1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CloneFunctionInto interface, which is used as the 10 // low-level function cloner. This is used by the CloneFunction and function 11 // inliner to do the dirty work of copying the body of a function around. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/AttributeMask.h" 22 #include "llvm/IR/CFG.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/ValueMapper.h" 37 #include <map> 38 #include <optional> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "clone-function" 42 43 /// See comments in Cloning.h. 44 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, 45 const Twine &NameSuffix, Function *F, 46 ClonedCodeInfo *CodeInfo, 47 DebugInfoFinder *DIFinder) { 48 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 49 NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat; 50 if (BB->hasName()) 51 NewBB->setName(BB->getName() + NameSuffix); 52 53 bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false; 54 Module *TheModule = F ? F->getParent() : nullptr; 55 56 // Loop over all instructions, and copy them over. 57 for (const Instruction &I : *BB) { 58 if (DIFinder && TheModule) 59 DIFinder->processInstruction(*TheModule, I); 60 61 Instruction *NewInst = I.clone(); 62 if (I.hasName()) 63 NewInst->setName(I.getName() + NameSuffix); 64 65 NewInst->insertBefore(*NewBB, NewBB->end()); 66 NewInst->cloneDebugInfoFrom(&I); 67 68 VMap[&I] = NewInst; // Add instruction map to value. 69 70 if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) { 71 hasCalls = true; 72 hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof); 73 } 74 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 75 if (!AI->isStaticAlloca()) { 76 hasDynamicAllocas = true; 77 } 78 } 79 } 80 81 if (CodeInfo) { 82 CodeInfo->ContainsCalls |= hasCalls; 83 CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; 84 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 85 } 86 return NewBB; 87 } 88 89 // Clone OldFunc into NewFunc, transforming the old arguments into references to 90 // VMap values. 91 // 92 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 93 ValueToValueMapTy &VMap, 94 CloneFunctionChangeType Changes, 95 SmallVectorImpl<ReturnInst *> &Returns, 96 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 97 ValueMapTypeRemapper *TypeMapper, 98 ValueMaterializer *Materializer) { 99 NewFunc->setIsNewDbgInfoFormat(OldFunc->IsNewDbgInfoFormat); 100 assert(NameSuffix && "NameSuffix cannot be null!"); 101 102 #ifndef NDEBUG 103 for (const Argument &I : OldFunc->args()) 104 assert(VMap.count(&I) && "No mapping from source argument specified!"); 105 #endif 106 107 bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly; 108 109 // Copy all attributes other than those stored in the AttributeList. We need 110 // to remap the parameter indices of the AttributeList. 111 AttributeList NewAttrs = NewFunc->getAttributes(); 112 NewFunc->copyAttributesFrom(OldFunc); 113 NewFunc->setAttributes(NewAttrs); 114 115 const RemapFlags FuncGlobalRefFlags = 116 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; 117 118 // Fix up the personality function that got copied over. 119 if (OldFunc->hasPersonalityFn()) 120 NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap, 121 FuncGlobalRefFlags, TypeMapper, 122 Materializer)); 123 124 if (OldFunc->hasPrefixData()) { 125 NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap, 126 FuncGlobalRefFlags, TypeMapper, 127 Materializer)); 128 } 129 130 if (OldFunc->hasPrologueData()) { 131 NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap, 132 FuncGlobalRefFlags, TypeMapper, 133 Materializer)); 134 } 135 136 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 137 AttributeList OldAttrs = OldFunc->getAttributes(); 138 139 // Clone any argument attributes that are present in the VMap. 140 for (const Argument &OldArg : OldFunc->args()) { 141 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 142 NewArgAttrs[NewArg->getArgNo()] = 143 OldAttrs.getParamAttrs(OldArg.getArgNo()); 144 } 145 } 146 147 NewFunc->setAttributes( 148 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(), 149 OldAttrs.getRetAttrs(), NewArgAttrs)); 150 151 // Everything else beyond this point deals with function instructions, 152 // so if we are dealing with a function declaration, we're done. 153 if (OldFunc->isDeclaration()) 154 return; 155 156 // When we remap instructions within the same module, we want to avoid 157 // duplicating inlined DISubprograms, so record all subprograms we find as we 158 // duplicate instructions and then freeze them in the MD map. We also record 159 // information about dbg.value and dbg.declare to avoid duplicating the 160 // types. 161 std::optional<DebugInfoFinder> DIFinder; 162 163 // Track the subprogram attachment that needs to be cloned to fine-tune the 164 // mapping within the same module. 165 DISubprogram *SPClonedWithinModule = nullptr; 166 if (Changes < CloneFunctionChangeType::DifferentModule) { 167 assert((NewFunc->getParent() == nullptr || 168 NewFunc->getParent() == OldFunc->getParent()) && 169 "Expected NewFunc to have the same parent, or no parent"); 170 171 // Need to find subprograms, types, and compile units. 172 DIFinder.emplace(); 173 174 SPClonedWithinModule = OldFunc->getSubprogram(); 175 if (SPClonedWithinModule) 176 DIFinder->processSubprogram(SPClonedWithinModule); 177 } else { 178 assert((NewFunc->getParent() == nullptr || 179 NewFunc->getParent() != OldFunc->getParent()) && 180 "Expected NewFunc to have different parents, or no parent"); 181 182 if (Changes == CloneFunctionChangeType::DifferentModule) { 183 assert(NewFunc->getParent() && 184 "Need parent of new function to maintain debug info invariants"); 185 186 // Need to find all the compile units. 