xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Cloning.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/ValueMapper.h"
36 #include <map>
37 using namespace llvm;
38 
39 /// See comments in Cloning.h.
40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
41                                   const Twine &NameSuffix, Function *F,
42                                   ClonedCodeInfo *CodeInfo,
43                                   DebugInfoFinder *DIFinder) {
44   DenseMap<const MDNode *, MDNode *> Cache;
45   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46   if (BB->hasName())
47     NewBB->setName(BB->getName() + NameSuffix);
48 
49   bool hasCalls = false, hasDynamicAllocas = false;
50   Module *TheModule = F ? F->getParent() : nullptr;
51 
52   // Loop over all instructions, and copy them over.
53   for (const Instruction &I : *BB) {
54     if (DIFinder && TheModule)
55       DIFinder->processInstruction(*TheModule, I);
56 
57     Instruction *NewInst = I.clone();
58     if (I.hasName())
59       NewInst->setName(I.getName() + NameSuffix);
60     NewBB->getInstList().push_back(NewInst);
61     VMap[&I] = NewInst; // Add instruction map to value.
62 
63     hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
64     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
65       if (!AI->isStaticAlloca()) {
66         hasDynamicAllocas = true;
67       }
68     }
69   }
70 
71   if (CodeInfo) {
72     CodeInfo->ContainsCalls          |= hasCalls;
73     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
74   }
75   return NewBB;
76 }
77 
78 // Clone OldFunc into NewFunc, transforming the old arguments into references to
79 // VMap values.
80 //
81 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
82                              ValueToValueMapTy &VMap,
83                              bool ModuleLevelChanges,
84                              SmallVectorImpl<ReturnInst*> &Returns,
85                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
86                              ValueMapTypeRemapper *TypeMapper,
87                              ValueMaterializer *Materializer) {
88   assert(NameSuffix && "NameSuffix cannot be null!");
89 
90 #ifndef NDEBUG
91   for (const Argument &I : OldFunc->args())
92     assert(VMap.count(&I) && "No mapping from source argument specified!");
93 #endif
94 
95   // Copy all attributes other than those stored in the AttributeList.  We need
96   // to remap the parameter indices of the AttributeList.
97   AttributeList NewAttrs = NewFunc->getAttributes();
98   NewFunc->copyAttributesFrom(OldFunc);
99   NewFunc->setAttributes(NewAttrs);
100 
101   // Fix up the personality function that got copied over.
102   if (OldFunc->hasPersonalityFn())
103     NewFunc->setPersonalityFn(
104         MapValue(OldFunc->getPersonalityFn(), VMap,
105                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
106                  TypeMapper, Materializer));
107 
108   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
109   AttributeList OldAttrs = OldFunc->getAttributes();
110 
111   // Clone any argument attributes that are present in the VMap.
112   for (const Argument &OldArg : OldFunc->args()) {
113     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
114       NewArgAttrs[NewArg->getArgNo()] =
115           OldAttrs.getParamAttributes(OldArg.getArgNo());
116     }
117   }
118 
119   NewFunc->setAttributes(
120       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
121                          OldAttrs.getRetAttributes(), NewArgAttrs));
122 
123   bool MustCloneSP =
124       OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
125   DISubprogram *SP = OldFunc->getSubprogram();
126   if (SP) {
127     assert(!MustCloneSP || ModuleLevelChanges);
128     // Add mappings for some DebugInfo nodes that we don't want duplicated
129     // even if they're distinct.
130     auto &MD = VMap.MD();
131     MD[SP->getUnit()].reset(SP->getUnit());
132     MD[SP->getType()].reset(SP->getType());
133     MD[SP->getFile()].reset(SP->getFile());
134     // If we're not cloning into the same module, no need to clone the
135     // subprogram
136     if (!MustCloneSP)
137       MD[SP].reset(SP);
138   }
139 
140   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
141   OldFunc->getAllMetadata(MDs);
142   for (auto MD : MDs) {
143     NewFunc->addMetadata(
144         MD.first,
145         *MapMetadata(MD.second, VMap,
146                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
147                      TypeMapper, Materializer));
148   }
149 
150   // When we remap instructions, we want to avoid duplicating inlined
151   // DISubprograms, so record all subprograms we find as we duplicate
152   // instructions and then freeze them in the MD map.
