1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CloneFunctionInto interface, which is used as the 10 // low-level function cloner. This is used by the CloneFunction and function 11 // inliner to do the dirty work of copying the body of a function around. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/ValueMapper.h" 36 #include <map> 37 using namespace llvm; 38 39 /// See comments in Cloning.h. 40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, 41 const Twine &NameSuffix, Function *F, 42 ClonedCodeInfo *CodeInfo, 43 DebugInfoFinder *DIFinder) { 44 DenseMap<const MDNode *, MDNode *> Cache; 45 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 46 if (BB->hasName()) 47 NewBB->setName(BB->getName() + NameSuffix); 48 49 bool hasCalls = false, hasDynamicAllocas = false; 50 Module *TheModule = F ? F->getParent() : nullptr; 51 52 // Loop over all instructions, and copy them over. 53 for (const Instruction &I : *BB) { 54 if (DIFinder && TheModule) 55 DIFinder->processInstruction(*TheModule, I); 56 57 Instruction *NewInst = I.clone(); 58 if (I.hasName()) 59 NewInst->setName(I.getName() + NameSuffix); 60 NewBB->getInstList().push_back(NewInst); 61 VMap[&I] = NewInst; // Add instruction map to value. 62 63 hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I)); 64 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 65 if (!AI->isStaticAlloca()) { 66 hasDynamicAllocas = true; 67 } 68 } 69 } 70 71 if (CodeInfo) { 72 CodeInfo->ContainsCalls |= hasCalls; 73 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 74 } 75 return NewBB; 76 } 77 78 // Clone OldFunc into NewFunc, transforming the old arguments into references to 79 // VMap values. 80 // 81 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 82 ValueToValueMapTy &VMap, 83 bool ModuleLevelChanges, 84 SmallVectorImpl<ReturnInst*> &Returns, 85 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 86 ValueMapTypeRemapper *TypeMapper, 87 ValueMaterializer *Materializer) { 88 assert(NameSuffix && "NameSuffix cannot be null!"); 89 90 #ifndef NDEBUG 91 for (const Argument &I : OldFunc->args()) 92 assert(VMap.count(&I) && "No mapping from source argument specified!"); 93 #endif 94 95 // Copy all attributes other than those stored in the AttributeList. We need 96 // to remap the parameter indices of the AttributeList. 97 AttributeList NewAttrs = NewFunc->getAttributes(); 98 NewFunc->copyAttributesFrom(OldFunc); 99 NewFunc->setAttributes(NewAttrs); 100 101 // Fix up the personality function that got copied over. 102 if (OldFunc->hasPersonalityFn()) 103 NewFunc->setPersonalityFn( 104 MapValue(OldFunc->getPersonalityFn(), VMap, 105 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 106 TypeMapper, Materializer)); 107 108 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 109 AttributeList OldAttrs = OldFunc->getAttributes(); 110 111 // Clone any argument attributes that are present in the VMap. 112 for (const Argument &OldArg : OldFunc->args()) { 113 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 114 NewArgAttrs[NewArg->getArgNo()] = 115 OldAttrs.getParamAttributes(OldArg.getArgNo()); 116 } 117 } 118 119 NewFunc->setAttributes( 120 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), 121 OldAttrs.getRetAttributes(), NewArgAttrs)); 122 123 bool MustCloneSP = 124 OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent(); 125 DISubprogram *SP = OldFunc->getSubprogram(); 126 if (SP) { 127 assert(!MustCloneSP || ModuleLevelChanges); 128 // Add mappings for some DebugInfo nodes that we don't want duplicated 129 // even if they're distinct. 130 auto &MD = VMap.MD(); 131 MD[SP->getUnit()].reset(SP->getUnit()); 132 MD[SP->getType()].reset(SP->getType()); 133 MD[SP->getFile()].reset(SP->getFile()); 134 // If we're not cloning into the same module, no need to clone the 135 // subprogram 136 if (!MustCloneSP) 137 MD[SP].reset(SP); 138 } 139 140 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 141 OldFunc->getAllMetadata(MDs); 142 for (auto MD : MDs) { 143 NewFunc->addMetadata( 144 MD.first, 145 *MapMetadata(MD.second, VMap, 146 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 147 TypeMapper, Materializer)); 148 } 149 150 // When we remap instructions, we want to avoid duplicating inlined 151 // DISubprograms, so record all subprograms we find as we duplicate 152 // instructions and then freeze them in the MD map. 153 // We also record information about dbg.value and dbg.declare to avoid 154 // duplicating the types. 