1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/PatternMatch.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/IR/Verifier.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BlockFrequency.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <map> 66 #include <set> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 using namespace llvm::PatternMatch; 72 using ProfileCount = Function::ProfileCount; 73 74 #define DEBUG_TYPE "code-extractor" 75 76 // Provide a command-line option to aggregate function arguments into a struct 77 // for functions produced by the code extractor. This is useful when converting 78 // extracted functions to pthread-based code, as only one argument (void*) can 79 // be passed in to pthread_create(). 80 static cl::opt<bool> 81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 82 cl::desc("Aggregate arguments to code-extracted functions")); 83 84 /// Test whether a block is valid for extraction. 85 static bool isBlockValidForExtraction(const BasicBlock &BB, 86 const SetVector<BasicBlock *> &Result, 87 bool AllowVarArgs, bool AllowAlloca) { 88 // taking the address of a basic block moved to another function is illegal 89 if (BB.hasAddressTaken()) 90 return false; 91 92 // don't hoist code that uses another basicblock address, as it's likely to 93 // lead to unexpected behavior, like cross-function jumps 94 SmallPtrSet<User const *, 16> Visited; 95 SmallVector<User const *, 16> ToVisit; 96 97 for (Instruction const &Inst : BB) 98 ToVisit.push_back(&Inst); 99 100 while (!ToVisit.empty()) { 101 User const *Curr = ToVisit.pop_back_val(); 102 if (!Visited.insert(Curr).second) 103 continue; 104 if (isa<BlockAddress const>(Curr)) 105 return false; // even a reference to self is likely to be not compatible 106 107 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 108 continue; 109 110 for (auto const &U : Curr->operands()) { 111 if (auto *UU = dyn_cast<User>(U)) 112 ToVisit.push_back(UU); 113 } 114 } 115 116 // If explicitly requested, allow vastart and alloca. For invoke instructions 117 // verify that extraction is valid. 118 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 119 if (isa<AllocaInst>(I)) { 120 if (!AllowAlloca) 121 return false; 122 continue; 123 } 124 125 if (const auto *II = dyn_cast<InvokeInst>(I)) { 126 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 127 // must be a part of the subgraph which is being extracted. 128 if (auto *UBB = II->getUnwindDest()) 129 if (!Result.count(UBB)) 130 return false; 131 continue; 132 } 133 134 // All catch handlers of a catchswitch instruction as well as the unwind 135 // destination must be in the subgraph. 136 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 137 if (auto *UBB = CSI->getUnwindDest()) 138 if (!Result.count(UBB)) 139 return false; 140 for (auto *HBB : CSI->handlers()) 141 if (!Result.count(const_cast<BasicBlock*>(HBB))) 142 return false; 143 continue; 144 } 145 146 // Make sure that entire catch handler is within subgraph. It is sufficient 147 // to check that catch return's block is in the list. 148 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 149 for (const auto *U : CPI->users()) 150 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 151 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 152 return false; 153 continue; 154 } 155 156 // And do similar checks for cleanup handler - the entire handler must be 157 // in subgraph which is going to be extracted. For cleanup return should 158 // additionally check that the unwind destination is also in the subgraph. 159 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 160 for (const auto *U : CPI->users()) 161 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 162 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 163 return false; 164 continue; 165 } 166 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 167 if (auto *UBB = CRI->getUnwindDest()) 168 if (!Result.count(UBB)) 169 return false; 170 continue; 171 } 172 173 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 174 if (const Function *F = CI->getCalledFunction()) { 175 auto IID = F->getIntrinsicID(); 176 if (IID == Intrinsic::vastart) { 177 if (AllowVarArgs) 178 continue; 179 else 180 return false; 181 } 182 183 // Currently, we miscompile outlined copies of eh_typid_for. There are 184 // proposals for fixing this in llvm.org/PR39545. 185 if (IID == Intrinsic::eh_typeid_for) 186 return false; 187 } 188 } 189 } 190 191 return true; 192 } 193 194 /// Build a set of blocks to extract if the input blocks are viable. 195 static SetVector<BasicBlock *> 196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 197 bool AllowVarArgs, bool AllowAlloca) { 198 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 199 SetVector<BasicBlock *> Result; 200 201 // Loop over the blocks, adding them to our set-vector, and aborting with an 202 // empty set if we encounter invalid blocks. 203 for (BasicBlock *BB : BBs) { 204 // If this block is dead, don't process it. 205 if (DT && !DT->isReachableFromEntry(BB)) 206 continue; 207 208 if (!Result.insert(BB)) 209 llvm_unreachable("Repeated basic blocks in extraction input"); 210 } 211 212 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 213 << '\n'); 214 215 for (auto *BB : Result) { 216 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 217 return {}; 218 219 // Make sure that the first block is not a landing pad. 220 if (BB == Result.front()) { 221 if (BB->isEHPad()) { 222 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 223 return {}; 224 } 225 continue; 226 } 227 228 // All blocks other than the first must not have predecessors outside of 229 // the subgraph which is being extracted. 230 for (auto *PBB : predecessors(BB)) 231 if (!Result.count(PBB)) { 232 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 233 "outside the region except for the first block!\n" 234 << "Problematic source BB: " << BB->getName() << "\n" 235 << "Problematic destination BB: " << PBB->getName() 236 << "\n"); 237 return {}; 238 } 239 } 240 241 return Result; 242 } 243 244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 245 bool AggregateArgs, BlockFrequencyInfo *BFI, 246 BranchProbabilityInfo *BPI, AssumptionCache *AC, 247 bool AllowVarArgs, bool AllowAlloca, 248 std::string Suffix) 249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 250 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 251 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 252 Suffix(Suffix) {} 253 254 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 255 BlockFrequencyInfo *BFI, 256 BranchProbabilityInfo *BPI, AssumptionCache *AC, 257 std::string Suffix) 258 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 259 BPI(BPI), AC(AC), AllowVarArgs(false), 260 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 261 /* AllowVarArgs */ false, 262 /* AllowAlloca */ false)), 263 Suffix(Suffix) {} 264 265 /// definedInRegion - Return true if the specified value is defined in the 266 /// extracted region. 