xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp (revision 59144db3fca192c4637637dfe6b5a5d98632cd47)
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Cloning.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 #include <map>
36 #include <optional>
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "clone-function"
40 
41 /// See comments in Cloning.h.
42 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
43                                   const Twine &NameSuffix, Function *F,
44                                   ClonedCodeInfo *CodeInfo,
45                                   DebugInfoFinder *DIFinder) {
46   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
47   NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat;
48   if (BB->hasName())
49     NewBB->setName(BB->getName() + NameSuffix);
50 
51   bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false;
52   Module *TheModule = F ? F->getParent() : nullptr;
53 
54   // Loop over all instructions, and copy them over.
55   for (const Instruction &I : *BB) {
56     if (DIFinder && TheModule)
57       DIFinder->processInstruction(*TheModule, I);
58 
59     Instruction *NewInst = I.clone();
60     if (I.hasName())
61       NewInst->setName(I.getName() + NameSuffix);
62 
63     NewInst->insertBefore(*NewBB, NewBB->end());
64     NewInst->cloneDebugInfoFrom(&I);
65 
66     VMap[&I] = NewInst; // Add instruction map to value.
67 
68     if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) {
69       hasCalls = true;
70       hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof);
71     }
72     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
73       if (!AI->isStaticAlloca()) {
74         hasDynamicAllocas = true;
75       }
76     }
77   }
78 
79   if (CodeInfo) {
80     CodeInfo->ContainsCalls |= hasCalls;
81     CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
82     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
83   }
84   return NewBB;
85 }
86 
87 // Clone OldFunc into NewFunc, transforming the old arguments into references to
88 // VMap values.
89 //
90 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
91                              ValueToValueMapTy &VMap,
92                              CloneFunctionChangeType Changes,
93                              SmallVectorImpl<ReturnInst *> &Returns,
94                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
95                              ValueMapTypeRemapper *TypeMapper,
96                              ValueMaterializer *Materializer) {
97   NewFunc->setIsNewDbgInfoFormat(OldFunc->IsNewDbgInfoFormat);
98   assert(NameSuffix && "NameSuffix cannot be null!");
99 
100 #ifndef NDEBUG
101   for (const Argument &I : OldFunc->args())
102     assert(VMap.count(&I) && "No mapping from source argument specified!");
103 #endif
104 
105   bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
106 
107   // Copy all attributes other than those stored in the AttributeList.  We need
108   // to remap the parameter indices of the AttributeList.
109   AttributeList NewAttrs = NewFunc->getAttributes();
110   NewFunc->copyAttributesFrom(OldFunc);
111   NewFunc->setAttributes(NewAttrs);
112 
113   const RemapFlags FuncGlobalRefFlags =
114       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
115 
116   // Fix up the personality function that got copied over.
117   if (OldFunc->hasPersonalityFn())
118     NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap,
119                                        FuncGlobalRefFlags, TypeMapper,
120                                        Materializer));
121 
122   if (OldFunc->hasPrefixData()) {
123     NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap,
124                                     FuncGlobalRefFlags, TypeMapper,
125                                     Materializer));
126   }
127 
128   if (OldFunc->hasPrologueData()) {
129     NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap,
130                                       FuncGlobalRefFlags, TypeMapper,
131                                       Materializer));
132   }
133 
134   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
135   AttributeList OldAttrs = OldFunc->getAttributes();
136 
137   // Clone any argument attributes that are present in the VMap.
138   for (const Argument &OldArg : OldFunc->args()) {
139     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
140       NewArgAttrs[NewArg->getArgNo()] =
141           OldAttrs.getParamAttrs(OldArg.getArgNo());
142     }
143   }
144 
145   NewFunc->setAttributes(
146       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(),
147                          OldAttrs.getRetAttrs(), NewArgAttrs));
148 
149   // Everything else beyond this point deals with function instructions,
150   // so if we are dealing with a function declaration, we're done.
151   if (OldFunc->isDeclaration())
152     return;
153 
154   // When we remap instructions within the same module, we want to avoid
155   // duplicating inlined DISubprograms, so record all subprograms we find as we
156   // duplicate instructions and then freeze them in the MD map. We also record
157   // information about dbg.value and dbg.declare to avoid duplicating the
158   // types.
159   std::optional<DebugInfoFinder> DIFinder;
160 
161   // Track the subprogram attachment that needs to be cloned to fine-tune the
162   // mapping within the same module.
163   DISubprogram *SPClonedWithinModule = nullptr;
164   if (Changes < CloneFunctionChangeType::DifferentModule) {
165     assert((NewFunc->getParent() == nullptr ||
166             NewFunc->getParent() == OldFunc->getParent()) &&
167            "Expected NewFunc to have the same parent, or no parent");
168 
169     // Need to find subprograms, types, and compile units.
170     DIFinder.emplace();
171 
172     SPClonedWithinModule = OldFunc->getSubprogram();
173     if (SPClonedWithinModule)
174       DIFinder->processSubprogram(SPClonedWithinModule);
175   } else {
176     assert((NewFunc->getParent() == nullptr ||
177             NewFunc->getParent() != OldFunc->getParent()) &&
178            "Expected NewFunc to have different parents, or no parent");
179 
180     if (Changes == CloneFunctionChangeType::DifferentModule) {
181       assert(NewFunc->getParent() &&
182              "Need parent of new function to maintain debug info invariants");
183 
184       // Need to find all the compile units.
