xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Cloning.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 #include <map>
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "clone-function"
39 
40 /// See comments in Cloning.h.
41 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
42                                   const Twine &NameSuffix, Function *F,
43                                   ClonedCodeInfo *CodeInfo,
44                                   DebugInfoFinder *DIFinder) {
45   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46   if (BB->hasName())
47     NewBB->setName(BB->getName() + NameSuffix);
48 
49   bool hasCalls = false, hasDynamicAllocas = false;
50   Module *TheModule = F ? F->getParent() : nullptr;
51 
52   // Loop over all instructions, and copy them over.
53   for (const Instruction &I : *BB) {
54     if (DIFinder && TheModule)
55       DIFinder->processInstruction(*TheModule, I);
56 
57     Instruction *NewInst = I.clone();
58     if (I.hasName())
59       NewInst->setName(I.getName() + NameSuffix);
60     NewBB->getInstList().push_back(NewInst);
61     VMap[&I] = NewInst; // Add instruction map to value.
62 
63     hasCalls |= (isa<CallInst>(I) && !I.isDebugOrPseudoInst());
64     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
65       if (!AI->isStaticAlloca()) {
66         hasDynamicAllocas = true;
67       }
68     }
69   }
70 
71   if (CodeInfo) {
72     CodeInfo->ContainsCalls |= hasCalls;
73     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
74   }
75   return NewBB;
76 }
77 
78 // Clone OldFunc into NewFunc, transforming the old arguments into references to
79 // VMap values.
80 //
81 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
82                              ValueToValueMapTy &VMap,
83                              CloneFunctionChangeType Changes,
84                              SmallVectorImpl<ReturnInst *> &Returns,
85                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
86                              ValueMapTypeRemapper *TypeMapper,
87                              ValueMaterializer *Materializer) {
88   assert(NameSuffix && "NameSuffix cannot be null!");
89 
90 #ifndef NDEBUG
91   for (const Argument &I : OldFunc->args())
92     assert(VMap.count(&I) && "No mapping from source argument specified!");
93 #endif
94 
95   bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
96 
97   // Copy all attributes other than those stored in the AttributeList.  We need
98   // to remap the parameter indices of the AttributeList.
99   AttributeList NewAttrs = NewFunc->getAttributes();
100   NewFunc->copyAttributesFrom(OldFunc);
101   NewFunc->setAttributes(NewAttrs);
102 
103   // Fix up the personality function that got copied over.
104   if (OldFunc->hasPersonalityFn())
105     NewFunc->setPersonalityFn(
106         MapValue(OldFunc->getPersonalityFn(), VMap,
107                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
108                  TypeMapper, Materializer));
109 
110   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
111   AttributeList OldAttrs = OldFunc->getAttributes();
112 
113   // Clone any argument attributes that are present in the VMap.
114   for (const Argument &OldArg : OldFunc->args()) {
115     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
116       NewArgAttrs[NewArg->getArgNo()] =
117           OldAttrs.getParamAttrs(OldArg.getArgNo());
118     }
119   }
120 
121   NewFunc->setAttributes(
122       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(),
123                          OldAttrs.getRetAttrs(), NewArgAttrs));
124 
125   // Everything else beyond this point deals with function instructions,
126   // so if we are dealing with a function declaration, we're done.
127   if (OldFunc->isDeclaration())
128     return;
129 
130   // When we remap instructions within the same module, we want to avoid
131   // duplicating inlined DISubprograms, so record all subprograms we find as we
132   // duplicate instructions and then freeze them in the MD map. We also record
133   // information about dbg.value and dbg.declare to avoid duplicating the
134   // types.
135   Optional<DebugInfoFinder> DIFinder;
136 
137   // Track the subprogram attachment that needs to be cloned to fine-tune the
138   // mapping within the same module.
139   DISubprogram *SPClonedWithinModule = nullptr;
140   if (Changes < CloneFunctionChangeType::DifferentModule) {
141     assert((NewFunc->getParent() == nullptr ||
142             NewFunc->getParent() == OldFunc->getParent()) &&
143            "Expected NewFunc to have the same parent, or no parent");
144 
145     // Need to find subprograms, types, and compile units.
146     DIFinder.emplace();
147 
148     SPClonedWithinModule = OldFunc->getSubprogram();
149     if (SPClonedWithinModule)
150       DIFinder->processSubprogram(SPClonedWithinModule);
151   } else {
152     assert((NewFunc->getParent() == nullptr ||
153             NewFunc->getParent() != OldFunc->getParent()) &&
154            "Expected NewFunc to have different parents, or no parent");
155 
156     if (Changes == CloneFunctionChangeType::DifferentModule) {
157       assert(NewFunc->getParent() &&
158              "Need parent of new function to maintain debug info invariants");
159 
160       // Need to find all the compile units.
161       DIFinder.emplace();
162     }
163   }
164 
165   // Loop over all of the basic blocks in the function, cloning them as
166   // appropriate.  Note that we save BE this way in order to handle cloning of
167   // recursive functions into themselves.