267 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 268 if (Instruction *I = dyn_cast<Instruction>(V)) 269 if (Blocks.count(I->getParent())) 270 return true; 271 return false; 272 } 273 274 /// definedInCaller - Return true if the specified value is defined in the 275 /// function being code extracted, but not in the region being extracted. 276 /// These values must be passed in as live-ins to the function. 277 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 278 if (isa<Argument>(V)) return true; 279 if (Instruction *I = dyn_cast<Instruction>(V)) 280 if (!Blocks.count(I->getParent())) 281 return true; 282 return false; 283 } 284 285 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 286 BasicBlock *CommonExitBlock = nullptr; 287 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 288 for (auto *Succ : successors(Block)) { 289 // Internal edges, ok. 290 if (Blocks.count(Succ)) 291 continue; 292 if (!CommonExitBlock) { 293 CommonExitBlock = Succ; 294 continue; 295 } 296 if (CommonExitBlock != Succ) 297 return true; 298 } 299 return false; 300 }; 301 302 if (any_of(Blocks, hasNonCommonExitSucc)) 303 return nullptr; 304 305 return CommonExitBlock; 306 } 307 308 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 309 for (BasicBlock &BB : F) { 310 for (Instruction &II : BB.instructionsWithoutDebug()) 311 if (auto *AI = dyn_cast<AllocaInst>(&II)) 312 Allocas.push_back(AI); 313 314 findSideEffectInfoForBlock(BB); 315 } 316 } 317 318 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 319 for (Instruction &II : BB.instructionsWithoutDebug()) { 320 unsigned Opcode = II.getOpcode(); 321 Value *MemAddr = nullptr; 322 switch (Opcode) { 323 case Instruction::Store: 324 case Instruction::Load: { 325 if (Opcode == Instruction::Store) { 326 StoreInst *SI = cast<StoreInst>(&II); 327 MemAddr = SI->getPointerOperand(); 328 } else { 329 LoadInst *LI = cast<LoadInst>(&II); 330 MemAddr = LI->getPointerOperand(); 331 } 332 // Global variable can not be aliased with locals. 333 if (dyn_cast<Constant>(MemAddr)) 334 break; 335 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 336 if (!isa<AllocaInst>(Base)) { 337 SideEffectingBlocks.insert(&BB); 338 return; 339 } 340 BaseMemAddrs[&BB].insert(Base); 341 break; 342 } 343 default: { 344 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 345 if (IntrInst) { 346 if (IntrInst->isLifetimeStartOrEnd()) 347 break; 348 SideEffectingBlocks.insert(&BB); 349 return; 350 } 351 // Treat all the other cases conservatively if it has side effects. 352 if (II.mayHaveSideEffects()) { 353 SideEffectingBlocks.insert(&BB); 354 return; 355 } 356 } 357 } 358 } 359 } 360 361 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 362 BasicBlock &BB, AllocaInst *Addr) const { 363 if (SideEffectingBlocks.count(&BB)) 364 return true; 365 auto It = BaseMemAddrs.find(&BB); 366 if (It != BaseMemAddrs.end()) 367 return It->second.count(Addr); 368 return false; 369 } 370 371 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 372 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 373 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 374 Function *Func = (*Blocks.begin())->getParent(); 375 for (BasicBlock &BB : *Func) { 376 if (Blocks.count(&BB)) 377 continue; 378 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 379 return false; 380 } 381 return true; 382 } 383 384 BasicBlock * 385 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 386 BasicBlock *SinglePredFromOutlineRegion = nullptr; 387 assert(!Blocks.count(CommonExitBlock) && 388 "Expect a block outside the region!"); 389 for (auto *Pred : predecessors(CommonExitBlock)) { 390 if (!Blocks.count(Pred)) 391 continue; 392 if (!SinglePredFromOutlineRegion) { 393 SinglePredFromOutlineRegion = Pred; 394 } else if (SinglePredFromOutlineRegion != Pred) { 395 SinglePredFromOutlineRegion = nullptr; 396 break; 397 } 398 } 399 400 if (SinglePredFromOutlineRegion) 401 return SinglePredFromOutlineRegion; 402 403 #ifndef NDEBUG 404 auto getFirstPHI = [](BasicBlock *BB) { 405 BasicBlock::iterator I = BB->begin(); 406 PHINode *FirstPhi = nullptr; 407 while (I != BB->end()) { 408 PHINode *Phi = dyn_cast<PHINode>(I); 409 if (!Phi) 410 break; 411 if (!FirstPhi) { 412 FirstPhi = Phi; 413 break; 414 } 415 } 416 return FirstPhi; 417 }; 418 // If there are any phi nodes, the single pred either exists or has already 419 // be created before code extraction. 420 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 421 #endif 422 423 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 424 CommonExitBlock->getFirstNonPHI()->getIterator()); 425 426 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 427 PI != PE;) { 428 BasicBlock *Pred = *PI++; 429 if (Blocks.count(Pred)) 430 continue; 431 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 432 } 433 // Now add the old exit block to the outline region. 434 Blocks.insert(CommonExitBlock); 435 return CommonExitBlock; 436 } 437 438 // Find the pair of life time markers for address 'Addr' that are either 439 // defined inside the outline region or can legally be shrinkwrapped into the 440 // outline region. If there are not other untracked uses of the address, return 441 // the pair of markers if found; otherwise return a pair of nullptr. 442 CodeExtractor::LifetimeMarkerInfo 443 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 444 Instruction *Addr, 445 BasicBlock *ExitBlock) const { 446 LifetimeMarkerInfo Info; 447 448 for (User *U : Addr->users()) { 449 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 450 if (IntrInst) { 451 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 452 // Do not handle the case where Addr has multiple start markers. 453 if (Info.LifeStart) 454 return {}; 455 Info.LifeStart = IntrInst; 456 } 457 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 458 if (Info.LifeEnd) 459 return {}; 460 Info.LifeEnd = IntrInst; 461 } 462 continue; 463 } 464 // Find untracked uses of the address, bail. 465 if (!definedInRegion(Blocks, U)) 466 return {}; 467 } 468 469 if (!Info.LifeStart || !Info.LifeEnd) 470 return {}; 471 472 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 473 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 474 // Do legality check. 475 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 476 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 477 return {}; 478 479 // Check to see if we have a place to do hoisting, if not, bail. 480 if (Info.HoistLifeEnd && !ExitBlock) 481 return {}; 482 483 return Info; 484 } 485 486 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 487 ValueSet &SinkCands, ValueSet &HoistCands, 488 BasicBlock *&ExitBlock) const { 489 Function *Func = (*Blocks.begin())->getParent(); 490 ExitBlock = getCommonExitBlock(Blocks); 491 492 auto moveOrIgnoreLifetimeMarkers = 493 [&](const LifetimeMarkerInfo &LMI) -> bool { 494 if (!LMI.LifeStart) 495 return false; 496 if (LMI.SinkLifeStart) { 497 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 498 << "\n"); 499 SinkCands.insert(LMI.LifeStart); 500 } 501 if (LMI.HoistLifeEnd) { 502 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 503 HoistCands.insert(LMI.LifeEnd); 504 } 505 return true; 506 }; 507 508 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 509 // this is much faster than walking all the instructions. 