187 DIFinder.emplace(); 188 } 189 } 190 191 // Loop over all of the basic blocks in the function, cloning them as 192 // appropriate. Note that we save BE this way in order to handle cloning of 193 // recursive functions into themselves. 194 for (const BasicBlock &BB : *OldFunc) { 195 196 // Create a new basic block and copy instructions into it! 197 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, 198 DIFinder ? &*DIFinder : nullptr); 199 200 // Add basic block mapping. 201 VMap[&BB] = CBB; 202 203 // It is only legal to clone a function if a block address within that 204 // function is never referenced outside of the function. Given that, we 205 // want to map block addresses from the old function to block addresses in 206 // the clone. (This is different from the generic ValueMapper 207 // implementation, which generates an invalid blockaddress when 208 // cloning a function.) 209 if (BB.hasAddressTaken()) { 210 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc), 211 const_cast<BasicBlock *>(&BB)); 212 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 213 } 214 215 // Note return instructions for the caller. 216 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 217 Returns.push_back(RI); 218 } 219 220 if (Changes < CloneFunctionChangeType::DifferentModule && 221 DIFinder->subprogram_count() > 0) { 222 // Turn on module-level changes, since we need to clone (some of) the 223 // debug info metadata. 224 // 225 // FIXME: Metadata effectively owned by a function should be made 226 // local, and only that local metadata should be cloned. 227 ModuleLevelChanges = true; 228 229 auto mapToSelfIfNew = [&VMap](MDNode *N) { 230 // Avoid clobbering an existing mapping. 231 (void)VMap.MD().try_emplace(N, N); 232 }; 233 234 // Avoid cloning types, compile units, and (other) subprograms. 235 SmallPtrSet<const DISubprogram *, 16> MappedToSelfSPs; 236 for (DISubprogram *ISP : DIFinder->subprograms()) { 237 if (ISP != SPClonedWithinModule) { 238 mapToSelfIfNew(ISP); 239 MappedToSelfSPs.insert(ISP); 240 } 241 } 242 243 // If a subprogram isn't going to be cloned skip its lexical blocks as well. 244 for (DIScope *S : DIFinder->scopes()) { 245 auto *LScope = dyn_cast<DILocalScope>(S); 246 if (LScope && MappedToSelfSPs.count(LScope->getSubprogram())) 247 mapToSelfIfNew(S); 248 } 249 250 for (DICompileUnit *CU : DIFinder->compile_units()) 251 mapToSelfIfNew(CU); 252 253 for (DIType *Type : DIFinder->types()) 254 mapToSelfIfNew(Type); 255 } else { 256 assert(!SPClonedWithinModule && 257 "Subprogram should be in DIFinder->subprogram_count()..."); 258 } 259 260 const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; 261 // Duplicate the metadata that is attached to the cloned function. 262 // Subprograms/CUs/types that were already mapped to themselves won't be 263 // duplicated. 264 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 265 OldFunc->getAllMetadata(MDs); 266 for (auto MD : MDs) { 267 NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag, 268 TypeMapper, Materializer)); 269 } 270 271 // Loop over all of the instructions in the new function, fixing up operand 272 // references as we go. This uses VMap to do all the hard work. 273 for (Function::iterator 274 BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 275 BE = NewFunc->end(); 276 BB != BE; ++BB) 277 // Loop over all instructions, fixing each one as we find it, and any 278 // attached debug-info records. 279 for (Instruction &II : *BB) { 280 RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer); 281 RemapDbgRecordRange(II.getModule(), II.getDbgRecordRange(), VMap, 282 RemapFlag, TypeMapper, Materializer); 283 } 284 285 // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the 286 // same module, the compile unit will already be listed (or not). When 287 // cloning a module, CloneModule() will handle creating the named metadata. 288 if (Changes != CloneFunctionChangeType::DifferentModule) 289 return; 290 291 // Update !llvm.dbg.cu with compile units added to the new module if this 292 // function is being cloned in isolation. 293 // 294 // FIXME: This is making global / module-level changes, which doesn't seem 295 // like the right encapsulation Consider dropping the requirement to update 296 // !llvm.dbg.cu (either obsoleting the node, or restricting it to 297 // non-discardable compile units) instead of discovering compile units by 298 // visiting the metadata attached to global values, which would allow this 299 // code to be deleted. Alternatively, perhaps give responsibility for this 300 // update to CloneFunctionInto's callers. 301 auto *NewModule = NewFunc->getParent(); 302 auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu"); 303 // Avoid multiple insertions of the same DICompileUnit to NMD. 304 SmallPtrSet<const void *, 8> Visited; 305 for (auto *Operand : NMD->operands()) 306 Visited.insert(Operand); 307 for (auto *Unit : DIFinder->compile_units()) { 308 MDNode *MappedUnit = 309 MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer); 310 if (Visited.insert(MappedUnit).second) 311 NMD->addOperand(MappedUnit); 312 } 313 } 314 315 /// Return a copy of the specified function and add it to that function's 316 /// module. Also, any references specified in the VMap are changed to refer to 317 /// their mapped value instead of the original one. If any of the arguments to 318 /// the function are in the VMap, the arguments are deleted from the resultant 319 /// function. The VMap is updated to include mappings from all of the 320 /// instructions and basicblocks in the function from their old to new values. 