185       DIFinder.emplace();
186     }
187   }
188 
189   // Loop over all of the basic blocks in the function, cloning them as
190   // appropriate.  Note that we save BE this way in order to handle cloning of
191   // recursive functions into themselves.
192   for (const BasicBlock &BB : *OldFunc) {
193 
194     // Create a new basic block and copy instructions into it!
195     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
196                                       DIFinder ? &*DIFinder : nullptr);
197 
198     // Add basic block mapping.
199     VMap[&BB] = CBB;
200 
201     // It is only legal to clone a function if a block address within that
202     // function is never referenced outside of the function.  Given that, we
203     // want to map block addresses from the old function to block addresses in
204     // the clone. (This is different from the generic ValueMapper
205     // implementation, which generates an invalid blockaddress when
206     // cloning a function.)
207     if (BB.hasAddressTaken()) {
208       Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
209                                               const_cast<BasicBlock *>(&BB));
210       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
211     }
212 
213     // Note return instructions for the caller.
214     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
215       Returns.push_back(RI);
216   }
217 
218   if (Changes < CloneFunctionChangeType::DifferentModule &&
219       DIFinder->subprogram_count() > 0) {
220     // Turn on module-level changes, since we need to clone (some of) the
221     // debug info metadata.
222     //
223     // FIXME: Metadata effectively owned by a function should be made
224     // local, and only that local metadata should be cloned.
225     ModuleLevelChanges = true;
226 
227     auto mapToSelfIfNew = [&VMap](MDNode *N) {
228       // Avoid clobbering an existing mapping.
229       (void)VMap.MD().try_emplace(N, N);
230     };
231 
232     // Avoid cloning types, compile units, and (other) subprograms.
233     SmallPtrSet<const DISubprogram *, 16> MappedToSelfSPs;
234     for (DISubprogram *ISP : DIFinder->subprograms()) {
235       if (ISP != SPClonedWithinModule) {
236         mapToSelfIfNew(ISP);
237         MappedToSelfSPs.insert(ISP);
238       }
239     }
240 
241     // If a subprogram isn't going to be cloned skip its lexical blocks as well.
242     for (DIScope *S : DIFinder->scopes()) {
243       auto *LScope = dyn_cast<DILocalScope>(S);
244       if (LScope && MappedToSelfSPs.count(LScope->getSubprogram()))
245         mapToSelfIfNew(S);
246     }
247 
248     for (DICompileUnit *CU : DIFinder->compile_units())
249       mapToSelfIfNew(CU);
250 
251     for (DIType *Type : DIFinder->types())
252       mapToSelfIfNew(Type);
253   } else {
254     assert(!SPClonedWithinModule &&
255            "Subprogram should be in DIFinder->subprogram_count()...");
256   }
257 
258   const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
259   // Duplicate the metadata that is attached to the cloned function.
260   // Subprograms/CUs/types that were already mapped to themselves won't be
261   // duplicated.
262   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
263   OldFunc->getAllMetadata(MDs);
264   for (auto MD : MDs) {
265     NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
266                                                 TypeMapper, Materializer));
267   }
268 
269   // Loop over all of the instructions in the new function, fixing up operand
270   // references as we go. This uses VMap to do all the hard work.
271   for (Function::iterator
272            BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
273            BE = NewFunc->end();
274        BB != BE; ++BB)
275     // Loop over all instructions, fixing each one as we find it, and any
276     // attached debug-info records.
277     for (Instruction &II : *BB) {
278       RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
279       RemapDPValueRange(II.getModule(), II.getDbgValueRange(), VMap, RemapFlag,
280                         TypeMapper, Materializer);
281     }
282 
283   // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
284   // same module, the compile unit will already be listed (or not). When
285   // cloning a module, CloneModule() will handle creating the named metadata.
286   if (Changes != CloneFunctionChangeType::DifferentModule)
287     return;
288 
289   // Update !llvm.dbg.cu with compile units added to the new module if this
290   // function is being cloned in isolation.
291   //
292   // FIXME: This is making global / module-level changes, which doesn't seem
293   // like the right encapsulation  Consider dropping the requirement to update
294   // !llvm.dbg.cu (either obsoleting the node, or restricting it to
295   // non-discardable compile units) instead of discovering compile units by
296   // visiting the metadata attached to global values, which would allow this
297   // code to be deleted. Alternatively, perhaps give responsibility for this
298   // update to CloneFunctionInto's callers.
299   auto *NewModule = NewFunc->getParent();
300   auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
301   // Avoid multiple insertions of the same DICompileUnit to NMD.
302   SmallPtrSet<const void *, 8> Visited;
303   for (auto *Operand : NMD->operands())
304     Visited.insert(Operand);
305   for (auto *Unit : DIFinder->compile_units()) {
306     MDNode *MappedUnit =
307         MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
308     if (Visited.insert(MappedUnit).second)
309       NMD->addOperand(MappedUnit);
310   }
311 }
312 
313 /// Return a copy of the specified function and add it to that function's
314 /// module.  Also, any references specified in the VMap are changed to refer to
315 /// their mapped value instead of the original one.  If any of the arguments to
316 /// the function are in the VMap, the arguments are deleted from the resultant
317 /// function.  The VMap is updated to include mappings from all of the
318 /// instructions and basicblocks in the function from their old to new values.
319 ///
320 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
321                               ClonedCodeInfo *CodeInfo) {
322   std::vector<Type *> ArgTypes;
323 
324   // The user might be deleting arguments to the function by specifying them in
325   // the VMap.  If so, we need to not add the arguments to the arg ty vector
326   //
327   for (const Argument &I : F->args())
328     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
329       ArgTypes.push_back(I.getType());
330 
331   // Create a new function type...
