1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <map> 69 #include <set> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 using namespace llvm::PatternMatch; 75 using ProfileCount = Function::ProfileCount; 76 77 #define DEBUG_TYPE "code-extractor" 78 79 // Provide a command-line option to aggregate function arguments into a struct 80 // for functions produced by the code extractor. This is useful when converting 81 // extracted functions to pthread-based code, as only one argument (void*) can 82 // be passed in to pthread_create(). 83 static cl::opt<bool> 84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 85 cl::desc("Aggregate arguments to code-extracted functions")); 86 87 /// Test whether a block is valid for extraction. 88 static bool isBlockValidForExtraction(const BasicBlock &BB, 89 const SetVector<BasicBlock *> &Result, 90 bool AllowVarArgs, bool AllowAlloca) { 91 // taking the address of a basic block moved to another function is illegal 92 if (BB.hasAddressTaken()) 93 return false; 94 95 // don't hoist code that uses another basicblock address, as it's likely to 96 // lead to unexpected behavior, like cross-function jumps 97 SmallPtrSet<User const *, 16> Visited; 98 SmallVector<User const *, 16> ToVisit; 99 100 for (Instruction const &Inst : BB) 101 ToVisit.push_back(&Inst); 102 103 while (!ToVisit.empty()) { 104 User const *Curr = ToVisit.pop_back_val(); 105 if (!Visited.insert(Curr).second) 106 continue; 107 if (isa<BlockAddress const>(Curr)) 108 return false; // even a reference to self is likely to be not compatible 109 110 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 111 continue; 112 113 for (auto const &U : Curr->operands()) { 114 if (auto *UU = dyn_cast<User>(U)) 115 ToVisit.push_back(UU); 116 } 117 } 118 119 // If explicitly requested, allow vastart and alloca. For invoke instructions 120 // verify that extraction is valid. 121 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 122 if (isa<AllocaInst>(I)) { 123 if (!AllowAlloca) 124 return false; 125 continue; 126 } 127 128 if (const auto *II = dyn_cast<InvokeInst>(I)) { 129 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 130 // must be a part of the subgraph which is being extracted. 131 if (auto *UBB = II->getUnwindDest()) 132 if (!Result.count(UBB)) 133 return false; 134 continue; 135 } 136 137 // All catch handlers of a catchswitch instruction as well as the unwind 138 // destination must be in the subgraph. 139 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 140 if (auto *UBB = CSI->getUnwindDest()) 141 if (!Result.count(UBB)) 142 return false; 143 for (auto *HBB : CSI->handlers()) 144 if (!Result.count(const_cast<BasicBlock*>(HBB))) 145 return false; 146 continue; 147 } 148 149 // Make sure that entire catch handler is within subgraph. It is sufficient 150 // to check that catch return's block is in the list. 151 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 152 for (const auto *U : CPI->users()) 153 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 154 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 155 return false; 156 continue; 157 } 158 159 // And do similar checks for cleanup handler - the entire handler must be 160 // in subgraph which is going to be extracted. For cleanup return should 161 // additionally check that the unwind destination is also in the subgraph. 162 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 163 for (const auto *U : CPI->users()) 164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 165 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 166 return false; 167 continue; 168 } 169 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 170 if (auto *UBB = CRI->getUnwindDest()) 171 if (!Result.count(UBB)) 172 return false; 173 continue; 174 } 175 176 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 177 if (const Function *F = CI->getCalledFunction()) { 178 auto IID = F->getIntrinsicID(); 179 if (IID == Intrinsic::vastart) { 180 if (AllowVarArgs) 181 continue; 182 else 183 return false; 184 } 185 186 // Currently, we miscompile outlined copies of eh_typid_for. There are 187 // proposals for fixing this in llvm.org/PR39545. 188 if (IID == Intrinsic::eh_typeid_for) 189 return false; 190 } 191 } 192 } 193 194 return true; 195 } 196 197 /// Build a set of blocks to extract if the input blocks are viable. 198 static SetVector<BasicBlock *> 199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 200 bool AllowVarArgs, bool AllowAlloca) { 201 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 202 SetVector<BasicBlock *> Result; 203 204 // Loop over the blocks, adding them to our set-vector, and aborting with an 205 // empty set if we encounter invalid blocks. 206 for (BasicBlock *BB : BBs) { 207 // If this block is dead, don't process it. 208 if (DT && !DT->isReachableFromEntry(BB)) 209 continue; 210 211 if (!Result.insert(BB)) 212 llvm_unreachable("Repeated basic blocks in extraction input"); 213 } 214 215 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 216 << '\n'); 217 218 for (auto *BB : Result) { 219 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 220 return {}; 221 222 // Make sure that the first block is not a landing pad. 223 if (BB == Result.front()) { 224 if (BB->isEHPad()) { 225 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 226 return {}; 227 } 228 continue; 229 } 230 231 // All blocks other than the first must not have predecessors outside of 232 // the subgraph which is being extracted. 233 for (auto *PBB : predecessors(BB)) 234 if (!Result.count(PBB)) { 235 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 236 "outside the region except for the first block!\n" 237 << "Problematic source BB: " << BB->getName() << "\n" 238 << "Problematic destination BB: " << PBB->getName() 239 << "\n"); 240 return {}; 241 } 242 } 243 244 return Result; 245 } 246 247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 248 bool AggregateArgs, BlockFrequencyInfo *BFI, 249 BranchProbabilityInfo *BPI, AssumptionCache *AC, 250 bool AllowVarArgs, bool AllowAlloca, 251 std::string Suffix) 252 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 253 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 254 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 255 Suffix(Suffix) {} 256 257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 258 BlockFrequencyInfo *BFI, 259 BranchProbabilityInfo *BPI, AssumptionCache *AC, 260 std::string Suffix) 261 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 262 BPI(BPI), AC(AC), AllowVarArgs(false), 263 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 264 /* AllowVarArgs */ false, 265 /* AllowAlloca */ false)), 266 Suffix(Suffix) {} 267 268 /// definedInRegion - Return true if the specified value is defined in the 269 /// extracted region. 270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 271 if (Instruction *I = dyn_cast<Instruction>(V)) 272 if (Blocks.count(I->getParent())) 273 return true; 274 return false; 275 } 276 277 /// definedInCaller - Return true if the specified value is defined in the 278 /// function being code extracted, but not in the region being extracted. 279 /// These values must be passed in as live-ins to the function. 