xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/ValueMapper.h"
37 #include <map>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "clone-function"
41 
42 /// See comments in Cloning.h.
43 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
44                                   const Twine &NameSuffix, Function *F,
45                                   ClonedCodeInfo *CodeInfo,
46                                   DebugInfoFinder *DIFinder) {
47   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
48   if (BB->hasName())
49     NewBB->setName(BB->getName() + NameSuffix);
50 
51   bool hasCalls = false, hasDynamicAllocas = false;
52   Module *TheModule = F ? F->getParent() : nullptr;
53 
54   // Loop over all instructions, and copy them over.
55   for (const Instruction &I : *BB) {
56     if (DIFinder && TheModule)
57       DIFinder->processInstruction(*TheModule, I);
58 
59     Instruction *NewInst = I.clone();
60     if (I.hasName())
61       NewInst->setName(I.getName() + NameSuffix);
62     NewBB->getInstList().push_back(NewInst);
63     VMap[&I] = NewInst; // Add instruction map to value.
64 
65     hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
66     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
67       if (!AI->isStaticAlloca()) {
68         hasDynamicAllocas = true;
69       }
70     }
71   }
72 
73   if (CodeInfo) {
74     CodeInfo->ContainsCalls |= hasCalls;
75     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
76   }
77   return NewBB;
78 }
79 
80 // Clone OldFunc into NewFunc, transforming the old arguments into references to
81 // VMap values.
82 //
83 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
84                              ValueToValueMapTy &VMap,
85                              CloneFunctionChangeType Changes,
86                              SmallVectorImpl<ReturnInst *> &Returns,
87                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
88                              ValueMapTypeRemapper *TypeMapper,
89                              ValueMaterializer *Materializer) {
90   assert(NameSuffix && "NameSuffix cannot be null!");
91 
92 #ifndef NDEBUG
93   for (const Argument &I : OldFunc->args())
94     assert(VMap.count(&I) && "No mapping from source argument specified!");
95 #endif
96 
97   bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
98 
99   // Copy all attributes other than those stored in the AttributeList.  We need
100   // to remap the parameter indices of the AttributeList.
101   AttributeList NewAttrs = NewFunc->getAttributes();
102   NewFunc->copyAttributesFrom(OldFunc);
103   NewFunc->setAttributes(NewAttrs);
104 
105   // Fix up the personality function that got copied over.
106   if (OldFunc->hasPersonalityFn())
107     NewFunc->setPersonalityFn(
108         MapValue(OldFunc->getPersonalityFn(), VMap,
109                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
110                  TypeMapper, Materializer));
111 
112   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
113   AttributeList OldAttrs = OldFunc->getAttributes();
114 
115   // Clone any argument attributes that are present in the VMap.
116   for (const Argument &OldArg : OldFunc->args()) {
117     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
118       NewArgAttrs[NewArg->getArgNo()] =
119           OldAttrs.getParamAttributes(OldArg.getArgNo());
120     }
121   }
122 
123   NewFunc->setAttributes(
124       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
125                          OldAttrs.getRetAttributes(), NewArgAttrs));
126 
127   // Everything else beyond this point deals with function instructions,
128   // so if we are dealing with a function declaration, we're done.
129   if (OldFunc->isDeclaration())
130     return;
131 
132   // When we remap instructions within the same module, we want to avoid
133   // duplicating inlined DISubprograms, so record all subprograms we find as we
134   // duplicate instructions and then freeze them in the MD map. We also record
135   // information about dbg.value and dbg.declare to avoid duplicating the
136   // types.
137   Optional<DebugInfoFinder> DIFinder;
138 
139   // Track the subprogram attachment that needs to be cloned to fine-tune the
140   // mapping within the same module.
141   DISubprogram *SPClonedWithinModule = nullptr;
142   if (Changes < CloneFunctionChangeType::DifferentModule) {
143     assert((NewFunc->getParent() == nullptr ||
144             NewFunc->getParent() == OldFunc->getParent()) &&
145            "Expected NewFunc to have the same parent, or no parent");
146 
147     // Need to find subprograms, types, and compile units.
148     DIFinder.emplace();
149 
150     SPClonedWithinModule = OldFunc->getSubprogram();
151     if (SPClonedWithinModule)
152       DIFinder->processSubprogram(SPClonedWithinModule);
153   } else {
154     assert((NewFunc->getParent() == nullptr ||
155             NewFunc->getParent() != OldFunc->getParent()) &&
156            "Expected NewFunc to have different parents, or no parent");
157 
158     if (Changes == CloneFunctionChangeType::DifferentModule) {
159       assert(NewFunc->getParent() &&
160              "Need parent of new function to maintain debug info invariants");
161 
162       // Need to find all the compile units.