321 /// 322 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 323 ClonedCodeInfo *CodeInfo) { 324 std::vector<Type *> ArgTypes; 325 326 // The user might be deleting arguments to the function by specifying them in 327 // the VMap. If so, we need to not add the arguments to the arg ty vector 328 // 329 for (const Argument &I : F->args()) 330 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 331 ArgTypes.push_back(I.getType()); 332 333 // Create a new function type... 334 FunctionType *FTy = 335 FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes, 336 F->getFunctionType()->isVarArg()); 337 338 // Create the new function... 339 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), 340 F->getName(), F->getParent()); 341 NewF->setIsNewDbgInfoFormat(F->IsNewDbgInfoFormat); 342 343 // Loop over the arguments, copying the names of the mapped arguments over... 344 Function::arg_iterator DestI = NewF->arg_begin(); 345 for (const Argument &I : F->args()) 346 if (VMap.count(&I) == 0) { // Is this argument preserved? 347 DestI->setName(I.getName()); // Copy the name over... 348 VMap[&I] = &*DestI++; // Add mapping to VMap 349 } 350 351 SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned. 352 CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly, 353 Returns, "", CodeInfo); 354 355 return NewF; 356 } 357 358 namespace { 359 /// This is a private class used to implement CloneAndPruneFunctionInto. 360 struct PruningFunctionCloner { 361 Function *NewFunc; 362 const Function *OldFunc; 363 ValueToValueMapTy &VMap; 364 bool ModuleLevelChanges; 365 const char *NameSuffix; 366 ClonedCodeInfo *CodeInfo; 367 bool HostFuncIsStrictFP; 368 369 Instruction *cloneInstruction(BasicBlock::const_iterator II); 370 371 public: 372 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 373 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 374 const char *nameSuffix, ClonedCodeInfo *codeInfo) 375 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 376 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 377 CodeInfo(codeInfo) { 378 HostFuncIsStrictFP = 379 newFunc->getAttributes().hasFnAttr(Attribute::StrictFP); 380 } 381 382 /// The specified block is found to be reachable, clone it and 383 /// anything that it can reach. 384 void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst, 385 std::vector<const BasicBlock *> &ToClone); 386 }; 387 } // namespace 388 389 Instruction * 390 PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) { 391 const Instruction &OldInst = *II; 392 Instruction *NewInst = nullptr; 393 if (HostFuncIsStrictFP) { 394 Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst); 395 if (CIID != Intrinsic::not_intrinsic) { 396 // Instead of cloning the instruction, a call to constrained intrinsic 397 // should be created. 398 // Assume the first arguments of constrained intrinsics are the same as 399 // the operands of original instruction. 400 401 // Determine overloaded types of the intrinsic. 402 SmallVector<Type *, 2> TParams; 403 SmallVector<Intrinsic::IITDescriptor, 8> Descriptor; 404 getIntrinsicInfoTableEntries(CIID, Descriptor); 405 for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) { 406 Intrinsic::IITDescriptor Operand = Descriptor[I]; 407 switch (Operand.Kind) { 408 case Intrinsic::IITDescriptor::Argument: 409 if (Operand.getArgumentKind() != 410 Intrinsic::IITDescriptor::AK_MatchType) { 411 if (I == 0) 412 TParams.push_back(OldInst.getType()); 413 else 414 TParams.push_back(OldInst.getOperand(I - 1)->getType()); 415 } 416 break; 417 case Intrinsic::IITDescriptor::SameVecWidthArgument: 418 ++I; 419 break; 420 default: 421 break; 422 } 423 } 424 425 // Create intrinsic call. 426 LLVMContext &Ctx = NewFunc->getContext(); 427 Function *IFn = 428 Intrinsic::getDeclaration(NewFunc->getParent(), CIID, TParams); 429 SmallVector<Value *, 4> Args; 430 unsigned NumOperands = OldInst.getNumOperands(); 431 if (isa<CallInst>(OldInst)) 432 --NumOperands; 433 for (unsigned I = 0; I < NumOperands; ++I) { 434 Value *Op = OldInst.getOperand(I); 435 Args.push_back(Op); 436 } 437 if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) { 438 FCmpInst::Predicate Pred = CmpI->getPredicate(); 439 StringRef PredName = FCmpInst::getPredicateName(Pred); 440 Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName))); 441 } 442 443 // The last arguments of a constrained intrinsic are metadata that 444 // represent rounding mode (absents in some intrinsics) and exception 445 // behavior. The inlined function uses default settings. 446 if (Intrinsic::hasConstrainedFPRoundingModeOperand(CIID)) 447 Args.push_back( 448 MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest"))); 449 Args.push_back( 450 MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore"))); 451 452 NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict"); 453 } 454 } 455 if (!NewInst) 456 NewInst = II->clone(); 457 return NewInst; 458 } 459 460 /// The specified block is found to be reachable, clone it and 461 /// anything that it can reach. 462 void PruningFunctionCloner::CloneBlock( 463 const BasicBlock *BB, BasicBlock::const_iterator StartingInst, 464 std::vector<const BasicBlock *> &ToClone) { 465 WeakTrackingVH &BBEntry = VMap[BB]; 466 467 // Have we already cloned this block? 