280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 281 if (isa<Argument>(V)) return true; 282 if (Instruction *I = dyn_cast<Instruction>(V)) 283 if (!Blocks.count(I->getParent())) 284 return true; 285 return false; 286 } 287 288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 289 BasicBlock *CommonExitBlock = nullptr; 290 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 291 for (auto *Succ : successors(Block)) { 292 // Internal edges, ok. 293 if (Blocks.count(Succ)) 294 continue; 295 if (!CommonExitBlock) { 296 CommonExitBlock = Succ; 297 continue; 298 } 299 if (CommonExitBlock != Succ) 300 return true; 301 } 302 return false; 303 }; 304 305 if (any_of(Blocks, hasNonCommonExitSucc)) 306 return nullptr; 307 308 return CommonExitBlock; 309 } 310 311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 312 for (BasicBlock &BB : F) { 313 for (Instruction &II : BB.instructionsWithoutDebug()) 314 if (auto *AI = dyn_cast<AllocaInst>(&II)) 315 Allocas.push_back(AI); 316 317 findSideEffectInfoForBlock(BB); 318 } 319 } 320 321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 322 for (Instruction &II : BB.instructionsWithoutDebug()) { 323 unsigned Opcode = II.getOpcode(); 324 Value *MemAddr = nullptr; 325 switch (Opcode) { 326 case Instruction::Store: 327 case Instruction::Load: { 328 if (Opcode == Instruction::Store) { 329 StoreInst *SI = cast<StoreInst>(&II); 330 MemAddr = SI->getPointerOperand(); 331 } else { 332 LoadInst *LI = cast<LoadInst>(&II); 333 MemAddr = LI->getPointerOperand(); 334 } 335 // Global variable can not be aliased with locals. 336 if (isa<Constant>(MemAddr)) 337 break; 338 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 339 if (!isa<AllocaInst>(Base)) { 340 SideEffectingBlocks.insert(&BB); 341 return; 342 } 343 BaseMemAddrs[&BB].insert(Base); 344 break; 345 } 346 default: { 347 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 348 if (IntrInst) { 349 if (IntrInst->isLifetimeStartOrEnd()) 350 break; 351 SideEffectingBlocks.insert(&BB); 352 return; 353 } 354 // Treat all the other cases conservatively if it has side effects. 355 if (II.mayHaveSideEffects()) { 356 SideEffectingBlocks.insert(&BB); 357 return; 358 } 359 } 360 } 361 } 362 } 363 364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 365 BasicBlock &BB, AllocaInst *Addr) const { 366 if (SideEffectingBlocks.count(&BB)) 367 return true; 368 auto It = BaseMemAddrs.find(&BB); 369 if (It != BaseMemAddrs.end()) 370 return It->second.count(Addr); 371 return false; 372 } 373 374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 375 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 376 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 377 Function *Func = (*Blocks.begin())->getParent(); 378 for (BasicBlock &BB : *Func) { 379 if (Blocks.count(&BB)) 380 continue; 381 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 382 return false; 383 } 384 return true; 385 } 386 387 BasicBlock * 388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 389 BasicBlock *SinglePredFromOutlineRegion = nullptr; 390 assert(!Blocks.count(CommonExitBlock) && 391 "Expect a block outside the region!"); 392 for (auto *Pred : predecessors(CommonExitBlock)) { 393 if (!Blocks.count(Pred)) 394 continue; 395 if (!SinglePredFromOutlineRegion) { 396 SinglePredFromOutlineRegion = Pred; 397 } else if (SinglePredFromOutlineRegion != Pred) { 398 SinglePredFromOutlineRegion = nullptr; 399 break; 400 } 401 } 402 403 if (SinglePredFromOutlineRegion) 404 return SinglePredFromOutlineRegion; 405 406 #ifndef NDEBUG 407 auto getFirstPHI = [](BasicBlock *BB) { 408 BasicBlock::iterator I = BB->begin(); 409 PHINode *FirstPhi = nullptr; 410 while (I != BB->end()) { 411 PHINode *Phi = dyn_cast<PHINode>(I); 412 if (!Phi) 413 break; 414 if (!FirstPhi) { 415 FirstPhi = Phi; 416 break; 417 } 418 } 419 return FirstPhi; 420 }; 421 // If there are any phi nodes, the single pred either exists or has already 422 // be created before code extraction. 423 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 424 #endif 425 426 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 427 CommonExitBlock->getFirstNonPHI()->getIterator()); 428 429 for (BasicBlock *Pred : 430 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 431 if (Blocks.count(Pred)) 432 continue; 433 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 434 } 435 // Now add the old exit block to the outline region. 436 Blocks.insert(CommonExitBlock); 437 return CommonExitBlock; 438 } 439 440 // Find the pair of life time markers for address 'Addr' that are either 441 // defined inside the outline region or can legally be shrinkwrapped into the 442 // outline region. If there are not other untracked uses of the address, return 443 // the pair of markers if found; otherwise return a pair of nullptr. 444 CodeExtractor::LifetimeMarkerInfo 445 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 446 Instruction *Addr, 447 BasicBlock *ExitBlock) const { 448 LifetimeMarkerInfo Info; 449 450 for (User *U : Addr->users()) { 451 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 452 if (IntrInst) { 453 // We don't model addresses with multiple start/end markers, but the 454 // markers do not need to be in the region. 455 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 456 if (Info.LifeStart) 457 return {}; 458 Info.LifeStart = IntrInst; 459 continue; 460 } 461 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 462 if (Info.LifeEnd) 463 return {}; 464 Info.LifeEnd = IntrInst; 465 continue; 466 } 467 // At this point, permit debug uses outside of the region. 468 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 469 if (isa<DbgInfoIntrinsic>(IntrInst)) 470 continue; 471 } 472 // Find untracked uses of the address, bail. 473 if (!definedInRegion(Blocks, U)) 474 return {}; 475 } 476 477 if (!Info.LifeStart || !Info.LifeEnd) 478 return {}; 479 480 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 481 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 482 // Do legality check. 483 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 484 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 485 return {}; 486 487 // Check to see if we have a place to do hoisting, if not, bail. 488 if (Info.HoistLifeEnd && !ExitBlock) 489 return {}; 490 491 return Info; 492 } 493 494 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 495 ValueSet &SinkCands, ValueSet &HoistCands, 496 BasicBlock *&ExitBlock) const { 497 Function *Func = (*Blocks.begin())->getParent(); 498 ExitBlock = getCommonExitBlock(Blocks); 499 500 auto moveOrIgnoreLifetimeMarkers = 501 [&](const LifetimeMarkerInfo &LMI) -> bool { 502 if (!LMI.LifeStart) 503 return false; 504 if (LMI.SinkLifeStart) { 505 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 506 << "\n"); 507 SinkCands.insert(LMI.LifeStart); 508 } 509 if (LMI.HoistLifeEnd) { 510 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 511 HoistCands.insert(LMI.LifeEnd); 512 } 513 return true; 514 }; 515 516 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 517 // this is much faster than walking all the instructions. 518 for (AllocaInst *AI : CEAC.getAllocas()) { 519 BasicBlock *BB = AI->getParent(); 520 if (Blocks.count(BB)) 521 continue; 522 523 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 524 // check whether it is actually still in the original function. 525 Function *AIFunc = BB->getParent(); 526 if (AIFunc != Func) 527 continue; 528 529 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 530 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 531 if (Moved) { 532 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 533 SinkCands.insert(AI); 534 continue; 535 } 536 537 // Find bitcasts in the outlined region that have lifetime marker users 538 // outside that region. Replace the lifetime marker use with an 539 // outside region bitcast to avoid unnecessary alloca/reload instructions 540 // and extra lifetime markers. 