163       DIFinder.emplace();
164     }
165   }
166 
167   // Loop over all of the basic blocks in the function, cloning them as
168   // appropriate.  Note that we save BE this way in order to handle cloning of
169   // recursive functions into themselves.
170   for (const BasicBlock &BB : *OldFunc) {
171 
172     // Create a new basic block and copy instructions into it!
173     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
174                                       DIFinder ? &*DIFinder : nullptr);
175 
176     // Add basic block mapping.
177     VMap[&BB] = CBB;
178 
179     // It is only legal to clone a function if a block address within that
180     // function is never referenced outside of the function.  Given that, we
181     // want to map block addresses from the old function to block addresses in
182     // the clone. (This is different from the generic ValueMapper
183     // implementation, which generates an invalid blockaddress when
184     // cloning a function.)
185     if (BB.hasAddressTaken()) {
186       Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
187                                               const_cast<BasicBlock *>(&BB));
188       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
189     }
190 
191     // Note return instructions for the caller.
192     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
193       Returns.push_back(RI);
194   }
195 
196   if (Changes < CloneFunctionChangeType::DifferentModule &&
197       DIFinder->subprogram_count() > 0) {
198     // Turn on module-level changes, since we need to clone (some of) the
199     // debug info metadata.
200     //
201     // FIXME: Metadata effectively owned by a function should be made
202     // local, and only that local metadata should be cloned.
203     ModuleLevelChanges = true;
204 
205     auto mapToSelfIfNew = [&VMap](MDNode *N) {
206       // Avoid clobbering an existing mapping.
207       (void)VMap.MD().try_emplace(N, N);
208     };
209 
210     // Avoid cloning types, compile units, and (other) subprograms.
211     for (DISubprogram *ISP : DIFinder->subprograms())
212       if (ISP != SPClonedWithinModule)
213         mapToSelfIfNew(ISP);
214 
215     for (DICompileUnit *CU : DIFinder->compile_units())
216       mapToSelfIfNew(CU);
217 
218     for (DIType *Type : DIFinder->types())
219       mapToSelfIfNew(Type);
220   } else {
221     assert(!SPClonedWithinModule &&
222            "Subprogram should be in DIFinder->subprogram_count()...");
223   }
224 
225   const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
226   // Duplicate the metadata that is attached to the cloned function.
227   // Subprograms/CUs/types that were already mapped to themselves won't be
228   // duplicated.
229   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
230   OldFunc->getAllMetadata(MDs);
231   for (auto MD : MDs) {
232     NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
233                                                 TypeMapper, Materializer));
234   }
235 
236   // Loop over all of the instructions in the new function, fixing up operand
237   // references as we go. This uses VMap to do all the hard work.
238   for (Function::iterator
239            BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
240            BE = NewFunc->end();
241        BB != BE; ++BB)
242     // Loop over all instructions, fixing each one as we find it...
243     for (Instruction &II : *BB)
244       RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
245 
246   // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
247   // same module, the compile unit will already be listed (or not). When
248   // cloning a module, CloneModule() will handle creating the named metadata.
249   if (Changes != CloneFunctionChangeType::DifferentModule)
250     return;
251 
252   // Update !llvm.dbg.cu with compile units added to the new module if this
253   // function is being cloned in isolation.
254   //
255   // FIXME: This is making global / module-level changes, which doesn't seem
256   // like the right encapsulation  Consider dropping the requirement to update
257   // !llvm.dbg.cu (either obsoleting the node, or restricting it to
258   // non-discardable compile units) instead of discovering compile units by
259   // visiting the metadata attached to global values, which would allow this
260   // code to be deleted. Alternatively, perhaps give responsibility for this
261   // update to CloneFunctionInto's callers.
262   auto *NewModule = NewFunc->getParent();
263   auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
264   // Avoid multiple insertions of the same DICompileUnit to NMD.
265   SmallPtrSet<const void *, 8> Visited;
266   for (auto *Operand : NMD->operands())
267     Visited.insert(Operand);
268   for (auto *Unit : DIFinder->compile_units()) {
269     MDNode *MappedUnit =
270         MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
271     if (Visited.insert(MappedUnit).second)
272       NMD->addOperand(MappedUnit);
273   }
274 }
275 
276 /// Return a copy of the specified function and add it to that function's
277 /// module.  Also, any references specified in the VMap are changed to refer to
278 /// their mapped value instead of the original one.  If any of the arguments to
279 /// the function are in the VMap, the arguments are deleted from the resultant
280 /// function.  The VMap is updated to include mappings from all of the
281 /// instructions and basicblocks in the function from their old to new values.