155 DebugInfoFinder DIFinder; 156 157 // Loop over all of the basic blocks in the function, cloning them as 158 // appropriate. Note that we save BE this way in order to handle cloning of 159 // recursive functions into themselves. 160 // 161 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 162 BI != BE; ++BI) { 163 const BasicBlock &BB = *BI; 164 165 // Create a new basic block and copy instructions into it! 166 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, 167 ModuleLevelChanges ? &DIFinder : nullptr); 168 169 // Add basic block mapping. 170 VMap[&BB] = CBB; 171 172 // It is only legal to clone a function if a block address within that 173 // function is never referenced outside of the function. Given that, we 174 // want to map block addresses from the old function to block addresses in 175 // the clone. (This is different from the generic ValueMapper 176 // implementation, which generates an invalid blockaddress when 177 // cloning a function.) 178 if (BB.hasAddressTaken()) { 179 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 180 const_cast<BasicBlock*>(&BB)); 181 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 182 } 183 184 // Note return instructions for the caller. 185 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 186 Returns.push_back(RI); 187 } 188 189 for (DISubprogram *ISP : DIFinder.subprograms()) 190 if (ISP != SP) 191 VMap.MD()[ISP].reset(ISP); 192 193 for (DICompileUnit *CU : DIFinder.compile_units()) 194 VMap.MD()[CU].reset(CU); 195 196 for (DIType *Type : DIFinder.types()) 197 VMap.MD()[Type].reset(Type); 198 199 // Loop over all of the instructions in the function, fixing up operand 200 // references as we go. This uses VMap to do all the hard work. 201 for (Function::iterator BB = 202 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 203 BE = NewFunc->end(); 204 BB != BE; ++BB) 205 // Loop over all instructions, fixing each one as we find it... 206 for (Instruction &II : *BB) 207 RemapInstruction(&II, VMap, 208 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 209 TypeMapper, Materializer); 210 211 // Register all DICompileUnits of the old parent module in the new parent module 212 auto* OldModule = OldFunc->getParent(); 213 auto* NewModule = NewFunc->getParent(); 214 if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) { 215 auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu"); 216 // Avoid multiple insertions of the same DICompileUnit to NMD. 217 SmallPtrSet<const void*, 8> Visited; 218 for (auto* Operand : NMD->operands()) 219 Visited.insert(Operand); 220 for (auto* Unit : DIFinder.compile_units()) 221 // VMap.MD()[Unit] == Unit 222 if (Visited.insert(Unit).second) 223 NMD->addOperand(Unit); 224 } 225 } 226 227 /// Return a copy of the specified function and add it to that function's 228 /// module. Also, any references specified in the VMap are changed to refer to 229 /// their mapped value instead of the original one. If any of the arguments to 230 /// the function are in the VMap, the arguments are deleted from the resultant 231 /// function. The VMap is updated to include mappings from all of the 232 /// instructions and basicblocks in the function from their old to new values. 233 /// 234 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 235 ClonedCodeInfo *CodeInfo) { 236 std::vector<Type*> ArgTypes; 237 238 // The user might be deleting arguments to the function by specifying them in 239 // the VMap. If so, we need to not add the arguments to the arg ty vector 240 // 241 for (const Argument &I : F->args()) 242 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 243 ArgTypes.push_back(I.getType()); 244 245 // Create a new function type... 246 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 247 ArgTypes, F->getFunctionType()->isVarArg()); 248 249 // Create the new function... 250 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), 251 F->getName(), F->getParent()); 252 253 // Loop over the arguments, copying the names of the mapped arguments over... 254 Function::arg_iterator DestI = NewF->arg_begin(); 255 for (const Argument & I : F->args()) 256 if (VMap.count(&I) == 0) { // Is this argument preserved? 257 DestI->setName(I.getName()); // Copy the name over... 258 VMap[&I] = &*DestI++; // Add mapping to VMap 259 } 260 261 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 262 CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "", 263 CodeInfo); 264 265 return NewF; 266 } 267 268 269 270 namespace { 271 /// This is a private class used to implement CloneAndPruneFunctionInto. 