCands, HoistingCands; 1726 BasicBlock *CommonExit = nullptr; 1727 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1728 assert(HoistingCands.empty() || CommonExit); 1729 1730 // Find inputs to, outputs from the code region. 1731 findInputsOutputs(inputs, outputs, SinkingCands); 1732 1733 // Now sink all instructions which only have non-phi uses inside the region. 1734 // Group the allocas at the start of the block, so that any bitcast uses of 1735 // the allocas are well-defined. 1736 AllocaInst *FirstSunkAlloca = nullptr; 1737 for (auto *II : SinkingCands) { 1738 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1739 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1740 if (!FirstSunkAlloca) 1741 FirstSunkAlloca = AI; 1742 } 1743 } 1744 assert((SinkingCands.empty() || FirstSunkAlloca) && 1745 "Did not expect a sink candidate without any allocas"); 1746 for (auto *II : SinkingCands) { 1747 if (!isa<AllocaInst>(II)) { 1748 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1749 } 1750 } 1751 1752 if (!HoistingCands.empty()) { 1753 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1754 Instruction *TI = HoistToBlock->getTerminator(); 1755 for (auto *II : HoistingCands) 1756 cast<Instruction>(II)->moveBefore(TI); 1757 } 1758 1759 // Collect objects which are inputs to the extraction region and also 1760 // referenced by lifetime start markers within it. The effects of these 1761 // markers must be replicated in the calling function to prevent the stack 1762 // coloring pass from merging slots which store input objects. 1763 ValueSet LifetimesStart; 1764 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1765 1766 // Construct new function based on inputs/outputs & add allocas for all defs. 1767 Function *newFunction = 1768 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1769 oldFunction, oldFunction->getParent()); 1770 1771 // Update the entry count of the function. 1772 if (BFI) { 1773 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1774 if (Count.hasValue()) 1775 newFunction->setEntryCount( 1776 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1777 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1778 } 1779 1780 CallInst *TheCall = 1781 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1782 1783 moveCodeToFunction(newFunction); 1784 1785 // Replicate the effects of any lifetime start/end markers which referenced 1786 // input objects in the extraction region by placing markers around the call. 1787 insertLifetimeMarkersSurroundingCall( 1788 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1789 1790 // Propagate personality info to the new function if there is one. 1791 if (oldFunction->hasPersonalityFn()) 1792 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1793 1794 // Update the branch weights for the exit block. 1795 if (BFI && NumExitBlocks > 1) 1796 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1797 1798 // Loop over all of the PHI nodes in the header and exit blocks, and change 1799 // any references to the old incoming edge to be the new incoming edge. 1800 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1801 PHINode *PN = cast<PHINode>(I); 1802 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1803 if (!Blocks.count(PN->getIncomingBlock(i))) 1804 PN->setIncomingBlock(i, newFuncRoot); 1805 } 1806 1807 for (BasicBlock *ExitBB : ExitBlocks) 1808 for (PHINode &PN : ExitBB->phis()) { 1809 Value *IncomingCodeReplacerVal = nullptr; 1810 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1811 // Ignore incoming values from outside of the extracted region. 1812 if (!Blocks.count(PN.getIncomingBlock(i))) 1813 continue; 1814 1815 // Ensure that there is only one incoming value from codeReplacer. 1816 if (!IncomingCodeReplacerVal) { 1817 PN.setIncomingBlock(i, codeReplacer); 1818 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1819 } else 1820 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1821 "PHI has two incompatbile incoming values from codeRepl"); 1822 } 1823 } 1824 1825 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1826 1827 // Mark the new function `noreturn` if applicable. Terminators which resume 1828 // exception propagation are treated as returning instructions. This is to 1829 // avoid inserting traps after calls to outlined functions which unwind. 1830 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1831 const Instruction *Term = BB.getTerminator(); 1832 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1833 }); 1834 if (doesNotReturn) 1835 newFunction->setDoesNotReturn(); 1836 1837 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1838 newFunction->dump(); 1839 report_fatal_error("verification of newFunction failed!"); 1840 }); 1841 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1842 report_fatal_error("verification of oldFunction failed!")); 1843 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1844 report_fatal_error("Stale Asumption cache for old Function!")); 1845 return newFunction; 1846 } 1847 1848 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1849 const Function &NewFunc, 1850 AssumptionCache *AC) { 1851 for (auto AssumeVH : AC->assumptions()) { 1852 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1853 if (!I) 1854 continue; 1855 1856 // There shouldn't be any llvm.assume intrinsics in the new function. 1857 if (I->getFunction() != &OldFunc) 1858 return true; 1859 1860 // There shouldn't be any stale affected values in the assumption cache 1861 // that were previously in the old function, but that have now been moved 1862 // to the new function. 1863 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1864 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1865 if (!AffectedCI) 1866 continue; 1867 if (AffectedCI->getFunction() != &OldFunc) 1868 return true; 1869 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1870 if (AssumedInst->getFunction() != &OldFunc) 1871 return true; 1872 } 1873 } 1874 return false; 1875 } 1876 1877 void CodeExtractor::excludeArgFromAggregate(Value *Arg) { 1878 ExcludeArgsFromAggregate.insert(Arg); 1879 } 1880