168   for (const BasicBlock &BB : *OldFunc) {
169 
170     // Create a new basic block and copy instructions into it!
171     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
172                                       DIFinder ? &*DIFinder : nullptr);
173 
174     // Add basic block mapping.
175     VMap[&BB] = CBB;
176 
177     // It is only legal to clone a function if a block address within that
178     // function is never referenced outside of the function.  Given that, we
179     // want to map block addresses from the old function to block addresses in
180     // the clone. (This is different from the generic ValueMapper
181     // implementation, which generates an invalid blockaddress when
182     // cloning a function.)
183     if (BB.hasAddressTaken()) {
184       Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
185                                               const_cast<BasicBlock *>(&BB));
186       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
187     }
188 
189     // Note return instructions for the caller.
190     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
191       Returns.push_back(RI);
192   }
193 
194   if (Changes < CloneFunctionChangeType::DifferentModule &&
195       DIFinder->subprogram_count() > 0) {
196     // Turn on module-level changes, since we need to clone (some of) the
197     // debug info metadata.
198     //
199     // FIXME: Metadata effectively owned by a function should be made
200     // local, and only that local metadata should be cloned.
201     ModuleLevelChanges = true;
202 
203     auto mapToSelfIfNew = [&VMap](MDNode *N) {
204       // Avoid clobbering an existing mapping.
205       (void)VMap.MD().try_emplace(N, N);
206     };
207 
208     // Avoid cloning types, compile units, and (other) subprograms.
209     SmallPtrSet<const DISubprogram *, 16> MappedToSelfSPs;
210     for (DISubprogram *ISP : DIFinder->subprograms()) {
211       if (ISP != SPClonedWithinModule) {
212         mapToSelfIfNew(ISP);
213         MappedToSelfSPs.insert(ISP);
214       }
215     }
216 
217     // If a subprogram isn't going to be cloned skip its lexical blocks as well.
218     for (DIScope *S : DIFinder->scopes()) {
219       auto *LScope = dyn_cast<DILocalScope>(S);
220       if (LScope && MappedToSelfSPs.count(LScope->getSubprogram()))
221         mapToSelfIfNew(S);
222     }
223 
224     for (DICompileUnit *CU : DIFinder->compile_units())
225       mapToSelfIfNew(CU);
226 
227     for (DIType *Type : DIFinder->types())
228       mapToSelfIfNew(Type);
229   } else {
230     assert(!SPClonedWithinModule &&
231            "Subprogram should be in DIFinder->subprogram_count()...");
232   }
233 
234   const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
235   // Duplicate the metadata that is attached to the cloned function.
236   // Subprograms/CUs/types that were already mapped to themselves won't be
237   // duplicated.
238   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
239   OldFunc->getAllMetadata(MDs);
240   for (auto MD : MDs) {
241     NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
242                                                 TypeMapper, Materializer));
243   }
244 
245   // Loop over all of the instructions in the new function, fixing up operand
246   // references as we go. This uses VMap to do all the hard work.
247   for (Function::iterator
248            BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
249            BE = NewFunc->end();
250        BB != BE; ++BB)
251     // Loop over all instructions, fixing each one as we find it...
252     for (Instruction &II : *BB)
253       RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
254 
255   // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
256   // same module, the compile unit will already be listed (or not). When
257   // cloning a module, CloneModule() will handle creating the named metadata.
258   if (Changes != CloneFunctionChangeType::DifferentModule)
259     return;
260 
261   // Update !llvm.dbg.cu with compile units added to the new module if this
262   // function is being cloned in isolation.
263   //
264   // FIXME: This is making global / module-level changes, which doesn't seem
265   // like the right encapsulation  Consider dropping the requirement to update
266   // !llvm.dbg.cu (either obsoleting the node, or restricting it to
267   // non-discardable compile units) instead of discovering compile units by
268   // visiting the metadata attached to global values, which would allow this
269   // code to be deleted. Alternatively, perhaps give responsibility for this
270   // update to CloneFunctionInto's callers.
271   auto *NewModule = NewFunc->getParent();
272   auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
273   // Avoid multiple insertions of the same DICompileUnit to NMD.
274   SmallPtrSet<const void *, 8> Visited;
275   for (auto *Operand : NMD->operands())
276     Visited.insert(Operand);
277   for (auto *Unit : DIFinder->compile_units()) {
278     MDNode *MappedUnit =
279         MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
280     if (Visited.insert(MappedUnit).second)
281       NMD->addOperand(MappedUnit);
282   }
283 }
284 
285 /// Return a copy of the specified function and add it to that function's
286 /// module.  Also, any references specified in the VMap are changed to refer to
287 /// their mapped value instead of the original one.  If any of the arguments to
288 /// the function are in the VMap, the arguments are deleted from the resultant
289 /// function.  The VMap is updated to include mappings from all of the
290 /// instructions and basicblocks in the function from their old to new values.