153   // We also record information about dbg.value and dbg.declare to avoid
154   // duplicating the types.
155   DebugInfoFinder DIFinder;
156 
157   // Loop over all of the basic blocks in the function, cloning them as
158   // appropriate.  Note that we save BE this way in order to handle cloning of
159   // recursive functions into themselves.
160   //
161   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
162        BI != BE; ++BI) {
163     const BasicBlock &BB = *BI;
164 
165     // Create a new basic block and copy instructions into it!
166     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
167                                       ModuleLevelChanges ? &DIFinder : nullptr);
168 
169     // Add basic block mapping.
170     VMap[&BB] = CBB;
171 
172     // It is only legal to clone a function if a block address within that
173     // function is never referenced outside of the function.  Given that, we
174     // want to map block addresses from the old function to block addresses in
175     // the clone. (This is different from the generic ValueMapper
176     // implementation, which generates an invalid blockaddress when
177     // cloning a function.)
178     if (BB.hasAddressTaken()) {
179       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
180                                               const_cast<BasicBlock*>(&BB));
181       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
182     }
183 
184     // Note return instructions for the caller.
185     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
186       Returns.push_back(RI);
187   }
188 
189   for (DISubprogram *ISP : DIFinder.subprograms())
190     if (ISP != SP)
191       VMap.MD()[ISP].reset(ISP);
192 
193   for (DICompileUnit *CU : DIFinder.compile_units())
194     VMap.MD()[CU].reset(CU);
195 
196   for (DIType *Type : DIFinder.types())
197     VMap.MD()[Type].reset(Type);
198 
199   // Loop over all of the instructions in the function, fixing up operand
200   // references as we go.  This uses VMap to do all the hard work.
201   for (Function::iterator BB =
202            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
203                           BE = NewFunc->end();
204        BB != BE; ++BB)
205     // Loop over all instructions, fixing each one as we find it...
206     for (Instruction &II : *BB)
207       RemapInstruction(&II, VMap,
208                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
209                        TypeMapper, Materializer);
210 
211   // Register all DICompileUnits of the old parent module in the new parent module
212   auto* OldModule = OldFunc->getParent();
213   auto* NewModule = NewFunc->getParent();
214   if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) {
215     auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
216     // Avoid multiple insertions of the same DICompileUnit to NMD.
217     SmallPtrSet<const void*, 8> Visited;
218     for (auto* Operand : NMD->operands())
219       Visited.insert(Operand);
220     for (auto* Unit : DIFinder.compile_units())
221       // VMap.MD()[Unit] == Unit
222       if (Visited.insert(Unit).second)
223         NMD->addOperand(Unit);
224   }
225 }
226 
227 /// Return a copy of the specified function and add it to that function's
228 /// module.  Also, any references specified in the VMap are changed to refer to
229 /// their mapped value instead of the original one.  If any of the arguments to
230 /// the function are in the VMap, the arguments are deleted from the resultant
231 /// function.  The VMap is updated to include mappings from all of the
232 /// instructions and basicblocks in the function from their old to new values.
233 ///
234 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
235                               ClonedCodeInfo *CodeInfo) {
236   std::vector<Type*> ArgTypes;
237 
238   // The user might be deleting arguments to the function by specifying them in
239   // the VMap.  If so, we need to not add the arguments to the arg ty vector
240   //
241   for (const Argument &I : F->args())
242     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
243       ArgTypes.push_back(I.getType());
244 
245   // Create a new function type...
246   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
247                                     ArgTypes, F->getFunctionType()->isVarArg());
248 
249   // Create the new function...
250   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
251                                     F->getName(), F->getParent());
252 
253   // Loop over the arguments, copying the names of the mapped arguments over...
254   Function::arg_iterator DestI = NewF->arg_begin();
255   for (const Argument & I : F->args())
256     if (VMap.count(&I) == 0) {     // Is this argument preserved?
257       DestI->setName(I.getName()); // Copy the name over...
258       VMap[&I] = &*DestI++;        // Add mapping to VMap
259     }
260 
261   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
262   CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
263                     CodeInfo);
264 
265   return NewF;
266 }
267 
268 
269 
270 namespace {
271   /// This is a private class used to implement CloneAndPruneFunctionInto.
