xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 7ec1ec4fdb98d87602c8501dae9b9cbd24b7d22b)
1  //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the interface to tear out a code region, such as an
10  // individual loop or a parallel section, into a new function, replacing it with
11  // a call to the new function.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "llvm/Transforms/Utils/CodeExtractor.h"
16  #include "llvm/ADT/ArrayRef.h"
17  #include "llvm/ADT/DenseMap.h"
18  #include "llvm/ADT/Optional.h"
19  #include "llvm/ADT/STLExtras.h"
20  #include "llvm/ADT/SetVector.h"
21  #include "llvm/ADT/SmallPtrSet.h"
22  #include "llvm/ADT/SmallVector.h"
23  #include "llvm/Analysis/AssumptionCache.h"
24  #include "llvm/Analysis/BlockFrequencyInfo.h"
25  #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26  #include "llvm/Analysis/BranchProbabilityInfo.h"
27  #include "llvm/Analysis/LoopInfo.h"
28  #include "llvm/IR/Argument.h"
29  #include "llvm/IR/Attributes.h"
30  #include "llvm/IR/BasicBlock.h"
31  #include "llvm/IR/CFG.h"
32  #include "llvm/IR/Constant.h"
33  #include "llvm/IR/Constants.h"
34  #include "llvm/IR/DIBuilder.h"
35  #include "llvm/IR/DataLayout.h"
36  #include "llvm/IR/DebugInfoMetadata.h"
37  #include "llvm/IR/DerivedTypes.h"
38  #include "llvm/IR/Dominators.h"
39  #include "llvm/IR/Function.h"
40  #include "llvm/IR/GlobalValue.h"
41  #include "llvm/IR/InstIterator.h"
42  #include "llvm/IR/InstrTypes.h"
43  #include "llvm/IR/Instruction.h"
44  #include "llvm/IR/Instructions.h"
45  #include "llvm/IR/IntrinsicInst.h"
46  #include "llvm/IR/Intrinsics.h"
47  #include "llvm/IR/LLVMContext.h"
48  #include "llvm/IR/MDBuilder.h"
49  #include "llvm/IR/Module.h"
50  #include "llvm/IR/PatternMatch.h"
51  #include "llvm/IR/Type.h"
52  #include "llvm/IR/User.h"
53  #include "llvm/IR/Value.h"
54  #include "llvm/IR/Verifier.h"
55  #include "llvm/Pass.h"
56  #include "llvm/Support/BlockFrequency.h"
57  #include "llvm/Support/BranchProbability.h"
58  #include "llvm/Support/Casting.h"
59  #include "llvm/Support/CommandLine.h"
60  #include "llvm/Support/Debug.h"
61  #include "llvm/Support/ErrorHandling.h"
62  #include "llvm/Support/raw_ostream.h"
63  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64  #include "llvm/Transforms/Utils/Local.h"
65  #include <cassert>
66  #include <cstdint>
67  #include <iterator>
68  #include <map>
69  #include <set>
70  #include <utility>
71  #include <vector>
72  
73  using namespace llvm;
74  using namespace llvm::PatternMatch;
75  using ProfileCount = Function::ProfileCount;
76  
77  #define DEBUG_TYPE "code-extractor"
78  
79  // Provide a command-line option to aggregate function arguments into a struct
80  // for functions produced by the code extractor. This is useful when converting
81  // extracted functions to pthread-based code, as only one argument (void*) can
82  // be passed in to pthread_create().
83  static cl::opt<bool>
84  AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
85                   cl::desc("Aggregate arguments to code-extracted functions"));
86  
87  /// Test whether a block is valid for extraction.
88  static bool isBlockValidForExtraction(const BasicBlock &BB,
89                                        const SetVector<BasicBlock *> &Result,
90                                        bool AllowVarArgs, bool AllowAlloca) {
91    // taking the address of a basic block moved to another function is illegal
92    if (BB.hasAddressTaken())
93      return false;
94  
95    // don't hoist code that uses another basicblock address, as it's likely to
96    // lead to unexpected behavior, like cross-function jumps
97    SmallPtrSet<User const *, 16> Visited;
98    SmallVector<User const *, 16> ToVisit;
99  
100    for (Instruction const &Inst : BB)
101      ToVisit.push_back(&Inst);
102  
103    while (!ToVisit.empty()) {
104      User const *Curr = ToVisit.pop_back_val();
105      if (!Visited.insert(Curr).second)
106        continue;
107      if (isa<BlockAddress const>(Curr))
108        return false; // even a reference to self is likely to be not compatible
109  
110      if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
111        continue;
112  
113      for (auto const &U : Curr->operands()) {
114        if (auto *UU = dyn_cast<User>(U))
115          ToVisit.push_back(UU);
116      }
117    }
118  
119    // If explicitly requested, allow vastart and alloca. For invoke instructions
120    // verify that extraction is valid.
121    for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
122      if (isa<AllocaInst>(I)) {
123         if (!AllowAlloca)
124           return false;
125         continue;
126      }
127  
128      if (const auto *II = dyn_cast<InvokeInst>(I)) {
129        // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
130        // must be a part of the subgraph which is being extracted.
131        if (auto *UBB = II->getUnwindDest())
132          if (!Result.count(UBB))
133            return false;
134        continue;
135      }
136  
137      // All catch handlers of a catchswitch instruction as well as the unwind
138      // destination must be in the subgraph.
139      if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
140        if (auto *UBB = CSI->getUnwindDest())
141          if (!Result.count(UBB))
142            return false;
143        for (auto *HBB : CSI->handlers())
144          if (!Result.count(const_cast<BasicBlock*>(HBB)))
145            return false;
146        continue;
147      }
148  
149      // Make sure that entire catch handler is within subgraph. It is sufficient
150      // to check that catch return's block is in the list.
151      if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
152        for (const auto *U : CPI->users())
153          if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
154            if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
155              return false;
156        continue;
157      }
158  
159      // And do similar checks for cleanup handler - the entire handler must be
160      // in subgraph which is going to be extracted. For cleanup return should
161      // additionally check that the unwind destination is also in the subgraph.
162      if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
163        for (const auto *U : CPI->users())
164          if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
165            if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
166              return false;
167        continue;
168      }
169      if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
170        if (auto *UBB = CRI->getUnwindDest())
171          if (!Result.count(UBB))
172            return false;
173        continue;
174      }
175  
176      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
177        if (const Function *F = CI->getCalledFunction()) {
178          auto IID = F->getIntrinsicID();
179          if (IID == Intrinsic::vastart) {
180            if (AllowVarArgs)
181              continue;
182            else
183              return false;
184          }
185  
186          // Currently, we miscompile outlined copies of eh_typid_for. There are
187          // proposals for fixing this in llvm.org/PR39545.
188          if (IID == Intrinsic::eh_typeid_for)
189            return false;
190        }
191      }
192    }
193  
194    return true;
195  }
196  
197  /// Build a set of blocks to extract if the input blocks are viable.
198  static SetVector<BasicBlock *>
199  buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
200                          bool AllowVarArgs, bool AllowAlloca) {
201    assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
202    SetVector<BasicBlock *> Result;
203  
204    // Loop over the blocks, adding them to our set-vector, and aborting with an
205    // empty set if we encounter invalid blocks.
206    for (BasicBlock *BB : BBs) {
207      // If this block is dead, don't process it.
208      if (DT && !DT->isReachableFromEntry(BB))
209        continue;
210  
211      if (!Result.insert(BB))
212        llvm_unreachable("Repeated basic blocks in extraction input");
213    }
214  
215    LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
216                      << '\n');
217  
218    for (auto *BB : Result) {
219      if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
220        return {};
221  
222      // Make sure that the first block is not a landing pad.