282 ///
283 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
284                               ClonedCodeInfo *CodeInfo) {
285   std::vector<Type *> ArgTypes;
286 
287   // The user might be deleting arguments to the function by specifying them in
288   // the VMap.  If so, we need to not add the arguments to the arg ty vector
289   //
290   for (const Argument &I : F->args())
291     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
292       ArgTypes.push_back(I.getType());
293 
294   // Create a new function type...
295   FunctionType *FTy =
296       FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
297                         F->getFunctionType()->isVarArg());
298 
299   // Create the new function...
300   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
301                                     F->getName(), F->getParent());
302 
303   // Loop over the arguments, copying the names of the mapped arguments over...
304   Function::arg_iterator DestI = NewF->arg_begin();
305   for (const Argument &I : F->args())
306     if (VMap.count(&I) == 0) {     // Is this argument preserved?
307       DestI->setName(I.getName()); // Copy the name over...
308       VMap[&I] = &*DestI++;        // Add mapping to VMap
309     }
310 
311   SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
312   CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
313                     Returns, "", CodeInfo);
314 
315   return NewF;
316 }
317 
318 namespace {
319 /// This is a private class used to implement CloneAndPruneFunctionInto.
320 struct PruningFunctionCloner {
321   Function *NewFunc;
322   const Function *OldFunc;
323   ValueToValueMapTy &VMap;
324   bool ModuleLevelChanges;
325   const char *NameSuffix;
326   ClonedCodeInfo *CodeInfo;
327 
328 public:
329   PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
330                         ValueToValueMapTy &valueMap, bool moduleLevelChanges,
331                         const char *nameSuffix, ClonedCodeInfo *codeInfo)
332       : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
333         ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
334         CodeInfo(codeInfo) {}
335 
336   /// The specified block is found to be reachable, clone it and
337   /// anything that it can reach.
338   void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
339                   std::vector<const BasicBlock *> &ToClone);
340 };
341 } // namespace
342 
343 /// The specified block is found to be reachable, clone it and
344 /// anything that it can reach.
345 void PruningFunctionCloner::CloneBlock(
346     const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
347     std::vector<const BasicBlock *> &ToClone) {
348   WeakTrackingVH &BBEntry = VMap[BB];
349 
350   // Have we already cloned this block?
351   if (BBEntry)
352     return;
353 
354   // Nope, clone it now.
355   BasicBlock *NewBB;
356   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
357   if (BB->hasName())
358     NewBB->setName(BB->getName() + NameSuffix);
359 
360   // It is only legal to clone a function if a block address within that
361   // function is never referenced outside of the function.  Given that, we
362   // want to map block addresses from the old function to block addresses in
363   // the clone. (This is different from the generic ValueMapper
364   // implementation, which generates an invalid blockaddress when
365   // cloning a function.)
366   //
367   // Note that we don't need to fix the mapping for unreachable blocks;
368   // the default mapping there is safe.
369   if (BB->hasAddressTaken()) {
370     Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
371                                             const_cast<BasicBlock *>(BB));
372     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
373   }
374 
375   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
376 
377   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
378   // loop doesn't include the terminator.
379   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
380        ++II) {
381 
382     Instruction *NewInst = II->clone();
383 
384     // Eagerly remap operands to the newly cloned instruction, except for PHI
385     // nodes for which we defer processing until we update the CFG.
386     if (!isa<PHINode>(NewInst)) {
387       RemapInstruction(NewInst, VMap,
388                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
389 
390       // If we can simplify this instruction to some other value, simply add
391       // a mapping to that value rather than inserting a new instruction into
392       // the basic block.
393       if (Value *V =
394               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
395         // On the off-chance that this simplifies to an instruction in the old
396         // function, map it back into the new function.