541 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 542 for (User *U : AI->users()) { 543 if (!definedInRegion(Blocks, U)) 544 continue; 545 546 if (U->stripInBoundsConstantOffsets() != AI) 547 continue; 548 549 Instruction *Bitcast = cast<Instruction>(U); 550 for (User *BU : Bitcast->users()) { 551 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 552 if (!IntrInst) 553 continue; 554 555 if (!IntrInst->isLifetimeStartOrEnd()) 556 continue; 557 558 if (definedInRegion(Blocks, IntrInst)) 559 continue; 560 561 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 562 << *Bitcast << " in out-of-region lifetime marker " 563 << *IntrInst << "\n"); 564 LifetimeBitcastUsers.push_back(IntrInst); 565 } 566 } 567 568 for (Instruction *I : LifetimeBitcastUsers) { 569 Module *M = AIFunc->getParent(); 570 LLVMContext &Ctx = M->getContext(); 571 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 572 CastInst *CastI = 573 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); 574 I->replaceUsesOfWith(I->getOperand(1), CastI); 575 } 576 577 // Follow any bitcasts. 578 SmallVector<Instruction *, 2> Bitcasts; 579 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 580 for (User *U : AI->users()) { 581 if (U->stripInBoundsConstantOffsets() == AI) { 582 Instruction *Bitcast = cast<Instruction>(U); 583 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 584 if (LMI.LifeStart) { 585 Bitcasts.push_back(Bitcast); 586 BitcastLifetimeInfo.push_back(LMI); 587 continue; 588 } 589 } 590 591 // Found unknown use of AI. 592 if (!definedInRegion(Blocks, U)) { 593 Bitcasts.clear(); 594 break; 595 } 596 } 597 598 // Either no bitcasts reference the alloca or there are unknown uses. 599 if (Bitcasts.empty()) 600 continue; 601 602 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 603 SinkCands.insert(AI); 604 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 605 Instruction *BitcastAddr = Bitcasts[I]; 606 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 607 assert(LMI.LifeStart && 608 "Unsafe to sink bitcast without lifetime markers"); 609 moveOrIgnoreLifetimeMarkers(LMI); 610 if (!definedInRegion(Blocks, BitcastAddr)) { 611 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 612 << "\n"); 613 SinkCands.insert(BitcastAddr); 614 } 615 } 616 } 617 } 618 619 bool CodeExtractor::isEligible() const { 620 if (Blocks.empty()) 621 return false; 622 BasicBlock *Header = *Blocks.begin(); 623 Function *F = Header->getParent(); 624 625 // For functions with varargs, check that varargs handling is only done in the 626 // outlined function, i.e vastart and vaend are only used in outlined blocks. 627 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 628 auto containsVarArgIntrinsic = [](const Instruction &I) { 629 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 630 if (const Function *Callee = CI->getCalledFunction()) 631 return Callee->getIntrinsicID() == Intrinsic::vastart || 632 Callee->getIntrinsicID() == Intrinsic::vaend; 633 return false; 634 }; 635 636 for (auto &BB : *F) { 637 if (Blocks.count(&BB)) 638 continue; 639 if (llvm::any_of(BB, containsVarArgIntrinsic)) 640 return false; 641 } 642 } 643 return true; 644 } 645 646 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 647 const ValueSet &SinkCands) const { 648 for (BasicBlock *BB : Blocks) { 649 // If a used value is defined outside the region, it's an input. If an 650 // instruction is used outside the region, it's an output. 651 for (Instruction &II : *BB) { 652 for (auto &OI : II.operands()) { 653 Value *V = OI; 654 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 655 Inputs.insert(V); 656 } 657 658 for (User *U : II.users()) 659 if (!definedInRegion(Blocks, U)) { 660 Outputs.insert(&II); 661 break; 662 } 663 } 664 } 665 } 666 667 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 668 /// of the region, we need to split the entry block of the region so that the 669 /// PHI node is easier to deal with. 670 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 671 unsigned NumPredsFromRegion = 0; 672 unsigned NumPredsOutsideRegion = 0; 673 674 if (Header != &Header->getParent()->getEntryBlock()) { 675 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 676 if (!PN) return; // No PHI nodes. 677 678 // If the header node contains any PHI nodes, check to see if there is more 679 // than one entry from outside the region. If so, we need to sever the 680 // header block into two. 681 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 682 if (Blocks.count(PN->getIncomingBlock(i))) 683 ++NumPredsFromRegion; 684 else 685 ++NumPredsOutsideRegion; 686 687 // If there is one (or fewer) predecessor from outside the region, we don't 688 // need to do anything special. 689 if (NumPredsOutsideRegion <= 1) return; 690 } 691 692 // Otherwise, we need to split the header block into two pieces: one 693 // containing PHI nodes merging values from outside of the region, and a 694 // second that contains all of the code for the block and merges back any 695 // incoming values from inside of the region. 696 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 697 698 // We only want to code extract the second block now, and it becomes the new 699 // header of the region. 700 BasicBlock *OldPred = Header; 701 Blocks.remove(OldPred); 702 Blocks.insert(NewBB); 703 Header = NewBB; 704 705 // Okay, now we need to adjust the PHI nodes and any branches from within the 706 // region to go to the new header block instead of the old header block. 707 if (NumPredsFromRegion) { 708 PHINode *PN = cast<PHINode>(OldPred->begin()); 709 // Loop over all of the predecessors of OldPred that are in the region, 710 // changing them to branch to NewBB instead. 711 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 712 if (Blocks.count(PN->getIncomingBlock(i))) { 713 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 714 TI->replaceUsesOfWith(OldPred, NewBB); 715 } 716 717 // Okay, everything within the region is now branching to the right block, we 718 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 719 BasicBlock::iterator AfterPHIs; 720 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 721 PHINode *PN = cast<PHINode>(AfterPHIs); 722 // Create a new PHI node in the new region, which has an incoming value 723 // from OldPred of PN. 724 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 725 PN->getName() + ".ce", &NewBB->front()); 726 PN->replaceAllUsesWith(NewPN); 727 NewPN->addIncoming(PN, OldPred); 728 729 // Loop over all of the incoming value in PN, moving them to NewPN if they 730 // are from the extracted region. 731 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 732 if (Blocks.count(PN->getIncomingBlock(i))) { 733 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 734 PN->removeIncomingValue(i); 735 --i; 736 } 737 } 738 } 739 } 740 } 741 742 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 743 /// outlined region, we split these PHIs on two: one with inputs from region 744 /// and other with remaining incoming blocks; then first PHIs are placed in 745 /// outlined region. 746 void CodeExtractor::severSplitPHINodesOfExits( 747 const SmallPtrSetImpl<BasicBlock *> &Exits) { 748 for (BasicBlock *ExitBB : Exits) { 749 BasicBlock *NewBB = nullptr; 750 751 for (PHINode &PN : ExitBB->phis()) { 752 // Find all incoming values from the outlining region. 753 SmallVector<unsigned, 2> IncomingVals; 754 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 755 if (Blocks.count(PN.getIncomingBlock(i))) 756 IncomingVals.push_back(i); 757 758 // Do not process PHI if there is one (or fewer) predecessor from region. 759 // If PHI has exactly one predecessor from region, only this one incoming 760 // will be replaced on codeRepl block, so it should be safe to skip PHI. 761 if (IncomingVals.size() <= 1) 762 continue; 763 764 // Create block for new PHIs and add it to the list of outlined if it 765 // wasn't done before. 