223      if (BB == Result.front()) {
224        if (BB->isEHPad()) {
225          LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
226          return {};
227        }
228        continue;
229      }
230  
231      // All blocks other than the first must not have predecessors outside of
232      // the subgraph which is being extracted.
233      for (auto *PBB : predecessors(BB))
234        if (!Result.count(PBB)) {
235          LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
236                               "outside the region except for the first block!\n"
237                            << "Problematic source BB: " << BB->getName() << "\n"
238                            << "Problematic destination BB: " << PBB->getName()
239                            << "\n");
240          return {};
241        }
242    }
243  
244    return Result;
245  }
246  
247  CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
248                               bool AggregateArgs, BlockFrequencyInfo *BFI,
249                               BranchProbabilityInfo *BPI, AssumptionCache *AC,
250                               bool AllowVarArgs, bool AllowAlloca,
251                               std::string Suffix)
252      : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
253        BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
254        Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
255        Suffix(Suffix) {}
256  
257  CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
258                               BlockFrequencyInfo *BFI,
259                               BranchProbabilityInfo *BPI, AssumptionCache *AC,
260                               std::string Suffix)
261      : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
262        BPI(BPI), AC(AC), AllowVarArgs(false),
263        Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
264                                       /* AllowVarArgs */ false,
265                                       /* AllowAlloca */ false)),
266        Suffix(Suffix) {}
267  
268  /// definedInRegion - Return true if the specified value is defined in the
269  /// extracted region.
270  static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
271    if (Instruction *I = dyn_cast<Instruction>(V))
272      if (Blocks.count(I->getParent()))
273        return true;
274    return false;
275  }
276  
277  /// definedInCaller - Return true if the specified value is defined in the
278  /// function being code extracted, but not in the region being extracted.
279  /// These values must be passed in as live-ins to the function.
280  static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
281    if (isa<Argument>(V)) return true;
282    if (Instruction *I = dyn_cast<Instruction>(V))
283      if (!Blocks.count(I->getParent()))
284        return true;
285    return false;
286  }
287  
288  static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
289    BasicBlock *CommonExitBlock = nullptr;
290    auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
291      for (auto *Succ : successors(Block)) {
292        // Internal edges, ok.
293        if (Blocks.count(Succ))
294          continue;
295        if (!CommonExitBlock) {
296          CommonExitBlock = Succ;
297          continue;
298        }
299        if (CommonExitBlock != Succ)
300          return true;
301      }
302      return false;
303    };
304  
305    if (any_of(Blocks, hasNonCommonExitSucc))
306      return nullptr;
307  
308    return CommonExitBlock;
309  }
310  
311  CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
312    for (BasicBlock &BB : F) {
313      for (Instruction &II : BB.instructionsWithoutDebug())
314        if (auto *AI = dyn_cast<AllocaInst>(&II))
315          Allocas.push_back(AI);
316  
317      findSideEffectInfoForBlock(BB);
318    }
319  }
320  
321  void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
322    for (Instruction &II : BB.instructionsWithoutDebug()) {
323      unsigned Opcode = II.getOpcode();
324      Value *MemAddr = nullptr;
325      switch (Opcode) {
326      case Instruction::Store:
327      case Instruction::Load: {
328        if (Opcode == Instruction::Store) {
329          StoreInst *SI = cast<StoreInst>(&II);
330          MemAddr = SI->getPointerOperand();
331        } else {
332          LoadInst *LI = cast<LoadInst>(&II);
333          MemAddr = LI->getPointerOperand();
334        }
335        // Global variable can not be aliased with locals.
336        if (dyn_cast<Constant>(MemAddr))
337          break;
338        Value *Base = MemAddr->stripInBoundsConstantOffsets();
339        if (!isa<AllocaInst>(Base)) {
340          SideEffectingBlocks.insert(&BB);
341          return;
342        }
343        BaseMemAddrs[&BB].insert(Base);
344        break;
345      }
346      default: {
347        IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
348        if (IntrInst) {
349          if (IntrInst->isLifetimeStartOrEnd())
350            break;
351          SideEffectingBlocks.insert(&BB);
352          return;
353        }
354        // Treat all the other cases conservatively if it has side effects.
355        if (II.mayHaveSideEffects()) {
356          SideEffectingBlocks.insert(&BB);
357          return;
358        }
359      }
360      }
361    }
362  }
363  
364  bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
365      BasicBlock &BB, AllocaInst *Addr) const {
366    if (SideEffectingBlocks.count(&BB))
367      return true;
368    auto It = BaseMemAddrs.find(&BB);
369    if (It != BaseMemAddrs.end())
370      return It->second.count(Addr);
371    return false;
372  }
373  
374  bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
375      const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
376    AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
377    Function *Func = (*Blocks.begin())->getParent();
378    for (BasicBlock &BB : *Func) {
379      if (Blocks.count(&BB))
380        continue;
381      if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
382        return false;
383    }
384    return true;
385  }
386  
387  BasicBlock *
388  CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
389    BasicBlock *SinglePredFromOutlineRegion = nullptr;
390    assert(!Blocks.count(CommonExitBlock) &&
391           "Expect a block outside the region!");
392    for (auto *Pred : predecessors(CommonExitBlock)) {
393      if (!Blocks.count(Pred))
394        continue;
395      if (!SinglePredFromOutlineRegion) {
396        SinglePredFromOutlineRegion = Pred;
397      } else if (SinglePredFromOutlineRegion != Pred) {
398        SinglePredFromOutlineRegion = nullptr;
399        break;
400      }
401    }
402  
403    if (SinglePredFromOutlineRegion)
404      return SinglePredFromOutlineRegion;
405  
406  #ifndef NDEBUG
407    auto getFirstPHI = [](BasicBlock *BB) {
408      BasicBlock::iterator I = BB->begin();
409      PHINode *FirstPhi = nullptr;
410      while (I != BB->end()) {
411        PHINode *Phi = dyn_cast<PHINode>(I);
412        if (!Phi)
413          break;
414        if (!FirstPhi) {
415          FirstPhi = Phi;
416          break;
417        }
418      }
419      return FirstPhi;
420    };
421    // If there are any phi nodes, the single pred either exists or has already
422    // be created before code extraction.
423    assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
424  #endif
425  
426    BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
427        CommonExitBlock->getFirstNonPHI()->getIterator());
428  
429    for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
430         PI != PE;) {
431      BasicBlock *Pred = *PI++;
432      if (Blocks.count(Pred))
433        continue;
434      Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
435    }
436    // Now add the old exit block to the outline region.
437    Blocks.insert(CommonExitBlock);
438    return CommonExitBlock;
439  }
440  
441  // Find the pair of life time markers for address 'Addr' that are either
442  // defined inside the outline region or can legally be shrinkwrapped into the
443  // outline region. If there are not other untracked uses of the address, return
444  // the pair of markers if found; otherwise return a pair of nullptr.
445  CodeExtractor::LifetimeMarkerInfo
446  CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
447                                    Instruction *Addr,
448                                    BasicBlock *ExitBlock) const {
449    LifetimeMarkerInfo Info;
450  
451    for (User *U : Addr->users()) {
452      IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
453      if (IntrInst) {
454        // We don't model addresses with multiple start/end markers, but the
455        // markers do not need to be in the region.
456        if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
457          if (Info.LifeStart)
458            return {};
459          Info.LifeStart = IntrInst;
460          continue;
461        }
462        if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
463          if (Info.LifeEnd)
464            return {};
465          Info.LifeEnd = IntrInst;
466          continue;
467        }
468        // At this point, permit debug uses outside of the region.