397         if (NewFunc != OldFunc)
398           if (Value *MappedV = VMap.lookup(V))
399             V = MappedV;
400 
401         if (!NewInst->mayHaveSideEffects()) {
402           VMap[&*II] = V;
403           NewInst->deleteValue();
404           continue;
405         }
406       }
407     }
408 
409     if (II->hasName())
410       NewInst->setName(II->getName() + NameSuffix);
411     VMap[&*II] = NewInst; // Add instruction map to value.
412     NewBB->getInstList().push_back(NewInst);
413     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
414 
415     if (CodeInfo) {
416       CodeInfo->OrigVMap[&*II] = NewInst;
417       if (auto *CB = dyn_cast<CallBase>(&*II))
418         if (CB->hasOperandBundles())
419           CodeInfo->OperandBundleCallSites.push_back(NewInst);
420     }
421 
422     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
423       if (isa<ConstantInt>(AI->getArraySize()))
424         hasStaticAllocas = true;
425       else
426         hasDynamicAllocas = true;
427     }
428   }
429 
430   // Finally, clone over the terminator.
431   const Instruction *OldTI = BB->getTerminator();
432   bool TerminatorDone = false;
433   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
434     if (BI->isConditional()) {
435       // If the condition was a known constant in the callee...
436       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
437       // Or is a known constant in the caller...
438       if (!Cond) {
439         Value *V = VMap.lookup(BI->getCondition());
440         Cond = dyn_cast_or_null<ConstantInt>(V);
441       }
442 
443       // Constant fold to uncond branch!
444       if (Cond) {
445         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
446         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
447         ToClone.push_back(Dest);
448         TerminatorDone = true;
449       }
450     }
451   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
452     // If switching on a value known constant in the caller.
453     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
454     if (!Cond) { // Or known constant after constant prop in the callee...
455       Value *V = VMap.lookup(SI->getCondition());
456       Cond = dyn_cast_or_null<ConstantInt>(V);
457     }
458     if (Cond) { // Constant fold to uncond branch!
459       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
460       BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
461       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
462       ToClone.push_back(Dest);
463       TerminatorDone = true;
464     }
465   }
466 
467   if (!TerminatorDone) {
468     Instruction *NewInst = OldTI->clone();
469     if (OldTI->hasName())
470       NewInst->setName(OldTI->getName() + NameSuffix);
471     NewBB->getInstList().push_back(NewInst);
472     VMap[OldTI] = NewInst; // Add instruction map to value.
473 
474     if (CodeInfo) {
475       CodeInfo->OrigVMap[OldTI] = NewInst;
476       if (auto *CB = dyn_cast<CallBase>(OldTI))
477         if (CB->hasOperandBundles())
478           CodeInfo->OperandBundleCallSites.push_back(NewInst);
479     }
480 
481     // Recursively clone any reachable successor blocks.
482     append_range(ToClone, successors(BB->getTerminator()));
483   }
484 
485   if (CodeInfo) {
486     CodeInfo->ContainsCalls |= hasCalls;
487     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
488     CodeInfo->ContainsDynamicAllocas |=
489         hasStaticAllocas && BB != &BB->getParent()->front();
490   }
491 }
492 
493 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
494 /// entire function. Instead it starts at an instruction provided by the caller
495 /// and copies (and prunes) only the code reachable from that instruction.
496 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
497                                      const Instruction *StartingInst,
498                                      ValueToValueMapTy &VMap,
499                                      bool ModuleLevelChanges,
500                                      SmallVectorImpl<ReturnInst *> &Returns,
501                                      const char *NameSuffix,
502                                      ClonedCodeInfo *CodeInfo) {
503   assert(NameSuffix && "NameSuffix cannot be null!");
504 
505   ValueMapTypeRemapper *TypeMapper = nullptr;
506   ValueMaterializer *Materializer = nullptr;
507 
508 #ifndef NDEBUG
509   // If the cloning starts at the beginning of the function, verify that
510   // the function arguments are mapped.
511   if (!StartingInst)
512     for (const Argument &II : OldFunc->args())
513       assert(VMap.count(&II) && "No mapping from source argument specified!");
514 #endif
515 
516   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
517                             NameSuffix, CodeInfo);
518   const BasicBlock *StartingBB;
519   if (StartingInst)
520     StartingBB = StartingInst->getParent();
521   else {
522     StartingBB = &OldFunc->getEntryBlock();
523     StartingInst = &StartingBB->front();
524   }
525 
526   // Clone the entry block, and anything recursively reachable from it.
527   std::vector<const BasicBlock *> CloneWorklist;
528   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
529   while (!CloneWorklist.empty()) {
530     const BasicBlock *BB = CloneWorklist.back();
531     CloneWorklist.pop_back();
532     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
533   }
534 
535   // Loop over all of the basic blocks in the old function.  If the block was
536   // reachable, we have cloned it and the old block is now in the value map:
537   // insert it into the new function in the right order.  If not, ignore it.