510 for (AllocaInst *AI : CEAC.getAllocas()) { 511 BasicBlock *BB = AI->getParent(); 512 if (Blocks.count(BB)) 513 continue; 514 515 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 516 // check whether it is actually still in the original function. 517 Function *AIFunc = BB->getParent(); 518 if (AIFunc != Func) 519 continue; 520 521 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 522 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 523 if (Moved) { 524 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 525 SinkCands.insert(AI); 526 continue; 527 } 528 529 // Follow any bitcasts. 530 SmallVector<Instruction *, 2> Bitcasts; 531 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 532 for (User *U : AI->users()) { 533 if (U->stripInBoundsConstantOffsets() == AI) { 534 Instruction *Bitcast = cast<Instruction>(U); 535 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 536 if (LMI.LifeStart) { 537 Bitcasts.push_back(Bitcast); 538 BitcastLifetimeInfo.push_back(LMI); 539 continue; 540 } 541 } 542 543 // Found unknown use of AI. 544 if (!definedInRegion(Blocks, U)) { 545 Bitcasts.clear(); 546 break; 547 } 548 } 549 550 // Either no bitcasts reference the alloca or there are unknown uses. 551 if (Bitcasts.empty()) 552 continue; 553 554 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 555 SinkCands.insert(AI); 556 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 557 Instruction *BitcastAddr = Bitcasts[I]; 558 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 559 assert(LMI.LifeStart && 560 "Unsafe to sink bitcast without lifetime markers"); 561 moveOrIgnoreLifetimeMarkers(LMI); 562 if (!definedInRegion(Blocks, BitcastAddr)) { 563 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 564 << "\n"); 565 SinkCands.insert(BitcastAddr); 566 } 567 } 568 } 569 } 570 571 bool CodeExtractor::isEligible() const { 572 if (Blocks.empty()) 573 return false; 574 BasicBlock *Header = *Blocks.begin(); 575 Function *F = Header->getParent(); 576 577 // For functions with varargs, check that varargs handling is only done in the 578 // outlined function, i.e vastart and vaend are only used in outlined blocks. 579 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 580 auto containsVarArgIntrinsic = [](const Instruction &I) { 581 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 582 if (const Function *Callee = CI->getCalledFunction()) 583 return Callee->getIntrinsicID() == Intrinsic::vastart || 584 Callee->getIntrinsicID() == Intrinsic::vaend; 585 return false; 586 }; 587 588 for (auto &BB : *F) { 589 if (Blocks.count(&BB)) 590 continue; 591 if (llvm::any_of(BB, containsVarArgIntrinsic)) 592 return false; 593 } 594 } 595 return true; 596 } 597 598 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 599 const ValueSet &SinkCands) const { 600 for (BasicBlock *BB : Blocks) { 601 // If a used value is defined outside the region, it's an input. If an 602 // instruction is used outside the region, it's an output. 603 for (Instruction &II : *BB) { 604 for (auto &OI : II.operands()) { 605 Value *V = OI; 606 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 607 Inputs.insert(V); 608 } 609 610 for (User *U : II.users()) 611 if (!definedInRegion(Blocks, U)) { 612 Outputs.insert(&II); 613 break; 614 } 615 } 616 } 617 } 618 619 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 620 /// of the region, we need to split the entry block of the region so that the 621 /// PHI node is easier to deal with. 622 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 623 unsigned NumPredsFromRegion = 0; 624 unsigned NumPredsOutsideRegion = 0; 625 626 if (Header != &Header->getParent()->getEntryBlock()) { 627 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 628 if (!PN) return; // No PHI nodes. 629 630 // If the header node contains any PHI nodes, check to see if there is more 631 // than one entry from outside the region. If so, we need to sever the 632 // header block into two. 633 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 634 if (Blocks.count(PN->getIncomingBlock(i))) 635 ++NumPredsFromRegion; 636 else 637 ++NumPredsOutsideRegion; 638 639 // If there is one (or fewer) predecessor from outside the region, we don't 640 // need to do anything special. 641 if (NumPredsOutsideRegion <= 1) return; 642 } 643 644 // Otherwise, we need to split the header block into two pieces: one 645 // containing PHI nodes merging values from outside of the region, and a 646 // second that contains all of the code for the block and merges back any 647 // incoming values from inside of the region. 648 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 649 650 // We only want to code extract the second block now, and it becomes the new 651 // header of the region. 652 BasicBlock *OldPred = Header; 653 Blocks.remove(OldPred); 654 Blocks.insert(NewBB); 655 Header = NewBB; 656 657 // Okay, now we need to adjust the PHI nodes and any branches from within the 658 // region to go to the new header block instead of the old header block. 659 if (NumPredsFromRegion) { 660 PHINode *PN = cast<PHINode>(OldPred->begin()); 661 // Loop over all of the predecessors of OldPred that are in the region, 662 // changing them to branch to NewBB instead. 663 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 664 if (Blocks.count(PN->getIncomingBlock(i))) { 665 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 666 TI->replaceUsesOfWith(OldPred, NewBB); 667 } 668 669 // Okay, everything within the region is now branching to the right block, we 670 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 671 BasicBlock::iterator AfterPHIs; 672 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 673 PHINode *PN = cast<PHINode>(AfterPHIs); 674 // Create a new PHI node in the new region, which has an incoming value 675 // from OldPred of PN. 676 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 677 PN->getName() + ".ce", &NewBB->front()); 678 PN->replaceAllUsesWith(NewPN); 679 NewPN->addIncoming(PN, OldPred); 680 681 // Loop over all of the incoming value in PN, moving them to NewPN if they 682 // are from the extracted region. 683 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 684 if (Blocks.count(PN->getIncomingBlock(i))) { 685 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 686 PN->removeIncomingValue(i); 687 --i; 688 } 689 } 690 } 691 } 692 } 693 694 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 695 /// outlined region, we split these PHIs on two: one with inputs from region 696 /// and other with remaining incoming blocks; then first PHIs are placed in 697 /// outlined region. 