291 ///
292 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
293                               ClonedCodeInfo *CodeInfo) {
294   std::vector<Type *> ArgTypes;
295 
296   // The user might be deleting arguments to the function by specifying them in
297   // the VMap.  If so, we need to not add the arguments to the arg ty vector
298   //
299   for (const Argument &I : F->args())
300     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
301       ArgTypes.push_back(I.getType());
302 
303   // Create a new function type...
304   FunctionType *FTy =
305       FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
306                         F->getFunctionType()->isVarArg());
307 
308   // Create the new function...
309   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
310                                     F->getName(), F->getParent());
311 
312   // Loop over the arguments, copying the names of the mapped arguments over...
313   Function::arg_iterator DestI = NewF->arg_begin();
314   for (const Argument &I : F->args())
315     if (VMap.count(&I) == 0) {     // Is this argument preserved?
316       DestI->setName(I.getName()); // Copy the name over...
317       VMap[&I] = &*DestI++;        // Add mapping to VMap
318     }
319 
320   SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
321   CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
322                     Returns, "", CodeInfo);
323 
324   return NewF;
325 }
326 
327 namespace {
328 /// This is a private class used to implement CloneAndPruneFunctionInto.
329 struct PruningFunctionCloner {
330   Function *NewFunc;
331   const Function *OldFunc;
332   ValueToValueMapTy &VMap;
333   bool ModuleLevelChanges;
334   const char *NameSuffix;
335   ClonedCodeInfo *CodeInfo;
336   bool HostFuncIsStrictFP;
337 
338   Instruction *cloneInstruction(BasicBlock::const_iterator II);
339 
340 public:
341   PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
342                         ValueToValueMapTy &valueMap, bool moduleLevelChanges,
343                         const char *nameSuffix, ClonedCodeInfo *codeInfo)
344       : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
345         ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
346         CodeInfo(codeInfo) {
347     HostFuncIsStrictFP =
348         newFunc->getAttributes().hasFnAttr(Attribute::StrictFP);
349   }
350 
351   /// The specified block is found to be reachable, clone it and
352   /// anything that it can reach.
353   void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
354                   std::vector<const BasicBlock *> &ToClone);
355 };
356 } // namespace
357 
358 static bool hasRoundingModeOperand(Intrinsic::ID CIID) {
359   switch (CIID) {
360 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
361   case Intrinsic::INTRINSIC:                                                   \
362     return ROUND_MODE == 1;
363 #define FUNCTION INSTRUCTION
364 #include "llvm/IR/ConstrainedOps.def"
365   default:
366     llvm_unreachable("Unexpected constrained intrinsic id");
367   }
368 }
369 
370 Instruction *
371 PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) {
372   const Instruction &OldInst = *II;
373   Instruction *NewInst = nullptr;
374   if (HostFuncIsStrictFP) {
375     Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst);
376     if (CIID != Intrinsic::not_intrinsic) {
377       // Instead of cloning the instruction, a call to constrained intrinsic
378       // should be created.
379       // Assume the first arguments of constrained intrinsics are the same as
380       // the operands of original instruction.
381 
382       // Determine overloaded types of the intrinsic.
383       SmallVector<Type *, 2> TParams;
384       SmallVector<Intrinsic::IITDescriptor, 8> Descriptor;
385       getIntrinsicInfoTableEntries(CIID, Descriptor);
386       for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) {
387         Intrinsic::IITDescriptor Operand = Descriptor[I];
388         switch (Operand.Kind) {
389         case Intrinsic::IITDescriptor::Argument:
390           if (Operand.getArgumentKind() !=
391               Intrinsic::IITDescriptor::AK_MatchType) {
392             if (I == 0)
393               TParams.push_back(OldInst.getType());
394             else
395               TParams.push_back(OldInst.getOperand(I - 1)->getType());
396           }
397           break;
398         case Intrinsic::IITDescriptor::SameVecWidthArgument:
399           ++I;
400           break;
401         default:
402           break;
403         }
404       }
405 
406       // Create intrinsic call.
407       LLVMContext &Ctx = NewFunc->getContext();
408       Function *IFn =
409           Intrinsic::getDeclaration(NewFunc->getParent(), CIID, TParams);
410       SmallVector<Value *, 4> Args;
411       unsigned NumOperands = OldInst.getNumOperands();
412       if (isa<CallInst>(OldInst))
413         --NumOperands;
414       for (unsigned I = 0; I < NumOperands; ++I) {
415         Value *Op = OldInst.getOperand(I);
416         Args.push_back(Op);
417       }
418       if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) {
419         FCmpInst::Predicate Pred = CmpI->getPredicate();
420         StringRef PredName = FCmpInst::getPredicateName(Pred);
421         Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName)));
422       }
423 
424       // The last arguments of a constrained intrinsic are metadata that
425       // represent rounding mode (absents in some intrinsics) and exception
426       // behavior. The inlined function uses default settings.
427       if (hasRoundingModeOperand(CIID))
428         Args.push_back(
429             MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest")));
430       Args.push_back(
431           MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore")));
432 
433       NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict");
434     }
435   }
436   if (!NewInst)
437     NewInst = II->clone();
438   return NewInst;
439 }
440 
441 /// The specified block is found to be reachable, clone it and
442 /// anything that it can reach.