468 if (BBEntry) 469 return; 470 471 // Nope, clone it now. 472 BasicBlock *NewBB; 473 Twine NewName(BB->hasName() ? Twine(BB->getName()) + NameSuffix : ""); 474 BBEntry = NewBB = BasicBlock::Create(BB->getContext(), NewName, NewFunc); 475 NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat; 476 477 // It is only legal to clone a function if a block address within that 478 // function is never referenced outside of the function. Given that, we 479 // want to map block addresses from the old function to block addresses in 480 // the clone. (This is different from the generic ValueMapper 481 // implementation, which generates an invalid blockaddress when 482 // cloning a function.) 483 // 484 // Note that we don't need to fix the mapping for unreachable blocks; 485 // the default mapping there is safe. 486 if (BB->hasAddressTaken()) { 487 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc), 488 const_cast<BasicBlock *>(BB)); 489 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 490 } 491 492 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 493 bool hasMemProfMetadata = false; 494 495 // Keep a cursor pointing at the last place we cloned debug-info records from. 496 BasicBlock::const_iterator DbgCursor = StartingInst; 497 auto CloneDbgRecordsToHere = 498 [NewBB, &DbgCursor](Instruction *NewInst, BasicBlock::const_iterator II) { 499 if (!NewBB->IsNewDbgInfoFormat) 500 return; 501 502 // Clone debug-info records onto this instruction. Iterate through any 503 // source-instructions we've cloned and then subsequently optimised 504 // away, so that their debug-info doesn't go missing. 505 for (; DbgCursor != II; ++DbgCursor) 506 NewInst->cloneDebugInfoFrom(&*DbgCursor, std::nullopt, false); 507 NewInst->cloneDebugInfoFrom(&*II); 508 DbgCursor = std::next(II); 509 }; 510 511 // Loop over all instructions, and copy them over, DCE'ing as we go. This 512 // loop doesn't include the terminator. 513 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE; 514 ++II) { 515 516 Instruction *NewInst = cloneInstruction(II); 517 NewInst->insertInto(NewBB, NewBB->end()); 518 519 if (HostFuncIsStrictFP) { 520 // All function calls in the inlined function must get 'strictfp' 521 // attribute to prevent undesirable optimizations. 522 if (auto *Call = dyn_cast<CallInst>(NewInst)) 523 Call->addFnAttr(Attribute::StrictFP); 524 } 525 526 // Eagerly remap operands to the newly cloned instruction, except for PHI 527 // nodes for which we defer processing until we update the CFG. Also defer 528 // debug intrinsic processing because they may contain use-before-defs. 529 if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) { 530 RemapInstruction(NewInst, VMap, 531 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 532 533 // Eagerly constant fold the newly cloned instruction. If successful, add 534 // a mapping to the new value. Non-constant operands may be incomplete at 535 // this stage, thus instruction simplification is performed after 536 // processing phi-nodes. 537 if (Value *V = ConstantFoldInstruction( 538 NewInst, BB->getDataLayout())) { 539 if (isInstructionTriviallyDead(NewInst)) { 540 VMap[&*II] = V; 541 NewInst->eraseFromParent(); 542 continue; 543 } 544 } 545 } 546 547 if (II->hasName()) 548 NewInst->setName(II->getName() + NameSuffix); 549 VMap[&*II] = NewInst; // Add instruction map to value. 550 if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) { 551 hasCalls = true; 552 hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof); 553 } 554 555 CloneDbgRecordsToHere(NewInst, II); 556 557 if (CodeInfo) { 558 CodeInfo->OrigVMap[&*II] = NewInst; 559 if (auto *CB = dyn_cast<CallBase>(&*II)) 560 if (CB->hasOperandBundles()) 561 CodeInfo->OperandBundleCallSites.push_back(NewInst); 562 } 563 564 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 565 if (isa<ConstantInt>(AI->getArraySize())) 566 hasStaticAllocas = true; 567 else 568 hasDynamicAllocas = true; 569 } 570 } 571 572 // Finally, clone over the terminator. 573 const Instruction *OldTI = BB->getTerminator(); 574 bool TerminatorDone = false; 575 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 576 if (BI->isConditional()) { 577 // If the condition was a known constant in the callee... 578 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 579 // Or is a known constant in the caller... 580 if (!Cond) { 581 Value *V = VMap.lookup(BI->getCondition()); 582 Cond = dyn_cast_or_null<ConstantInt>(V); 583 } 584 585 // Constant fold to uncond branch! 586 if (Cond) { 587 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 588 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 589 ToClone.push_back(Dest); 590 TerminatorDone = true; 591 } 592 } 593 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 594 // If switching on a value known constant in the caller. 595 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 596 if (!Cond) { // Or known constant after constant prop in the callee... 597 Value *V = VMap.lookup(SI->getCondition()); 598 Cond = dyn_cast_or_null<ConstantInt>(V); 599 } 600 if (Cond) { // Constant fold to uncond branch! 601 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 602 BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor()); 603 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 604 ToClone.push_back(Dest); 605 TerminatorDone = true; 606 } 607 } 608 609 if (!TerminatorDone) { 610 Instruction *NewInst = OldTI->clone(); 611 if (OldTI->hasName()) 612 NewInst->setName(OldTI->getName() + NameSuffix); 613 NewInst->insertInto(NewBB, NewBB->end()); 614 615 CloneDbgRecordsToHere(NewInst, OldTI->getIterator()); 616 617 VMap[OldTI] = NewInst; // Add instruction map to value. 618 619 if (CodeInfo) { 620 CodeInfo->OrigVMap[OldTI] = NewInst; 621 if (auto *CB = dyn_cast<CallBase>(OldTI)) 622 if (CB->hasOperandBundles()) 623 CodeInfo->OperandBundleCallSites.push_back(NewInst); 624 } 625 626 // Recursively clone any reachable successor blocks. 