272   struct PruningFunctionCloner {
273     Function *NewFunc;
274     const Function *OldFunc;
275     ValueToValueMapTy &VMap;
276     bool ModuleLevelChanges;
277     const char *NameSuffix;
278     ClonedCodeInfo *CodeInfo;
279 
280   public:
281     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
282                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
283                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
284         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
285           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
286           CodeInfo(codeInfo) {}
287 
288     /// The specified block is found to be reachable, clone it and
289     /// anything that it can reach.
290     void CloneBlock(const BasicBlock *BB,
291                     BasicBlock::const_iterator StartingInst,
292                     std::vector<const BasicBlock*> &ToClone);
293   };
294 }
295 
296 /// The specified block is found to be reachable, clone it and
297 /// anything that it can reach.
298 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
299                                        BasicBlock::const_iterator StartingInst,
300                                        std::vector<const BasicBlock*> &ToClone){
301   WeakTrackingVH &BBEntry = VMap[BB];
302 
303   // Have we already cloned this block?
304   if (BBEntry) return;
305 
306   // Nope, clone it now.
307   BasicBlock *NewBB;
308   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
309   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
310 
311   // It is only legal to clone a function if a block address within that
312   // function is never referenced outside of the function.  Given that, we
313   // want to map block addresses from the old function to block addresses in
314   // the clone. (This is different from the generic ValueMapper
315   // implementation, which generates an invalid blockaddress when
316   // cloning a function.)
317   //
318   // Note that we don't need to fix the mapping for unreachable blocks;
319   // the default mapping there is safe.
320   if (BB->hasAddressTaken()) {
321     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
322                                             const_cast<BasicBlock*>(BB));
323     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
324   }
325 
326   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
327 
328   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
329   // loop doesn't include the terminator.
330   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
331        II != IE; ++II) {
332 
333     Instruction *NewInst = II->clone();
334 
335     // Eagerly remap operands to the newly cloned instruction, except for PHI
336     // nodes for which we defer processing until we update the CFG.
337     if (!isa<PHINode>(NewInst)) {
338       RemapInstruction(NewInst, VMap,
339                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
340 
341       // If we can simplify this instruction to some other value, simply add
342       // a mapping to that value rather than inserting a new instruction into
343       // the basic block.
344       if (Value *V =
345               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
346         // On the off-chance that this simplifies to an instruction in the old
347         // function, map it back into the new function.
348         if (NewFunc != OldFunc)
349           if (Value *MappedV = VMap.lookup(V))
350             V = MappedV;
351 
352         if (!NewInst->mayHaveSideEffects()) {
353           VMap[&*II] = V;
354           NewInst->deleteValue();
355           continue;
356         }
357       }
358     }
359 
360     if (II->hasName())
361       NewInst->setName(II->getName()+NameSuffix);
362     VMap[&*II] = NewInst; // Add instruction map to value.
363     NewBB->getInstList().push_back(NewInst);
364     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
365 
366     if (CodeInfo)
367       if (auto *CB = dyn_cast<CallBase>(&*II))
368         if (CB->hasOperandBundles())
369           CodeInfo->OperandBundleCallSites.push_back(NewInst);
370 
371     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
372       if (isa<ConstantInt>(AI->getArraySize()))
373         hasStaticAllocas = true;
374       else
375         hasDynamicAllocas = true;
376     }
377   }
378 
379   // Finally, clone over the terminator.
380   const Instruction *OldTI = BB->getTerminator();
381   bool TerminatorDone = false;
382   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
383     if (BI->isConditional()) {
384       // If the condition was a known constant in the callee...
385       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
386       // Or is a known constant in the caller...
387       if (!Cond) {
388         Value *V = VMap.lookup(BI->getCondition());
389         Cond = dyn_cast_or_null<ConstantInt>(V);
390       }
391 
392       // Constant fold to uncond branch!
393       if (Cond) {
394         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
395         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
396         ToClone.push_back(Dest);
397         TerminatorDone = true;
398       }
399     }
400   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
401     // If switching on a value known constant in the caller.
402     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
403     if (!Cond) { // Or known constant after constant prop in the callee...