443 void PruningFunctionCloner::CloneBlock(
444     const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
445     std::vector<const BasicBlock *> &ToClone) {
446   WeakTrackingVH &BBEntry = VMap[BB];
447 
448   // Have we already cloned this block?
449   if (BBEntry)
450     return;
451 
452   // Nope, clone it now.
453   BasicBlock *NewBB;
454   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
455   if (BB->hasName())
456     NewBB->setName(BB->getName() + NameSuffix);
457 
458   // It is only legal to clone a function if a block address within that
459   // function is never referenced outside of the function.  Given that, we
460   // want to map block addresses from the old function to block addresses in
461   // the clone. (This is different from the generic ValueMapper
462   // implementation, which generates an invalid blockaddress when
463   // cloning a function.)
464   //
465   // Note that we don't need to fix the mapping for unreachable blocks;
466   // the default mapping there is safe.
467   if (BB->hasAddressTaken()) {
468     Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
469                                             const_cast<BasicBlock *>(BB));
470     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
471   }
472 
473   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
474 
475   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
476   // loop doesn't include the terminator.
477   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
478        ++II) {
479 
480     Instruction *NewInst = cloneInstruction(II);
481 
482     if (HostFuncIsStrictFP) {
483       // All function calls in the inlined function must get 'strictfp'
484       // attribute to prevent undesirable optimizations.
485       if (auto *Call = dyn_cast<CallInst>(NewInst))
486         Call->addFnAttr(Attribute::StrictFP);
487     }
488 
489     // Eagerly remap operands to the newly cloned instruction, except for PHI
490     // nodes for which we defer processing until we update the CFG.
491     if (!isa<PHINode>(NewInst)) {
492       RemapInstruction(NewInst, VMap,
493                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
494 
495       // If we can simplify this instruction to some other value, simply add
496       // a mapping to that value rather than inserting a new instruction into
497       // the basic block.
498       if (Value *V =
499               simplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
500         // On the off-chance that this simplifies to an instruction in the old
501         // function, map it back into the new function.
502         if (NewFunc != OldFunc)
503           if (Value *MappedV = VMap.lookup(V))
504             V = MappedV;
505 
506         if (!NewInst->mayHaveSideEffects()) {
507           VMap[&*II] = V;
508           NewInst->deleteValue();
509           continue;
510         }
511       }
512     }
513 
514     if (II->hasName())
515       NewInst->setName(II->getName() + NameSuffix);
516     VMap[&*II] = NewInst; // Add instruction map to value.
517     NewBB->getInstList().push_back(NewInst);
518     hasCalls |= (isa<CallInst>(II) && !II->isDebugOrPseudoInst());
519 
520     if (CodeInfo) {
521       CodeInfo->OrigVMap[&*II] = NewInst;
522       if (auto *CB = dyn_cast<CallBase>(&*II))
523         if (CB->hasOperandBundles())
524           CodeInfo->OperandBundleCallSites.push_back(NewInst);
525     }
526 
527     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
528       if (isa<ConstantInt>(AI->getArraySize()))
529         hasStaticAllocas = true;
530       else
531         hasDynamicAllocas = true;
532     }
533   }
534 
535   // Finally, clone over the terminator.
536   const Instruction *OldTI = BB->getTerminator();
537   bool TerminatorDone = false;
538   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
539     if (BI->isConditional()) {
540       // If the condition was a known constant in the callee...
541       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
542       // Or is a known constant in the caller...
543       if (!Cond) {
544         Value *V = VMap.lookup(BI->getCondition());
545         Cond = dyn_cast_or_null<ConstantInt>(V);
546       }
547 
548       // Constant fold to uncond branch!
549       if (Cond) {
550         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
551         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
552         ToClone.push_back(Dest);
553         TerminatorDone = true;
554       }
555     }
556   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
557     // If switching on a value known constant in the caller.
558     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
559     if (!Cond) { // Or known constant after constant prop in the callee...
560       Value *V = VMap.lookup(SI->getCondition());
561       Cond = dyn_cast_or_null<ConstantInt>(V);
562     }
563     if (Cond) { // Constant fold to uncond branch!
564       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
565       BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
566       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
567       ToClone.push_back(Dest);
568       TerminatorDone = true;
569     }
570   }
571 
572   if (!TerminatorDone) {
573     Instruction *NewInst = OldTI->clone();
574     if (OldTI->hasName())
575       NewInst->setName(OldTI->getName() + NameSuffix);
576     NewBB->getInstList().push_back(NewInst);
577     VMap[OldTI] = NewInst; // Add instruction map to value.
578 
579     if (CodeInfo) {
580       CodeInfo->OrigVMap[OldTI] = NewInst;
581       if (auto *CB = dyn_cast<CallBase>(OldTI))
582         if (CB->hasOperandBundles())
583           CodeInfo->OperandBundleCallSites.push_back(NewInst);
584     }
585 
586     // Recursively clone any reachable successor blocks.