332   FunctionType *FTy =
333       FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
334                         F->getFunctionType()->isVarArg());
335 
336   // Create the new function...
337   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
338                                     F->getName(), F->getParent());
339   NewF->setIsNewDbgInfoFormat(F->IsNewDbgInfoFormat);
340 
341   // Loop over the arguments, copying the names of the mapped arguments over...
342   Function::arg_iterator DestI = NewF->arg_begin();
343   for (const Argument &I : F->args())
344     if (VMap.count(&I) == 0) {     // Is this argument preserved?
345       DestI->setName(I.getName()); // Copy the name over...
346       VMap[&I] = &*DestI++;        // Add mapping to VMap
347     }
348 
349   SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
350   CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
351                     Returns, "", CodeInfo);
352 
353   return NewF;
354 }
355 
356 namespace {
357 /// This is a private class used to implement CloneAndPruneFunctionInto.
358 struct PruningFunctionCloner {
359   Function *NewFunc;
360   const Function *OldFunc;
361   ValueToValueMapTy &VMap;
362   bool ModuleLevelChanges;
363   const char *NameSuffix;
364   ClonedCodeInfo *CodeInfo;
365   bool HostFuncIsStrictFP;
366 
367   Instruction *cloneInstruction(BasicBlock::const_iterator II);
368 
369 public:
370   PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
371                         ValueToValueMapTy &valueMap, bool moduleLevelChanges,
372                         const char *nameSuffix, ClonedCodeInfo *codeInfo)
373       : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
374         ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
375         CodeInfo(codeInfo) {
376     HostFuncIsStrictFP =
377         newFunc->getAttributes().hasFnAttr(Attribute::StrictFP);
378   }
379 
380   /// The specified block is found to be reachable, clone it and
381   /// anything that it can reach.
382   void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
383                   std::vector<const BasicBlock *> &ToClone);
384 };
385 } // namespace
386 
387 static bool hasRoundingModeOperand(Intrinsic::ID CIID) {
388   switch (CIID) {
389 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
390   case Intrinsic::INTRINSIC:                                                   \
391     return ROUND_MODE == 1;
392 #define FUNCTION INSTRUCTION
393 #include "llvm/IR/ConstrainedOps.def"
394   default:
395     llvm_unreachable("Unexpected constrained intrinsic id");
396   }
397 }
398 
399 Instruction *
400 PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) {
401   const Instruction &OldInst = *II;
402   Instruction *NewInst = nullptr;
403   if (HostFuncIsStrictFP) {
404     Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst);
405     if (CIID != Intrinsic::not_intrinsic) {
406       // Instead of cloning the instruction, a call to constrained intrinsic
407       // should be created.
408       // Assume the first arguments of constrained intrinsics are the same as
409       // the operands of original instruction.
410 
411       // Determine overloaded types of the intrinsic.
412       SmallVector<Type *, 2> TParams;
413       SmallVector<Intrinsic::IITDescriptor, 8> Descriptor;
414       getIntrinsicInfoTableEntries(CIID, Descriptor);
415       for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) {
416         Intrinsic::IITDescriptor Operand = Descriptor[I];
417         switch (Operand.Kind) {
418         case Intrinsic::IITDescriptor::Argument:
419           if (Operand.getArgumentKind() !=
420               Intrinsic::IITDescriptor::AK_MatchType) {
421             if (I == 0)
422               TParams.push_back(OldInst.getType());
423             else
424               TParams.push_back(OldInst.getOperand(I - 1)->getType());
425           }
426           break;
427         case Intrinsic::IITDescriptor::SameVecWidthArgument:
428           ++I;
429           break;
430         default:
431           break;
432         }
433       }
434 
435       // Create intrinsic call.
436       LLVMContext &Ctx = NewFunc->getContext();
437       Function *IFn =
438           Intrinsic::getDeclaration(NewFunc->getParent(), CIID, TParams);
439       SmallVector<Value *, 4> Args;
440       unsigned NumOperands = OldInst.getNumOperands();
441       if (isa<CallInst>(OldInst))
442         --NumOperands;
443       for (unsigned I = 0; I < NumOperands; ++I) {
444         Value *Op = OldInst.getOperand(I);
445         Args.push_back(Op);
446       }
447       if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) {
448         FCmpInst::Predicate Pred = CmpI->getPredicate();
449         StringRef PredName = FCmpInst::getPredicateName(Pred);
450         Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName)));
451       }
452 
453       // The last arguments of a constrained intrinsic are metadata that
454       // represent rounding mode (absents in some intrinsics) and exception
455       // behavior. The inlined function uses default settings.
456       if (hasRoundingModeOperand(CIID))
457         Args.push_back(
458             MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest")));
459       Args.push_back(
460           MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore")));
461 
462       NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict");
463     }
464   }
465   if (!NewInst)
466     NewInst = II->clone();
467   return NewInst;
468 }
469 
470 /// The specified block is found to be reachable, clone it and
471 /// anything that it can reach.
472 void PruningFunctionCloner::CloneBlock(
473     const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
474     std::vector<const BasicBlock *> &ToClone) {
475   WeakTrackingVH &BBEntry = VMap[BB];
476 
477   // Have we already cloned this block?
478   if (BBEntry)
479     return;
480 
481   // Nope, clone it now.