627 append_range(ToClone, successors(BB->getTerminator())); 628 } else { 629 // If we didn't create a new terminator, clone DbgVariableRecords from the 630 // old terminator onto the new terminator. 631 Instruction *NewInst = NewBB->getTerminator(); 632 assert(NewInst); 633 634 CloneDbgRecordsToHere(NewInst, OldTI->getIterator()); 635 } 636 637 if (CodeInfo) { 638 CodeInfo->ContainsCalls |= hasCalls; 639 CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; 640 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 641 CodeInfo->ContainsDynamicAllocas |= 642 hasStaticAllocas && BB != &BB->getParent()->front(); 643 } 644 } 645 646 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 647 /// entire function. Instead it starts at an instruction provided by the caller 648 /// and copies (and prunes) only the code reachable from that instruction. 649 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 650 const Instruction *StartingInst, 651 ValueToValueMapTy &VMap, 652 bool ModuleLevelChanges, 653 SmallVectorImpl<ReturnInst *> &Returns, 654 const char *NameSuffix, 655 ClonedCodeInfo *CodeInfo) { 656 assert(NameSuffix && "NameSuffix cannot be null!"); 657 658 ValueMapTypeRemapper *TypeMapper = nullptr; 659 ValueMaterializer *Materializer = nullptr; 660 661 #ifndef NDEBUG 662 // If the cloning starts at the beginning of the function, verify that 663 // the function arguments are mapped. 664 if (!StartingInst) 665 for (const Argument &II : OldFunc->args()) 666 assert(VMap.count(&II) && "No mapping from source argument specified!"); 667 #endif 668 669 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 670 NameSuffix, CodeInfo); 671 const BasicBlock *StartingBB; 672 if (StartingInst) 673 StartingBB = StartingInst->getParent(); 674 else { 675 StartingBB = &OldFunc->getEntryBlock(); 676 StartingInst = &StartingBB->front(); 677 } 678 679 // Collect debug intrinsics for remapping later. 680 SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics; 681 for (const auto &BB : *OldFunc) { 682 for (const auto &I : BB) { 683 if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I)) 684 DbgIntrinsics.push_back(DVI); 685 } 686 } 687 688 // Clone the entry block, and anything recursively reachable from it. 689 std::vector<const BasicBlock *> CloneWorklist; 690 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 691 while (!CloneWorklist.empty()) { 692 const BasicBlock *BB = CloneWorklist.back(); 693 CloneWorklist.pop_back(); 694 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 695 } 696 697 // Loop over all of the basic blocks in the old function. If the block was 698 // reachable, we have cloned it and the old block is now in the value map: 699 // insert it into the new function in the right order. If not, ignore it. 700 // 701 // Defer PHI resolution until rest of function is resolved. 702 SmallVector<const PHINode *, 16> PHIToResolve; 703 for (const BasicBlock &BI : *OldFunc) { 704 Value *V = VMap.lookup(&BI); 705 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 706 if (!NewBB) 707 continue; // Dead block. 708 709 // Move the new block to preserve the order in the original function. 710 NewBB->moveBefore(NewFunc->end()); 711 712 // Handle PHI nodes specially, as we have to remove references to dead 713 // blocks. 714 for (const PHINode &PN : BI.phis()) { 715 // PHI nodes may have been remapped to non-PHI nodes by the caller or 716 // during the cloning process. 717 if (isa<PHINode>(VMap[&PN])) 718 PHIToResolve.push_back(&PN); 719 else 720 break; 721 } 722 723 // Finally, remap the terminator instructions, as those can't be remapped 724 // until all BBs are mapped. 725 RemapInstruction(NewBB->getTerminator(), VMap, 726 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 727 TypeMapper, Materializer); 728 } 729 730 // Defer PHI resolution until rest of function is resolved, PHI resolution 731 // requires the CFG to be up-to-date. 732 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) { 733 const PHINode *OPN = PHIToResolve[phino]; 734 unsigned NumPreds = OPN->getNumIncomingValues(); 735 const BasicBlock *OldBB = OPN->getParent(); 736 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 737 738 // Map operands for blocks that are live and remove operands for blocks 739 // that are dead. 740 for (; phino != PHIToResolve.size() && 741 PHIToResolve[phino]->getParent() == OldBB; 742 ++phino) { 743 OPN = PHIToResolve[phino]; 744 PHINode *PN = cast<PHINode>(VMap[OPN]); 745 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 746 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 747 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 748 Value *InVal = 749 MapValue(PN->getIncomingValue(pred), VMap, 750 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 751 assert(InVal && "Unknown input value?"); 752 PN->setIncomingValue(pred, InVal); 753 PN->setIncomingBlock(pred, MappedBlock); 754 } else { 755 PN->removeIncomingValue(pred, false); 756 --pred; // Revisit the next entry. 757 --e; 758 } 759 } 760 } 761 762 // The loop above has removed PHI entries for those blocks that are dead 763 // and has updated others. However, if a block is live (i.e. copied over) 764 // but its terminator has been changed to not go to this block, then our 765 // phi nodes will have invalid entries. Update the PHI nodes in this 766 // case. 767 PHINode *PN = cast<PHINode>(NewBB->begin()); 768 NumPreds = pred_size(NewBB); 769 if (NumPreds != PN->getNumIncomingValues()) { 770 assert(NumPreds < PN->getNumIncomingValues()); 771 // Count how many times each predecessor comes to this block. 