587     append_range(ToClone, successors(BB->getTerminator()));
588   }
589 
590   if (CodeInfo) {
591     CodeInfo->ContainsCalls |= hasCalls;
592     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
593     CodeInfo->ContainsDynamicAllocas |=
594         hasStaticAllocas && BB != &BB->getParent()->front();
595   }
596 }
597 
598 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
599 /// entire function. Instead it starts at an instruction provided by the caller
600 /// and copies (and prunes) only the code reachable from that instruction.
601 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
602                                      const Instruction *StartingInst,
603                                      ValueToValueMapTy &VMap,
604                                      bool ModuleLevelChanges,
605                                      SmallVectorImpl<ReturnInst *> &Returns,
606                                      const char *NameSuffix,
607                                      ClonedCodeInfo *CodeInfo) {
608   assert(NameSuffix && "NameSuffix cannot be null!");
609 
610   ValueMapTypeRemapper *TypeMapper = nullptr;
611   ValueMaterializer *Materializer = nullptr;
612 
613 #ifndef NDEBUG
614   // If the cloning starts at the beginning of the function, verify that
615   // the function arguments are mapped.
616   if (!StartingInst)
617     for (const Argument &II : OldFunc->args())
618       assert(VMap.count(&II) && "No mapping from source argument specified!");
619 #endif
620 
621   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
622                             NameSuffix, CodeInfo);
623   const BasicBlock *StartingBB;
624   if (StartingInst)
625     StartingBB = StartingInst->getParent();
626   else {
627     StartingBB = &OldFunc->getEntryBlock();
628     StartingInst = &StartingBB->front();
629   }
630 
631   // Clone the entry block, and anything recursively reachable from it.
632   std::vector<const BasicBlock *> CloneWorklist;
633   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
634   while (!CloneWorklist.empty()) {
635     const BasicBlock *BB = CloneWorklist.back();
636     CloneWorklist.pop_back();
637     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
638   }
639 
640   // Loop over all of the basic blocks in the old function.  If the block was
641   // reachable, we have cloned it and the old block is now in the value map:
642   // insert it into the new function in the right order.  If not, ignore it.
643   //
644   // Defer PHI resolution until rest of function is resolved.
645   SmallVector<const PHINode *, 16> PHIToResolve;
646   for (const BasicBlock &BI : *OldFunc) {
647     Value *V = VMap.lookup(&BI);
648     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
649     if (!NewBB)
650       continue; // Dead block.
651 
652     // Add the new block to the new function.
653     NewFunc->getBasicBlockList().push_back(NewBB);
654 
655     // Handle PHI nodes specially, as we have to remove references to dead
656     // blocks.
657     for (const PHINode &PN : BI.phis()) {
658       // PHI nodes may have been remapped to non-PHI nodes by the caller or
659       // during the cloning process.
660       if (isa<PHINode>(VMap[&PN]))
661         PHIToResolve.push_back(&PN);
662       else
663         break;
664     }
665 
666     // Finally, remap the terminator instructions, as those can't be remapped
667     // until all BBs are mapped.
668     RemapInstruction(NewBB->getTerminator(), VMap,
669                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
670                      TypeMapper, Materializer);
671   }
672 
673   // Defer PHI resolution until rest of function is resolved, PHI resolution
674   // requires the CFG to be up-to-date.
675   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
676     const PHINode *OPN = PHIToResolve[phino];
677     unsigned NumPreds = OPN->getNumIncomingValues();
678     const BasicBlock *OldBB = OPN->getParent();
679     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
680 
681     // Map operands for blocks that are live and remove operands for blocks
682     // that are dead.
683     for (; phino != PHIToResolve.size() &&
684            PHIToResolve[phino]->getParent() == OldBB;
685          ++phino) {
686       OPN = PHIToResolve[phino];
687       PHINode *PN = cast<PHINode>(VMap[OPN]);
688       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
689         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
690         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
691           Value *InVal =
692               MapValue(PN->getIncomingValue(pred), VMap,
693                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
694           assert(InVal && "Unknown input value?");
695           PN->setIncomingValue(pred, InVal);
696           PN->setIncomingBlock(pred, MappedBlock);
697         } else {
698           PN->removeIncomingValue(pred, false);
699           --pred; // Revisit the next entry.
700           --e;
701         }
702       }
703     }
704 
705     // The loop above has removed PHI entries for those blocks that are dead
706     // and has updated others.  However, if a block is live (i.e. copied over)
707     // but its terminator has been changed to not go to this block, then our
708     // phi nodes will have invalid entries.  Update the PHI nodes in this
709     // case.
710     PHINode *PN = cast<PHINode>(NewBB->begin());
711     NumPreds = pred_size(NewBB);
712     if (NumPreds != PN->getNumIncomingValues()) {
713       assert(NumPreds < PN->getNumIncomingValues());
714       // Count how many times each predecessor comes to this block.
715       std::map<BasicBlock *, unsigned> PredCount;
716       for (BasicBlock *Pred : predecessors(NewBB))
717         --PredCount[Pred];
718 
719       // Figure out how many entries to remove from each PHI.