538   //
539   // Defer PHI resolution until rest of function is resolved.
540   SmallVector<const PHINode *, 16> PHIToResolve;
541   for (const BasicBlock &BI : *OldFunc) {
542     Value *V = VMap.lookup(&BI);
543     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
544     if (!NewBB)
545       continue; // Dead block.
546 
547     // Add the new block to the new function.
548     NewFunc->getBasicBlockList().push_back(NewBB);
549 
550     // Handle PHI nodes specially, as we have to remove references to dead
551     // blocks.
552     for (const PHINode &PN : BI.phis()) {
553       // PHI nodes may have been remapped to non-PHI nodes by the caller or
554       // during the cloning process.
555       if (isa<PHINode>(VMap[&PN]))
556         PHIToResolve.push_back(&PN);
557       else
558         break;
559     }
560 
561     // Finally, remap the terminator instructions, as those can't be remapped
562     // until all BBs are mapped.
563     RemapInstruction(NewBB->getTerminator(), VMap,
564                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
565                      TypeMapper, Materializer);
566   }
567 
568   // Defer PHI resolution until rest of function is resolved, PHI resolution
569   // requires the CFG to be up-to-date.
570   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
571     const PHINode *OPN = PHIToResolve[phino];
572     unsigned NumPreds = OPN->getNumIncomingValues();
573     const BasicBlock *OldBB = OPN->getParent();
574     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
575 
576     // Map operands for blocks that are live and remove operands for blocks
577     // that are dead.
578     for (; phino != PHIToResolve.size() &&
579            PHIToResolve[phino]->getParent() == OldBB;
580          ++phino) {
581       OPN = PHIToResolve[phino];
582       PHINode *PN = cast<PHINode>(VMap[OPN]);
583       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
584         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
585         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
586           Value *InVal =
587               MapValue(PN->getIncomingValue(pred), VMap,
588                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
589           assert(InVal && "Unknown input value?");
590           PN->setIncomingValue(pred, InVal);
591           PN->setIncomingBlock(pred, MappedBlock);
592         } else {
593           PN->removeIncomingValue(pred, false);
594           --pred; // Revisit the next entry.
595           --e;
596         }
597       }
598     }
599 
600     // The loop above has removed PHI entries for those blocks that are dead
601     // and has updated others.  However, if a block is live (i.e. copied over)
602     // but its terminator has been changed to not go to this block, then our
603     // phi nodes will have invalid entries.  Update the PHI nodes in this
604     // case.
605     PHINode *PN = cast<PHINode>(NewBB->begin());
606     NumPreds = pred_size(NewBB);
607     if (NumPreds != PN->getNumIncomingValues()) {
608       assert(NumPreds < PN->getNumIncomingValues());
609       // Count how many times each predecessor comes to this block.
610       std::map<BasicBlock *, unsigned> PredCount;
611       for (BasicBlock *Pred : predecessors(NewBB))
612         --PredCount[Pred];
613 
614       // Figure out how many entries to remove from each PHI.
615       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
616         ++PredCount[PN->getIncomingBlock(i)];
617 
618       // At this point, the excess predecessor entries are positive in the
619       // map.  Loop over all of the PHIs and remove excess predecessor
620       // entries.
621       BasicBlock::iterator I = NewBB->begin();
622       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
623         for (const auto &PCI : PredCount) {
624           BasicBlock *Pred = PCI.first;
625           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
626             PN->removeIncomingValue(Pred, false);
627         }
628       }
629     }
630 
631     // If the loops above have made these phi nodes have 0 or 1 operand,
632     // replace them with undef or the input value.  We must do this for
633     // correctness, because 0-operand phis are not valid.
634     PN = cast<PHINode>(NewBB->begin());
635     if (PN->getNumIncomingValues() == 0) {
636       BasicBlock::iterator I = NewBB->begin();
637       BasicBlock::const_iterator OldI = OldBB->begin();
638       while ((PN = dyn_cast<PHINode>(I++))) {
639         Value *NV = UndefValue::get(PN->getType());
640         PN->replaceAllUsesWith(NV);
641         assert(VMap[&*OldI] == PN && "VMap mismatch");
642         VMap[&*OldI] = NV;
643         PN->eraseFromParent();
644         ++OldI;
645       }
646     }
647   }
648 
649   // Make a second pass over the PHINodes now that all of them have been
650   // remapped into the new function, simplifying the PHINode and performing any
651   // recursive simplifications exposed. This will transparently update the
652   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
653   // two PHINodes, the iteration over the old PHIs remains valid, and the
654   // mapping will just map us to the new node (which may not even be a PHI
655   // node).