482   BasicBlock *NewBB;
483   Twine NewName(BB->hasName() ? Twine(BB->getName()) + NameSuffix : "");
484   BBEntry = NewBB = BasicBlock::Create(BB->getContext(), NewName, NewFunc);
485   NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat;
486 
487   // It is only legal to clone a function if a block address within that
488   // function is never referenced outside of the function.  Given that, we
489   // want to map block addresses from the old function to block addresses in
490   // the clone. (This is different from the generic ValueMapper
491   // implementation, which generates an invalid blockaddress when
492   // cloning a function.)
493   //
494   // Note that we don't need to fix the mapping for unreachable blocks;
495   // the default mapping there is safe.
496   if (BB->hasAddressTaken()) {
497     Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
498                                             const_cast<BasicBlock *>(BB));
499     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
500   }
501 
502   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
503   bool hasMemProfMetadata = false;
504 
505   // Keep a cursor pointing at the last place we cloned debug-info records from.
506   BasicBlock::const_iterator DbgCursor = StartingInst;
507   auto CloneDbgRecordsToHere =
508       [NewBB, &DbgCursor](Instruction *NewInst, BasicBlock::const_iterator II) {
509         if (!NewBB->IsNewDbgInfoFormat)
510           return;
511 
512         // Clone debug-info records onto this instruction. Iterate through any
513         // source-instructions we've cloned and then subsequently optimised
514         // away, so that their debug-info doesn't go missing.
515         for (; DbgCursor != II; ++DbgCursor)
516           NewInst->cloneDebugInfoFrom(&*DbgCursor, std::nullopt, false);
517         NewInst->cloneDebugInfoFrom(&*II);
518         DbgCursor = std::next(II);
519       };
520 
521   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
522   // loop doesn't include the terminator.
523   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
524        ++II) {
525 
526     Instruction *NewInst = cloneInstruction(II);
527     NewInst->insertInto(NewBB, NewBB->end());
528 
529     if (HostFuncIsStrictFP) {
530       // All function calls in the inlined function must get 'strictfp'
531       // attribute to prevent undesirable optimizations.
532       if (auto *Call = dyn_cast<CallInst>(NewInst))
533         Call->addFnAttr(Attribute::StrictFP);
534     }
535 
536     // Eagerly remap operands to the newly cloned instruction, except for PHI
537     // nodes for which we defer processing until we update the CFG. Also defer
538     // debug intrinsic processing because they may contain use-before-defs.
539     if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) {
540       RemapInstruction(NewInst, VMap,
541                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
542 
543       // If we can simplify this instruction to some other value, simply add
544       // a mapping to that value rather than inserting a new instruction into
545       // the basic block.
546       if (Value *V =
547               simplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
548         // On the off-chance that this simplifies to an instruction in the old
549         // function, map it back into the new function.
550         if (NewFunc != OldFunc)
551           if (Value *MappedV = VMap.lookup(V))
552             V = MappedV;
553 
554         if (!NewInst->mayHaveSideEffects()) {
555           VMap[&*II] = V;
556           NewInst->eraseFromParent();
557           continue;
558         }
559       }
560     }
561 
562     if (II->hasName())
563       NewInst->setName(II->getName() + NameSuffix);
564     VMap[&*II] = NewInst; // Add instruction map to value.
565     if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) {
566       hasCalls = true;
567       hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof);
568     }
569 
570     CloneDbgRecordsToHere(NewInst, II);
571 
572     if (CodeInfo) {
573       CodeInfo->OrigVMap[&*II] = NewInst;
574       if (auto *CB = dyn_cast<CallBase>(&*II))
575         if (CB->hasOperandBundles())
576           CodeInfo->OperandBundleCallSites.push_back(NewInst);
577     }
578 
579     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
580       if (isa<ConstantInt>(AI->getArraySize()))
581         hasStaticAllocas = true;
582       else
583         hasDynamicAllocas = true;
584     }
585   }
586 
587   // Finally, clone over the terminator.
588   const Instruction *OldTI = BB->getTerminator();
589   bool TerminatorDone = false;
590   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
591     if (BI->isConditional()) {
592       // If the condition was a known constant in the callee...
593       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
594       // Or is a known constant in the caller...
595       if (!Cond) {
596         Value *V = VMap.lookup(BI->getCondition());
597         Cond = dyn_cast_or_null<ConstantInt>(V);
598       }
599 
600       // Constant fold to uncond branch!
601       if (Cond) {
602         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
603         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
604         ToClone.push_back(Dest);
605         TerminatorDone = true;
606       }
607     }
608   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
609     // If switching on a value known constant in the caller.
610     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
611     if (!Cond) { // Or known constant after constant prop in the callee...
612       Value *V = VMap.lookup(SI->getCondition());
613       Cond = dyn_cast_or_null<ConstantInt>(V);
614     }
615     if (Cond) { // Constant fold to uncond branch!
616       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
617       BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
618       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
619       ToClone.push_back(Dest);
620       TerminatorDone = true;
621     }
622   }
623 
624   if (!TerminatorDone) {
625     Instruction *NewInst = OldTI->clone();
626     if (OldTI->hasName())
627       NewInst->setName(OldTI->getName() + NameSuffix);
628     NewInst->insertInto(NewBB, NewBB->end());
629 
630     CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
631 
632     VMap[OldTI] = NewInst; // Add instruction map to value.
633 
634     if (CodeInfo) {
635       CodeInfo->OrigVMap[OldTI] = NewInst;
636       if (auto *CB = dyn_cast<CallBase>(OldTI))
637         if (CB->hasOperandBundles())
638           CodeInfo->OperandBundleCallSites.push_back(NewInst);
639     }
640 
641     // Recursively clone any reachable successor blocks.