404       Value *V = VMap.lookup(SI->getCondition());
405       Cond = dyn_cast_or_null<ConstantInt>(V);
406     }
407     if (Cond) {     // Constant fold to uncond branch!
408       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
409       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
410       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
411       ToClone.push_back(Dest);
412       TerminatorDone = true;
413     }
414   }
415 
416   if (!TerminatorDone) {
417     Instruction *NewInst = OldTI->clone();
418     if (OldTI->hasName())
419       NewInst->setName(OldTI->getName()+NameSuffix);
420     NewBB->getInstList().push_back(NewInst);
421     VMap[OldTI] = NewInst;             // Add instruction map to value.
422 
423     if (CodeInfo)
424       if (auto *CB = dyn_cast<CallBase>(OldTI))
425         if (CB->hasOperandBundles())
426           CodeInfo->OperandBundleCallSites.push_back(NewInst);
427 
428     // Recursively clone any reachable successor blocks.
429     const Instruction *TI = BB->getTerminator();
430     for (const BasicBlock *Succ : successors(TI))
431       ToClone.push_back(Succ);
432   }
433 
434   if (CodeInfo) {
435     CodeInfo->ContainsCalls          |= hasCalls;
436     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
437     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
438       BB != &BB->getParent()->front();
439   }
440 }
441 
442 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
443 /// entire function. Instead it starts at an instruction provided by the caller
444 /// and copies (and prunes) only the code reachable from that instruction.
445 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
446                                      const Instruction *StartingInst,
447                                      ValueToValueMapTy &VMap,
448                                      bool ModuleLevelChanges,
449                                      SmallVectorImpl<ReturnInst *> &Returns,
450                                      const char *NameSuffix,
451                                      ClonedCodeInfo *CodeInfo) {
452   assert(NameSuffix && "NameSuffix cannot be null!");
453 
454   ValueMapTypeRemapper *TypeMapper = nullptr;
455   ValueMaterializer *Materializer = nullptr;
456 
457 #ifndef NDEBUG
458   // If the cloning starts at the beginning of the function, verify that
459   // the function arguments are mapped.
460   if (!StartingInst)
461     for (const Argument &II : OldFunc->args())
462       assert(VMap.count(&II) && "No mapping from source argument specified!");
463 #endif
464 
465   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
466                             NameSuffix, CodeInfo);
467   const BasicBlock *StartingBB;
468   if (StartingInst)
469     StartingBB = StartingInst->getParent();
470   else {
471     StartingBB = &OldFunc->getEntryBlock();
472     StartingInst = &StartingBB->front();
473   }
474 
475   // Clone the entry block, and anything recursively reachable from it.
476   std::vector<const BasicBlock*> CloneWorklist;
477   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
478   while (!CloneWorklist.empty()) {
479     const BasicBlock *BB = CloneWorklist.back();
480     CloneWorklist.pop_back();
481     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
482   }
483 
484   // Loop over all of the basic blocks in the old function.  If the block was
485   // reachable, we have cloned it and the old block is now in the value map:
486   // insert it into the new function in the right order.  If not, ignore it.
487   //
488   // Defer PHI resolution until rest of function is resolved.
489   SmallVector<const PHINode*, 16> PHIToResolve;
490   for (const BasicBlock &BI : *OldFunc) {
491     Value *V = VMap.lookup(&BI);
492     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
493     if (!NewBB) continue;  // Dead block.
494 
495     // Add the new block to the new function.
496     NewFunc->getBasicBlockList().push_back(NewBB);
497 
498     // Handle PHI nodes specially, as we have to remove references to dead
499     // blocks.
500     for (const PHINode &PN : BI.phis()) {
501       // PHI nodes may have been remapped to non-PHI nodes by the caller or
502       // during the cloning process.
503       if (isa<PHINode>(VMap[&PN]))
504         PHIToResolve.push_back(&PN);
505       else
506         break;
507     }
508 
509     // Finally, remap the terminator instructions, as those can't be remapped
510     // until all BBs are mapped.
511     RemapInstruction(NewBB->getTerminator(), VMap,
512                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
513                      TypeMapper, Materializer);
514   }
515 
516   // Defer PHI resolution until rest of function is resolved, PHI resolution
517   // requires the CFG to be up-to-date.