656   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
657   SmallSetVector<const Value *, 8> Worklist;
658   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
659     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
660       Worklist.insert(PHIToResolve[Idx]);
661 
662   // Note that we must test the size on each iteration, the worklist can grow.
663   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
664     const Value *OrigV = Worklist[Idx];
665     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
666     if (!I)
667       continue;
668 
669     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
670     // the CGSCC.
671     CallBase *CB = dyn_cast<CallBase>(I);
672     if (CB && CB->getCalledFunction() &&
673         !CB->getCalledFunction()->isIntrinsic())
674       continue;
675 
676     // See if this instruction simplifies.
677     Value *SimpleV = SimplifyInstruction(I, DL);
678     if (!SimpleV)
679       continue;
680 
681     // Stash away all the uses of the old instruction so we can check them for
682     // recursive simplifications after a RAUW. This is cheaper than checking all
683     // uses of To on the recursive step in most cases.
684     for (const User *U : OrigV->users())
685       Worklist.insert(cast<Instruction>(U));
686 
687     // Replace the instruction with its simplified value.
688     I->replaceAllUsesWith(SimpleV);
689 
690     // If the original instruction had no side effects, remove it.
691     if (isInstructionTriviallyDead(I))
692       I->eraseFromParent();
693     else
694       VMap[OrigV] = I;
695   }
696 
697   // Now that the inlined function body has been fully constructed, go through
698   // and zap unconditional fall-through branches. This happens all the time when
699   // specializing code: code specialization turns conditional branches into
700   // uncond branches, and this code folds them.
701   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
702   Function::iterator I = Begin;
703   while (I != NewFunc->end()) {
704     // We need to simplify conditional branches and switches with a constant
705     // operand. We try to prune these out when cloning, but if the
706     // simplification required looking through PHI nodes, those are only
707     // available after forming the full basic block. That may leave some here,
708     // and we still want to prune the dead code as early as possible.
709     //
710     // Do the folding before we check if the block is dead since we want code
711     // like
712     //  bb:
713     //    br i1 undef, label %bb, label %bb
714     // to be simplified to
715     //  bb:
716     //    br label %bb
717     // before we call I->getSinglePredecessor().
718     ConstantFoldTerminator(&*I);
719 
720     // Check if this block has become dead during inlining or other
721     // simplifications. Note that the first block will appear dead, as it has
722     // not yet been wired up properly.
723     if (I != Begin && (pred_empty(&*I) || I->getSinglePredecessor() == &*I)) {
724       BasicBlock *DeadBB = &*I++;
725       DeleteDeadBlock(DeadBB);
726       continue;
727     }
728 
729     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
730     if (!BI || BI->isConditional()) {
731       ++I;
732       continue;
733     }
734 
735     BasicBlock *Dest = BI->getSuccessor(0);
736     if (!Dest->getSinglePredecessor()) {
737       ++I;
738       continue;
739     }
740 
741     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
742     // above should have zapped all of them..
743     assert(!isa<PHINode>(Dest->begin()));
744 
745     // We know all single-entry PHI nodes in the inlined function have been
746     // removed, so we just need to splice the blocks.
747     BI->eraseFromParent();
748 
749     // Make all PHI nodes that referred to Dest now refer to I as their source.
750     Dest->replaceAllUsesWith(&*I);
751 
752     // Move all the instructions in the succ to the pred.
753     I->getInstList().splice(I->end(), Dest->getInstList());
754 
755     // Remove the dest block.
756     Dest->eraseFromParent();
757 
758     // Do not increment I, iteratively merge all things this block branches to.
759   }
760 
761   // Make a final pass over the basic blocks from the old function to gather
762   // any return instructions which survived folding. We have to do this here
763   // because we can iteratively remove and merge returns above.
764   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
765                           E = NewFunc->end();
766        I != E; ++I)
767     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
768       Returns.push_back(RI);
769 }
770 
771 /// This works exactly like CloneFunctionInto,
772 /// except that it does some simple constant prop and DCE on the fly.  The
773 /// effect of this is to copy significantly less code in cases where (for
774 /// example) a function call with constant arguments is inlined, and those
775 /// constant arguments cause a significant amount of code in the callee to be
776 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
777 /// used for things like CloneFunction or CloneModule.