272 struct PruningFunctionCloner { 273 Function *NewFunc; 274 const Function *OldFunc; 275 ValueToValueMapTy &VMap; 276 bool ModuleLevelChanges; 277 const char *NameSuffix; 278 ClonedCodeInfo *CodeInfo; 279 280 public: 281 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 282 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 283 const char *nameSuffix, ClonedCodeInfo *codeInfo) 284 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 285 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 286 CodeInfo(codeInfo) {} 287 288 /// The specified block is found to be reachable, clone it and 289 /// anything that it can reach. 290 void CloneBlock(const BasicBlock *BB, 291 BasicBlock::const_iterator StartingInst, 292 std::vector<const BasicBlock*> &ToClone); 293 }; 294 } 295 296 /// The specified block is found to be reachable, clone it and 297 /// anything that it can reach. 298 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 299 BasicBlock::const_iterator StartingInst, 300 std::vector<const BasicBlock*> &ToClone){ 301 WeakTrackingVH &BBEntry = VMap[BB]; 302 303 // Have we already cloned this block? 304 if (BBEntry) return; 305 306 // Nope, clone it now. 307 BasicBlock *NewBB; 308 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 309 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 310 311 // It is only legal to clone a function if a block address within that 312 // function is never referenced outside of the function. Given that, we 313 // want to map block addresses from the old function to block addresses in 314 // the clone. (This is different from the generic ValueMapper 315 // implementation, which generates an invalid blockaddress when 316 // cloning a function.) 317 // 318 // Note that we don't need to fix the mapping for unreachable blocks; 319 // the default mapping there is safe. 320 if (BB->hasAddressTaken()) { 321 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 322 const_cast<BasicBlock*>(BB)); 323 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 324 } 325 326 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 327 328 // Loop over all instructions, and copy them over, DCE'ing as we go. This 329 // loop doesn't include the terminator. 330 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 331 II != IE; ++II) { 332 333 Instruction *NewInst = II->clone(); 334 335 // Eagerly remap operands to the newly cloned instruction, except for PHI 336 // nodes for which we defer processing until we update the CFG. 337 if (!isa<PHINode>(NewInst)) { 338 RemapInstruction(NewInst, VMap, 339 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 340 341 // If we can simplify this instruction to some other value, simply add 342 // a mapping to that value rather than inserting a new instruction into 343 // the basic block. 344 if (Value *V = 345 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 346 // On the off-chance that this simplifies to an instruction in the old 347 // function, map it back into the new function. 348 if (NewFunc != OldFunc) 349 if (Value *MappedV = VMap.lookup(V)) 350 V = MappedV; 351 352 if (!NewInst->mayHaveSideEffects()) { 353 VMap[&*II] = V; 354 NewInst->deleteValue(); 355 continue; 356 } 357 } 358 } 359 360 if (II->hasName()) 361 NewInst->setName(II->getName()+NameSuffix); 362 VMap[&*II] = NewInst; // Add instruction map to value. 363 NewBB->getInstList().push_back(NewInst); 364 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 365 366 if (CodeInfo) 367 if (auto *CB = dyn_cast<CallBase>(&*II)) 368 if (CB->hasOperandBundles()) 369 CodeInfo->OperandBundleCallSites.push_back(NewInst); 370 371 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 372 if (isa<ConstantInt>(AI->getArraySize())) 373 hasStaticAllocas = true; 374 else 375 hasDynamicAllocas = true; 376 } 377 } 378 379 // Finally, clone over the terminator. 380 const Instruction *OldTI = BB->getTerminator(); 381 bool TerminatorDone = false; 382 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 383 if (BI->isConditional()) { 384 // If the condition was a known constant in the callee... 385 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 386 // Or is a known constant in the caller... 387 if (!Cond) { 388 Value *V = VMap.lookup(BI->getCondition()); 389 Cond = dyn_cast_or_null<ConstantInt>(V); 390 } 391 392 // Constant fold to uncond branch! 393 if (Cond) { 394 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 395 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 396 ToClone.push_back(Dest); 397 TerminatorDone = true; 398 } 399 } 400 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 401 // If switching on a value known constant in the caller. 