698 void CodeExtractor::severSplitPHINodesOfExits( 699 const SmallPtrSetImpl<BasicBlock *> &Exits) { 700 for (BasicBlock *ExitBB : Exits) { 701 BasicBlock *NewBB = nullptr; 702 703 for (PHINode &PN : ExitBB->phis()) { 704 // Find all incoming values from the outlining region. 705 SmallVector<unsigned, 2> IncomingVals; 706 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 707 if (Blocks.count(PN.getIncomingBlock(i))) 708 IncomingVals.push_back(i); 709 710 // Do not process PHI if there is one (or fewer) predecessor from region. 711 // If PHI has exactly one predecessor from region, only this one incoming 712 // will be replaced on codeRepl block, so it should be safe to skip PHI. 713 if (IncomingVals.size() <= 1) 714 continue; 715 716 // Create block for new PHIs and add it to the list of outlined if it 717 // wasn't done before. 718 if (!NewBB) { 719 NewBB = BasicBlock::Create(ExitBB->getContext(), 720 ExitBB->getName() + ".split", 721 ExitBB->getParent(), ExitBB); 722 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB), 723 pred_end(ExitBB)); 724 for (BasicBlock *PredBB : Preds) 725 if (Blocks.count(PredBB)) 726 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 727 BranchInst::Create(ExitBB, NewBB); 728 Blocks.insert(NewBB); 729 } 730 731 // Split this PHI. 732 PHINode *NewPN = 733 PHINode::Create(PN.getType(), IncomingVals.size(), 734 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 735 for (unsigned i : IncomingVals) 736 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 737 for (unsigned i : reverse(IncomingVals)) 738 PN.removeIncomingValue(i, false); 739 PN.addIncoming(NewPN, NewBB); 740 } 741 } 742 } 743 744 void CodeExtractor::splitReturnBlocks() { 745 for (BasicBlock *Block : Blocks) 746 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 747 BasicBlock *New = 748 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 749 if (DT) { 750 // Old dominates New. New node dominates all other nodes dominated 751 // by Old. 752 DomTreeNode *OldNode = DT->getNode(Block); 753 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 754 OldNode->end()); 755 756 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 757 758 for (DomTreeNode *I : Children) 759 DT->changeImmediateDominator(I, NewNode); 760 } 761 } 762 } 763 764 /// constructFunction - make a function based on inputs and outputs, as follows: 765 /// f(in0, ..., inN, out0, ..., outN) 766 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 767 const ValueSet &outputs, 768 BasicBlock *header, 769 BasicBlock *newRootNode, 770 BasicBlock *newHeader, 771 Function *oldFunction, 772 Module *M) { 773 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 774 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 775 776 // This function returns unsigned, outputs will go back by reference. 777 switch (NumExitBlocks) { 778 case 0: 779 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 780 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 781 default: RetTy = Type::getInt16Ty(header->getContext()); break; 782 } 783 784 std::vector<Type *> paramTy; 785 786 // Add the types of the input values to the function's argument list 787 for (Value *value : inputs) { 788 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 789 paramTy.push_back(value->getType()); 790 } 791 792 // Add the types of the output values to the function's argument list. 793 for (Value *output : outputs) { 794 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 795 if (AggregateArgs) 796 paramTy.push_back(output->getType()); 797 else 798 paramTy.push_back(PointerType::getUnqual(output->getType())); 799 } 800 801 LLVM_DEBUG({ 802 dbgs() << "Function type: " << *RetTy << " f("; 803 for (Type *i : paramTy) 804 dbgs() << *i << ", "; 805 dbgs() << ")\n"; 806 }); 807 808 StructType *StructTy = nullptr; 809 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 810 StructTy = StructType::get(M->getContext(), paramTy); 811 paramTy.clear(); 812 paramTy.push_back(PointerType::getUnqual(StructTy)); 813 } 814 FunctionType *funcType = 815 FunctionType::get(RetTy, paramTy, 816 AllowVarArgs && oldFunction->isVarArg()); 817 818 std::string SuffixToUse = 819 Suffix.empty() 820 ? (header->getName().empty() ? "extracted" : header->getName().str()) 821 : Suffix; 822 // Create the new function 823 Function *newFunction = Function::Create( 824 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 825 oldFunction->getName() + "." + SuffixToUse, M); 826 // If the old function is no-throw, so is the new one. 827 if (oldFunction->doesNotThrow()) 828 newFunction->setDoesNotThrow(); 829 830 // Inherit the uwtable attribute if we need to. 831 if (oldFunction->hasUWTable()) 832 newFunction->setHasUWTable(); 833 834 // Inherit all of the target dependent attributes and white-listed 835 // target independent attributes. 836 // (e.g. If the extracted region contains a call to an x86.sse 837 // instruction we need to make sure that the extracted region has the 838 // "target-features" attribute allowing it to be lowered. 839 // FIXME: This should be changed to check to see if a specific 840 // attribute can not be inherited. 841 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 842 if (Attr.isStringAttribute()) { 843 if (Attr.getKindAsString() == "thunk") 844 continue; 845 } else 846 switch (Attr.getKindAsEnum()) { 847 // Those attributes cannot be propagated safely. Explicitly list them 848 // here so we get a warning if new attributes are added. This list also 849 // includes non-function attributes. 850 case Attribute::Alignment: 851 case Attribute::AllocSize: 852 case Attribute::ArgMemOnly: 853 case Attribute::Builtin: 854 case Attribute::ByVal: 855 case Attribute::Convergent: 856 case Attribute::Dereferenceable: 857 case Attribute::DereferenceableOrNull: 858 case Attribute::InAlloca: 859 case Attribute::InReg: 860 case Attribute::InaccessibleMemOnly: 861 case Attribute::InaccessibleMemOrArgMemOnly: 862 case Attribute::JumpTable: 863 case Attribute::Naked: 864 case Attribute::Nest: 865 case Attribute::NoAlias: 866 case Attribute::NoBuiltin: 867 case Attribute::NoCapture: 868 case Attribute::NoReturn: 869 case Attribute::NoSync: 870 case Attribute::None: 871 case Attribute::NonNull: 872 case Attribute::ReadNone: 873 case Attribute::ReadOnly: 874 case Attribute::Returned: 875 case Attribute::ReturnsTwice: 876 case Attribute::SExt: 877 case Attribute::Speculatable: 878 case Attribute::StackAlignment: 879 case Attribute::StructRet: 880 case Attribute::SwiftError: 881 case Attribute::SwiftSelf: 882 case Attribute::WillReturn: 883 case Attribute::WriteOnly: 884 case Attribute::ZExt: 885 case Attribute::ImmArg: 886 case Attribute::EndAttrKinds: 887 continue; 888 // Those attributes should be safe to propagate to the extracted function. 