469        // This is fixed in a later call to fixupDebugInfoPostExtraction().
470        if (isa<DbgInfoIntrinsic>(IntrInst))
471          continue;
472      }
473      // Find untracked uses of the address, bail.
474      if (!definedInRegion(Blocks, U))
475        return {};
476    }
477  
478    if (!Info.LifeStart || !Info.LifeEnd)
479      return {};
480  
481    Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
482    Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
483    // Do legality check.
484    if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
485        !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
486      return {};
487  
488    // Check to see if we have a place to do hoisting, if not, bail.
489    if (Info.HoistLifeEnd && !ExitBlock)
490      return {};
491  
492    return Info;
493  }
494  
495  void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
496                                  ValueSet &SinkCands, ValueSet &HoistCands,
497                                  BasicBlock *&ExitBlock) const {
498    Function *Func = (*Blocks.begin())->getParent();
499    ExitBlock = getCommonExitBlock(Blocks);
500  
501    auto moveOrIgnoreLifetimeMarkers =
502        [&](const LifetimeMarkerInfo &LMI) -> bool {
503      if (!LMI.LifeStart)
504        return false;
505      if (LMI.SinkLifeStart) {
506        LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
507                          << "\n");
508        SinkCands.insert(LMI.LifeStart);
509      }
510      if (LMI.HoistLifeEnd) {
511        LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
512        HoistCands.insert(LMI.LifeEnd);
513      }
514      return true;
515    };
516  
517    // Look up allocas in the original function in CodeExtractorAnalysisCache, as
518    // this is much faster than walking all the instructions.
519    for (AllocaInst *AI : CEAC.getAllocas()) {
520      BasicBlock *BB = AI->getParent();
521      if (Blocks.count(BB))
522        continue;
523  
524      // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
525      // check whether it is actually still in the original function.
526      Function *AIFunc = BB->getParent();
527      if (AIFunc != Func)
528        continue;
529  
530      LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
531      bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
532      if (Moved) {
533        LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
534        SinkCands.insert(AI);
535        continue;
536      }
537  
538      // Follow any bitcasts.
539      SmallVector<Instruction *, 2> Bitcasts;
540      SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
541      for (User *U : AI->users()) {
542        if (U->stripInBoundsConstantOffsets() == AI) {
543          Instruction *Bitcast = cast<Instruction>(U);
544          LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
545          if (LMI.LifeStart) {
546            Bitcasts.push_back(Bitcast);
547            BitcastLifetimeInfo.push_back(LMI);
548            continue;
549          }
550        }
551  
552        // Found unknown use of AI.
553        if (!definedInRegion(Blocks, U)) {
554          Bitcasts.clear();
555          break;
556        }
557      }
558  
559      // Either no bitcasts reference the alloca or there are unknown uses.
560      if (Bitcasts.empty())
561        continue;
562  
563      LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
564      SinkCands.insert(AI);
565      for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
566        Instruction *BitcastAddr = Bitcasts[I];
567        const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
568        assert(LMI.LifeStart &&
569               "Unsafe to sink bitcast without lifetime markers");
570        moveOrIgnoreLifetimeMarkers(LMI);
571        if (!definedInRegion(Blocks, BitcastAddr)) {
572          LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
573                            << "\n");
574          SinkCands.insert(BitcastAddr);
575        }
576      }
577    }
578  }
579  
580  bool CodeExtractor::isEligible() const {
581    if (Blocks.empty())
582      return false;
583    BasicBlock *Header = *Blocks.begin();
584    Function *F = Header->getParent();
585  
586    // For functions with varargs, check that varargs handling is only done in the
587    // outlined function, i.e vastart and vaend are only used in outlined blocks.
588    if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
589      auto containsVarArgIntrinsic = [](const Instruction &I) {
590        if (const CallInst *CI = dyn_cast<CallInst>(&I))
591          if (const Function *Callee = CI->getCalledFunction())
592            return Callee->getIntrinsicID() == Intrinsic::vastart ||
593                   Callee->getIntrinsicID() == Intrinsic::vaend;
594        return false;
595      };
596  
597      for (auto &BB : *F) {
598        if (Blocks.count(&BB))
599          continue;
600        if (llvm::any_of(BB, containsVarArgIntrinsic))
601          return false;
602      }
603    }
604    return true;
605  }
606  
607  void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
608                                        const ValueSet &SinkCands) const {
609    for (BasicBlock *BB : Blocks) {
610      // If a used value is defined outside the region, it's an input.  If an
611      // instruction is used outside the region, it's an output.
612      for (Instruction &II : *BB) {
613        for (auto &OI : II.operands()) {
614          Value *V = OI;
615          if (!SinkCands.count(V) && definedInCaller(Blocks, V))
616            Inputs.insert(V);
617        }
618  
619        for (User *U : II.users())
620          if (!definedInRegion(Blocks, U)) {
621            Outputs.insert(&II);
622            break;
623          }
624      }
625    }
626  }
627  
628  /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
629  /// of the region, we need to split the entry block of the region so that the
630  /// PHI node is easier to deal with.
631  void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
632    unsigned NumPredsFromRegion = 0;
633    unsigned NumPredsOutsideRegion = 0;
634  
635    if (Header != &Header->getParent()->getEntryBlock()) {
636      PHINode *PN = dyn_cast<PHINode>(Header->begin());
637      if (!PN) return;  // No PHI nodes.
638  
639      // If the header node contains any PHI nodes, check to see if there is more
640      // than one entry from outside the region.  If so, we need to sever the
641      // header block into two.
642      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
643        if (Blocks.count(PN->getIncomingBlock(i)))
644          ++NumPredsFromRegion;
645        else
646          ++NumPredsOutsideRegion;
647  
648      // If there is one (or fewer) predecessor from outside the region, we don't
649      // need to do anything special.
650      if (NumPredsOutsideRegion <= 1) return;
651    }
652  
653    // Otherwise, we need to split the header block into two pieces: one
654    // containing PHI nodes merging values from outside of the region, and a
655    // second that contains all of the code for the block and merges back any
656    // incoming values from inside of the region.
657    BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
658  
659    // We only want to code extract the second block now, and it becomes the new
660    // header of the region.
661    BasicBlock *OldPred = Header;
662    Blocks.remove(OldPred);
663    Blocks.insert(NewBB);
664    Header = NewBB;
665  
666    // Okay, now we need to adjust the PHI nodes and any branches from within the
667    // region to go to the new header block instead of the old header block.
668    if (NumPredsFromRegion) {
669      PHINode *PN = cast<PHINode>(OldPred->begin());
670      // Loop over all of the predecessors of OldPred that are in the region,
671      // changing them to branch to NewBB instead.
672      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
673        if (Blocks.count(PN->getIncomingBlock(i))) {
674          Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
675          TI->replaceUsesOfWith(OldPred, NewBB);
676        }
677  
678      // Okay, everything within the region is now branching to the right block, we
679      // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
680      BasicBlock::iterator AfterPHIs;
681      for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
682        PHINode *PN = cast<PHINode>(AfterPHIs);
683        // Create a new PHI node in the new region, which has an incoming value
684        // from OldPred of PN.
685        PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
686                                         PN->getName() + ".ce", &NewBB->front());
687        PN->replaceAllUsesWith(NewPN);
688        NewPN->addIncoming(PN, OldPred);
689  
690        // Loop over all of the incoming value in PN, moving them to NewPN if they
691        // are from the extracted region.
692        for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
693          if (Blocks.count(PN->getIncomingBlock(i))) {
694            NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
695            PN->removeIncomingValue(i);
696            --i;
697          }
698        }
699      }
700    }
701  }
702  
703  /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
704  /// outlined region, we split these PHIs on two: one with inputs from region
705  /// and other with remaining incoming blocks; then first PHIs are placed in
706  /// outlined region.