402 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 403 if (!Cond) { // Or known constant after constant prop in the callee... 404 Value *V = VMap.lookup(SI->getCondition()); 405 Cond = dyn_cast_or_null<ConstantInt>(V); 406 } 407 if (Cond) { // Constant fold to uncond branch! 408 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 409 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 410 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 411 ToClone.push_back(Dest); 412 TerminatorDone = true; 413 } 414 } 415 416 if (!TerminatorDone) { 417 Instruction *NewInst = OldTI->clone(); 418 if (OldTI->hasName()) 419 NewInst->setName(OldTI->getName()+NameSuffix); 420 NewBB->getInstList().push_back(NewInst); 421 VMap[OldTI] = NewInst; // Add instruction map to value. 422 423 if (CodeInfo) 424 if (auto *CB = dyn_cast<CallBase>(OldTI)) 425 if (CB->hasOperandBundles()) 426 CodeInfo->OperandBundleCallSites.push_back(NewInst); 427 428 // Recursively clone any reachable successor blocks. 429 const Instruction *TI = BB->getTerminator(); 430 for (const BasicBlock *Succ : successors(TI)) 431 ToClone.push_back(Succ); 432 } 433 434 if (CodeInfo) { 435 CodeInfo->ContainsCalls |= hasCalls; 436 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 437 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 438 BB != &BB->getParent()->front(); 439 } 440 } 441 442 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 443 /// entire function. Instead it starts at an instruction provided by the caller 444 /// and copies (and prunes) only the code reachable from that instruction. 445 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 446 const Instruction *StartingInst, 447 ValueToValueMapTy &VMap, 448 bool ModuleLevelChanges, 449 SmallVectorImpl<ReturnInst *> &Returns, 450 const char *NameSuffix, 451 ClonedCodeInfo *CodeInfo) { 452 assert(NameSuffix && "NameSuffix cannot be null!"); 453 454 ValueMapTypeRemapper *TypeMapper = nullptr; 455 ValueMaterializer *Materializer = nullptr; 456 457 #ifndef NDEBUG 458 // If the cloning starts at the beginning of the function, verify that 459 // the function arguments are mapped. 460 if (!StartingInst) 461 for (const Argument &II : OldFunc->args()) 462 assert(VMap.count(&II) && "No mapping from source argument specified!"); 463 #endif 464 465 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 466 NameSuffix, CodeInfo); 467 const BasicBlock *StartingBB; 468 if (StartingInst) 469 StartingBB = StartingInst->getParent(); 470 else { 471 StartingBB = &OldFunc->getEntryBlock(); 472 StartingInst = &StartingBB->front(); 473 } 474 475 // Clone the entry block, and anything recursively reachable from it. 476 std::vector<const BasicBlock*> CloneWorklist; 477 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 478 while (!CloneWorklist.empty()) { 479 const BasicBlock *BB = CloneWorklist.back(); 480 CloneWorklist.pop_back(); 481 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 482 } 483 484 // Loop over all of the basic blocks in the old function. If the block was 485 // reachable, we have cloned it and the old block is now in the value map: 486 // insert it into the new function in the right order. If not, ignore it. 487 // 488 // Defer PHI resolution until rest of function is resolved. 489 SmallVector<const PHINode*, 16> PHIToResolve; 490 for (const BasicBlock &BI : *OldFunc) { 491 Value *V = VMap.lookup(&BI); 492 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 493 if (!NewBB) continue; // Dead block. 494 495 // Add the new block to the new function. 496 NewFunc->getBasicBlockList().push_back(NewBB); 497 498 // Handle PHI nodes specially, as we have to remove references to dead 499 // blocks. 500 for (const PHINode &PN : BI.phis()) { 501 // PHI nodes may have been remapped to non-PHI nodes by the caller or 502 // during the cloning process. 503 if (isa<PHINode>(VMap[&PN])) 504 PHIToResolve.push_back(&PN); 505 else 506 break; 507 } 508 509 // Finally, remap the terminator instructions, as those can't be remapped 510 // until all BBs are mapped. 