889 case Attribute::AlwaysInline: 890 case Attribute::Cold: 891 case Attribute::NoRecurse: 892 case Attribute::InlineHint: 893 case Attribute::MinSize: 894 case Attribute::NoDuplicate: 895 case Attribute::NoFree: 896 case Attribute::NoImplicitFloat: 897 case Attribute::NoInline: 898 case Attribute::NonLazyBind: 899 case Attribute::NoRedZone: 900 case Attribute::NoUnwind: 901 case Attribute::OptForFuzzing: 902 case Attribute::OptimizeNone: 903 case Attribute::OptimizeForSize: 904 case Attribute::SafeStack: 905 case Attribute::ShadowCallStack: 906 case Attribute::SanitizeAddress: 907 case Attribute::SanitizeMemory: 908 case Attribute::SanitizeThread: 909 case Attribute::SanitizeHWAddress: 910 case Attribute::SanitizeMemTag: 911 case Attribute::SpeculativeLoadHardening: 912 case Attribute::StackProtect: 913 case Attribute::StackProtectReq: 914 case Attribute::StackProtectStrong: 915 case Attribute::StrictFP: 916 case Attribute::UWTable: 917 case Attribute::NoCfCheck: 918 break; 919 } 920 921 newFunction->addFnAttr(Attr); 922 } 923 newFunction->getBasicBlockList().push_back(newRootNode); 924 925 // Create an iterator to name all of the arguments we inserted. 926 Function::arg_iterator AI = newFunction->arg_begin(); 927 928 // Rewrite all users of the inputs in the extracted region to use the 929 // arguments (or appropriate addressing into struct) instead. 930 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 931 Value *RewriteVal; 932 if (AggregateArgs) { 933 Value *Idx[2]; 934 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 935 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 936 Instruction *TI = newFunction->begin()->getTerminator(); 937 GetElementPtrInst *GEP = GetElementPtrInst::Create( 938 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 939 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 940 "loadgep_" + inputs[i]->getName(), TI); 941 } else 942 RewriteVal = &*AI++; 943 944 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 945 for (User *use : Users) 946 if (Instruction *inst = dyn_cast<Instruction>(use)) 947 if (Blocks.count(inst->getParent())) 948 inst->replaceUsesOfWith(inputs[i], RewriteVal); 949 } 950 951 // Set names for input and output arguments. 952 if (!AggregateArgs) { 953 AI = newFunction->arg_begin(); 954 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 955 AI->setName(inputs[i]->getName()); 956 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 957 AI->setName(outputs[i]->getName()+".out"); 958 } 959 960 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 961 // within the new function. This must be done before we lose track of which 962 // blocks were originally in the code region. 963 std::vector<User *> Users(header->user_begin(), header->user_end()); 964 for (auto &U : Users) 965 // The BasicBlock which contains the branch is not in the region 966 // modify the branch target to a new block 967 if (Instruction *I = dyn_cast<Instruction>(U)) 968 if (I->isTerminator() && I->getFunction() == oldFunction && 969 !Blocks.count(I->getParent())) 970 I->replaceUsesOfWith(header, newHeader); 971 972 return newFunction; 973 } 974 975 /// Erase lifetime.start markers which reference inputs to the extraction 976 /// region, and insert the referenced memory into \p LifetimesStart. 977 /// 978 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 979 /// of allocas which will be moved from the caller function into the extracted 980 /// function (\p SunkAllocas). 981 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 982 const SetVector<Value *> &SunkAllocas, 983 SetVector<Value *> &LifetimesStart) { 984 for (BasicBlock *BB : Blocks) { 985 for (auto It = BB->begin(), End = BB->end(); It != End;) { 986 auto *II = dyn_cast<IntrinsicInst>(&*It); 987 ++It; 988 if (!II || !II->isLifetimeStartOrEnd()) 989 continue; 990 991 // Get the memory operand of the lifetime marker. If the underlying 992 // object is a sunk alloca, or is otherwise defined in the extraction 993 // region, the lifetime marker must not be erased. 994 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 995 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 996 continue; 997 998 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 999 LifetimesStart.insert(Mem); 1000 II->eraseFromParent(); 1001 } 1002 } 1003 } 1004 1005 /// Insert lifetime start/end markers surrounding the call to the new function 1006 /// for objects defined in the caller. 1007 static void insertLifetimeMarkersSurroundingCall( 1008 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1009 CallInst *TheCall) { 1010 LLVMContext &Ctx = M->getContext(); 1011 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1012 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1013 Instruction *Term = TheCall->getParent()->getTerminator(); 1014 1015 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1016 // needed to satisfy this requirement so they may be reused. 1017 DenseMap<Value *, Value *> Bitcasts; 1018 1019 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1020 // markers before the call if \p InsertBefore, and after the call otherwise. 1021 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1022 bool InsertBefore) { 1023 for (Value *Mem : Objects) { 1024 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1025 TheCall->getFunction()) && 1026 "Input memory not defined in original function"); 1027 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1028 if (!MemAsI8Ptr) { 1029 if (Mem->getType() == Int8PtrTy) 1030 MemAsI8Ptr = Mem; 1031 else 1032 MemAsI8Ptr = 1033 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1034 } 1035 1036 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1037 if (InsertBefore) 1038 Marker->insertBefore(TheCall); 1039 else 1040 Marker->insertBefore(Term); 1041 } 1042 }; 1043 1044 if (!LifetimesStart.empty()) { 1045 auto StartFn = llvm::Intrinsic::getDeclaration( 1046 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1047 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1048 } 1049 1050 if (!LifetimesEnd.empty()) { 1051 auto EndFn = llvm::Intrinsic::getDeclaration( 1052 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1053 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1054 } 1055 } 1056 1057 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1058 /// the call instruction, splitting any PHI nodes in the header block as 1059 /// necessary. 