707  void CodeExtractor::severSplitPHINodesOfExits(
708      const SmallPtrSetImpl<BasicBlock *> &Exits) {
709    for (BasicBlock *ExitBB : Exits) {
710      BasicBlock *NewBB = nullptr;
711  
712      for (PHINode &PN : ExitBB->phis()) {
713        // Find all incoming values from the outlining region.
714        SmallVector<unsigned, 2> IncomingVals;
715        for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
716          if (Blocks.count(PN.getIncomingBlock(i)))
717            IncomingVals.push_back(i);
718  
719        // Do not process PHI if there is one (or fewer) predecessor from region.
720        // If PHI has exactly one predecessor from region, only this one incoming
721        // will be replaced on codeRepl block, so it should be safe to skip PHI.
722        if (IncomingVals.size() <= 1)
723          continue;
724  
725        // Create block for new PHIs and add it to the list of outlined if it
726        // wasn't done before.
727        if (!NewBB) {
728          NewBB = BasicBlock::Create(ExitBB->getContext(),
729                                     ExitBB->getName() + ".split",
730                                     ExitBB->getParent(), ExitBB);
731          SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
732                                             pred_end(ExitBB));
733          for (BasicBlock *PredBB : Preds)
734            if (Blocks.count(PredBB))
735              PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
736          BranchInst::Create(ExitBB, NewBB);
737          Blocks.insert(NewBB);
738        }
739  
740        // Split this PHI.
741        PHINode *NewPN =
742            PHINode::Create(PN.getType(), IncomingVals.size(),
743                            PN.getName() + ".ce", NewBB->getFirstNonPHI());
744        for (unsigned i : IncomingVals)
745          NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
746        for (unsigned i : reverse(IncomingVals))
747          PN.removeIncomingValue(i, false);
748        PN.addIncoming(NewPN, NewBB);
749      }
750    }
751  }
752  
753  void CodeExtractor::splitReturnBlocks() {
754    for (BasicBlock *Block : Blocks)
755      if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
756        BasicBlock *New =
757            Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
758        if (DT) {
759          // Old dominates New. New node dominates all other nodes dominated
760          // by Old.
761          DomTreeNode *OldNode = DT->getNode(Block);
762          SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
763                                                 OldNode->end());
764  
765          DomTreeNode *NewNode = DT->addNewBlock(New, Block);
766  
767          for (DomTreeNode *I : Children)
768            DT->changeImmediateDominator(I, NewNode);
769        }
770      }
771  }
772  
773  /// constructFunction - make a function based on inputs and outputs, as follows:
774  /// f(in0, ..., inN, out0, ..., outN)
775  Function *CodeExtractor::constructFunction(const ValueSet &inputs,
776                                             const ValueSet &outputs,
777                                             BasicBlock *header,
778                                             BasicBlock *newRootNode,
779                                             BasicBlock *newHeader,
780                                             Function *oldFunction,
781                                             Module *M) {
782    LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
783    LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
784  
785    // This function returns unsigned, outputs will go back by reference.
786    switch (NumExitBlocks) {
787    case 0:
788    case 1: RetTy = Type::getVoidTy(header->getContext()); break;
789    case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
790    default: RetTy = Type::getInt16Ty(header->getContext()); break;
791    }
792  
793    std::vector<Type *> paramTy;
794  
795    // Add the types of the input values to the function's argument list
796    for (Value *value : inputs) {
797      LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
798      paramTy.push_back(value->getType());
799    }
800  
801    // Add the types of the output values to the function's argument list.
802    for (Value *output : outputs) {
803      LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
804      if (AggregateArgs)
805        paramTy.push_back(output->getType());
806      else
807        paramTy.push_back(PointerType::getUnqual(output->getType()));
808    }
809  
810    LLVM_DEBUG({
811      dbgs() << "Function type: " << *RetTy << " f(";
812      for (Type *i : paramTy)
813        dbgs() << *i << ", ";
814      dbgs() << ")\n";
815    });
816  
817    StructType *StructTy = nullptr;
818    if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
819      StructTy = StructType::get(M->getContext(), paramTy);
820      paramTy.clear();
821      paramTy.push_back(PointerType::getUnqual(StructTy));
822    }
823    FunctionType *funcType =
824                    FunctionType::get(RetTy, paramTy,
825                                      AllowVarArgs && oldFunction->isVarArg());
826  
827    std::string SuffixToUse =
828        Suffix.empty()
829            ? (header->getName().empty() ? "extracted" : header->getName().str())
830            : Suffix;
831    // Create the new function
832    Function *newFunction = Function::Create(
833        funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
834        oldFunction->getName() + "." + SuffixToUse, M);
835    // If the old function is no-throw, so is the new one.
836    if (oldFunction->doesNotThrow())
837      newFunction->setDoesNotThrow();
838  
839    // Inherit the uwtable attribute if we need to.
840    if (oldFunction->hasUWTable())
841      newFunction->setHasUWTable();
842  
843    // Inherit all of the target dependent attributes and white-listed
844    // target independent attributes.
845    //  (e.g. If the extracted region contains a call to an x86.sse
846    //  instruction we need to make sure that the extracted region has the
847    //  "target-features" attribute allowing it to be lowered.
848    // FIXME: This should be changed to check to see if a specific
849    //           attribute can not be inherited.
850    for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
851      if (Attr.isStringAttribute()) {
852        if (Attr.getKindAsString() == "thunk")
853          continue;
854      } else
855        switch (Attr.getKindAsEnum()) {
856        // Those attributes cannot be propagated safely. Explicitly list them
857        // here so we get a warning if new attributes are added. This list also
858        // includes non-function attributes.
859        case Attribute::Alignment:
860        case Attribute::AllocSize:
861        case Attribute::ArgMemOnly:
862        case Attribute::Builtin:
863        case Attribute::ByVal:
864        case Attribute::Convergent:
865        case Attribute::Dereferenceable:
866        case Attribute::DereferenceableOrNull:
867        case Attribute::InAlloca:
868        case Attribute::InReg:
869        case Attribute::InaccessibleMemOnly:
870        case Attribute::InaccessibleMemOrArgMemOnly:
871        case Attribute::JumpTable:
872        case Attribute::Naked:
873        case Attribute::Nest:
874        case Attribute::NoAlias:
875        case Attribute::NoBuiltin:
876        case Attribute::NoCapture:
877        case Attribute::NoMerge:
878        case Attribute::NoReturn:
879        case Attribute::NoSync:
880        case Attribute::NoUndef:
881        case Attribute::None:
882        case Attribute::NonNull:
883        case Attribute::Preallocated:
884        case Attribute::ReadNone:
885        case Attribute::ReadOnly:
886        case Attribute::Returned:
887        case Attribute::ReturnsTwice:
888        case Attribute::SExt:
889        case Attribute::Speculatable:
890        case Attribute::StackAlignment:
891        case Attribute::StructRet:
892        case Attribute::SwiftError:
893        case Attribute::SwiftSelf:
894        case Attribute::WillReturn:
895        case Attribute::WriteOnly:
896        case Attribute::ZExt:
897        case Attribute::ImmArg:
898        case Attribute::EndAttrKinds:
899        case Attribute::EmptyKey:
900        case Attribute::TombstoneKey:
901          continue;
902        // Those attributes should be safe to propagate to the extracted function.