642     append_range(ToClone, successors(BB->getTerminator()));
643   } else {
644     // If we didn't create a new terminator, clone DPValues from the old
645     // terminator onto the new terminator.
646     Instruction *NewInst = NewBB->getTerminator();
647     assert(NewInst);
648 
649     CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
650   }
651 
652   if (CodeInfo) {
653     CodeInfo->ContainsCalls |= hasCalls;
654     CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
655     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
656     CodeInfo->ContainsDynamicAllocas |=
657         hasStaticAllocas && BB != &BB->getParent()->front();
658   }
659 }
660 
661 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
662 /// entire function. Instead it starts at an instruction provided by the caller
663 /// and copies (and prunes) only the code reachable from that instruction.
664 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
665                                      const Instruction *StartingInst,
666                                      ValueToValueMapTy &VMap,
667                                      bool ModuleLevelChanges,
668                                      SmallVectorImpl<ReturnInst *> &Returns,
669                                      const char *NameSuffix,
670                                      ClonedCodeInfo *CodeInfo) {
671   assert(NameSuffix && "NameSuffix cannot be null!");
672 
673   ValueMapTypeRemapper *TypeMapper = nullptr;
674   ValueMaterializer *Materializer = nullptr;
675 
676 #ifndef NDEBUG
677   // If the cloning starts at the beginning of the function, verify that
678   // the function arguments are mapped.
679   if (!StartingInst)
680     for (const Argument &II : OldFunc->args())
681       assert(VMap.count(&II) && "No mapping from source argument specified!");
682 #endif
683 
684   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
685                             NameSuffix, CodeInfo);
686   const BasicBlock *StartingBB;
687   if (StartingInst)
688     StartingBB = StartingInst->getParent();
689   else {
690     StartingBB = &OldFunc->getEntryBlock();
691     StartingInst = &StartingBB->front();
692   }
693 
694   // Collect debug intrinsics for remapping later.
695   SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics;
696   for (const auto &BB : *OldFunc) {
697     for (const auto &I : BB) {
698       if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I))
699         DbgIntrinsics.push_back(DVI);
700     }
701   }
702 
703   // Clone the entry block, and anything recursively reachable from it.
704   std::vector<const BasicBlock *> CloneWorklist;
705   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
706   while (!CloneWorklist.empty()) {
707     const BasicBlock *BB = CloneWorklist.back();
708     CloneWorklist.pop_back();
709     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
710   }
711 
712   // Loop over all of the basic blocks in the old function.  If the block was
713   // reachable, we have cloned it and the old block is now in the value map:
714   // insert it into the new function in the right order.  If not, ignore it.
715   //
716   // Defer PHI resolution until rest of function is resolved.
717   SmallVector<const PHINode *, 16> PHIToResolve;
718   for (const BasicBlock &BI : *OldFunc) {
719     Value *V = VMap.lookup(&BI);
720     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
721     if (!NewBB)
722       continue; // Dead block.
723 
724     // Move the new block to preserve the order in the original function.
725     NewBB->moveBefore(NewFunc->end());
726 
727     // Handle PHI nodes specially, as we have to remove references to dead
728     // blocks.
729     for (const PHINode &PN : BI.phis()) {
730       // PHI nodes may have been remapped to non-PHI nodes by the caller or
731       // during the cloning process.
732       if (isa<PHINode>(VMap[&PN]))
733         PHIToResolve.push_back(&PN);
734       else
735         break;
736     }
737 
738     // Finally, remap the terminator instructions, as those can't be remapped
739     // until all BBs are mapped.
740     RemapInstruction(NewBB->getTerminator(), VMap,
741                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
742                      TypeMapper, Materializer);
743   }
744 
745   // Defer PHI resolution until rest of function is resolved, PHI resolution
746   // requires the CFG to be up-to-date.
747   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
748     const PHINode *OPN = PHIToResolve[phino];
749     unsigned NumPreds = OPN->getNumIncomingValues();
750     const BasicBlock *OldBB = OPN->getParent();
751     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
752 
753     // Map operands for blocks that are live and remove operands for blocks
754     // that are dead.
755     for (; phino != PHIToResolve.size() &&
756            PHIToResolve[phino]->getParent() == OldBB;
757          ++phino) {
758       OPN = PHIToResolve[phino];
759       PHINode *PN = cast<PHINode>(VMap[OPN]);
760       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
761         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
762         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
763           Value *InVal =
764               MapValue(PN->getIncomingValue(pred), VMap,
765                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
766           assert(InVal && "Unknown input value?");
767           PN->setIncomingValue(pred, InVal);
768           PN->setIncomingBlock(pred, MappedBlock);
769         } else {
770           PN->removeIncomingValue(pred, false);
771           --pred; // Revisit the next entry.
772           --e;
773         }
774       }
775     }
776 
777     // The loop above has removed PHI entries for those blocks that are dead
778     // and has updated others.  However, if a block is live (i.e. copied over)
779     // but its terminator has been changed to not go to this block, then our
780     // phi nodes will have invalid entries.  Update the PHI nodes in this
781     // case.
782     PHINode *PN = cast<PHINode>(NewBB->begin());
783     NumPreds = pred_size(NewBB);
784     if (NumPreds != PN->getNumIncomingValues()) {
785       assert(NumPreds < PN->getNumIncomingValues());
786       // Count how many times each predecessor comes to this block.
787       std::map<BasicBlock *, unsigned> PredCount;
788       for (BasicBlock *Pred : predecessors(NewBB))
789         --PredCount[Pred];
790 
791       // Figure out how many entries to remove from each PHI.