772 std::map<BasicBlock *, unsigned> PredCount; 773 for (BasicBlock *Pred : predecessors(NewBB)) 774 --PredCount[Pred]; 775 776 // Figure out how many entries to remove from each PHI. 777 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 778 ++PredCount[PN->getIncomingBlock(i)]; 779 780 // At this point, the excess predecessor entries are positive in the 781 // map. Loop over all of the PHIs and remove excess predecessor 782 // entries. 783 BasicBlock::iterator I = NewBB->begin(); 784 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 785 for (const auto &PCI : PredCount) { 786 BasicBlock *Pred = PCI.first; 787 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 788 PN->removeIncomingValue(Pred, false); 789 } 790 } 791 } 792 793 // If the loops above have made these phi nodes have 0 or 1 operand, 794 // replace them with poison or the input value. We must do this for 795 // correctness, because 0-operand phis are not valid. 796 PN = cast<PHINode>(NewBB->begin()); 797 if (PN->getNumIncomingValues() == 0) { 798 BasicBlock::iterator I = NewBB->begin(); 799 BasicBlock::const_iterator OldI = OldBB->begin(); 800 while ((PN = dyn_cast<PHINode>(I++))) { 801 Value *NV = PoisonValue::get(PN->getType()); 802 PN->replaceAllUsesWith(NV); 803 assert(VMap[&*OldI] == PN && "VMap mismatch"); 804 VMap[&*OldI] = NV; 805 PN->eraseFromParent(); 806 ++OldI; 807 } 808 } 809 } 810 811 // Drop all incompatible return attributes that cannot be applied to NewFunc 812 // during cloning, so as to allow instruction simplification to reason on the 813 // old state of the function. The original attributes are restored later. 814 AttributeMask IncompatibleAttrs = 815 AttributeFuncs::typeIncompatible(OldFunc->getReturnType()); 816 AttributeList Attrs = NewFunc->getAttributes(); 817 NewFunc->removeRetAttrs(IncompatibleAttrs); 818 819 // As phi-nodes have been now remapped, allow incremental simplification of 820 // newly-cloned instructions. 821 const DataLayout &DL = NewFunc->getDataLayout(); 822 for (const auto &BB : *OldFunc) { 823 for (const auto &I : BB) { 824 auto *NewI = dyn_cast_or_null<Instruction>(VMap.lookup(&I)); 825 if (!NewI) 826 continue; 827 828 if (Value *V = simplifyInstruction(NewI, DL)) { 829 NewI->replaceAllUsesWith(V); 830 831 if (isInstructionTriviallyDead(NewI)) { 832 NewI->eraseFromParent(); 833 } else { 834 // Did not erase it? Restore the new instruction into VMap previously 835 // dropped by `ValueIsRAUWd`. 836 VMap[&I] = NewI; 837 } 838 } 839 } 840 } 841 842 // Restore attributes. 843 NewFunc->setAttributes(Attrs); 844 845 // Remap debug intrinsic operands now that all values have been mapped. 846 // Doing this now (late) preserves use-before-defs in debug intrinsics. If 847 // we didn't do this, ValueAsMetadata(use-before-def) operands would be 848 // replaced by empty metadata. This would signal later cleanup passes to 849 // remove the debug intrinsics, potentially causing incorrect locations. 850 for (const auto *DVI : DbgIntrinsics) { 851 if (DbgVariableIntrinsic *NewDVI = 852 cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI))) 853 RemapInstruction(NewDVI, VMap, 854 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 855 TypeMapper, Materializer); 856 } 857 858 // Do the same for DbgVariableRecords, touching all the instructions in the 859 // cloned range of blocks. 860 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 861 for (BasicBlock &BB : make_range(Begin, NewFunc->end())) { 862 for (Instruction &I : BB) { 863 RemapDbgRecordRange(I.getModule(), I.getDbgRecordRange(), VMap, 864 ModuleLevelChanges ? RF_None 865 : RF_NoModuleLevelChanges, 866 TypeMapper, Materializer); 867 } 868 } 869 870 // Simplify conditional branches and switches with a constant operand. We try 871 // to prune these out when cloning, but if the simplification required 872 // looking through PHI nodes, those are only available after forming the full 873 // basic block. That may leave some here, and we still want to prune the dead 874 // code as early as possible. 875 for (BasicBlock &BB : make_range(Begin, NewFunc->end())) 876 ConstantFoldTerminator(&BB); 877 878 // Some blocks may have become unreachable as a result. Find and delete them. 879 { 880 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 881 SmallVector<BasicBlock *, 16> Worklist; 882 Worklist.push_back(&*Begin); 883 while (!Worklist.empty()) { 884 BasicBlock *BB = Worklist.pop_back_val(); 885 if (ReachableBlocks.insert(BB).second) 886 append_range(Worklist, successors(BB)); 887 } 888 889 SmallVector<BasicBlock *, 16> UnreachableBlocks; 890 for (BasicBlock &BB : make_range(Begin, NewFunc->end())) 891 if (!ReachableBlocks.contains(&BB)) 892 UnreachableBlocks.push_back(&BB); 893 DeleteDeadBlocks(UnreachableBlocks); 894 } 895 896 // Now that the inlined function body has been fully constructed, go through 897 // and zap unconditional fall-through branches. This happens all the time when 898 // specializing code: code specialization turns conditional branches into 899 // uncond branches, and this code folds them. 900 Function::iterator I = Begin; 901 while (I != NewFunc->end()) { 902 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 903 if (!BI || BI->isConditional()) { 904 ++I; 905 continue; 906 } 907 908 BasicBlock *Dest = BI->getSuccessor(0); 909 if (!Dest->getSinglePredecessor()) { 910 ++I; 911 continue; 912 } 913 914 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 915 // above should have zapped all of them.. 916 assert(!isa<PHINode>(Dest->begin())); 917 918 // We know all single-entry PHI nodes in the inlined function have been 919 // removed, so we just need to splice the blocks. 