1060 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1061 BasicBlock *codeReplacer, 1062 ValueSet &inputs, 1063 ValueSet &outputs) { 1064 // Emit a call to the new function, passing in: *pointer to struct (if 1065 // aggregating parameters), or plan inputs and allocated memory for outputs 1066 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 1067 1068 Module *M = newFunction->getParent(); 1069 LLVMContext &Context = M->getContext(); 1070 const DataLayout &DL = M->getDataLayout(); 1071 CallInst *call = nullptr; 1072 1073 // Add inputs as params, or to be filled into the struct 1074 unsigned ArgNo = 0; 1075 SmallVector<unsigned, 1> SwiftErrorArgs; 1076 for (Value *input : inputs) { 1077 if (AggregateArgs) 1078 StructValues.push_back(input); 1079 else { 1080 params.push_back(input); 1081 if (input->isSwiftError()) 1082 SwiftErrorArgs.push_back(ArgNo); 1083 } 1084 ++ArgNo; 1085 } 1086 1087 // Create allocas for the outputs 1088 for (Value *output : outputs) { 1089 if (AggregateArgs) { 1090 StructValues.push_back(output); 1091 } else { 1092 AllocaInst *alloca = 1093 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1094 nullptr, output->getName() + ".loc", 1095 &codeReplacer->getParent()->front().front()); 1096 ReloadOutputs.push_back(alloca); 1097 params.push_back(alloca); 1098 } 1099 } 1100 1101 StructType *StructArgTy = nullptr; 1102 AllocaInst *Struct = nullptr; 1103 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1104 std::vector<Type *> ArgTypes; 1105 for (ValueSet::iterator v = StructValues.begin(), 1106 ve = StructValues.end(); v != ve; ++v) 1107 ArgTypes.push_back((*v)->getType()); 1108 1109 // Allocate a struct at the beginning of this function 1110 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1111 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1112 "structArg", 1113 &codeReplacer->getParent()->front().front()); 1114 params.push_back(Struct); 1115 1116 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1117 Value *Idx[2]; 1118 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1119 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1120 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1121 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1122 codeReplacer->getInstList().push_back(GEP); 1123 StoreInst *SI = new StoreInst(StructValues[i], GEP); 1124 codeReplacer->getInstList().push_back(SI); 1125 } 1126 } 1127 1128 // Emit the call to the function 1129 call = CallInst::Create(newFunction, params, 1130 NumExitBlocks > 1 ? "targetBlock" : ""); 1131 // Add debug location to the new call, if the original function has debug 1132 // info. In that case, the terminator of the entry block of the extracted 1133 // function contains the first debug location of the extracted function, 1134 // set in extractCodeRegion. 1135 if (codeReplacer->getParent()->getSubprogram()) { 1136 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1137 call->setDebugLoc(DL); 1138 } 1139 codeReplacer->getInstList().push_back(call); 1140 1141 // Set swifterror parameter attributes. 1142 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1143 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1144 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1145 } 1146 1147 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1148 unsigned FirstOut = inputs.size(); 1149 if (!AggregateArgs) 1150 std::advance(OutputArgBegin, inputs.size()); 1151 1152 // Reload the outputs passed in by reference. 1153 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1154 Value *Output = nullptr; 1155 if (AggregateArgs) { 1156 Value *Idx[2]; 1157 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1158 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1159 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1160 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1161 codeReplacer->getInstList().push_back(GEP); 1162 Output = GEP; 1163 } else { 1164 Output = ReloadOutputs[i]; 1165 } 1166 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1167 outputs[i]->getName() + ".reload"); 1168 Reloads.push_back(load); 1169 codeReplacer->getInstList().push_back(load); 1170 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1171 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1172 Instruction *inst = cast<Instruction>(Users[u]); 1173 if (!Blocks.count(inst->getParent())) 1174 inst->replaceUsesOfWith(outputs[i], load); 1175 } 1176 } 1177 1178 // Now we can emit a switch statement using the call as a value. 1179 SwitchInst *TheSwitch = 1180 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1181 codeReplacer, 0, codeReplacer); 1182 1183 // Since there may be multiple exits from the original region, make the new 1184 // function return an unsigned, switch on that number. This loop iterates 1185 // over all of the blocks in the extracted region, updating any terminator 1186 // instructions in the to-be-extracted region that branch to blocks that are 1187 // not in the region to be extracted. 1188 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1189 1190 unsigned switchVal = 0; 1191 for (BasicBlock *Block : Blocks) { 1192 Instruction *TI = Block->getTerminator(); 1193 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1194 if (!Blocks.count(TI->getSuccessor(i))) { 1195 BasicBlock *OldTarget = TI->getSuccessor(i); 1196 // add a new basic block which returns the appropriate value 1197 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1198 if (!NewTarget) { 1199 // If we don't already have an exit stub for this non-extracted 1200 // destination, create one now! 1201 NewTarget = BasicBlock::Create(Context, 1202 OldTarget->getName() + ".exitStub", 1203 newFunction); 1204 unsigned SuccNum = switchVal++; 1205 1206 Value *brVal = nullptr; 1207 switch (NumExitBlocks) { 1208 case 0: 1209 case 1: break; // No value needed. 1210 case 2: // Conditional branch, return a bool 1211 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1212 break; 1213 default: 1214 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1215 break; 1216 } 1217 1218 ReturnInst::Create(Context, brVal, NewTarget); 1219 1220 // Update the switch instruction. 1221 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1222 SuccNum), 1223 OldTarget); 1224 } 1225 1226 // rewrite the original branch instruction with this new target 1227 TI->setSuccessor(i, NewTarget); 1228 } 1229 } 1230 1231 // Store the arguments right after the definition of output value. 1232 // This should be proceeded after creating exit stubs to be ensure that invoke 1233 // result restore will be placed in the outlined function. 1234 Function::arg_iterator OAI = OutputArgBegin; 1235 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1236 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1237 if (!OutI) 1238 continue; 1239 1240 // Find proper insertion point. 