903        case Attribute::AlwaysInline:
904        case Attribute::Cold:
905        case Attribute::NoRecurse:
906        case Attribute::InlineHint:
907        case Attribute::MinSize:
908        case Attribute::NoDuplicate:
909        case Attribute::NoFree:
910        case Attribute::NoImplicitFloat:
911        case Attribute::NoInline:
912        case Attribute::NonLazyBind:
913        case Attribute::NoRedZone:
914        case Attribute::NoUnwind:
915        case Attribute::NullPointerIsValid:
916        case Attribute::OptForFuzzing:
917        case Attribute::OptimizeNone:
918        case Attribute::OptimizeForSize:
919        case Attribute::SafeStack:
920        case Attribute::ShadowCallStack:
921        case Attribute::SanitizeAddress:
922        case Attribute::SanitizeMemory:
923        case Attribute::SanitizeThread:
924        case Attribute::SanitizeHWAddress:
925        case Attribute::SanitizeMemTag:
926        case Attribute::SpeculativeLoadHardening:
927        case Attribute::StackProtect:
928        case Attribute::StackProtectReq:
929        case Attribute::StackProtectStrong:
930        case Attribute::StrictFP:
931        case Attribute::UWTable:
932        case Attribute::NoCfCheck:
933          break;
934        }
935  
936      newFunction->addFnAttr(Attr);
937    }
938    newFunction->getBasicBlockList().push_back(newRootNode);
939  
940    // Create an iterator to name all of the arguments we inserted.
941    Function::arg_iterator AI = newFunction->arg_begin();
942  
943    // Rewrite all users of the inputs in the extracted region to use the
944    // arguments (or appropriate addressing into struct) instead.
945    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
946      Value *RewriteVal;
947      if (AggregateArgs) {
948        Value *Idx[2];
949        Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
950        Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
951        Instruction *TI = newFunction->begin()->getTerminator();
952        GetElementPtrInst *GEP = GetElementPtrInst::Create(
953            StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
954        RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
955                                  "loadgep_" + inputs[i]->getName(), TI);
956      } else
957        RewriteVal = &*AI++;
958  
959      std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
960      for (User *use : Users)
961        if (Instruction *inst = dyn_cast<Instruction>(use))
962          if (Blocks.count(inst->getParent()))
963            inst->replaceUsesOfWith(inputs[i], RewriteVal);
964    }
965  
966    // Set names for input and output arguments.
967    if (!AggregateArgs) {
968      AI = newFunction->arg_begin();
969      for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
970        AI->setName(inputs[i]->getName());
971      for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
972        AI->setName(outputs[i]->getName()+".out");
973    }
974  
975    // Rewrite branches to basic blocks outside of the loop to new dummy blocks
976    // within the new function. This must be done before we lose track of which
977    // blocks were originally in the code region.
978    std::vector<User *> Users(header->user_begin(), header->user_end());
979    for (auto &U : Users)
980      // The BasicBlock which contains the branch is not in the region
981      // modify the branch target to a new block
982      if (Instruction *I = dyn_cast<Instruction>(U))
983        if (I->isTerminator() && I->getFunction() == oldFunction &&
984            !Blocks.count(I->getParent()))
985          I->replaceUsesOfWith(header, newHeader);
986  
987    return newFunction;
988  }
989  
990  /// Erase lifetime.start markers which reference inputs to the extraction
991  /// region, and insert the referenced memory into \p LifetimesStart.
992  ///
993  /// The extraction region is defined by a set of blocks (\p Blocks), and a set
994  /// of allocas which will be moved from the caller function into the extracted
995  /// function (\p SunkAllocas).
996  static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
997                                           const SetVector<Value *> &SunkAllocas,
998                                           SetVector<Value *> &LifetimesStart) {
999    for (BasicBlock *BB : Blocks) {
1000      for (auto It = BB->begin(), End = BB->end(); It != End;) {
1001        auto *II = dyn_cast<IntrinsicInst>(&*It);
1002        ++It;
1003        if (!II || !II->isLifetimeStartOrEnd())
1004          continue;
1005  
1006        // Get the memory operand of the lifetime marker. If the underlying
1007        // object is a sunk alloca, or is otherwise defined in the extraction
1008        // region, the lifetime marker must not be erased.
1009        Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1010        if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1011          continue;
1012  
1013        if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1014          LifetimesStart.insert(Mem);
1015        II->eraseFromParent();
1016      }
1017    }
1018  }
1019  
1020  /// Insert lifetime start/end markers surrounding the call to the new function
1021  /// for objects defined in the caller.
1022  static void insertLifetimeMarkersSurroundingCall(
1023      Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1024      CallInst *TheCall) {
1025    LLVMContext &Ctx = M->getContext();
1026    auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1027    auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1028    Instruction *Term = TheCall->getParent()->getTerminator();
1029  
1030    // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1031    // needed to satisfy this requirement so they may be reused.
1032    DenseMap<Value *, Value *> Bitcasts;
1033  
1034    // Emit lifetime markers for the pointers given in \p Objects. Insert the
1035    // markers before the call if \p InsertBefore, and after the call otherwise.
1036    auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1037                             bool InsertBefore) {
1038      for (Value *Mem : Objects) {
1039        assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1040                                              TheCall->getFunction()) &&
1041               "Input memory not defined in original function");
1042        Value *&MemAsI8Ptr = Bitcasts[Mem];
1043        if (!MemAsI8Ptr) {
1044          if (Mem->getType() == Int8PtrTy)
1045            MemAsI8Ptr = Mem;
1046          else
1047            MemAsI8Ptr =
1048                CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1049        }
1050  
1051        auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1052        if (InsertBefore)
1053          Marker->insertBefore(TheCall);
1054        else
1055          Marker->insertBefore(Term);
1056      }
1057    };
1058  
1059    if (!LifetimesStart.empty()) {
1060      auto StartFn = llvm::Intrinsic::getDeclaration(
1061          M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1062      insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1063    }
1064  
1065    if (!LifetimesEnd.empty()) {
1066      auto EndFn = llvm::Intrinsic::getDeclaration(
1067          M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1068      insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1069    }
1070  }
1071  
1072  /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1073  /// the call instruction, splitting any PHI nodes in the header block as
1074  /// necessary.
1075  CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1076                                                      BasicBlock *codeReplacer,
1077                                                      ValueSet &inputs,
1078                                                      ValueSet &outputs) {
1079    // Emit a call to the new function, passing in: *pointer to struct (if
1080    // aggregating parameters), or plan inputs and allocated memory for outputs
1081    std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
1082  
1083    Module *M = newFunction->getParent();
1084    LLVMContext &Context = M->getContext();
1085    const DataLayout &DL = M->getDataLayout();
1086    CallInst *call = nullptr;
1087  
1088    // Add inputs as params, or to be filled into the struct
1089    unsigned ArgNo = 0;
1090    SmallVector<unsigned, 1> SwiftErrorArgs;
1091    for (Value *input : inputs) {
1092      if (AggregateArgs)
1093        StructValues.push_back(input);
1094      else {
1095        params.push_back(input);
1096        if (input->isSwiftError())
1097          SwiftErrorArgs.push_back(ArgNo);
1098      }
1099      ++ArgNo;
1100    }
1101  
1102    // Create allocas for the outputs
1103    for (Value *output : outputs) {
1104      if (AggregateArgs) {
1105        StructValues.push_back(output);
1106      } else {
1107        AllocaInst *alloca =
1108          new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1109                         nullptr, output->getName() + ".loc",
1110                         &codeReplacer->getParent()->front().front());
1111        ReloadOutputs.push_back(alloca);
1112        params.push_back(alloca);
1113      }
1114    }
1115  
1116    StructType *StructArgTy = nullptr;
1117    AllocaInst *Struct = nullptr;
1118    if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1119      std::vector<Type *> ArgTypes;
1120      for (ValueSet::iterator v = StructValues.begin(),
1121             ve = StructValues.end(); v != ve; ++v)
1122        ArgTypes.push_back((*v)->getType());
1123  
1124      // Allocate a struct at the beginning of this function
1125      StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1126      Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1127                              "structArg",
1128                              &codeReplacer->getParent()->front().front());
1129      params.push_back(Struct);
1130  
1131      for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1132        Value *Idx[2];
1133        Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1134        Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1135        GetElementPtrInst *GEP = GetElementPtrInst::Create(
1136            StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1137        codeReplacer->getInstList().push_back(GEP);
1138        new StoreInst(StructValues[i], GEP, codeReplacer);
1139      }
1140    }
1141  
1142    // Emit the call to the function
1143    call = CallInst::Create(newFunction, params,
1144                            NumExitBlocks > 1 ? "targetBlock" : "");
1145    // Add debug location to the new call, if the original function has debug
1146    // info. In that case, the terminator of the entry block of the extracted
1147    // function contains the first debug location of the extracted function,
1148    // set in extractCodeRegion.