778 void llvm::CloneAndPruneFunctionInto(
779     Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
780     bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
781     const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
782   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
783                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
784 }
785 
786 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
787 void llvm::remapInstructionsInBlocks(
788     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
789   // Rewrite the code to refer to itself.
790   for (auto *BB : Blocks)
791     for (auto &Inst : *BB)
792       RemapInstruction(&Inst, VMap,
793                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
794 }
795 
796 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
797 /// Blocks.
798 ///
799 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
800 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
801 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
802                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
803                                    const Twine &NameSuffix, LoopInfo *LI,
804                                    DominatorTree *DT,
805                                    SmallVectorImpl<BasicBlock *> &Blocks) {
806   Function *F = OrigLoop->getHeader()->getParent();
807   Loop *ParentLoop = OrigLoop->getParentLoop();
808   DenseMap<Loop *, Loop *> LMap;
809 
810   Loop *NewLoop = LI->AllocateLoop();
811   LMap[OrigLoop] = NewLoop;
812   if (ParentLoop)
813     ParentLoop->addChildLoop(NewLoop);
814   else
815     LI->addTopLevelLoop(NewLoop);
816 
817   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
818   assert(OrigPH && "No preheader");
819   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
820   // To rename the loop PHIs.
821   VMap[OrigPH] = NewPH;
822   Blocks.push_back(NewPH);
823 
824   // Update LoopInfo.
825   if (ParentLoop)
826     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
827 
828   // Update DominatorTree.
829   DT->addNewBlock(NewPH, LoopDomBB);
830 
831   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
832     Loop *&NewLoop = LMap[CurLoop];
833     if (!NewLoop) {
834       NewLoop = LI->AllocateLoop();
835 
836       // Establish the parent/child relationship.
837       Loop *OrigParent = CurLoop->getParentLoop();
838       assert(OrigParent && "Could not find the original parent loop");
839       Loop *NewParentLoop = LMap[OrigParent];
840       assert(NewParentLoop && "Could not find the new parent loop");
841 
842       NewParentLoop->addChildLoop(NewLoop);
843     }
844   }
845 
846   for (BasicBlock *BB : OrigLoop->getBlocks()) {
847     Loop *CurLoop = LI->getLoopFor(BB);
848     Loop *&NewLoop = LMap[CurLoop];
849     assert(NewLoop && "Expecting new loop to be allocated");
850 
851     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
852     VMap[BB] = NewBB;
853 
854     // Update LoopInfo.
855     NewLoop->addBasicBlockToLoop(NewBB, *LI);
856 
857     // Add DominatorTree node. After seeing all blocks, update to correct
858     // IDom.
859     DT->addNewBlock(NewBB, NewPH);
860 
861     Blocks.push_back(NewBB);
862   }
863 
864   for (BasicBlock *BB : OrigLoop->getBlocks()) {
865     // Update loop headers.
866     Loop *CurLoop = LI->getLoopFor(BB);
867     if (BB == CurLoop->getHeader())
868       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
869 
870     // Update DominatorTree.
871     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
872     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
873                                  cast<BasicBlock>(VMap[IDomBB]));
874   }
875 
876   // Move them physically from the end of the block list.
877   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
878                                 NewPH);
879   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
880                                 NewLoop->getHeader()->getIterator(), F->end());
881 
882   return NewLoop;
883 }
884 
885 /// Duplicate non-Phi instructions from the beginning of block up to
886 /// StopAt instruction into a split block between BB and its predecessor.
887 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
888     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
889     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
890 
891   assert(count(successors(PredBB), BB) == 1 &&
892          "There must be a single edge between PredBB and BB!");
893   // We are going to have to map operands from the original BB block to the new
894   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
895   // account for entry from PredBB.
896   BasicBlock::iterator BI = BB->begin();
897   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
898     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
899 
900   BasicBlock *NewBB = SplitEdge(PredBB, BB);
901   NewBB->setName(PredBB->getName() + ".split");
902   Instruction *NewTerm = NewBB->getTerminator();
903 
904   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
905   //        in the update set here.
906   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
907                     {DominatorTree::Insert, PredBB, NewBB},
908                     {DominatorTree::Insert, NewBB, BB}});
909 
910   // Clone the non-phi instructions of BB into NewBB, keeping track of the
911   // mapping and using it to remap operands in the cloned instructions.
912   // Stop once we see the terminator too. This covers the case where BB's
913   // terminator gets replaced and StopAt == BB's terminator.