1241 BasicBlock::iterator InsertPt; 1242 // In case OutI is an invoke, we insert the store at the beginning in the 1243 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1244 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1245 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1246 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1247 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1248 else 1249 InsertPt = std::next(OutI->getIterator()); 1250 1251 Instruction *InsertBefore = &*InsertPt; 1252 assert((InsertBefore->getFunction() == newFunction || 1253 Blocks.count(InsertBefore->getParent())) && 1254 "InsertPt should be in new function"); 1255 assert(OAI != newFunction->arg_end() && 1256 "Number of output arguments should match " 1257 "the amount of defined values"); 1258 if (AggregateArgs) { 1259 Value *Idx[2]; 1260 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1261 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1262 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1263 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1264 InsertBefore); 1265 new StoreInst(outputs[i], GEP, InsertBefore); 1266 // Since there should be only one struct argument aggregating 1267 // all the output values, we shouldn't increment OAI, which always 1268 // points to the struct argument, in this case. 1269 } else { 1270 new StoreInst(outputs[i], &*OAI, InsertBefore); 1271 ++OAI; 1272 } 1273 } 1274 1275 // Now that we've done the deed, simplify the switch instruction. 1276 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1277 switch (NumExitBlocks) { 1278 case 0: 1279 // There are no successors (the block containing the switch itself), which 1280 // means that previously this was the last part of the function, and hence 1281 // this should be rewritten as a `ret' 1282 1283 // Check if the function should return a value 1284 if (OldFnRetTy->isVoidTy()) { 1285 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1286 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1287 // return what we have 1288 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1289 } else { 1290 // Otherwise we must have code extracted an unwind or something, just 1291 // return whatever we want. 1292 ReturnInst::Create(Context, 1293 Constant::getNullValue(OldFnRetTy), TheSwitch); 1294 } 1295 1296 TheSwitch->eraseFromParent(); 1297 break; 1298 case 1: 1299 // Only a single destination, change the switch into an unconditional 1300 // branch. 1301 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1302 TheSwitch->eraseFromParent(); 1303 break; 1304 case 2: 1305 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1306 call, TheSwitch); 1307 TheSwitch->eraseFromParent(); 1308 break; 1309 default: 1310 // Otherwise, make the default destination of the switch instruction be one 1311 // of the other successors. 1312 TheSwitch->setCondition(call); 1313 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1314 // Remove redundant case 1315 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1316 break; 1317 } 1318 1319 // Insert lifetime markers around the reloads of any output values. The 1320 // allocas output values are stored in are only in-use in the codeRepl block. 1321 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1322 1323 return call; 1324 } 1325 1326 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1327 Function *oldFunc = (*Blocks.begin())->getParent(); 1328 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1329 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1330 1331 for (BasicBlock *Block : Blocks) { 1332 // Delete the basic block from the old function, and the list of blocks 1333 oldBlocks.remove(Block); 1334 1335 // Insert this basic block into the new function 1336 newBlocks.push_back(Block); 1337 } 1338 } 1339 1340 void CodeExtractor::calculateNewCallTerminatorWeights( 1341 BasicBlock *CodeReplacer, 1342 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1343 BranchProbabilityInfo *BPI) { 1344 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1345 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1346 1347 // Update the branch weights for the exit block. 1348 Instruction *TI = CodeReplacer->getTerminator(); 1349 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1350 1351 // Block Frequency distribution with dummy node. 1352 Distribution BranchDist; 1353 1354 // Add each of the frequencies of the successors. 1355 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1356 BlockNode ExitNode(i); 1357 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1358 if (ExitFreq != 0) 1359 BranchDist.addExit(ExitNode, ExitFreq); 1360 else 1361 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 1362 } 1363 1364 // Check for no total weight. 1365 if (BranchDist.Total == 0) 1366 return; 1367 1368 // Normalize the distribution so that they can fit in unsigned. 1369 BranchDist.normalize(); 1370 1371 // Create normalized branch weights and set the metadata. 1372 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1373 const auto &Weight = BranchDist.Weights[I]; 1374 1375 // Get the weight and update the current BFI. 1376 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1377 BranchProbability BP(Weight.Amount, BranchDist.Total); 1378 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 1379 } 1380 TI->setMetadata( 1381 LLVMContext::MD_prof, 1382 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1383 } 1384 1385 Function * 1386 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1387 if (!isEligible()) 1388 return nullptr; 1389 1390 // Assumption: this is a single-entry code region, and the header is the first 1391 // block in the region. 1392 BasicBlock *header = *Blocks.begin(); 1393 Function *oldFunction = header->getParent(); 1394 1395 // Calculate the entry frequency of the new function before we change the root 1396 // block. 1397 BlockFrequency EntryFreq; 1398 if (BFI) { 1399 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1400 for (BasicBlock *Pred : predecessors(header)) { 1401 if (Blocks.count(Pred)) 1402 continue; 1403 EntryFreq += 1404 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1405 } 1406 } 1407 1408 if (AC) { 1409 // Remove @llvm.assume calls that were moved to the new function from the 1410 // old function's assumption cache. 1411 for (BasicBlock *Block : Blocks) 1412 for (auto &I : *Block) 1413 if (match(&I, m_Intrinsic<Intrinsic::assume>())) 1414 AC->unregisterAssumption(cast<CallInst>(&I)); 1415 } 1416 1417 // If we have any return instructions in the region, split those blocks so 1418 // that the return is not in the region. 1419 splitReturnBlocks(); 1420 1421 // Calculate the exit blocks for the extracted region and the total exit 1422 // weights for each of those blocks. 1423 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1424 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1425 for (BasicBlock *Block : Blocks) { 1426 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1427 ++SI) { 1428 if (!Blocks.count(*SI)) { 1429 // Update the branch weight for this successor. 1430 if (BFI) { 1431 BlockFrequency &BF = ExitWeights[*SI]; 1432 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1433 } 1434 ExitBlocks.insert(*SI); 1435 } 1436 } 1437 } 1438 NumExitBlocks = ExitBlocks.size(); 1439 1440 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1441 severSplitPHINodesOfEntry(header); 1442 severSplitPHINodesOfExits(ExitBlocks); 1443 1444 // This takes place of the original loop 1445 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1446 "codeRepl", oldFunction, 1447 header); 1448 1449 // The new function needs a root node because other nodes can branch to the 1450 // head of the region, but the entry node of a function cannot have preds. 