518   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
519     const PHINode *OPN = PHIToResolve[phino];
520     unsigned NumPreds = OPN->getNumIncomingValues();
521     const BasicBlock *OldBB = OPN->getParent();
522     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
523 
524     // Map operands for blocks that are live and remove operands for blocks
525     // that are dead.
526     for (; phino != PHIToResolve.size() &&
527          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
528       OPN = PHIToResolve[phino];
529       PHINode *PN = cast<PHINode>(VMap[OPN]);
530       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
531         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
532         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
533           Value *InVal = MapValue(PN->getIncomingValue(pred),
534                                   VMap,
535                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
536           assert(InVal && "Unknown input value?");
537           PN->setIncomingValue(pred, InVal);
538           PN->setIncomingBlock(pred, MappedBlock);
539         } else {
540           PN->removeIncomingValue(pred, false);
541           --pred;  // Revisit the next entry.
542           --e;
543         }
544       }
545     }
546 
547     // The loop above has removed PHI entries for those blocks that are dead
548     // and has updated others.  However, if a block is live (i.e. copied over)
549     // but its terminator has been changed to not go to this block, then our
550     // phi nodes will have invalid entries.  Update the PHI nodes in this
551     // case.
552     PHINode *PN = cast<PHINode>(NewBB->begin());
553     NumPreds = pred_size(NewBB);
554     if (NumPreds != PN->getNumIncomingValues()) {
555       assert(NumPreds < PN->getNumIncomingValues());
556       // Count how many times each predecessor comes to this block.
557       std::map<BasicBlock*, unsigned> PredCount;
558       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
559            PI != E; ++PI)
560         --PredCount[*PI];
561 
562       // Figure out how many entries to remove from each PHI.
563       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
564         ++PredCount[PN->getIncomingBlock(i)];
565 
566       // At this point, the excess predecessor entries are positive in the
567       // map.  Loop over all of the PHIs and remove excess predecessor
568       // entries.
569       BasicBlock::iterator I = NewBB->begin();
570       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
571         for (const auto &PCI : PredCount) {
572           BasicBlock *Pred = PCI.first;
573           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
574             PN->removeIncomingValue(Pred, false);
575         }
576       }
577     }
578 
579     // If the loops above have made these phi nodes have 0 or 1 operand,
580     // replace them with undef or the input value.  We must do this for
581     // correctness, because 0-operand phis are not valid.
582     PN = cast<PHINode>(NewBB->begin());
583     if (PN->getNumIncomingValues() == 0) {
584       BasicBlock::iterator I = NewBB->begin();
585       BasicBlock::const_iterator OldI = OldBB->begin();
586       while ((PN = dyn_cast<PHINode>(I++))) {
587         Value *NV = UndefValue::get(PN->getType());
588         PN->replaceAllUsesWith(NV);
589         assert(VMap[&*OldI] == PN && "VMap mismatch");
590         VMap[&*OldI] = NV;
591         PN->eraseFromParent();
592         ++OldI;
593       }
594     }
595   }
596 
597   // Make a second pass over the PHINodes now that all of them have been
598   // remapped into the new function, simplifying the PHINode and performing any
599   // recursive simplifications exposed. This will transparently update the
600   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
601   // two PHINodes, the iteration over the old PHIs remains valid, and the
602   // mapping will just map us to the new node (which may not even be a PHI
603   // node).
604   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
605   SmallSetVector<const Value *, 8> Worklist;
606   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
607     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
608       Worklist.insert(PHIToResolve[Idx]);
609 
610   // Note that we must test the size on each iteration, the worklist can grow.
611   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
612     const Value *OrigV = Worklist[Idx];
613     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
614     if (!I)
615       continue;
616 
617     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
618     // the CGSCC.
619     CallBase *CB = dyn_cast<CallBase>(I);
620     if (CB && CB->getCalledFunction() &&
621         !CB->getCalledFunction()->isIntrinsic())
622       continue;
623 
624     // See if this instruction simplifies.
625     Value *SimpleV = SimplifyInstruction(I, DL);
626     if (!SimpleV)
627       continue;
628 
629     // Stash away all the uses of the old instruction so we can check them for
630     // recursive simplifications after a RAUW. This is cheaper than checking all
631     // uses of To on the recursive step in most cases.