511 RemapInstruction(NewBB->getTerminator(), VMap, 512 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 513 TypeMapper, Materializer); 514 } 515 516 // Defer PHI resolution until rest of function is resolved, PHI resolution 517 // requires the CFG to be up-to-date. 518 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 519 const PHINode *OPN = PHIToResolve[phino]; 520 unsigned NumPreds = OPN->getNumIncomingValues(); 521 const BasicBlock *OldBB = OPN->getParent(); 522 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 523 524 // Map operands for blocks that are live and remove operands for blocks 525 // that are dead. 526 for (; phino != PHIToResolve.size() && 527 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 528 OPN = PHIToResolve[phino]; 529 PHINode *PN = cast<PHINode>(VMap[OPN]); 530 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 531 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 532 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 533 Value *InVal = MapValue(PN->getIncomingValue(pred), 534 VMap, 535 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 536 assert(InVal && "Unknown input value?"); 537 PN->setIncomingValue(pred, InVal); 538 PN->setIncomingBlock(pred, MappedBlock); 539 } else { 540 PN->removeIncomingValue(pred, false); 541 --pred; // Revisit the next entry. 542 --e; 543 } 544 } 545 } 546 547 // The loop above has removed PHI entries for those blocks that are dead 548 // and has updated others. However, if a block is live (i.e. copied over) 549 // but its terminator has been changed to not go to this block, then our 550 // phi nodes will have invalid entries. Update the PHI nodes in this 551 // case. 552 PHINode *PN = cast<PHINode>(NewBB->begin()); 553 NumPreds = pred_size(NewBB); 554 if (NumPreds != PN->getNumIncomingValues()) { 555 assert(NumPreds < PN->getNumIncomingValues()); 556 // Count how many times each predecessor comes to this block. 557 std::map<BasicBlock*, unsigned> PredCount; 558 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 559 PI != E; ++PI) 560 --PredCount[*PI]; 561 562 // Figure out how many entries to remove from each PHI. 563 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 564 ++PredCount[PN->getIncomingBlock(i)]; 565 566 // At this point, the excess predecessor entries are positive in the 567 // map. Loop over all of the PHIs and remove excess predecessor 568 // entries. 569 BasicBlock::iterator I = NewBB->begin(); 570 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 571 for (const auto &PCI : PredCount) { 572 BasicBlock *Pred = PCI.first; 573 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 574 PN->removeIncomingValue(Pred, false); 575 } 576 } 577 } 578 579 // If the loops above have made these phi nodes have 0 or 1 operand, 580 // replace them with undef or the input value. We must do this for 581 // correctness, because 0-operand phis are not valid. 582 PN = cast<PHINode>(NewBB->begin()); 583 if (PN->getNumIncomingValues() == 0) { 584 BasicBlock::iterator I = NewBB->begin(); 585 BasicBlock::const_iterator OldI = OldBB->begin(); 586 while ((PN = dyn_cast<PHINode>(I++))) { 587 Value *NV = UndefValue::get(PN->getType()); 588 PN->replaceAllUsesWith(NV); 589 assert(VMap[&*OldI] == PN && "VMap mismatch"); 590 VMap[&*OldI] = NV; 591 PN->eraseFromParent(); 592 ++OldI; 593 } 594 } 595 } 596 597 // Make a second pass over the PHINodes now that all of them have been 598 // remapped into the new function, simplifying the PHINode and performing any 599 // recursive simplifications exposed. This will transparently update the 600 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce 601 // two PHINodes, the iteration over the old PHIs remains valid, and the 602 // mapping will just map us to the new node (which may not even be a PHI 603 // node). 604 const DataLayout &DL = NewFunc->getParent()->getDataLayout(); 605 SmallSetVector<const Value *, 8> Worklist; 606 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 607 if (isa<PHINode>(VMap[PHIToResolve[Idx]])) 608 Worklist.insert(PHIToResolve[Idx]); 609 610 // Note that we must test the size on each iteration, the worklist can grow. 611 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 612 const Value *OrigV = Worklist[Idx]; 613 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); 614 if (!I) 615 continue; 616 617 // Skip over non-intrinsic callsites, we don't want to remove any nodes from 618 // the CGSCC. 619 CallBase *CB = dyn_cast<CallBase>(I); 620 if (CB && CB->getCalledFunction() && 621 !CB->getCalledFunction()->isIntrinsic()) 622 continue; 623 624 // See if this instruction simplifies. 625 Value *SimpleV = SimplifyInstruction(I, DL); 626 if (!SimpleV) 627 continue; 628 629 // Stash away all the uses of the old instruction so we can check them for 630 // recursive simplifications after a RAUW. This is cheaper than checking all 631 // uses of To on the recursive step in most cases. 632 for (const User *U : OrigV->users()) 633 Worklist.insert(cast<Instruction>(U)); 634 635 // Replace the instruction with its simplified value. 