766 if (!NewBB) { 767 NewBB = BasicBlock::Create(ExitBB->getContext(), 768 ExitBB->getName() + ".split", 769 ExitBB->getParent(), ExitBB); 770 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 771 for (BasicBlock *PredBB : Preds) 772 if (Blocks.count(PredBB)) 773 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 774 BranchInst::Create(ExitBB, NewBB); 775 Blocks.insert(NewBB); 776 } 777 778 // Split this PHI. 779 PHINode *NewPN = 780 PHINode::Create(PN.getType(), IncomingVals.size(), 781 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 782 for (unsigned i : IncomingVals) 783 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 784 for (unsigned i : reverse(IncomingVals)) 785 PN.removeIncomingValue(i, false); 786 PN.addIncoming(NewPN, NewBB); 787 } 788 } 789 } 790 791 void CodeExtractor::splitReturnBlocks() { 792 for (BasicBlock *Block : Blocks) 793 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 794 BasicBlock *New = 795 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 796 if (DT) { 797 // Old dominates New. New node dominates all other nodes dominated 798 // by Old. 799 DomTreeNode *OldNode = DT->getNode(Block); 800 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 801 OldNode->end()); 802 803 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 804 805 for (DomTreeNode *I : Children) 806 DT->changeImmediateDominator(I, NewNode); 807 } 808 } 809 } 810 811 /// constructFunction - make a function based on inputs and outputs, as follows: 812 /// f(in0, ..., inN, out0, ..., outN) 813 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 814 const ValueSet &outputs, 815 BasicBlock *header, 816 BasicBlock *newRootNode, 817 BasicBlock *newHeader, 818 Function *oldFunction, 819 Module *M) { 820 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 821 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 822 823 // This function returns unsigned, outputs will go back by reference. 824 switch (NumExitBlocks) { 825 case 0: 826 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 827 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 828 default: RetTy = Type::getInt16Ty(header->getContext()); break; 829 } 830 831 std::vector<Type *> paramTy; 832 833 // Add the types of the input values to the function's argument list 834 for (Value *value : inputs) { 835 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 836 paramTy.push_back(value->getType()); 837 } 838 839 // Add the types of the output values to the function's argument list. 840 for (Value *output : outputs) { 841 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 842 if (AggregateArgs) 843 paramTy.push_back(output->getType()); 844 else 845 paramTy.push_back(PointerType::getUnqual(output->getType())); 846 } 847 848 LLVM_DEBUG({ 849 dbgs() << "Function type: " << *RetTy << " f("; 850 for (Type *i : paramTy) 851 dbgs() << *i << ", "; 852 dbgs() << ")\n"; 853 }); 854 855 StructType *StructTy = nullptr; 856 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 857 StructTy = StructType::get(M->getContext(), paramTy); 858 paramTy.clear(); 859 paramTy.push_back(PointerType::getUnqual(StructTy)); 860 } 861 FunctionType *funcType = 862 FunctionType::get(RetTy, paramTy, 863 AllowVarArgs && oldFunction->isVarArg()); 864 865 std::string SuffixToUse = 866 Suffix.empty() 867 ? (header->getName().empty() ? "extracted" : header->getName().str()) 868 : Suffix; 869 // Create the new function 870 Function *newFunction = Function::Create( 871 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 872 oldFunction->getName() + "." + SuffixToUse, M); 873 // If the old function is no-throw, so is the new one. 874 if (oldFunction->doesNotThrow()) 875 newFunction->setDoesNotThrow(); 876 877 // Inherit the uwtable attribute if we need to. 878 if (oldFunction->hasUWTable()) 879 newFunction->setHasUWTable(); 880 881 // Inherit all of the target dependent attributes and white-listed 882 // target independent attributes. 883 // (e.g. If the extracted region contains a call to an x86.sse 884 // instruction we need to make sure that the extracted region has the 885 // "target-features" attribute allowing it to be lowered. 886 // FIXME: This should be changed to check to see if a specific 887 // attribute can not be inherited. 888 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 889 if (Attr.isStringAttribute()) { 890 if (Attr.getKindAsString() == "thunk") 891 continue; 892 } else 893 switch (Attr.getKindAsEnum()) { 894 // Those attributes cannot be propagated safely. Explicitly list them 895 // here so we get a warning if new attributes are added. This list also 896 // includes non-function attributes. 897 case Attribute::Alignment: 898 case Attribute::AllocSize: 899 case Attribute::ArgMemOnly: 900 case Attribute::Builtin: 901 case Attribute::ByVal: 902 case Attribute::Convergent: 903 case Attribute::Dereferenceable: 904 case Attribute::DereferenceableOrNull: 905 case Attribute::ElementType: 906 case Attribute::InAlloca: 907 case Attribute::InReg: 908 case Attribute::InaccessibleMemOnly: 909 case Attribute::InaccessibleMemOrArgMemOnly: 910 case Attribute::JumpTable: 911 case Attribute::Naked: 912 case Attribute::Nest: 913 case Attribute::NoAlias: 914 case Attribute::NoBuiltin: 915 case Attribute::NoCapture: 916 case Attribute::NoMerge: 917 case Attribute::NoReturn: 918 case Attribute::NoSync: 919 case Attribute::NoUndef: 920 case Attribute::None: 921 case Attribute::NonNull: 922 case Attribute::Preallocated: 923 case Attribute::ReadNone: 924 case Attribute::ReadOnly: 925 case Attribute::Returned: 926 case Attribute::ReturnsTwice: 927 case Attribute::SExt: 928 case Attribute::Speculatable: 929 case Attribute::StackAlignment: 930 case Attribute::StructRet: 931 case Attribute::SwiftError: 932 case Attribute::SwiftSelf: 933 case Attribute::SwiftAsync: 934 case Attribute::WillReturn: 935 case Attribute::WriteOnly: 936 case Attribute::ZExt: 937 case Attribute::ImmArg: 938 case Attribute::ByRef: 939 case Attribute::EndAttrKinds: 940 case Attribute::EmptyKey: 941 case Attribute::TombstoneKey: 942 continue; 943 // Those attributes should be safe to propagate to the extracted function. 944 case Attribute::AlwaysInline: 945 case Attribute::Cold: 946 case Attribute::Hot: 947 case Attribute::NoRecurse: 948 case Attribute::InlineHint: 949 case Attribute::MinSize: 950 case Attribute::NoCallback: 951 case Attribute::NoDuplicate: 952 case Attribute::NoFree: 953 case Attribute::NoImplicitFloat: 954 case Attribute::NoInline: 955 case Attribute::NonLazyBind: 956 case Attribute::NoRedZone: 957 case Attribute::NoUnwind: 958 case Attribute::NoSanitizeCoverage: 959 case Attribute::NullPointerIsValid: 960 case Attribute::OptForFuzzing: 961 case Attribute::OptimizeNone: 962 case Attribute::OptimizeForSize: 963 case Attribute::SafeStack: 964 case Attribute::ShadowCallStack: 965 case Attribute::SanitizeAddress: 966 case Attribute::SanitizeMemory: 967 case Attribute::SanitizeThread: 968 case Attribute::SanitizeHWAddress: 969 case Attribute::SanitizeMemTag: 970 case Attribute::SpeculativeLoadHardening: 971 case Attribute::StackProtect: 972 case Attribute::StackProtectReq: 973 case Attribute::StackProtectStrong: 974 case Attribute::StrictFP: 975 case Attribute::UWTable: 976 case Attribute::VScaleRange: 977 case Attribute::NoCfCheck: 978 case Attribute::MustProgress: 979 case Attribute::NoProfile: 980 break; 981 } 982 983 newFunction->addFnAttr(Attr); 984 } 985 newFunction->getBasicBlockList().push_back(newRootNode); 986 987 // Create an iterator to name all of the arguments we inserted. 988 Function::arg_iterator AI = newFunction->arg_begin(); 989 990 // Rewrite all users of the inputs in the extracted region to use the 991 // arguments (or appropriate addressing into struct) instead. 