792       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
793         ++PredCount[PN->getIncomingBlock(i)];
794 
795       // At this point, the excess predecessor entries are positive in the
796       // map.  Loop over all of the PHIs and remove excess predecessor
797       // entries.
798       BasicBlock::iterator I = NewBB->begin();
799       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
800         for (const auto &PCI : PredCount) {
801           BasicBlock *Pred = PCI.first;
802           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
803             PN->removeIncomingValue(Pred, false);
804         }
805       }
806     }
807 
808     // If the loops above have made these phi nodes have 0 or 1 operand,
809     // replace them with poison or the input value.  We must do this for
810     // correctness, because 0-operand phis are not valid.
811     PN = cast<PHINode>(NewBB->begin());
812     if (PN->getNumIncomingValues() == 0) {
813       BasicBlock::iterator I = NewBB->begin();
814       BasicBlock::const_iterator OldI = OldBB->begin();
815       while ((PN = dyn_cast<PHINode>(I++))) {
816         Value *NV = PoisonValue::get(PN->getType());
817         PN->replaceAllUsesWith(NV);
818         assert(VMap[&*OldI] == PN && "VMap mismatch");
819         VMap[&*OldI] = NV;
820         PN->eraseFromParent();
821         ++OldI;
822       }
823     }
824   }
825 
826   // Make a second pass over the PHINodes now that all of them have been
827   // remapped into the new function, simplifying the PHINode and performing any
828   // recursive simplifications exposed. This will transparently update the
829   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
830   // two PHINodes, the iteration over the old PHIs remains valid, and the
831   // mapping will just map us to the new node (which may not even be a PHI
832   // node).
833   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
834   SmallSetVector<const Value *, 8> Worklist;
835   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
836     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
837       Worklist.insert(PHIToResolve[Idx]);
838 
839   // Note that we must test the size on each iteration, the worklist can grow.
840   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
841     const Value *OrigV = Worklist[Idx];
842     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
843     if (!I)
844       continue;
845 
846     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
847     // the CGSCC.
848     CallBase *CB = dyn_cast<CallBase>(I);
849     if (CB && CB->getCalledFunction() &&
850         !CB->getCalledFunction()->isIntrinsic())
851       continue;
852 
853     // See if this instruction simplifies.
854     Value *SimpleV = simplifyInstruction(I, DL);
855     if (!SimpleV)
856       continue;
857 
858     // Stash away all the uses of the old instruction so we can check them for
859     // recursive simplifications after a RAUW. This is cheaper than checking all
860     // uses of To on the recursive step in most cases.
861     for (const User *U : OrigV->users())
862       Worklist.insert(cast<Instruction>(U));
863 
864     // Replace the instruction with its simplified value.
865     I->replaceAllUsesWith(SimpleV);
866 
867     // If the original instruction had no side effects, remove it.
868     if (isInstructionTriviallyDead(I))
869       I->eraseFromParent();
870     else
871       VMap[OrigV] = I;
872   }
873 
874   // Remap debug intrinsic operands now that all values have been mapped.
875   // Doing this now (late) preserves use-before-defs in debug intrinsics. If
876   // we didn't do this, ValueAsMetadata(use-before-def) operands would be
877   // replaced by empty metadata. This would signal later cleanup passes to
878   // remove the debug intrinsics, potentially causing incorrect locations.
879   for (const auto *DVI : DbgIntrinsics) {
880     if (DbgVariableIntrinsic *NewDVI =
881             cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI)))
882       RemapInstruction(NewDVI, VMap,
883                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
884                        TypeMapper, Materializer);
885   }
886 
887   // Do the same for DPValues, touching all the instructions in the cloned
888   // range of blocks.
889   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
890   for (BasicBlock &BB : make_range(Begin, NewFunc->end())) {
891     for (Instruction &I : BB) {
892       RemapDPValueRange(I.getModule(), I.getDbgValueRange(), VMap,
893                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
894                         TypeMapper, Materializer);
895     }
896   }
897 
898   // Simplify conditional branches and switches with a constant operand. We try
899   // to prune these out when cloning, but if the simplification required
900   // looking through PHI nodes, those are only available after forming the full
901   // basic block. That may leave some here, and we still want to prune the dead
902   // code as early as possible.
903   for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
904     ConstantFoldTerminator(&BB);
905 
906   // Some blocks may have become unreachable as a result. Find and delete them.
907   {
908     SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
909     SmallVector<BasicBlock *, 16> Worklist;
910     Worklist.push_back(&*Begin);
911     while (!Worklist.empty()) {
912       BasicBlock *BB = Worklist.pop_back_val();
913       if (ReachableBlocks.insert(BB).second)
914         append_range(Worklist, successors(BB));
915     }
916 
917     SmallVector<BasicBlock *, 16> UnreachableBlocks;
918     for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
919       if (!ReachableBlocks.contains(&BB))
920         UnreachableBlocks.push_back(&BB);
921     DeleteDeadBlocks(UnreachableBlocks);
922   }
923 
924   // Now that the inlined function body has been fully constructed, go through
925   // and zap unconditional fall-through branches. This happens all the time when
926   // specializing code: code specialization turns conditional branches into
927   // uncond branches, and this code folds them.
928   Function::iterator I = Begin;
929   while (I != NewFunc->end()) {
930     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
931     if (!BI || BI->isConditional()) {
932       ++I;
933       continue;
934     }
935 
936     BasicBlock *Dest = BI->getSuccessor(0);
937     if (!Dest->getSinglePredecessor()) {
938       ++I;
939       continue;
940     }
941 
942     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
943     // above should have zapped all of them..