1149    if (codeReplacer->getParent()->getSubprogram()) {
1150      if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1151        call->setDebugLoc(DL);
1152    }
1153    codeReplacer->getInstList().push_back(call);
1154  
1155    // Set swifterror parameter attributes.
1156    for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1157      call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1158      newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1159    }
1160  
1161    Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1162    unsigned FirstOut = inputs.size();
1163    if (!AggregateArgs)
1164      std::advance(OutputArgBegin, inputs.size());
1165  
1166    // Reload the outputs passed in by reference.
1167    for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1168      Value *Output = nullptr;
1169      if (AggregateArgs) {
1170        Value *Idx[2];
1171        Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1172        Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1173        GetElementPtrInst *GEP = GetElementPtrInst::Create(
1174            StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1175        codeReplacer->getInstList().push_back(GEP);
1176        Output = GEP;
1177      } else {
1178        Output = ReloadOutputs[i];
1179      }
1180      LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1181                                    outputs[i]->getName() + ".reload",
1182                                    codeReplacer);
1183      Reloads.push_back(load);
1184      std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1185      for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1186        Instruction *inst = cast<Instruction>(Users[u]);
1187        if (!Blocks.count(inst->getParent()))
1188          inst->replaceUsesOfWith(outputs[i], load);
1189      }
1190    }
1191  
1192    // Now we can emit a switch statement using the call as a value.
1193    SwitchInst *TheSwitch =
1194        SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1195                           codeReplacer, 0, codeReplacer);
1196  
1197    // Since there may be multiple exits from the original region, make the new
1198    // function return an unsigned, switch on that number.  This loop iterates
1199    // over all of the blocks in the extracted region, updating any terminator
1200    // instructions in the to-be-extracted region that branch to blocks that are
1201    // not in the region to be extracted.
1202    std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1203  
1204    unsigned switchVal = 0;
1205    for (BasicBlock *Block : Blocks) {
1206      Instruction *TI = Block->getTerminator();
1207      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1208        if (!Blocks.count(TI->getSuccessor(i))) {
1209          BasicBlock *OldTarget = TI->getSuccessor(i);
1210          // add a new basic block which returns the appropriate value
1211          BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1212          if (!NewTarget) {
1213            // If we don't already have an exit stub for this non-extracted
1214            // destination, create one now!
1215            NewTarget = BasicBlock::Create(Context,
1216                                           OldTarget->getName() + ".exitStub",
1217                                           newFunction);
1218            unsigned SuccNum = switchVal++;
1219  
1220            Value *brVal = nullptr;
1221            switch (NumExitBlocks) {
1222            case 0:
1223            case 1: break;  // No value needed.
1224            case 2:         // Conditional branch, return a bool
1225              brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1226              break;
1227            default:
1228              brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1229              break;
1230            }
1231  
1232            ReturnInst::Create(Context, brVal, NewTarget);
1233  
1234            // Update the switch instruction.
1235            TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1236                                                SuccNum),
1237                               OldTarget);
1238          }
1239  
1240          // rewrite the original branch instruction with this new target
1241          TI->setSuccessor(i, NewTarget);
1242        }
1243    }
1244  
1245    // Store the arguments right after the definition of output value.
1246    // This should be proceeded after creating exit stubs to be ensure that invoke
1247    // result restore will be placed in the outlined function.
1248    Function::arg_iterator OAI = OutputArgBegin;
1249    for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1250      auto *OutI = dyn_cast<Instruction>(outputs[i]);
1251      if (!OutI)
1252        continue;
1253  
1254      // Find proper insertion point.
1255      BasicBlock::iterator InsertPt;
1256      // In case OutI is an invoke, we insert the store at the beginning in the
1257      // 'normal destination' BB. Otherwise we insert the store right after OutI.
1258      if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1259        InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1260      else if (auto *Phi = dyn_cast<PHINode>(OutI))
1261        InsertPt = Phi->getParent()->getFirstInsertionPt();
1262      else
1263        InsertPt = std::next(OutI->getIterator());
1264  
1265      Instruction *InsertBefore = &*InsertPt;
1266      assert((InsertBefore->getFunction() == newFunction ||
1267              Blocks.count(InsertBefore->getParent())) &&
1268             "InsertPt should be in new function");
1269      assert(OAI != newFunction->arg_end() &&
1270             "Number of output arguments should match "
1271             "the amount of defined values");
1272      if (AggregateArgs) {
1273        Value *Idx[2];
1274        Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1275        Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1276        GetElementPtrInst *GEP = GetElementPtrInst::Create(
1277            StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1278            InsertBefore);
1279        new StoreInst(outputs[i], GEP, InsertBefore);
1280        // Since there should be only one struct argument aggregating
1281        // all the output values, we shouldn't increment OAI, which always
1282        // points to the struct argument, in this case.
1283      } else {
1284        new StoreInst(outputs[i], &*OAI, InsertBefore);
1285        ++OAI;
1286      }
1287    }
1288  
1289    // Now that we've done the deed, simplify the switch instruction.
1290    Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1291    switch (NumExitBlocks) {
1292    case 0:
1293      // There are no successors (the block containing the switch itself), which
1294      // means that previously this was the last part of the function, and hence
1295      // this should be rewritten as a `ret'
1296  
1297      // Check if the function should return a value
1298      if (OldFnRetTy->isVoidTy()) {
1299        ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1300      } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1301        // return what we have
1302        ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1303      } else {
1304        // Otherwise we must have code extracted an unwind or something, just
1305        // return whatever we want.
1306        ReturnInst::Create(Context,
1307                           Constant::getNullValue(OldFnRetTy), TheSwitch);
1308      }
1309  
1310      TheSwitch->eraseFromParent();
1311      break;
1312    case 1:
1313      // Only a single destination, change the switch into an unconditional
1314      // branch.
1315      BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1316      TheSwitch->eraseFromParent();
1317      break;
1318    case 2:
1319      BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1320                         call, TheSwitch);
1321      TheSwitch->eraseFromParent();
1322      break;
1323    default:
1324      // Otherwise, make the default destination of the switch instruction be one
1325      // of the other successors.
1326      TheSwitch->setCondition(call);
1327      TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1328      // Remove redundant case
1329      TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1330      break;
1331    }
1332  
1333    // Insert lifetime markers around the reloads of any output values. The
1334    // allocas output values are stored in are only in-use in the codeRepl block.