720       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
721         ++PredCount[PN->getIncomingBlock(i)];
722 
723       // At this point, the excess predecessor entries are positive in the
724       // map.  Loop over all of the PHIs and remove excess predecessor
725       // entries.
726       BasicBlock::iterator I = NewBB->begin();
727       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
728         for (const auto &PCI : PredCount) {
729           BasicBlock *Pred = PCI.first;
730           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
731             PN->removeIncomingValue(Pred, false);
732         }
733       }
734     }
735 
736     // If the loops above have made these phi nodes have 0 or 1 operand,
737     // replace them with poison or the input value.  We must do this for
738     // correctness, because 0-operand phis are not valid.
739     PN = cast<PHINode>(NewBB->begin());
740     if (PN->getNumIncomingValues() == 0) {
741       BasicBlock::iterator I = NewBB->begin();
742       BasicBlock::const_iterator OldI = OldBB->begin();
743       while ((PN = dyn_cast<PHINode>(I++))) {
744         Value *NV = PoisonValue::get(PN->getType());
745         PN->replaceAllUsesWith(NV);
746         assert(VMap[&*OldI] == PN && "VMap mismatch");
747         VMap[&*OldI] = NV;
748         PN->eraseFromParent();
749         ++OldI;
750       }
751     }
752   }
753 
754   // Make a second pass over the PHINodes now that all of them have been
755   // remapped into the new function, simplifying the PHINode and performing any
756   // recursive simplifications exposed. This will transparently update the
757   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
758   // two PHINodes, the iteration over the old PHIs remains valid, and the
759   // mapping will just map us to the new node (which may not even be a PHI
760   // node).
761   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
762   SmallSetVector<const Value *, 8> Worklist;
763   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
764     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
765       Worklist.insert(PHIToResolve[Idx]);
766 
767   // Note that we must test the size on each iteration, the worklist can grow.
768   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
769     const Value *OrigV = Worklist[Idx];
770     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
771     if (!I)
772       continue;
773 
774     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
775     // the CGSCC.
776     CallBase *CB = dyn_cast<CallBase>(I);
777     if (CB && CB->getCalledFunction() &&
778         !CB->getCalledFunction()->isIntrinsic())
779       continue;
780 
781     // See if this instruction simplifies.
782     Value *SimpleV = simplifyInstruction(I, DL);
783     if (!SimpleV)
784       continue;
785 
786     // Stash away all the uses of the old instruction so we can check them for
787     // recursive simplifications after a RAUW. This is cheaper than checking all
788     // uses of To on the recursive step in most cases.
789     for (const User *U : OrigV->users())
790       Worklist.insert(cast<Instruction>(U));
791 
792     // Replace the instruction with its simplified value.
793     I->replaceAllUsesWith(SimpleV);
794 
795     // If the original instruction had no side effects, remove it.
796     if (isInstructionTriviallyDead(I))
797       I->eraseFromParent();
798     else
799       VMap[OrigV] = I;
800   }
801 
802   // Simplify conditional branches and switches with a constant operand. We try
803   // to prune these out when cloning, but if the simplification required
804   // looking through PHI nodes, those are only available after forming the full
805   // basic block. That may leave some here, and we still want to prune the dead
806   // code as early as possible.
807   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
808   for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
809     ConstantFoldTerminator(&BB);
810 
811   // Some blocks may have become unreachable as a result. Find and delete them.
812   {
813     SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
814     SmallVector<BasicBlock *, 16> Worklist;
815     Worklist.push_back(&*Begin);
816     while (!Worklist.empty()) {
817       BasicBlock *BB = Worklist.pop_back_val();
818       if (ReachableBlocks.insert(BB).second)
819         append_range(Worklist, successors(BB));
820     }
821 
822     SmallVector<BasicBlock *, 16> UnreachableBlocks;
823     for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
824       if (!ReachableBlocks.contains(&BB))
825         UnreachableBlocks.push_back(&BB);
826     DeleteDeadBlocks(UnreachableBlocks);
827   }
828 
829   // Now that the inlined function body has been fully constructed, go through
830   // and zap unconditional fall-through branches. This happens all the time when
831   // specializing code: code specialization turns conditional branches into
832   // uncond branches, and this code folds them.
833   Function::iterator I = Begin;
834   while (I != NewFunc->end()) {
835     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
836     if (!BI || BI->isConditional()) {
837       ++I;
838       continue;
839     }
840 
841     BasicBlock *Dest = BI->getSuccessor(0);
842     if (!Dest->getSinglePredecessor()) {
843       ++I;
844       continue;
845     }
846 
847     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
848     // above should have zapped all of them..
849     assert(!isa<PHINode>(Dest->begin()));
850 
851     // We know all single-entry PHI nodes in the inlined function have been
852     // removed, so we just need to splice the blocks.
853     BI->eraseFromParent();
854 
855     // Make all PHI nodes that referred to Dest now refer to I as their source.
856     Dest->replaceAllUsesWith(&*I);
857 
858     // Move all the instructions in the succ to the pred.