920 BI->eraseFromParent(); 921 922 // Make all PHI nodes that referred to Dest now refer to I as their source. 923 Dest->replaceAllUsesWith(&*I); 924 925 // Move all the instructions in the succ to the pred. 926 I->splice(I->end(), Dest); 927 928 // Remove the dest block. 929 Dest->eraseFromParent(); 930 931 // Do not increment I, iteratively merge all things this block branches to. 932 } 933 934 // Make a final pass over the basic blocks from the old function to gather 935 // any return instructions which survived folding. We have to do this here 936 // because we can iteratively remove and merge returns above. 937 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 938 E = NewFunc->end(); 939 I != E; ++I) 940 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 941 Returns.push_back(RI); 942 } 943 944 /// This works exactly like CloneFunctionInto, 945 /// except that it does some simple constant prop and DCE on the fly. The 946 /// effect of this is to copy significantly less code in cases where (for 947 /// example) a function call with constant arguments is inlined, and those 948 /// constant arguments cause a significant amount of code in the callee to be 949 /// dead. Since this doesn't produce an exact copy of the input, it can't be 950 /// used for things like CloneFunction or CloneModule. 951 void llvm::CloneAndPruneFunctionInto( 952 Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, 953 bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns, 954 const char *NameSuffix, ClonedCodeInfo *CodeInfo) { 955 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 956 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 957 } 958 959 /// Remaps instructions in \p Blocks using the mapping in \p VMap. 960 void llvm::remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks, 961 ValueToValueMapTy &VMap) { 962 // Rewrite the code to refer to itself. 963 for (auto *BB : Blocks) { 964 for (auto &Inst : *BB) { 965 RemapDbgRecordRange(Inst.getModule(), Inst.getDbgRecordRange(), VMap, 966 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 967 RemapInstruction(&Inst, VMap, 968 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 969 } 970 } 971 } 972 973 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 974 /// Blocks. 975 /// 976 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 977 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 978 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 979 Loop *OrigLoop, ValueToValueMapTy &VMap, 980 const Twine &NameSuffix, LoopInfo *LI, 981 DominatorTree *DT, 982 SmallVectorImpl<BasicBlock *> &Blocks) { 983 Function *F = OrigLoop->getHeader()->getParent(); 984 Loop *ParentLoop = OrigLoop->getParentLoop(); 985 DenseMap<Loop *, Loop *> LMap; 986 987 Loop *NewLoop = LI->AllocateLoop(); 988 LMap[OrigLoop] = NewLoop; 989 if (ParentLoop) 990 ParentLoop->addChildLoop(NewLoop); 991 else 992 LI->addTopLevelLoop(NewLoop); 993 994 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 995 assert(OrigPH && "No preheader"); 996 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 997 // To rename the loop PHIs. 998 VMap[OrigPH] = NewPH; 999 Blocks.push_back(NewPH); 1000 1001 // Update LoopInfo. 1002 if (ParentLoop) 1003 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 1004 1005 // Update DominatorTree. 1006 DT->addNewBlock(NewPH, LoopDomBB); 1007 1008 for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) { 1009 Loop *&NewLoop = LMap[CurLoop]; 1010 if (!NewLoop) { 1011 NewLoop = LI->AllocateLoop(); 1012 1013 // Establish the parent/child relationship. 1014 Loop *OrigParent = CurLoop->getParentLoop(); 1015 assert(OrigParent && "Could not find the original parent loop"); 1016 Loop *NewParentLoop = LMap[OrigParent]; 1017 assert(NewParentLoop && "Could not find the new parent loop"); 1018 1019 NewParentLoop->addChildLoop(NewLoop); 1020 } 1021 } 1022 1023 for (BasicBlock *BB : OrigLoop->getBlocks()) { 1024 Loop *CurLoop = LI->getLoopFor(BB); 1025 Loop *&NewLoop = LMap[CurLoop]; 1026 assert(NewLoop && "Expecting new loop to be allocated"); 1027 1028 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 1029 VMap[BB] = NewBB; 1030 1031 // Update LoopInfo. 1032 NewLoop->addBasicBlockToLoop(NewBB, *LI); 1033 1034 // Add DominatorTree node. After seeing all blocks, update to correct 1035 // IDom. 1036 DT->addNewBlock(NewBB, NewPH); 1037 1038 Blocks.push_back(NewBB); 1039 } 1040 1041 for (BasicBlock *BB : OrigLoop->getBlocks()) { 1042 // Update loop headers. 1043 Loop *CurLoop = LI->getLoopFor(BB); 1044 if (BB == CurLoop->getHeader()) 1045 LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB])); 1046 1047 // Update DominatorTree. 1048 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 1049 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 1050 cast<BasicBlock>(VMap[IDomBB])); 1051 } 1052 1053 // Move them physically from the end of the block list. 1054 F->splice(Before->getIterator(), F, NewPH->getIterator()); 1055 F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(), 1056 F->end()); 1057 1058 return NewLoop; 1059 } 1060 1061 /// Duplicate non-Phi instructions from the beginning of block up to 1062 /// StopAt instruction into a split block between BB and its predecessor. 1063 BasicBlock *llvm::DuplicateInstructionsInSplitBetween( 1064 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, 1065 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { 1066 1067 assert(count(successors(PredBB), BB) == 1 && 1068 "There must be a single edge between PredBB and BB!"); 1069 // We are going to have to map operands from the original BB block to the new 1070 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1071 // account for entry from PredBB. 