992 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 993 Value *RewriteVal; 994 if (AggregateArgs) { 995 Value *Idx[2]; 996 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 997 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 998 Instruction *TI = newFunction->begin()->getTerminator(); 999 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1000 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 1001 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 1002 "loadgep_" + inputs[i]->getName(), TI); 1003 } else 1004 RewriteVal = &*AI++; 1005 1006 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1007 for (User *use : Users) 1008 if (Instruction *inst = dyn_cast<Instruction>(use)) 1009 if (Blocks.count(inst->getParent())) 1010 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1011 } 1012 1013 // Set names for input and output arguments. 1014 if (!AggregateArgs) { 1015 AI = newFunction->arg_begin(); 1016 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 1017 AI->setName(inputs[i]->getName()); 1018 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 1019 AI->setName(outputs[i]->getName()+".out"); 1020 } 1021 1022 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1023 // within the new function. This must be done before we lose track of which 1024 // blocks were originally in the code region. 1025 std::vector<User *> Users(header->user_begin(), header->user_end()); 1026 for (auto &U : Users) 1027 // The BasicBlock which contains the branch is not in the region 1028 // modify the branch target to a new block 1029 if (Instruction *I = dyn_cast<Instruction>(U)) 1030 if (I->isTerminator() && I->getFunction() == oldFunction && 1031 !Blocks.count(I->getParent())) 1032 I->replaceUsesOfWith(header, newHeader); 1033 1034 return newFunction; 1035 } 1036 1037 /// Erase lifetime.start markers which reference inputs to the extraction 1038 /// region, and insert the referenced memory into \p LifetimesStart. 1039 /// 1040 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1041 /// of allocas which will be moved from the caller function into the extracted 1042 /// function (\p SunkAllocas). 1043 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1044 const SetVector<Value *> &SunkAllocas, 1045 SetVector<Value *> &LifetimesStart) { 1046 for (BasicBlock *BB : Blocks) { 1047 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1048 auto *II = dyn_cast<IntrinsicInst>(&*It); 1049 ++It; 1050 if (!II || !II->isLifetimeStartOrEnd()) 1051 continue; 1052 1053 // Get the memory operand of the lifetime marker. If the underlying 1054 // object is a sunk alloca, or is otherwise defined in the extraction 1055 // region, the lifetime marker must not be erased. 1056 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1057 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1058 continue; 1059 1060 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1061 LifetimesStart.insert(Mem); 1062 II->eraseFromParent(); 1063 } 1064 } 1065 } 1066 1067 /// Insert lifetime start/end markers surrounding the call to the new function 1068 /// for objects defined in the caller. 1069 static void insertLifetimeMarkersSurroundingCall( 1070 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1071 CallInst *TheCall) { 1072 LLVMContext &Ctx = M->getContext(); 1073 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1074 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1075 Instruction *Term = TheCall->getParent()->getTerminator(); 1076 1077 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1078 // needed to satisfy this requirement so they may be reused. 1079 DenseMap<Value *, Value *> Bitcasts; 1080 1081 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1082 // markers before the call if \p InsertBefore, and after the call otherwise. 1083 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1084 bool InsertBefore) { 1085 for (Value *Mem : Objects) { 1086 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1087 TheCall->getFunction()) && 1088 "Input memory not defined in original function"); 1089 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1090 if (!MemAsI8Ptr) { 1091 if (Mem->getType() == Int8PtrTy) 1092 MemAsI8Ptr = Mem; 1093 else 1094 MemAsI8Ptr = 1095 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1096 } 1097 1098 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1099 if (InsertBefore) 1100 Marker->insertBefore(TheCall); 1101 else 1102 Marker->insertBefore(Term); 1103 } 1104 }; 1105 1106 if (!LifetimesStart.empty()) { 1107 auto StartFn = llvm::Intrinsic::getDeclaration( 1108 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1109 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1110 } 1111 1112 if (!LifetimesEnd.empty()) { 1113 auto EndFn = llvm::Intrinsic::getDeclaration( 1114 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1115 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1116 } 1117 } 1118 1119 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1120 /// the call instruction, splitting any PHI nodes in the header block as 1121 /// necessary. 1122 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1123 BasicBlock *codeReplacer, 1124 ValueSet &inputs, 1125 ValueSet &outputs) { 1126 // Emit a call to the new function, passing in: *pointer to struct (if 1127 // aggregating parameters), or plan inputs and allocated memory for outputs 1128 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 1129 1130 Module *M = newFunction->getParent(); 1131 LLVMContext &Context = M->getContext(); 1132 const DataLayout &DL = M->getDataLayout(); 1133 CallInst *call = nullptr; 1134 1135 // Add inputs as params, or to be filled into the struct 1136 unsigned ArgNo = 0; 1137 SmallVector<unsigned, 1> SwiftErrorArgs; 1138 for (Value *input : inputs) { 1139 if (AggregateArgs) 1140 StructValues.push_back(input); 1141 else { 1142 params.push_back(input); 1143 if (input->isSwiftError()) 1144 SwiftErrorArgs.push_back(ArgNo); 1145 } 1146 ++ArgNo; 1147 } 1148 1149 // Create allocas for the outputs 1150 for (Value *output : outputs) { 1151 if (AggregateArgs) { 1152 StructValues.push_back(output); 1153 } else { 1154 AllocaInst *alloca = 1155 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1156 nullptr, output->getName() + ".loc", 1157 &codeReplacer->getParent()->front().front()); 1158 ReloadOutputs.push_back(alloca); 1159 params.push_back(alloca); 1160 } 1161 } 1162 1163 StructType *StructArgTy = nullptr; 1164 AllocaInst *Struct = nullptr; 1165 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1166 std::vector<Type *> ArgTypes; 1167 for (Value *V : StructValues) 1168 ArgTypes.push_back(V->getType()); 1169 1170 // Allocate a struct at the beginning of this function 1171 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1172 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1173 "structArg", 1174 &codeReplacer->getParent()->front().front()); 1175 params.push_back(Struct); 1176 1177 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1178 Value *Idx[2]; 1179 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1180 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1181 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1182 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1183 codeReplacer->getInstList().push_back(GEP); 1184 new StoreInst(StructValues[i], GEP, codeReplacer); 1185 } 1186 } 1187 1188 // Emit the call to the function 1189 call = CallInst::Create(newFunction, params, 1190 NumExitBlocks > 1 ? "targetBlock" : ""); 1191 // Add debug location to the new call, if the original function has debug 1192 // info. In that case, the terminator of the entry block of the extracted 1193 // function contains the first debug location of the extracted function, 1194 // set in extractCodeRegion. 1195 if (codeReplacer->getParent()->getSubprogram()) { 1196 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1197 call->setDebugLoc(DL); 1198 } 1199 codeReplacer->getInstList().push_back(call); 1200 1201 // Set swifterror parameter attributes. 