632     for (const User *U : OrigV->users())
633       Worklist.insert(cast<Instruction>(U));
634 
635     // Replace the instruction with its simplified value.
636     I->replaceAllUsesWith(SimpleV);
637 
638     // If the original instruction had no side effects, remove it.
639     if (isInstructionTriviallyDead(I))
640       I->eraseFromParent();
641     else
642       VMap[OrigV] = I;
643   }
644 
645   // Now that the inlined function body has been fully constructed, go through
646   // and zap unconditional fall-through branches. This happens all the time when
647   // specializing code: code specialization turns conditional branches into
648   // uncond branches, and this code folds them.
649   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
650   Function::iterator I = Begin;
651   while (I != NewFunc->end()) {
652     // We need to simplify conditional branches and switches with a constant
653     // operand. We try to prune these out when cloning, but if the
654     // simplification required looking through PHI nodes, those are only
655     // available after forming the full basic block. That may leave some here,
656     // and we still want to prune the dead code as early as possible.
657     //
658     // Do the folding before we check if the block is dead since we want code
659     // like
660     //  bb:
661     //    br i1 undef, label %bb, label %bb
662     // to be simplified to
663     //  bb:
664     //    br label %bb
665     // before we call I->getSinglePredecessor().
666     ConstantFoldTerminator(&*I);
667 
668     // Check if this block has become dead during inlining or other
669     // simplifications. Note that the first block will appear dead, as it has
670     // not yet been wired up properly.
671     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
672                        I->getSinglePredecessor() == &*I)) {
673       BasicBlock *DeadBB = &*I++;
674       DeleteDeadBlock(DeadBB);
675       continue;
676     }
677 
678     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
679     if (!BI || BI->isConditional()) { ++I; continue; }
680 
681     BasicBlock *Dest = BI->getSuccessor(0);
682     if (!Dest->getSinglePredecessor()) {
683       ++I; continue;
684     }
685 
686     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
687     // above should have zapped all of them..
688     assert(!isa<PHINode>(Dest->begin()));
689 
690     // We know all single-entry PHI nodes in the inlined function have been
691     // removed, so we just need to splice the blocks.
692     BI->eraseFromParent();
693 
694     // Make all PHI nodes that referred to Dest now refer to I as their source.
695     Dest->replaceAllUsesWith(&*I);
696 
697     // Move all the instructions in the succ to the pred.
698     I->getInstList().splice(I->end(), Dest->getInstList());
699 
700     // Remove the dest block.
701     Dest->eraseFromParent();
702 
703     // Do not increment I, iteratively merge all things this block branches to.
704   }
705 
706   // Make a final pass over the basic blocks from the old function to gather
707   // any return instructions which survived folding. We have to do this here
708   // because we can iteratively remove and merge returns above.
709   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
710                           E = NewFunc->end();
711        I != E; ++I)
712     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
713       Returns.push_back(RI);
714 }
715 
716 
717 /// This works exactly like CloneFunctionInto,
718 /// except that it does some simple constant prop and DCE on the fly.  The
719 /// effect of this is to copy significantly less code in cases where (for
720 /// example) a function call with constant arguments is inlined, and those
721 /// constant arguments cause a significant amount of code in the callee to be
722 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
723 /// used for things like CloneFunction or CloneModule.
724 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
725                                      ValueToValueMapTy &VMap,
726                                      bool ModuleLevelChanges,
727                                      SmallVectorImpl<ReturnInst*> &Returns,
728                                      const char *NameSuffix,
729                                      ClonedCodeInfo *CodeInfo,
730                                      Instruction *TheCall) {
731   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
732                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
733 }
734 
735 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
736 void llvm::remapInstructionsInBlocks(
737     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
738   // Rewrite the code to refer to itself.
739   for (auto *BB : Blocks)
740     for (auto &Inst : *BB)
741       RemapInstruction(&Inst, VMap,
742                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
743 }
744 
745 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
746 /// Blocks.