1335    insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1336  
1337    return call;
1338  }
1339  
1340  void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1341    Function *oldFunc = (*Blocks.begin())->getParent();
1342    Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1343    Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1344  
1345    for (BasicBlock *Block : Blocks) {
1346      // Delete the basic block from the old function, and the list of blocks
1347      oldBlocks.remove(Block);
1348  
1349      // Insert this basic block into the new function
1350      newBlocks.push_back(Block);
1351    }
1352  }
1353  
1354  void CodeExtractor::calculateNewCallTerminatorWeights(
1355      BasicBlock *CodeReplacer,
1356      DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1357      BranchProbabilityInfo *BPI) {
1358    using Distribution = BlockFrequencyInfoImplBase::Distribution;
1359    using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1360  
1361    // Update the branch weights for the exit block.
1362    Instruction *TI = CodeReplacer->getTerminator();
1363    SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1364  
1365    // Block Frequency distribution with dummy node.
1366    Distribution BranchDist;
1367  
1368    SmallVector<BranchProbability, 4> EdgeProbabilities(
1369        TI->getNumSuccessors(), BranchProbability::getUnknown());
1370  
1371    // Add each of the frequencies of the successors.
1372    for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1373      BlockNode ExitNode(i);
1374      uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1375      if (ExitFreq != 0)
1376        BranchDist.addExit(ExitNode, ExitFreq);
1377      else
1378        EdgeProbabilities[i] = BranchProbability::getZero();
1379    }
1380  
1381    // Check for no total weight.
1382    if (BranchDist.Total == 0) {
1383      BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1384      return;
1385    }
1386  
1387    // Normalize the distribution so that they can fit in unsigned.
1388    BranchDist.normalize();
1389  
1390    // Create normalized branch weights and set the metadata.
1391    for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1392      const auto &Weight = BranchDist.Weights[I];
1393  
1394      // Get the weight and update the current BFI.
1395      BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1396      BranchProbability BP(Weight.Amount, BranchDist.Total);
1397      EdgeProbabilities[Weight.TargetNode.Index] = BP;
1398    }
1399    BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1400    TI->setMetadata(
1401        LLVMContext::MD_prof,
1402        MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1403  }
1404  
1405  /// Erase debug info intrinsics which refer to values in \p F but aren't in
1406  /// \p F.
1407  static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1408    for (Instruction &I : instructions(F)) {
1409      SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1410      findDbgUsers(DbgUsers, &I);
1411      for (DbgVariableIntrinsic *DVI : DbgUsers)
1412        if (DVI->getFunction() != &F)
1413          DVI->eraseFromParent();
1414    }
1415  }
1416  
1417  /// Fix up the debug info in the old and new functions by pointing line
1418  /// locations and debug intrinsics to the new subprogram scope, and by deleting
1419  /// intrinsics which point to values outside of the new function.
1420  static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1421                                           CallInst &TheCall) {
1422    DISubprogram *OldSP = OldFunc.getSubprogram();
1423    LLVMContext &Ctx = OldFunc.getContext();
1424  
1425    if (!OldSP) {
1426      // Erase any debug info the new function contains.
1427      stripDebugInfo(NewFunc);
1428      // Make sure the old function doesn't contain any non-local metadata refs.
1429      eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1430      return;
1431    }
1432  
1433    // Create a subprogram for the new function. Leave out a description of the
1434    // function arguments, as the parameters don't correspond to anything at the
1435    // source level.
1436    assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1437    DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolvedNodes=*/false,
1438                  OldSP->getUnit());
1439    auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
1440    DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1441                                      DISubprogram::SPFlagOptimized |
1442                                      DISubprogram::SPFlagLocalToUnit;
1443    auto NewSP = DIB.createFunction(
1444        OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1445        /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1446    NewFunc.setSubprogram(NewSP);
1447  
1448    // Debug intrinsics in the new function need to be updated in one of two
1449    // ways:
1450    //  1) They need to be deleted, because they describe a value in the old
1451    //     function.
1452    //  2) They need to point to fresh metadata, e.g. because they currently
1453    //     point to a variable in the wrong scope.
1454    SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1455    SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1456    for (Instruction &I : instructions(NewFunc)) {
1457      auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1458      if (!DII)
1459        continue;
1460  
1461      // Point the intrinsic to a fresh label within the new function.
1462      if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1463        DILabel *OldLabel = DLI->getLabel();
1464        DINode *&NewLabel = RemappedMetadata[OldLabel];
1465        if (!NewLabel)
1466          NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
1467                                  OldLabel->getFile(), OldLabel->getLine());
1468        DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1469        continue;
1470      }
1471  
1472      // If the location isn't a constant or an instruction, delete the
1473      // intrinsic.
1474      auto *DVI = cast<DbgVariableIntrinsic>(DII);
1475      Value *Location = DVI->getVariableLocation();
1476      if (!Location ||
1477          (!isa<Constant>(Location) && !isa<Instruction>(Location))) {
1478        DebugIntrinsicsToDelete.push_back(DVI);
1479        continue;
1480      }
1481  
1482      // If the variable location is an instruction but isn't in the new
1483      // function, delete the intrinsic.
1484      Instruction *LocationInst = dyn_cast<Instruction>(Location);
1485      if (LocationInst && LocationInst->getFunction() != &NewFunc) {
1486        DebugIntrinsicsToDelete.push_back(DVI);
1487        continue;
1488      }
1489  
1490      // Point the intrinsic to a fresh variable within the new function.
1491      DILocalVariable *OldVar = DVI->getVariable();
1492      DINode *&NewVar = RemappedMetadata[OldVar];
1493      if (!NewVar)
1494        NewVar = DIB.createAutoVariable(
1495            NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1496            OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1497            OldVar->getAlignInBits());
1498      DVI->setArgOperand(1, MetadataAsValue::get(Ctx, NewVar));
1499    }
1500    for (auto *DII : DebugIntrinsicsToDelete)
1501      DII->eraseFromParent();
1502    DIB.finalizeSubprogram(NewSP);
1503  
1504    // Fix up the scope information attached to the line locations in the new
1505    // function.
1506    for (Instruction &I : instructions(NewFunc)) {
1507      if (const DebugLoc &DL = I.getDebugLoc())
1508        I.setDebugLoc(DebugLoc::get(DL.getLine(), DL.getCol(), NewSP));
1509  
1510      // Loop info metadata may contain line locations. Fix them up.
1511      auto updateLoopInfoLoc = [&Ctx,
1512                                NewSP](const DILocation &Loc) -> DILocation * {
1513        return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP,
1514                               nullptr);
1515      };
1516      updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1517    }
1518    if (!TheCall.getDebugLoc())
1519      TheCall.setDebugLoc(DebugLoc::get(0, 0, OldSP));
1520  
1521    eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1522  }
1523  
1524  Function *
1525  CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1526    if (!isEligible())
1527      return nullptr;
1528  
1529    // Assumption: this is a single-entry code region, and the header is the first
1530    // block in the region.
1531    BasicBlock *header = *Blocks.begin();
1532    Function *oldFunction = header->getParent();
1533  
1534    // Calculate the entry frequency of the new function before we change the root
1535    //   block.
1536    BlockFrequency EntryFreq;
1537    if (BFI) {
1538      assert(BPI && "Both BPI and BFI are required to preserve profile info");
1539      for (BasicBlock *Pred : predecessors(header)) {
1540        if (Blocks.count(Pred))
1541          continue;
1542        EntryFreq +=
1543            BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1544      }
1545    }
1546  
1547    // Remove @llvm.assume calls that will be moved to the new function from the
1548    // old function's assumption cache.