1202 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1203 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1204 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1205 } 1206 1207 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1208 unsigned FirstOut = inputs.size(); 1209 if (!AggregateArgs) 1210 std::advance(OutputArgBegin, inputs.size()); 1211 1212 // Reload the outputs passed in by reference. 1213 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1214 Value *Output = nullptr; 1215 if (AggregateArgs) { 1216 Value *Idx[2]; 1217 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1218 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1219 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1220 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1221 codeReplacer->getInstList().push_back(GEP); 1222 Output = GEP; 1223 } else { 1224 Output = ReloadOutputs[i]; 1225 } 1226 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1227 outputs[i]->getName() + ".reload", 1228 codeReplacer); 1229 Reloads.push_back(load); 1230 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1231 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1232 Instruction *inst = cast<Instruction>(Users[u]); 1233 if (!Blocks.count(inst->getParent())) 1234 inst->replaceUsesOfWith(outputs[i], load); 1235 } 1236 } 1237 1238 // Now we can emit a switch statement using the call as a value. 1239 SwitchInst *TheSwitch = 1240 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1241 codeReplacer, 0, codeReplacer); 1242 1243 // Since there may be multiple exits from the original region, make the new 1244 // function return an unsigned, switch on that number. This loop iterates 1245 // over all of the blocks in the extracted region, updating any terminator 1246 // instructions in the to-be-extracted region that branch to blocks that are 1247 // not in the region to be extracted. 1248 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1249 1250 unsigned switchVal = 0; 1251 for (BasicBlock *Block : Blocks) { 1252 Instruction *TI = Block->getTerminator(); 1253 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1254 if (!Blocks.count(TI->getSuccessor(i))) { 1255 BasicBlock *OldTarget = TI->getSuccessor(i); 1256 // add a new basic block which returns the appropriate value 1257 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1258 if (!NewTarget) { 1259 // If we don't already have an exit stub for this non-extracted 1260 // destination, create one now! 1261 NewTarget = BasicBlock::Create(Context, 1262 OldTarget->getName() + ".exitStub", 1263 newFunction); 1264 unsigned SuccNum = switchVal++; 1265 1266 Value *brVal = nullptr; 1267 switch (NumExitBlocks) { 1268 case 0: 1269 case 1: break; // No value needed. 1270 case 2: // Conditional branch, return a bool 1271 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1272 break; 1273 default: 1274 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1275 break; 1276 } 1277 1278 ReturnInst::Create(Context, brVal, NewTarget); 1279 1280 // Update the switch instruction. 1281 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1282 SuccNum), 1283 OldTarget); 1284 } 1285 1286 // rewrite the original branch instruction with this new target 1287 TI->setSuccessor(i, NewTarget); 1288 } 1289 } 1290 1291 // Store the arguments right after the definition of output value. 1292 // This should be proceeded after creating exit stubs to be ensure that invoke 1293 // result restore will be placed in the outlined function. 1294 Function::arg_iterator OAI = OutputArgBegin; 1295 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1296 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1297 if (!OutI) 1298 continue; 1299 1300 // Find proper insertion point. 1301 BasicBlock::iterator InsertPt; 1302 // In case OutI is an invoke, we insert the store at the beginning in the 1303 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1304 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1305 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1306 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1307 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1308 else 1309 InsertPt = std::next(OutI->getIterator()); 1310 1311 Instruction *InsertBefore = &*InsertPt; 1312 assert((InsertBefore->getFunction() == newFunction || 1313 Blocks.count(InsertBefore->getParent())) && 1314 "InsertPt should be in new function"); 1315 assert(OAI != newFunction->arg_end() && 1316 "Number of output arguments should match " 1317 "the amount of defined values"); 1318 if (AggregateArgs) { 1319 Value *Idx[2]; 1320 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1321 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1322 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1323 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1324 InsertBefore); 1325 new StoreInst(outputs[i], GEP, InsertBefore); 1326 // Since there should be only one struct argument aggregating 1327 // all the output values, we shouldn't increment OAI, which always 1328 // points to the struct argument, in this case. 1329 } else { 1330 new StoreInst(outputs[i], &*OAI, InsertBefore); 1331 ++OAI; 1332 } 1333 } 1334 1335 // Now that we've done the deed, simplify the switch instruction. 1336 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1337 switch (NumExitBlocks) { 1338 case 0: 1339 // There are no successors (the block containing the switch itself), which 1340 // means that previously this was the last part of the function, and hence 1341 // this should be rewritten as a `ret' 1342 1343 // Check if the function should return a value 1344 if (OldFnRetTy->isVoidTy()) { 1345 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1346 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1347 // return what we have 1348 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1349 } else { 1350 // Otherwise we must have code extracted an unwind or something, just 1351 // return whatever we want. 1352 ReturnInst::Create(Context, 1353 Constant::getNullValue(OldFnRetTy), TheSwitch); 1354 } 1355 1356 TheSwitch->eraseFromParent(); 1357 break; 1358 case 1: 1359 // Only a single destination, change the switch into an unconditional 1360 // branch. 1361 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1362 TheSwitch->eraseFromParent(); 1363 break; 1364 case 2: 1365 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1366 call, TheSwitch); 1367 TheSwitch->eraseFromParent(); 1368 break; 1369 default: 1370 // Otherwise, make the default destination of the switch instruction be one 1371 // of the other successors. 1372 TheSwitch->setCondition(call); 1373 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1374 // Remove redundant case 1375 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1376 break; 1377 } 1378 1379 // Insert lifetime markers around the reloads of any output values. The 1380 // allocas output values are stored in are only in-use in the codeRepl block. 1381 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1382 1383 return call; 1384 } 1385 1386 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1387 Function *oldFunc = (*Blocks.begin())->getParent(); 1388 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1389 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1390 1391 for (BasicBlock *Block : Blocks) { 1392 // Delete the basic block from the old function, and the list of blocks 1393 oldBlocks.remove(Block); 1394 1395 // Insert this basic block into the new function 1396 newBlocks.push_back(Block); 1397 } 1398 } 1399 1400 void CodeExtractor::calculateNewCallTerminatorWeights( 1401 BasicBlock *CodeReplacer, 1402 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1403 BranchProbabilityInfo *BPI) { 1404 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1405 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1406 1407 // Update the branch weights for the exit block. 