1072 BasicBlock::iterator BI = BB->begin(); 1073 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1074 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1075 1076 BasicBlock *NewBB = SplitEdge(PredBB, BB); 1077 NewBB->setName(PredBB->getName() + ".split"); 1078 Instruction *NewTerm = NewBB->getTerminator(); 1079 1080 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge 1081 // in the update set here. 1082 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, 1083 {DominatorTree::Insert, PredBB, NewBB}, 1084 {DominatorTree::Insert, NewBB, BB}}); 1085 1086 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1087 // mapping and using it to remap operands in the cloned instructions. 1088 // Stop once we see the terminator too. This covers the case where BB's 1089 // terminator gets replaced and StopAt == BB's terminator. 1090 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { 1091 Instruction *New = BI->clone(); 1092 New->setName(BI->getName()); 1093 New->insertBefore(NewTerm); 1094 New->cloneDebugInfoFrom(&*BI); 1095 ValueMapping[&*BI] = New; 1096 1097 // Remap operands to patch up intra-block references. 1098 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1099 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1100 auto I = ValueMapping.find(Inst); 1101 if (I != ValueMapping.end()) 1102 New->setOperand(i, I->second); 1103 } 1104 1105 // Remap debug variable operands. 1106 remapDebugVariable(ValueMapping, New); 1107 } 1108 1109 return NewBB; 1110 } 1111 1112 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, 1113 DenseMap<MDNode *, MDNode *> &ClonedScopes, 1114 StringRef Ext, LLVMContext &Context) { 1115 MDBuilder MDB(Context); 1116 1117 for (auto *ScopeList : NoAliasDeclScopes) { 1118 for (const auto &MDOperand : ScopeList->operands()) { 1119 if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) { 1120 AliasScopeNode SNANode(MD); 1121 1122 std::string Name; 1123 auto ScopeName = SNANode.getName(); 1124 if (!ScopeName.empty()) 1125 Name = (Twine(ScopeName) + ":" + Ext).str(); 1126 else 1127 Name = std::string(Ext); 1128 1129 MDNode *NewScope = MDB.createAnonymousAliasScope( 1130 const_cast<MDNode *>(SNANode.getDomain()), Name); 1131 ClonedScopes.insert(std::make_pair(MD, NewScope)); 1132 } 1133 } 1134 } 1135 } 1136 1137 void llvm::adaptNoAliasScopes(Instruction *I, 1138 const DenseMap<MDNode *, MDNode *> &ClonedScopes, 1139 LLVMContext &Context) { 1140 auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * { 1141 bool NeedsReplacement = false; 1142 SmallVector<Metadata *, 8> NewScopeList; 1143 for (const auto &MDOp : ScopeList->operands()) { 1144 if (MDNode *MD = dyn_cast<MDNode>(MDOp)) { 1145 if (auto *NewMD = ClonedScopes.lookup(MD)) { 1146 NewScopeList.push_back(NewMD); 1147 NeedsReplacement = true; 1148 continue; 1149 } 1150 NewScopeList.push_back(MD); 1151 } 1152 } 1153 if (NeedsReplacement) 1154 return MDNode::get(Context, NewScopeList); 1155 return nullptr; 1156 }; 1157 1158 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I)) 1159 if (auto *NewScopeList = CloneScopeList(Decl->getScopeList())) 1160 Decl->setScopeList(NewScopeList); 1161 1162 auto replaceWhenNeeded = [&](unsigned MD_ID) { 1163 if (const MDNode *CSNoAlias = I->getMetadata(MD_ID)) 1164 if (auto *NewScopeList = CloneScopeList(CSNoAlias)) 1165 I->setMetadata(MD_ID, NewScopeList); 1166 }; 1167 replaceWhenNeeded(LLVMContext::MD_noalias); 1168 replaceWhenNeeded(LLVMContext::MD_alias_scope); 1169 } 1170 1171 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, 1172 ArrayRef<BasicBlock *> NewBlocks, 1173 LLVMContext &Context, StringRef Ext) { 1174 if (NoAliasDeclScopes.empty()) 1175 return; 1176 1177 DenseMap<MDNode *, MDNode *> ClonedScopes; 1178 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " 1179 << NoAliasDeclScopes.size() << " node(s)\n"); 1180 1181 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); 1182 // Identify instructions using metadata that needs adaptation 1183 for (BasicBlock *NewBlock : NewBlocks) 1184 for (Instruction &I : *NewBlock) 1185 adaptNoAliasScopes(&I, ClonedScopes, Context); 1186 } 1187 1188 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, 1189 Instruction *IStart, Instruction *IEnd, 1190 LLVMContext &Context, StringRef Ext) { 1191 if (NoAliasDeclScopes.empty()) 1192 return; 1193 1194 DenseMap<MDNode *, MDNode *> ClonedScopes; 1195 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " 1196 << NoAliasDeclScopes.size() << " node(s)\n"); 1197 1198 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); 1199 // Identify instructions using metadata that needs adaptation 1200 assert(IStart->getParent() == IEnd->getParent() && "different basic block ?"); 1201 auto ItStart = IStart->getIterator(); 1202 auto ItEnd = IEnd->getIterator(); 1203 ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range 1204 for (auto &I : llvm::make_range(ItStart, ItEnd)) 1205 adaptNoAliasScopes(&I, ClonedScopes, Context); 1206 } 1207 1208 void llvm::identifyNoAliasScopesToClone( 1209 ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { 1210 for (BasicBlock *BB : BBs) 1211 for (Instruction &I : *BB) 1212 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 1213 NoAliasDeclScopes.push_back(Decl->getScopeList()); 1214 } 1215 1216 void llvm::identifyNoAliasScopesToClone( 1217 BasicBlock::iterator Start, BasicBlock::iterator End, 1218 SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { 1219 for (Instruction &I : make_range(Start, End)) 1220 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 1221 NoAliasDeclScopes.push_back(Decl->getScopeList()); 1222 } 1223