859     I->getInstList().splice(I->end(), Dest->getInstList());
860 
861     // Remove the dest block.
862     Dest->eraseFromParent();
863 
864     // Do not increment I, iteratively merge all things this block branches to.
865   }
866 
867   // Make a final pass over the basic blocks from the old function to gather
868   // any return instructions which survived folding. We have to do this here
869   // because we can iteratively remove and merge returns above.
870   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
871                           E = NewFunc->end();
872        I != E; ++I)
873     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
874       Returns.push_back(RI);
875 }
876 
877 /// This works exactly like CloneFunctionInto,
878 /// except that it does some simple constant prop and DCE on the fly.  The
879 /// effect of this is to copy significantly less code in cases where (for
880 /// example) a function call with constant arguments is inlined, and those
881 /// constant arguments cause a significant amount of code in the callee to be
882 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
883 /// used for things like CloneFunction or CloneModule.
884 void llvm::CloneAndPruneFunctionInto(
885     Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
886     bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
887     const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
888   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
889                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
890 }
891 
892 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
893 void llvm::remapInstructionsInBlocks(
894     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
895   // Rewrite the code to refer to itself.
896   for (auto *BB : Blocks)
897     for (auto &Inst : *BB)
898       RemapInstruction(&Inst, VMap,
899                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
900 }
901 
902 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
903 /// Blocks.
904 ///
905 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
906 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
907 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
908                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
909                                    const Twine &NameSuffix, LoopInfo *LI,
910                                    DominatorTree *DT,
911                                    SmallVectorImpl<BasicBlock *> &Blocks) {
912   Function *F = OrigLoop->getHeader()->getParent();
913   Loop *ParentLoop = OrigLoop->getParentLoop();
914   DenseMap<Loop *, Loop *> LMap;
915 
916   Loop *NewLoop = LI->AllocateLoop();
917   LMap[OrigLoop] = NewLoop;
918   if (ParentLoop)
919     ParentLoop->addChildLoop(NewLoop);
920   else
921     LI->addTopLevelLoop(NewLoop);
922 
923   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
924   assert(OrigPH && "No preheader");
925   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
926   // To rename the loop PHIs.
927   VMap[OrigPH] = NewPH;
928   Blocks.push_back(NewPH);
929 
930   // Update LoopInfo.
931   if (ParentLoop)
932     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
933 
934   // Update DominatorTree.
935   DT->addNewBlock(NewPH, LoopDomBB);
936 
937   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
938     Loop *&NewLoop = LMap[CurLoop];
939     if (!NewLoop) {
940       NewLoop = LI->AllocateLoop();
941 
942       // Establish the parent/child relationship.
943       Loop *OrigParent = CurLoop->getParentLoop();
944       assert(OrigParent && "Could not find the original parent loop");
945       Loop *NewParentLoop = LMap[OrigParent];
946       assert(NewParentLoop && "Could not find the new parent loop");
947 
948       NewParentLoop->addChildLoop(NewLoop);
949     }
950   }
951 
952   for (BasicBlock *BB : OrigLoop->getBlocks()) {
953     Loop *CurLoop = LI->getLoopFor(BB);
954     Loop *&NewLoop = LMap[CurLoop];
955     assert(NewLoop && "Expecting new loop to be allocated");
956 
957     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
958     VMap[BB] = NewBB;
959 
960     // Update LoopInfo.
961     NewLoop->addBasicBlockToLoop(NewBB, *LI);
962 
963     // Add DominatorTree node. After seeing all blocks, update to correct
964     // IDom.
965     DT->addNewBlock(NewBB, NewPH);
966 
967     Blocks.push_back(NewBB);
968   }
969 
970   for (BasicBlock *BB : OrigLoop->getBlocks()) {
971     // Update loop headers.
972     Loop *CurLoop = LI->getLoopFor(BB);
973     if (BB == CurLoop->getHeader())
974       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
975 
976     // Update DominatorTree.
977     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
978     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
979                                  cast<BasicBlock>(VMap[IDomBB]));
980   }
981 
982   // Move them physically from the end of the block list.
983   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
984                                 NewPH);
985   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
986                                 NewLoop->getHeader()->getIterator(), F->end());
987 
988   return NewLoop;
989 }
990 
991 /// Duplicate non-Phi instructions from the beginning of block up to
992 /// StopAt instruction into a split block between BB and its predecessor.
993 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
994     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
995     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
996 
997   assert(count(successors(PredBB), BB) == 1 &&
998          "There must be a single edge between PredBB and BB!");
999   // We are going to have to map operands from the original BB block to the new
1000   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1001   // account for entry from PredBB.
1002   BasicBlock::iterator BI = BB->begin();
1003   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1004     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1005 
1006   BasicBlock *NewBB = SplitEdge(PredBB, BB);
1007   NewBB->setName(PredBB->getName() + ".split");
1008   Instruction *NewTerm = NewBB->getTerminator();
1009 
1010   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
1011   //        in the update set here.