914   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
915     Instruction *New = BI->clone();
916     New->setName(BI->getName());
917     New->insertBefore(NewTerm);
918     ValueMapping[&*BI] = New;
919 
920     // Remap operands to patch up intra-block references.
921     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
922       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
923         auto I = ValueMapping.find(Inst);
924         if (I != ValueMapping.end())
925           New->setOperand(i, I->second);
926       }
927   }
928 
929   return NewBB;
930 }
931 
932 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
933                               DenseMap<MDNode *, MDNode *> &ClonedScopes,
934                               StringRef Ext, LLVMContext &Context) {
935   MDBuilder MDB(Context);
936 
937   for (auto *ScopeList : NoAliasDeclScopes) {
938     for (auto &MDOperand : ScopeList->operands()) {
939       if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
940         AliasScopeNode SNANode(MD);
941 
942         std::string Name;
943         auto ScopeName = SNANode.getName();
944         if (!ScopeName.empty())
945           Name = (Twine(ScopeName) + ":" + Ext).str();
946         else
947           Name = std::string(Ext);
948 
949         MDNode *NewScope = MDB.createAnonymousAliasScope(
950             const_cast<MDNode *>(SNANode.getDomain()), Name);
951         ClonedScopes.insert(std::make_pair(MD, NewScope));
952       }
953     }
954   }
955 }
956 
957 void llvm::adaptNoAliasScopes(Instruction *I,
958                               const DenseMap<MDNode *, MDNode *> &ClonedScopes,
959                               LLVMContext &Context) {
960   auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
961     bool NeedsReplacement = false;
962     SmallVector<Metadata *, 8> NewScopeList;
963     for (auto &MDOp : ScopeList->operands()) {
964       if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
965         if (auto *NewMD = ClonedScopes.lookup(MD)) {
966           NewScopeList.push_back(NewMD);
967           NeedsReplacement = true;
968           continue;
969         }
970         NewScopeList.push_back(MD);
971       }
972     }
973     if (NeedsReplacement)
974       return MDNode::get(Context, NewScopeList);
975     return nullptr;
976   };
977 
978   if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
979     if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
980       Decl->setScopeList(NewScopeList);
981 
982   auto replaceWhenNeeded = [&](unsigned MD_ID) {
983     if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
984       if (auto *NewScopeList = CloneScopeList(CSNoAlias))
985         I->setMetadata(MD_ID, NewScopeList);
986   };
987   replaceWhenNeeded(LLVMContext::MD_noalias);
988   replaceWhenNeeded(LLVMContext::MD_alias_scope);
989 }
990 
991 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
992                                       ArrayRef<BasicBlock *> NewBlocks,
993                                       LLVMContext &Context, StringRef Ext) {
994   if (NoAliasDeclScopes.empty())
995     return;
996 
997   DenseMap<MDNode *, MDNode *> ClonedScopes;
998   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
999                     << NoAliasDeclScopes.size() << " node(s)\n");
1000 
1001   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1002   // Identify instructions using metadata that needs adaptation
1003   for (BasicBlock *NewBlock : NewBlocks)
1004     for (Instruction &I : *NewBlock)
1005       adaptNoAliasScopes(&I, ClonedScopes, Context);
1006 }
1007 
1008 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1009                                       Instruction *IStart, Instruction *IEnd,
1010                                       LLVMContext &Context, StringRef Ext) {
1011   if (NoAliasDeclScopes.empty())
1012     return;
1013 
1014   DenseMap<MDNode *, MDNode *> ClonedScopes;
1015   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1016                     << NoAliasDeclScopes.size() << " node(s)\n");
1017 
1018   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1019   // Identify instructions using metadata that needs adaptation
1020   assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1021   auto ItStart = IStart->getIterator();
1022   auto ItEnd = IEnd->getIterator();
1023   ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1024   for (auto &I : llvm::make_range(ItStart, ItEnd))
1025     adaptNoAliasScopes(&I, ClonedScopes, Context);
1026 }
1027 
1028 void llvm::identifyNoAliasScopesToClone(
1029     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1030   for (BasicBlock *BB : BBs)
1031     for (Instruction &I : *BB)
1032       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1033         NoAliasDeclScopes.push_back(Decl->getScopeList());
1034 }
1035 
1036 void llvm::identifyNoAliasScopesToClone(
1037     BasicBlock::iterator Start, BasicBlock::iterator End,
1038     SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1039   for (Instruction &I : make_range(Start, End))
1040     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1041       NoAliasDeclScopes.push_back(Decl->getScopeList());
1042 }
1043