1451 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1452 "newFuncRoot"); 1453 auto *BranchI = BranchInst::Create(header); 1454 // If the original function has debug info, we have to add a debug location 1455 // to the new branch instruction from the artificial entry block. 1456 // We use the debug location of the first instruction in the extracted 1457 // blocks, as there is no other equivalent line in the source code. 1458 if (oldFunction->getSubprogram()) { 1459 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1460 return any_of(*BB, [&BranchI](const Instruction &I) { 1461 if (!I.getDebugLoc()) 1462 return false; 1463 BranchI->setDebugLoc(I.getDebugLoc()); 1464 return true; 1465 }); 1466 }); 1467 } 1468 newFuncRoot->getInstList().push_back(BranchI); 1469 1470 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1471 BasicBlock *CommonExit = nullptr; 1472 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1473 assert(HoistingCands.empty() || CommonExit); 1474 1475 // Find inputs to, outputs from the code region. 1476 findInputsOutputs(inputs, outputs, SinkingCands); 1477 1478 // Now sink all instructions which only have non-phi uses inside the region. 1479 // Group the allocas at the start of the block, so that any bitcast uses of 1480 // the allocas are well-defined. 1481 AllocaInst *FirstSunkAlloca = nullptr; 1482 for (auto *II : SinkingCands) { 1483 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1484 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1485 if (!FirstSunkAlloca) 1486 FirstSunkAlloca = AI; 1487 } 1488 } 1489 assert((SinkingCands.empty() || FirstSunkAlloca) && 1490 "Did not expect a sink candidate without any allocas"); 1491 for (auto *II : SinkingCands) { 1492 if (!isa<AllocaInst>(II)) { 1493 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1494 } 1495 } 1496 1497 if (!HoistingCands.empty()) { 1498 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1499 Instruction *TI = HoistToBlock->getTerminator(); 1500 for (auto *II : HoistingCands) 1501 cast<Instruction>(II)->moveBefore(TI); 1502 } 1503 1504 // Collect objects which are inputs to the extraction region and also 1505 // referenced by lifetime start markers within it. The effects of these 1506 // markers must be replicated in the calling function to prevent the stack 1507 // coloring pass from merging slots which store input objects. 1508 ValueSet LifetimesStart; 1509 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1510 1511 // Construct new function based on inputs/outputs & add allocas for all defs. 1512 Function *newFunction = 1513 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1514 oldFunction, oldFunction->getParent()); 1515 1516 // Update the entry count of the function. 1517 if (BFI) { 1518 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1519 if (Count.hasValue()) 1520 newFunction->setEntryCount( 1521 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1522 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1523 } 1524 1525 CallInst *TheCall = 1526 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1527 1528 moveCodeToFunction(newFunction); 1529 1530 // Replicate the effects of any lifetime start/end markers which referenced 1531 // input objects in the extraction region by placing markers around the call. 1532 insertLifetimeMarkersSurroundingCall( 1533 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1534 1535 // Propagate personality info to the new function if there is one. 1536 if (oldFunction->hasPersonalityFn()) 1537 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1538 1539 // Update the branch weights for the exit block. 1540 if (BFI && NumExitBlocks > 1) 1541 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1542 1543 // Loop over all of the PHI nodes in the header and exit blocks, and change 1544 // any references to the old incoming edge to be the new incoming edge. 1545 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1546 PHINode *PN = cast<PHINode>(I); 1547 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1548 if (!Blocks.count(PN->getIncomingBlock(i))) 1549 PN->setIncomingBlock(i, newFuncRoot); 1550 } 1551 1552 for (BasicBlock *ExitBB : ExitBlocks) 1553 for (PHINode &PN : ExitBB->phis()) { 1554 Value *IncomingCodeReplacerVal = nullptr; 1555 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1556 // Ignore incoming values from outside of the extracted region. 1557 if (!Blocks.count(PN.getIncomingBlock(i))) 1558 continue; 1559 1560 // Ensure that there is only one incoming value from codeReplacer. 1561 if (!IncomingCodeReplacerVal) { 1562 PN.setIncomingBlock(i, codeReplacer); 1563 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1564 } else 1565 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1566 "PHI has two incompatbile incoming values from codeRepl"); 1567 } 1568 } 1569 1570 // Erase debug info intrinsics. Variable updates within the new function are 1571 // invisible to debuggers. This could be improved by defining a DISubprogram 1572 // for the new function. 1573 for (BasicBlock &BB : *newFunction) { 1574 auto BlockIt = BB.begin(); 1575 // Remove debug info intrinsics from the new function. 1576 while (BlockIt != BB.end()) { 1577 Instruction *Inst = &*BlockIt; 1578 ++BlockIt; 1579 if (isa<DbgInfoIntrinsic>(Inst)) 1580 Inst->eraseFromParent(); 1581 } 1582 // Remove debug info intrinsics which refer to values in the new function 1583 // from the old function. 1584 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1585 for (Instruction &I : BB) 1586 findDbgUsers(DbgUsers, &I); 1587 for (DbgVariableIntrinsic *DVI : DbgUsers) 1588 DVI->eraseFromParent(); 1589 } 1590 1591 // Mark the new function `noreturn` if applicable. Terminators which resume 1592 // exception propagation are treated as returning instructions. This is to 1593 // avoid inserting traps after calls to outlined functions which unwind. 1594 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1595 const Instruction *Term = BB.getTerminator(); 1596 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1597 }); 1598 if (doesNotReturn) 1599 newFunction->setDoesNotReturn(); 1600 1601 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1602 newFunction->dump(); 1603 report_fatal_error("verification of newFunction failed!"); 1604 }); 1605 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1606 report_fatal_error("verification of oldFunction failed!")); 1607 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, AC)) 1608 report_fatal_error("Stale Asumption cache for old Function!")); 1609 return newFunction; 1610 } 1611 1612 bool CodeExtractor::verifyAssumptionCache(const Function& F, 1613 AssumptionCache *AC) { 1614 for (auto AssumeVH : AC->assumptions()) { 1615 CallInst *I = cast<CallInst>(AssumeVH); 1616 if (I->getFunction() != &F) 1617 return true; 1618 } 1619 return false; 1620 } 1621