1408 Instruction *TI = CodeReplacer->getTerminator(); 1409 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1410 1411 // Block Frequency distribution with dummy node. 1412 Distribution BranchDist; 1413 1414 SmallVector<BranchProbability, 4> EdgeProbabilities( 1415 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1416 1417 // Add each of the frequencies of the successors. 1418 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1419 BlockNode ExitNode(i); 1420 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1421 if (ExitFreq != 0) 1422 BranchDist.addExit(ExitNode, ExitFreq); 1423 else 1424 EdgeProbabilities[i] = BranchProbability::getZero(); 1425 } 1426 1427 // Check for no total weight. 1428 if (BranchDist.Total == 0) { 1429 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1430 return; 1431 } 1432 1433 // Normalize the distribution so that they can fit in unsigned. 1434 BranchDist.normalize(); 1435 1436 // Create normalized branch weights and set the metadata. 1437 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1438 const auto &Weight = BranchDist.Weights[I]; 1439 1440 // Get the weight and update the current BFI. 1441 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1442 BranchProbability BP(Weight.Amount, BranchDist.Total); 1443 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1444 } 1445 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1446 TI->setMetadata( 1447 LLVMContext::MD_prof, 1448 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1449 } 1450 1451 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1452 /// \p F. 1453 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1454 for (Instruction &I : instructions(F)) { 1455 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1456 findDbgUsers(DbgUsers, &I); 1457 for (DbgVariableIntrinsic *DVI : DbgUsers) 1458 if (DVI->getFunction() != &F) 1459 DVI->eraseFromParent(); 1460 } 1461 } 1462 1463 /// Fix up the debug info in the old and new functions by pointing line 1464 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1465 /// intrinsics which point to values outside of the new function. 1466 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1467 CallInst &TheCall) { 1468 DISubprogram *OldSP = OldFunc.getSubprogram(); 1469 LLVMContext &Ctx = OldFunc.getContext(); 1470 1471 if (!OldSP) { 1472 // Erase any debug info the new function contains. 1473 stripDebugInfo(NewFunc); 1474 // Make sure the old function doesn't contain any non-local metadata refs. 1475 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1476 return; 1477 } 1478 1479 // Create a subprogram for the new function. Leave out a description of the 1480 // function arguments, as the parameters don't correspond to anything at the 1481 // source level. 1482 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1483 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1484 OldSP->getUnit()); 1485 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1486 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1487 DISubprogram::SPFlagOptimized | 1488 DISubprogram::SPFlagLocalToUnit; 1489 auto NewSP = DIB.createFunction( 1490 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1491 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1492 NewFunc.setSubprogram(NewSP); 1493 1494 // Debug intrinsics in the new function need to be updated in one of two 1495 // ways: 1496 // 1) They need to be deleted, because they describe a value in the old 1497 // function. 1498 // 2) They need to point to fresh metadata, e.g. because they currently 1499 // point to a variable in the wrong scope. 1500 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1501 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1502 for (Instruction &I : instructions(NewFunc)) { 1503 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1504 if (!DII) 1505 continue; 1506 1507 // Point the intrinsic to a fresh label within the new function. 1508 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1509 DILabel *OldLabel = DLI->getLabel(); 1510 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1511 if (!NewLabel) 1512 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1513 OldLabel->getFile(), OldLabel->getLine()); 1514 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1515 continue; 1516 } 1517 1518 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1519 // Location is invalid if it isn't a constant or an instruction, or is an 1520 // instruction but isn't in the new function. 1521 if (!Location || 1522 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1523 return true; 1524 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1525 return LocationInst && LocationInst->getFunction() != &NewFunc; 1526 }; 1527 1528 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1529 // If any of the used locations are invalid, delete the intrinsic. 1530 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1531 DebugIntrinsicsToDelete.push_back(DVI); 1532 continue; 1533 } 1534 1535 // Point the intrinsic to a fresh variable within the new function. 1536 DILocalVariable *OldVar = DVI->getVariable(); 1537 DINode *&NewVar = RemappedMetadata[OldVar]; 1538 if (!NewVar) 1539 NewVar = DIB.createAutoVariable( 1540 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1541 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1542 OldVar->getAlignInBits()); 1543 DVI->setVariable(cast<DILocalVariable>(NewVar)); 1544 } 1545 for (auto *DII : DebugIntrinsicsToDelete) 1546 DII->eraseFromParent(); 1547 DIB.finalizeSubprogram(NewSP); 1548 1549 // Fix up the scope information attached to the line locations in the new 1550 // function. 1551 for (Instruction &I : instructions(NewFunc)) { 1552 if (const DebugLoc &DL = I.getDebugLoc()) 1553 I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP)); 1554 1555 // Loop info metadata may contain line locations. Fix them up. 1556 auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * { 1557 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1558 return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP, 1559 nullptr); 1560 return MD; 1561 }; 1562 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1563 } 1564 if (!TheCall.getDebugLoc()) 1565 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1566 1567 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1568 } 1569 1570 Function * 1571 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1572 if (!isEligible()) 1573 return nullptr; 1574 1575 // Assumption: this is a single-entry code region, and the header is the first 1576 // block in the region. 1577 BasicBlock *header = *Blocks.begin(); 1578 Function *oldFunction = header->getParent(); 1579 1580 // Calculate the entry frequency of the new function before we change the root 1581 // block. 1582 BlockFrequency EntryFreq; 1583 if (BFI) { 1584 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1585 for (BasicBlock *Pred : predecessors(header)) { 1586 if (Blocks.count(Pred)) 1587 continue; 1588 EntryFreq += 1589 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1590 } 1591 } 1592 1593 // Remove @llvm.assume calls that will be moved to the new function from the 1594 // old function's assumption cache. 1595 for (BasicBlock *Block : Blocks) { 1596 for (auto It = Block->begin(), End = Block->end(); It != End;) { 1597 Instruction *I = &*It; 1598 ++It; 1599 1600 if (auto *AI = dyn_cast<AssumeInst>(I)) { 1601 if (AC) 1602 AC->unregisterAssumption(AI); 1603 AI->eraseFromParent(); 1604 } 1605 } 1606 } 1607 1608 // If we have any return instructions in the region, split those blocks so 1609 // that the return is not in the region. 1610 splitReturnBlocks(); 1611 1612 // Calculate the exit blocks for the extracted region and the total exit 1613 // weights for each of those blocks. 