747 ///
748 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
749 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
750 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
751                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
752                                    const Twine &NameSuffix, LoopInfo *LI,
753                                    DominatorTree *DT,
754                                    SmallVectorImpl<BasicBlock *> &Blocks) {
755   Function *F = OrigLoop->getHeader()->getParent();
756   Loop *ParentLoop = OrigLoop->getParentLoop();
757   DenseMap<Loop *, Loop *> LMap;
758 
759   Loop *NewLoop = LI->AllocateLoop();
760   LMap[OrigLoop] = NewLoop;
761   if (ParentLoop)
762     ParentLoop->addChildLoop(NewLoop);
763   else
764     LI->addTopLevelLoop(NewLoop);
765 
766   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
767   assert(OrigPH && "No preheader");
768   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
769   // To rename the loop PHIs.
770   VMap[OrigPH] = NewPH;
771   Blocks.push_back(NewPH);
772 
773   // Update LoopInfo.
774   if (ParentLoop)
775     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
776 
777   // Update DominatorTree.
778   DT->addNewBlock(NewPH, LoopDomBB);
779 
780   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
781     Loop *&NewLoop = LMap[CurLoop];
782     if (!NewLoop) {
783       NewLoop = LI->AllocateLoop();
784 
785       // Establish the parent/child relationship.
786       Loop *OrigParent = CurLoop->getParentLoop();
787       assert(OrigParent && "Could not find the original parent loop");
788       Loop *NewParentLoop = LMap[OrigParent];
789       assert(NewParentLoop && "Could not find the new parent loop");
790 
791       NewParentLoop->addChildLoop(NewLoop);
792     }
793   }
794 
795   for (BasicBlock *BB : OrigLoop->getBlocks()) {
796     Loop *CurLoop = LI->getLoopFor(BB);
797     Loop *&NewLoop = LMap[CurLoop];
798     assert(NewLoop && "Expecting new loop to be allocated");
799 
800     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
801     VMap[BB] = NewBB;
802 
803     // Update LoopInfo.
804     NewLoop->addBasicBlockToLoop(NewBB, *LI);
805 
806     // Add DominatorTree node. After seeing all blocks, update to correct
807     // IDom.
808     DT->addNewBlock(NewBB, NewPH);
809 
810     Blocks.push_back(NewBB);
811   }
812 
813   for (BasicBlock *BB : OrigLoop->getBlocks()) {
814     // Update loop headers.
815     Loop *CurLoop = LI->getLoopFor(BB);
816     if (BB == CurLoop->getHeader())
817       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
818 
819     // Update DominatorTree.
820     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
821     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
822                                  cast<BasicBlock>(VMap[IDomBB]));
823   }
824 
825   // Move them physically from the end of the block list.
826   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
827                                 NewPH);
828   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
829                                 NewLoop->getHeader()->getIterator(), F->end());
830 
831   return NewLoop;
832 }
833 
834 /// Duplicate non-Phi instructions from the beginning of block up to
835 /// StopAt instruction into a split block between BB and its predecessor.
836 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
837     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
838     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
839 
840   assert(count(successors(PredBB), BB) == 1 &&
841          "There must be a single edge between PredBB and BB!");
842   // We are going to have to map operands from the original BB block to the new
843   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
844   // account for entry from PredBB.
845   BasicBlock::iterator BI = BB->begin();
846   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
847     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
848 
849   BasicBlock *NewBB = SplitEdge(PredBB, BB);
850   NewBB->setName(PredBB->getName() + ".split");
851   Instruction *NewTerm = NewBB->getTerminator();
852 
853   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
854   //        in the update set here.
855   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
856                     {DominatorTree::Insert, PredBB, NewBB},
857                     {DominatorTree::Insert, NewBB, BB}});
858 
859   // Clone the non-phi instructions of BB into NewBB, keeping track of the
860   // mapping and using it to remap operands in the cloned instructions.
861   // Stop once we see the terminator too. This covers the case where BB's
862   // terminator gets replaced and StopAt == BB's terminator.
863   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
864     Instruction *New = BI->clone();
865     New->setName(BI->getName());
866     New->insertBefore(NewTerm);
867     ValueMapping[&*BI] = New;
868 
869     // Remap operands to patch up intra-block references.
870     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
871       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
872         auto I = ValueMapping.find(Inst);
873         if (I != ValueMapping.end())
874           New->setOperand(i, I->second);
875       }
876   }
877 
878   return NewBB;
879 }
880