636 I->replaceAllUsesWith(SimpleV); 637 638 // If the original instruction had no side effects, remove it. 639 if (isInstructionTriviallyDead(I)) 640 I->eraseFromParent(); 641 else 642 VMap[OrigV] = I; 643 } 644 645 // Now that the inlined function body has been fully constructed, go through 646 // and zap unconditional fall-through branches. This happens all the time when 647 // specializing code: code specialization turns conditional branches into 648 // uncond branches, and this code folds them. 649 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 650 Function::iterator I = Begin; 651 while (I != NewFunc->end()) { 652 // We need to simplify conditional branches and switches with a constant 653 // operand. We try to prune these out when cloning, but if the 654 // simplification required looking through PHI nodes, those are only 655 // available after forming the full basic block. That may leave some here, 656 // and we still want to prune the dead code as early as possible. 657 // 658 // Do the folding before we check if the block is dead since we want code 659 // like 660 // bb: 661 // br i1 undef, label %bb, label %bb 662 // to be simplified to 663 // bb: 664 // br label %bb 665 // before we call I->getSinglePredecessor(). 666 ConstantFoldTerminator(&*I); 667 668 // Check if this block has become dead during inlining or other 669 // simplifications. Note that the first block will appear dead, as it has 670 // not yet been wired up properly. 671 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 672 I->getSinglePredecessor() == &*I)) { 673 BasicBlock *DeadBB = &*I++; 674 DeleteDeadBlock(DeadBB); 675 continue; 676 } 677 678 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 679 if (!BI || BI->isConditional()) { ++I; continue; } 680 681 BasicBlock *Dest = BI->getSuccessor(0); 682 if (!Dest->getSinglePredecessor()) { 683 ++I; continue; 684 } 685 686 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 687 // above should have zapped all of them.. 688 assert(!isa<PHINode>(Dest->begin())); 689 690 // We know all single-entry PHI nodes in the inlined function have been 691 // removed, so we just need to splice the blocks. 692 BI->eraseFromParent(); 693 694 // Make all PHI nodes that referred to Dest now refer to I as their source. 695 Dest->replaceAllUsesWith(&*I); 696 697 // Move all the instructions in the succ to the pred. 698 I->getInstList().splice(I->end(), Dest->getInstList()); 699 700 // Remove the dest block. 701 Dest->eraseFromParent(); 702 703 // Do not increment I, iteratively merge all things this block branches to. 704 } 705 706 // Make a final pass over the basic blocks from the old function to gather 707 // any return instructions which survived folding. We have to do this here 708 // because we can iteratively remove and merge returns above. 709 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 710 E = NewFunc->end(); 711 I != E; ++I) 712 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 713 Returns.push_back(RI); 714 } 715 716 717 /// This works exactly like CloneFunctionInto, 718 /// except that it does some simple constant prop and DCE on the fly. The 719 /// effect of this is to copy significantly less code in cases where (for 720 /// example) a function call with constant arguments is inlined, and those 721 /// constant arguments cause a significant amount of code in the callee to be 722 /// dead. Since this doesn't produce an exact copy of the input, it can't be 723 /// used for things like CloneFunction or CloneModule. 724 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 725 ValueToValueMapTy &VMap, 726 bool ModuleLevelChanges, 727 SmallVectorImpl<ReturnInst*> &Returns, 728 const char *NameSuffix, 729 ClonedCodeInfo *CodeInfo, 730 Instruction *TheCall) { 731 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 732 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 733 } 734 735 /// Remaps instructions in \p Blocks using the mapping in \p VMap. 736 void llvm::remapInstructionsInBlocks( 737 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 738 // Rewrite the code to refer to itself. 739 for (auto *BB : Blocks) 740 for (auto &Inst : *BB) 741 RemapInstruction(&Inst, VMap, 742 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 743 } 744 745 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 746 /// Blocks. 