944     assert(!isa<PHINode>(Dest->begin()));
945 
946     // We know all single-entry PHI nodes in the inlined function have been
947     // removed, so we just need to splice the blocks.
948     BI->eraseFromParent();
949 
950     // Make all PHI nodes that referred to Dest now refer to I as their source.
951     Dest->replaceAllUsesWith(&*I);
952 
953     // Move all the instructions in the succ to the pred.
954     I->splice(I->end(), Dest);
955 
956     // Remove the dest block.
957     Dest->eraseFromParent();
958 
959     // Do not increment I, iteratively merge all things this block branches to.
960   }
961 
962   // Make a final pass over the basic blocks from the old function to gather
963   // any return instructions which survived folding. We have to do this here
964   // because we can iteratively remove and merge returns above.
965   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
966                           E = NewFunc->end();
967        I != E; ++I)
968     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
969       Returns.push_back(RI);
970 }
971 
972 /// This works exactly like CloneFunctionInto,
973 /// except that it does some simple constant prop and DCE on the fly.  The
974 /// effect of this is to copy significantly less code in cases where (for
975 /// example) a function call with constant arguments is inlined, and those
976 /// constant arguments cause a significant amount of code in the callee to be
977 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
978 /// used for things like CloneFunction or CloneModule.
979 void llvm::CloneAndPruneFunctionInto(
980     Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
981     bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
982     const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
983   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
984                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
985 }
986 
987 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
988 void llvm::remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks,
989                                      ValueToValueMapTy &VMap) {
990   // Rewrite the code to refer to itself.
991   for (auto *BB : Blocks) {
992     for (auto &Inst : *BB) {
993       RemapDPValueRange(Inst.getModule(), Inst.getDbgValueRange(), VMap,
994                         RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
995       RemapInstruction(&Inst, VMap,
996                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
997     }
998   }
999 }
1000 
1001 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
1002 /// Blocks.
1003 ///
1004 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
1005 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
1006 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
1007                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
1008                                    const Twine &NameSuffix, LoopInfo *LI,
1009                                    DominatorTree *DT,
1010                                    SmallVectorImpl<BasicBlock *> &Blocks) {
1011   Function *F = OrigLoop->getHeader()->getParent();
1012   Loop *ParentLoop = OrigLoop->getParentLoop();
1013   DenseMap<Loop *, Loop *> LMap;
1014 
1015   Loop *NewLoop = LI->AllocateLoop();
1016   LMap[OrigLoop] = NewLoop;
1017   if (ParentLoop)
1018     ParentLoop->addChildLoop(NewLoop);
1019   else
1020     LI->addTopLevelLoop(NewLoop);
1021 
1022   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
1023   assert(OrigPH && "No preheader");
1024   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
1025   // To rename the loop PHIs.
1026   VMap[OrigPH] = NewPH;
1027   Blocks.push_back(NewPH);
1028 
1029   // Update LoopInfo.
1030   if (ParentLoop)
1031     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
1032 
1033   // Update DominatorTree.
1034   DT->addNewBlock(NewPH, LoopDomBB);
1035 
1036   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
1037     Loop *&NewLoop = LMap[CurLoop];
1038     if (!NewLoop) {
1039       NewLoop = LI->AllocateLoop();
1040 
1041       // Establish the parent/child relationship.
1042       Loop *OrigParent = CurLoop->getParentLoop();
1043       assert(OrigParent && "Could not find the original parent loop");
1044       Loop *NewParentLoop = LMap[OrigParent];
1045       assert(NewParentLoop && "Could not find the new parent loop");
1046 
1047       NewParentLoop->addChildLoop(NewLoop);
1048     }
1049   }
1050 
1051   for (BasicBlock *BB : OrigLoop->getBlocks()) {
1052     Loop *CurLoop = LI->getLoopFor(BB);
1053     Loop *&NewLoop = LMap[CurLoop];
1054     assert(NewLoop && "Expecting new loop to be allocated");
1055 
1056     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
1057     VMap[BB] = NewBB;
1058 
1059     // Update LoopInfo.
1060     NewLoop->addBasicBlockToLoop(NewBB, *LI);
1061 
1062     // Add DominatorTree node. After seeing all blocks, update to correct
1063     // IDom.
1064     DT->addNewBlock(NewBB, NewPH);
1065 
1066     Blocks.push_back(NewBB);
1067   }
1068 
1069   for (BasicBlock *BB : OrigLoop->getBlocks()) {
1070     // Update loop headers.
1071     Loop *CurLoop = LI->getLoopFor(BB);
1072     if (BB == CurLoop->getHeader())
1073       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
1074 
1075     // Update DominatorTree.
1076     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
1077     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
1078                                  cast<BasicBlock>(VMap[IDomBB]));
1079   }
1080 
1081   // Move them physically from the end of the block list.
1082   F->splice(Before->getIterator(), F, NewPH->getIterator());
1083   F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(),
1084             F->end());
1085 
1086   return NewLoop;
1087 }
1088 
1089 /// Duplicate non-Phi instructions from the beginning of block up to
1090 /// StopAt instruction into a split block between BB and its predecessor.
1091 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
1092     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
1093     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
1094 
1095   assert(count(successors(PredBB), BB) == 1 &&
1096          "There must be a single edge between PredBB and BB!");
1097   // We are going to have to map operands from the original BB block to the new
1098   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1099   // account for entry from PredBB.