1614 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1615 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1616 for (BasicBlock *Block : Blocks) { 1617 for (BasicBlock *Succ : successors(Block)) { 1618 if (!Blocks.count(Succ)) { 1619 // Update the branch weight for this successor. 1620 if (BFI) { 1621 BlockFrequency &BF = ExitWeights[Succ]; 1622 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1623 } 1624 ExitBlocks.insert(Succ); 1625 } 1626 } 1627 } 1628 NumExitBlocks = ExitBlocks.size(); 1629 1630 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1631 severSplitPHINodesOfEntry(header); 1632 severSplitPHINodesOfExits(ExitBlocks); 1633 1634 // This takes place of the original loop 1635 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1636 "codeRepl", oldFunction, 1637 header); 1638 1639 // The new function needs a root node because other nodes can branch to the 1640 // head of the region, but the entry node of a function cannot have preds. 1641 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1642 "newFuncRoot"); 1643 auto *BranchI = BranchInst::Create(header); 1644 // If the original function has debug info, we have to add a debug location 1645 // to the new branch instruction from the artificial entry block. 1646 // We use the debug location of the first instruction in the extracted 1647 // blocks, as there is no other equivalent line in the source code. 1648 if (oldFunction->getSubprogram()) { 1649 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1650 return any_of(*BB, [&BranchI](const Instruction &I) { 1651 if (!I.getDebugLoc()) 1652 return false; 1653 BranchI->setDebugLoc(I.getDebugLoc()); 1654 return true; 1655 }); 1656 }); 1657 } 1658 newFuncRoot->getInstList().push_back(BranchI); 1659 1660 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1661 BasicBlock *CommonExit = nullptr; 1662 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1663 assert(HoistingCands.empty() || CommonExit); 1664 1665 // Find inputs to, outputs from the code region. 1666 findInputsOutputs(inputs, outputs, SinkingCands); 1667 1668 // Now sink all instructions which only have non-phi uses inside the region. 1669 // Group the allocas at the start of the block, so that any bitcast uses of 1670 // the allocas are well-defined. 1671 AllocaInst *FirstSunkAlloca = nullptr; 1672 for (auto *II : SinkingCands) { 1673 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1674 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1675 if (!FirstSunkAlloca) 1676 FirstSunkAlloca = AI; 1677 } 1678 } 1679 assert((SinkingCands.empty() || FirstSunkAlloca) && 1680 "Did not expect a sink candidate without any allocas"); 1681 for (auto *II : SinkingCands) { 1682 if (!isa<AllocaInst>(II)) { 1683 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1684 } 1685 } 1686 1687 if (!HoistingCands.empty()) { 1688 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1689 Instruction *TI = HoistToBlock->getTerminator(); 1690 for (auto *II : HoistingCands) 1691 cast<Instruction>(II)->moveBefore(TI); 1692 } 1693 1694 // Collect objects which are inputs to the extraction region and also 1695 // referenced by lifetime start markers within it. The effects of these 1696 // markers must be replicated in the calling function to prevent the stack 1697 // coloring pass from merging slots which store input objects. 1698 ValueSet LifetimesStart; 1699 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1700 1701 // Construct new function based on inputs/outputs & add allocas for all defs. 1702 Function *newFunction = 1703 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1704 oldFunction, oldFunction->getParent()); 1705 1706 // Update the entry count of the function. 1707 if (BFI) { 1708 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1709 if (Count.hasValue()) 1710 newFunction->setEntryCount( 1711 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1712 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1713 } 1714 1715 CallInst *TheCall = 1716 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1717 1718 moveCodeToFunction(newFunction); 1719 1720 // Replicate the effects of any lifetime start/end markers which referenced 1721 // input objects in the extraction region by placing markers around the call. 1722 insertLifetimeMarkersSurroundingCall( 1723 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1724 1725 // Propagate personality info to the new function if there is one. 1726 if (oldFunction->hasPersonalityFn()) 1727 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1728 1729 // Update the branch weights for the exit block. 1730 if (BFI && NumExitBlocks > 1) 1731 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1732 1733 // Loop over all of the PHI nodes in the header and exit blocks, and change 1734 // any references to the old incoming edge to be the new incoming edge. 1735 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1736 PHINode *PN = cast<PHINode>(I); 1737 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1738 if (!Blocks.count(PN->getIncomingBlock(i))) 1739 PN->setIncomingBlock(i, newFuncRoot); 1740 } 1741 1742 for (BasicBlock *ExitBB : ExitBlocks) 1743 for (PHINode &PN : ExitBB->phis()) { 1744 Value *IncomingCodeReplacerVal = nullptr; 1745 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1746 // Ignore incoming values from outside of the extracted region. 1747 if (!Blocks.count(PN.getIncomingBlock(i))) 1748 continue; 1749 1750 // Ensure that there is only one incoming value from codeReplacer. 1751 if (!IncomingCodeReplacerVal) { 1752 PN.setIncomingBlock(i, codeReplacer); 1753 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1754 } else 1755 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1756 "PHI has two incompatbile incoming values from codeRepl"); 1757 } 1758 } 1759 1760 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1761 1762 // Mark the new function `noreturn` if applicable. Terminators which resume 1763 // exception propagation are treated as returning instructions. This is to 1764 // avoid inserting traps after calls to outlined functions which unwind. 1765 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1766 const Instruction *Term = BB.getTerminator(); 1767 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1768 }); 1769 if (doesNotReturn) 1770 newFunction->setDoesNotReturn(); 1771 1772 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1773 newFunction->dump(); 1774 report_fatal_error("verification of newFunction failed!"); 1775 }); 1776 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1777 report_fatal_error("verification of oldFunction failed!")); 1778 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1779 report_fatal_error("Stale Asumption cache for old Function!")); 1780 return newFunction; 1781 } 1782 1783 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1784 const Function &NewFunc, 1785 AssumptionCache *AC) { 1786 for (auto AssumeVH : AC->assumptions()) { 1787 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1788 if (!I) 1789 continue; 1790 1791 // There shouldn't be any llvm.assume intrinsics in the new function. 1792 if (I->getFunction() != &OldFunc) 1793 return true; 1794 1795 // There shouldn't be any stale affected values in the assumption cache 1796 // that were previously in the old function, but that have now been moved 1797 // to the new function. 1798 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1799 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1800 if (!AffectedCI) 1801 continue; 1802 if (AffectedCI->getFunction() != &OldFunc) 1803 return true; 1804 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1805 if (AssumedInst->getFunction() != &OldFunc) 1806 return true; 1807 } 1808 } 1809 return false; 1810 } 1811