747 /// 748 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 749 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 750 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 751 Loop *OrigLoop, ValueToValueMapTy &VMap, 752 const Twine &NameSuffix, LoopInfo *LI, 753 DominatorTree *DT, 754 SmallVectorImpl<BasicBlock *> &Blocks) { 755 Function *F = OrigLoop->getHeader()->getParent(); 756 Loop *ParentLoop = OrigLoop->getParentLoop(); 757 DenseMap<Loop *, Loop *> LMap; 758 759 Loop *NewLoop = LI->AllocateLoop(); 760 LMap[OrigLoop] = NewLoop; 761 if (ParentLoop) 762 ParentLoop->addChildLoop(NewLoop); 763 else 764 LI->addTopLevelLoop(NewLoop); 765 766 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 767 assert(OrigPH && "No preheader"); 768 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 769 // To rename the loop PHIs. 770 VMap[OrigPH] = NewPH; 771 Blocks.push_back(NewPH); 772 773 // Update LoopInfo. 774 if (ParentLoop) 775 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 776 777 // Update DominatorTree. 778 DT->addNewBlock(NewPH, LoopDomBB); 779 780 for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) { 781 Loop *&NewLoop = LMap[CurLoop]; 782 if (!NewLoop) { 783 NewLoop = LI->AllocateLoop(); 784 785 // Establish the parent/child relationship. 786 Loop *OrigParent = CurLoop->getParentLoop(); 787 assert(OrigParent && "Could not find the original parent loop"); 788 Loop *NewParentLoop = LMap[OrigParent]; 789 assert(NewParentLoop && "Could not find the new parent loop"); 790 791 NewParentLoop->addChildLoop(NewLoop); 792 } 793 } 794 795 for (BasicBlock *BB : OrigLoop->getBlocks()) { 796 Loop *CurLoop = LI->getLoopFor(BB); 797 Loop *&NewLoop = LMap[CurLoop]; 798 assert(NewLoop && "Expecting new loop to be allocated"); 799 800 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 801 VMap[BB] = NewBB; 802 803 // Update LoopInfo. 804 NewLoop->addBasicBlockToLoop(NewBB, *LI); 805 806 // Add DominatorTree node. After seeing all blocks, update to correct 807 // IDom. 808 DT->addNewBlock(NewBB, NewPH); 809 810 Blocks.push_back(NewBB); 811 } 812 813 for (BasicBlock *BB : OrigLoop->getBlocks()) { 814 // Update loop headers. 815 Loop *CurLoop = LI->getLoopFor(BB); 816 if (BB == CurLoop->getHeader()) 817 LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB])); 818 819 // Update DominatorTree. 820 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 821 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 822 cast<BasicBlock>(VMap[IDomBB])); 823 } 824 825 // Move them physically from the end of the block list. 826 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 827 NewPH); 828 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 829 NewLoop->getHeader()->getIterator(), F->end()); 830 831 return NewLoop; 832 } 833 834 /// Duplicate non-Phi instructions from the beginning of block up to 835 /// StopAt instruction into a split block between BB and its predecessor. 836 BasicBlock *llvm::DuplicateInstructionsInSplitBetween( 837 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, 838 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { 839 840 assert(count(successors(PredBB), BB) == 1 && 841 "There must be a single edge between PredBB and BB!"); 842 // We are going to have to map operands from the original BB block to the new 843 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 844 // account for entry from PredBB. 845 BasicBlock::iterator BI = BB->begin(); 846 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 847 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 848 849 BasicBlock *NewBB = SplitEdge(PredBB, BB); 850 NewBB->setName(PredBB->getName() + ".split"); 851 Instruction *NewTerm = NewBB->getTerminator(); 852 853 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge 854 // in the update set here. 855 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, 856 {DominatorTree::Insert, PredBB, NewBB}, 857 {DominatorTree::Insert, NewBB, BB}}); 858 859 // Clone the non-phi instructions of BB into NewBB, keeping track of the 860 // mapping and using it to remap operands in the cloned instructions. 861 // Stop once we see the terminator too. This covers the case where BB's 862 // terminator gets replaced and StopAt == BB's terminator. 863 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { 864 Instruction *New = BI->clone(); 865 New->setName(BI->getName()); 866 New->insertBefore(NewTerm); 867 ValueMapping[&*BI] = New; 868 869 // Remap operands to patch up intra-block references. 870 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 871 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 872 auto I = ValueMapping.find(Inst); 873 if (I != ValueMapping.end()) 874 New->setOperand(i, I->second); 875 } 876 } 877 878 return NewBB; 879 } 880