1549    for (BasicBlock *Block : Blocks) {
1550      for (auto It = Block->begin(), End = Block->end(); It != End;) {
1551        Instruction *I = &*It;
1552        ++It;
1553  
1554        if (match(I, m_Intrinsic<Intrinsic::assume>())) {
1555          if (AC)
1556            AC->unregisterAssumption(cast<CallInst>(I));
1557          I->eraseFromParent();
1558        }
1559      }
1560    }
1561  
1562    // If we have any return instructions in the region, split those blocks so
1563    // that the return is not in the region.
1564    splitReturnBlocks();
1565  
1566    // Calculate the exit blocks for the extracted region and the total exit
1567    // weights for each of those blocks.
1568    DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1569    SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1570    for (BasicBlock *Block : Blocks) {
1571      for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1572           ++SI) {
1573        if (!Blocks.count(*SI)) {
1574          // Update the branch weight for this successor.
1575          if (BFI) {
1576            BlockFrequency &BF = ExitWeights[*SI];
1577            BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1578          }
1579          ExitBlocks.insert(*SI);
1580        }
1581      }
1582    }
1583    NumExitBlocks = ExitBlocks.size();
1584  
1585    // If we have to split PHI nodes of the entry or exit blocks, do so now.
1586    severSplitPHINodesOfEntry(header);
1587    severSplitPHINodesOfExits(ExitBlocks);
1588  
1589    // This takes place of the original loop
1590    BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1591                                                  "codeRepl", oldFunction,
1592                                                  header);
1593  
1594    // The new function needs a root node because other nodes can branch to the
1595    // head of the region, but the entry node of a function cannot have preds.
1596    BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1597                                                 "newFuncRoot");
1598    auto *BranchI = BranchInst::Create(header);
1599    // If the original function has debug info, we have to add a debug location
1600    // to the new branch instruction from the artificial entry block.
1601    // We use the debug location of the first instruction in the extracted
1602    // blocks, as there is no other equivalent line in the source code.
1603    if (oldFunction->getSubprogram()) {
1604      any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1605        return any_of(*BB, [&BranchI](const Instruction &I) {
1606          if (!I.getDebugLoc())
1607            return false;
1608          BranchI->setDebugLoc(I.getDebugLoc());
1609          return true;
1610        });
1611      });
1612    }
1613    newFuncRoot->getInstList().push_back(BranchI);
1614  
1615    ValueSet inputs, outputs, SinkingCands, HoistingCands;
1616    BasicBlock *CommonExit = nullptr;
1617    findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1618    assert(HoistingCands.empty() || CommonExit);
1619  
1620    // Find inputs to, outputs from the code region.
1621    findInputsOutputs(inputs, outputs, SinkingCands);
1622  
1623    // Now sink all instructions which only have non-phi uses inside the region.
1624    // Group the allocas at the start of the block, so that any bitcast uses of
1625    // the allocas are well-defined.
1626    AllocaInst *FirstSunkAlloca = nullptr;
1627    for (auto *II : SinkingCands) {
1628      if (auto *AI = dyn_cast<AllocaInst>(II)) {
1629        AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1630        if (!FirstSunkAlloca)
1631          FirstSunkAlloca = AI;
1632      }
1633    }
1634    assert((SinkingCands.empty() || FirstSunkAlloca) &&
1635           "Did not expect a sink candidate without any allocas");
1636    for (auto *II : SinkingCands) {
1637      if (!isa<AllocaInst>(II)) {
1638        cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1639      }
1640    }
1641  
1642    if (!HoistingCands.empty()) {
1643      auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1644      Instruction *TI = HoistToBlock->getTerminator();
1645      for (auto *II : HoistingCands)
1646        cast<Instruction>(II)->moveBefore(TI);
1647    }
1648  
1649    // Collect objects which are inputs to the extraction region and also
1650    // referenced by lifetime start markers within it. The effects of these
1651    // markers must be replicated in the calling function to prevent the stack
1652    // coloring pass from merging slots which store input objects.
1653    ValueSet LifetimesStart;
1654    eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1655  
1656    // Construct new function based on inputs/outputs & add allocas for all defs.
1657    Function *newFunction =
1658        constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1659                          oldFunction, oldFunction->getParent());
1660  
1661    // Update the entry count of the function.
1662    if (BFI) {
1663      auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1664      if (Count.hasValue())
1665        newFunction->setEntryCount(
1666            ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1667      BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1668    }
1669  
1670    CallInst *TheCall =
1671        emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1672  
1673    moveCodeToFunction(newFunction);
1674  
1675    // Replicate the effects of any lifetime start/end markers which referenced
1676    // input objects in the extraction region by placing markers around the call.
1677    insertLifetimeMarkersSurroundingCall(
1678        oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1679  
1680    // Propagate personality info to the new function if there is one.
1681    if (oldFunction->hasPersonalityFn())
1682      newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1683  
1684    // Update the branch weights for the exit block.
1685    if (BFI && NumExitBlocks > 1)
1686      calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1687  
1688    // Loop over all of the PHI nodes in the header and exit blocks, and change
1689    // any references to the old incoming edge to be the new incoming edge.
1690    for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1691      PHINode *PN = cast<PHINode>(I);
1692      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1693        if (!Blocks.count(PN->getIncomingBlock(i)))
1694          PN->setIncomingBlock(i, newFuncRoot);
1695    }
1696  
1697    for (BasicBlock *ExitBB : ExitBlocks)
1698      for (PHINode &PN : ExitBB->phis()) {
1699        Value *IncomingCodeReplacerVal = nullptr;
1700        for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1701          // Ignore incoming values from outside of the extracted region.
1702          if (!Blocks.count(PN.getIncomingBlock(i)))
1703            continue;
1704  
1705          // Ensure that there is only one incoming value from codeReplacer.
1706          if (!IncomingCodeReplacerVal) {
1707            PN.setIncomingBlock(i, codeReplacer);
1708            IncomingCodeReplacerVal = PN.getIncomingValue(i);
1709          } else
1710            assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1711                   "PHI has two incompatbile incoming values from codeRepl");
1712        }
1713      }
1714  
1715    fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1716  
1717    // Mark the new function `noreturn` if applicable. Terminators which resume
1718    // exception propagation are treated as returning instructions. This is to
1719    // avoid inserting traps after calls to outlined functions which unwind.
1720    bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1721      const Instruction *Term = BB.getTerminator();
1722      return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1723    });
1724    if (doesNotReturn)
1725      newFunction->setDoesNotReturn();
1726  
1727    LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1728      newFunction->dump();
1729      report_fatal_error("verification of newFunction failed!");
1730    });
1731    LLVM_DEBUG(if (verifyFunction(*oldFunction))
1732               report_fatal_error("verification of oldFunction failed!"));
1733    LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1734                   report_fatal_error("Stale Asumption cache for old Function!"));
1735    return newFunction;
1736  }
1737  
1738  bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1739                                            const Function &NewFunc,
1740                                            AssumptionCache *AC) {
1741    for (auto AssumeVH : AC->assumptions()) {
1742      CallInst *I = dyn_cast_or_null<CallInst>(AssumeVH);
1743      if (!I)
1744        continue;
1745  
1746      // There shouldn't be any llvm.assume intrinsics in the new function.
1747      if (I->getFunction() != &OldFunc)
1748        return true;
1749  
1750      // There shouldn't be any stale affected values in the assumption cache
1751      // that were previously in the old function, but that have now been moved
1752      // to the new function.
1753      for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1754        CallInst *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1755        if (!AffectedCI)
1756          continue;
1757        if (AffectedCI->getFunction() != &OldFunc)
1758          return true;
1759        auto *AssumedInst = dyn_cast<Instruction>(AffectedCI->getOperand(0));
1760        if (AssumedInst->getFunction() != &OldFunc)
1761          return true;
1762      }
1763    }
1764    return false;
1765  }
1766