1100   BasicBlock::iterator BI = BB->begin();
1101   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1102     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1103 
1104   BasicBlock *NewBB = SplitEdge(PredBB, BB);
1105   NewBB->setName(PredBB->getName() + ".split");
1106   Instruction *NewTerm = NewBB->getTerminator();
1107 
1108   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
1109   //        in the update set here.
1110   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
1111                     {DominatorTree::Insert, PredBB, NewBB},
1112                     {DominatorTree::Insert, NewBB, BB}});
1113 
1114   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1115   // mapping and using it to remap operands in the cloned instructions.
1116   // Stop once we see the terminator too. This covers the case where BB's
1117   // terminator gets replaced and StopAt == BB's terminator.
1118   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
1119     Instruction *New = BI->clone();
1120     New->setName(BI->getName());
1121     New->insertBefore(NewTerm);
1122     New->cloneDebugInfoFrom(&*BI);
1123     ValueMapping[&*BI] = New;
1124 
1125     // Remap operands to patch up intra-block references.
1126     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1127       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1128         auto I = ValueMapping.find(Inst);
1129         if (I != ValueMapping.end())
1130           New->setOperand(i, I->second);
1131       }
1132   }
1133 
1134   return NewBB;
1135 }
1136 
1137 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1138                               DenseMap<MDNode *, MDNode *> &ClonedScopes,
1139                               StringRef Ext, LLVMContext &Context) {
1140   MDBuilder MDB(Context);
1141 
1142   for (auto *ScopeList : NoAliasDeclScopes) {
1143     for (const auto &MDOperand : ScopeList->operands()) {
1144       if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
1145         AliasScopeNode SNANode(MD);
1146 
1147         std::string Name;
1148         auto ScopeName = SNANode.getName();
1149         if (!ScopeName.empty())
1150           Name = (Twine(ScopeName) + ":" + Ext).str();
1151         else
1152           Name = std::string(Ext);
1153 
1154         MDNode *NewScope = MDB.createAnonymousAliasScope(
1155             const_cast<MDNode *>(SNANode.getDomain()), Name);
1156         ClonedScopes.insert(std::make_pair(MD, NewScope));
1157       }
1158     }
1159   }
1160 }
1161 
1162 void llvm::adaptNoAliasScopes(Instruction *I,
1163                               const DenseMap<MDNode *, MDNode *> &ClonedScopes,
1164                               LLVMContext &Context) {
1165   auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
1166     bool NeedsReplacement = false;
1167     SmallVector<Metadata *, 8> NewScopeList;
1168     for (const auto &MDOp : ScopeList->operands()) {
1169       if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
1170         if (auto *NewMD = ClonedScopes.lookup(MD)) {
1171           NewScopeList.push_back(NewMD);
1172           NeedsReplacement = true;
1173           continue;
1174         }
1175         NewScopeList.push_back(MD);
1176       }
1177     }
1178     if (NeedsReplacement)
1179       return MDNode::get(Context, NewScopeList);
1180     return nullptr;
1181   };
1182 
1183   if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
1184     if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
1185       Decl->setScopeList(NewScopeList);
1186 
1187   auto replaceWhenNeeded = [&](unsigned MD_ID) {
1188     if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
1189       if (auto *NewScopeList = CloneScopeList(CSNoAlias))
1190         I->setMetadata(MD_ID, NewScopeList);
1191   };
1192   replaceWhenNeeded(LLVMContext::MD_noalias);
1193   replaceWhenNeeded(LLVMContext::MD_alias_scope);
1194 }
1195 
1196 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1197                                       ArrayRef<BasicBlock *> NewBlocks,
1198                                       LLVMContext &Context, StringRef Ext) {
1199   if (NoAliasDeclScopes.empty())
1200     return;
1201 
1202   DenseMap<MDNode *, MDNode *> ClonedScopes;
1203   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1204                     << NoAliasDeclScopes.size() << " node(s)\n");
1205 
1206   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1207   // Identify instructions using metadata that needs adaptation
1208   for (BasicBlock *NewBlock : NewBlocks)
1209     for (Instruction &I : *NewBlock)
1210       adaptNoAliasScopes(&I, ClonedScopes, Context);
1211 }
1212 
1213 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1214                                       Instruction *IStart, Instruction *IEnd,
1215                                       LLVMContext &Context, StringRef Ext) {
1216   if (NoAliasDeclScopes.empty())
1217     return;
1218 
1219   DenseMap<MDNode *, MDNode *> ClonedScopes;
1220   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1221                     << NoAliasDeclScopes.size() << " node(s)\n");
1222 
1223   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1224   // Identify instructions using metadata that needs adaptation
1225   assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1226   auto ItStart = IStart->getIterator();
1227   auto ItEnd = IEnd->getIterator();
1228   ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1229   for (auto &I : llvm::make_range(ItStart, ItEnd))
1230     adaptNoAliasScopes(&I, ClonedScopes, Context);
1231 }
1232 
1233 void llvm::identifyNoAliasScopesToClone(
1234     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1235   for (BasicBlock *BB : BBs)
1236     for (Instruction &I : *BB)
1237       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1238         NoAliasDeclScopes.push_back(Decl->getScopeList());
1239 }
1240 
1241 void llvm::identifyNoAliasScopesToClone(
1242     BasicBlock::iterator Start, BasicBlock::iterator End,
1243     SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1244   for (Instruction &I : make_range(Start, End))
1245     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1246       NoAliasDeclScopes.push_back(Decl->getScopeList());
1247 }
1248