1012   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
1013                     {DominatorTree::Insert, PredBB, NewBB},
1014                     {DominatorTree::Insert, NewBB, BB}});
1015 
1016   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1017   // mapping and using it to remap operands in the cloned instructions.
1018   // Stop once we see the terminator too. This covers the case where BB's
1019   // terminator gets replaced and StopAt == BB's terminator.
1020   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
1021     Instruction *New = BI->clone();
1022     New->setName(BI->getName());
1023     New->insertBefore(NewTerm);
1024     ValueMapping[&*BI] = New;
1025 
1026     // Remap operands to patch up intra-block references.
1027     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1028       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1029         auto I = ValueMapping.find(Inst);
1030         if (I != ValueMapping.end())
1031           New->setOperand(i, I->second);
1032       }
1033   }
1034 
1035   return NewBB;
1036 }
1037 
1038 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1039                               DenseMap<MDNode *, MDNode *> &ClonedScopes,
1040                               StringRef Ext, LLVMContext &Context) {
1041   MDBuilder MDB(Context);
1042 
1043   for (auto *ScopeList : NoAliasDeclScopes) {
1044     for (auto &MDOperand : ScopeList->operands()) {
1045       if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
1046         AliasScopeNode SNANode(MD);
1047 
1048         std::string Name;
1049         auto ScopeName = SNANode.getName();
1050         if (!ScopeName.empty())
1051           Name = (Twine(ScopeName) + ":" + Ext).str();
1052         else
1053           Name = std::string(Ext);
1054 
1055         MDNode *NewScope = MDB.createAnonymousAliasScope(
1056             const_cast<MDNode *>(SNANode.getDomain()), Name);
1057         ClonedScopes.insert(std::make_pair(MD, NewScope));
1058       }
1059     }
1060   }
1061 }
1062 
1063 void llvm::adaptNoAliasScopes(Instruction *I,
1064                               const DenseMap<MDNode *, MDNode *> &ClonedScopes,
1065                               LLVMContext &Context) {
1066   auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
1067     bool NeedsReplacement = false;
1068     SmallVector<Metadata *, 8> NewScopeList;
1069     for (auto &MDOp : ScopeList->operands()) {
1070       if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
1071         if (auto *NewMD = ClonedScopes.lookup(MD)) {
1072           NewScopeList.push_back(NewMD);
1073           NeedsReplacement = true;
1074           continue;
1075         }
1076         NewScopeList.push_back(MD);
1077       }
1078     }
1079     if (NeedsReplacement)
1080       return MDNode::get(Context, NewScopeList);
1081     return nullptr;
1082   };
1083 
1084   if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
1085     if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
1086       Decl->setScopeList(NewScopeList);
1087 
1088   auto replaceWhenNeeded = [&](unsigned MD_ID) {
1089     if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
1090       if (auto *NewScopeList = CloneScopeList(CSNoAlias))
1091         I->setMetadata(MD_ID, NewScopeList);
1092   };
1093   replaceWhenNeeded(LLVMContext::MD_noalias);
1094   replaceWhenNeeded(LLVMContext::MD_alias_scope);
1095 }
1096 
1097 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1098                                       ArrayRef<BasicBlock *> NewBlocks,
1099                                       LLVMContext &Context, StringRef Ext) {
1100   if (NoAliasDeclScopes.empty())
1101     return;
1102 
1103   DenseMap<MDNode *, MDNode *> ClonedScopes;
1104   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1105                     << NoAliasDeclScopes.size() << " node(s)\n");
1106 
1107   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1108   // Identify instructions using metadata that needs adaptation
1109   for (BasicBlock *NewBlock : NewBlocks)
1110     for (Instruction &I : *NewBlock)
1111       adaptNoAliasScopes(&I, ClonedScopes, Context);
1112 }
1113 
1114 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1115                                       Instruction *IStart, Instruction *IEnd,
1116                                       LLVMContext &Context, StringRef Ext) {
1117   if (NoAliasDeclScopes.empty())
1118     return;
1119 
1120   DenseMap<MDNode *, MDNode *> ClonedScopes;
1121   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1122                     << NoAliasDeclScopes.size() << " node(s)\n");
1123 
1124   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1125   // Identify instructions using metadata that needs adaptation
1126   assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1127   auto ItStart = IStart->getIterator();
1128   auto ItEnd = IEnd->getIterator();
1129   ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1130   for (auto &I : llvm::make_range(ItStart, ItEnd))
1131     adaptNoAliasScopes(&I, ClonedScopes, Context);
1132 }
1133 
1134 void llvm::identifyNoAliasScopesToClone(
1135     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1136   for (BasicBlock *BB : BBs)
1137     for (Instruction &I : *BB)
1138       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1139         NoAliasDeclScopes.push_back(Decl->getScopeList());
1140 }
1141 
1142 void llvm::identifyNoAliasScopesToClone(
1143     BasicBlock::iterator Start, BasicBlock::iterator End,
1144     SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1145   for (Instruction &I : make_range(Start, End))
1146     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1147       NoAliasDeclScopes.push_back(Decl->getScopeList());
1148 }
1149