1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CloneFunctionInto interface, which is used as the 10 // low-level function cloner. This is used by the CloneFunction and function 11 // inliner to do the dirty work of copying the body of a function around. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/ValueMapper.h" 36 #include <map> 37 using namespace llvm; 38 39 /// See comments in Cloning.h. 40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, 41 const Twine &NameSuffix, Function *F, 42 ClonedCodeInfo *CodeInfo, 43 DebugInfoFinder *DIFinder) { 44 DenseMap<const MDNode *, MDNode *> Cache; 45 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 46 if (BB->hasName()) 47 NewBB->setName(BB->getName() + NameSuffix); 48 49 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 50 Module *TheModule = F ? F->getParent() : nullptr; 51 52 // Loop over all instructions, and copy them over. 53 for (const Instruction &I : *BB) { 54 if (DIFinder && TheModule) 55 DIFinder->processInstruction(*TheModule, I); 56 57 Instruction *NewInst = I.clone(); 58 if (I.hasName()) 59 NewInst->setName(I.getName() + NameSuffix); 60 NewBB->getInstList().push_back(NewInst); 61 VMap[&I] = NewInst; // Add instruction map to value. 62 63 hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I)); 64 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 65 if (isa<ConstantInt>(AI->getArraySize())) 66 hasStaticAllocas = true; 67 else 68 hasDynamicAllocas = true; 69 } 70 } 71 72 if (CodeInfo) { 73 CodeInfo->ContainsCalls |= hasCalls; 74 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 75 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 76 BB != &BB->getParent()->getEntryBlock(); 77 } 78 return NewBB; 79 } 80 81 // Clone OldFunc into NewFunc, transforming the old arguments into references to 82 // VMap values. 83 // 84 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 85 ValueToValueMapTy &VMap, 86 bool ModuleLevelChanges, 87 SmallVectorImpl<ReturnInst*> &Returns, 88 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 89 ValueMapTypeRemapper *TypeMapper, 90 ValueMaterializer *Materializer) { 91 assert(NameSuffix && "NameSuffix cannot be null!"); 92 93 #ifndef NDEBUG 94 for (const Argument &I : OldFunc->args()) 95 assert(VMap.count(&I) && "No mapping from source argument specified!"); 96 #endif 97 98 // Copy all attributes other than those stored in the AttributeList. We need 99 // to remap the parameter indices of the AttributeList. 100 AttributeList NewAttrs = NewFunc->getAttributes(); 101 NewFunc->copyAttributesFrom(OldFunc); 102 NewFunc->setAttributes(NewAttrs); 103 104 // Fix up the personality function that got copied over. 105 if (OldFunc->hasPersonalityFn()) 106 NewFunc->setPersonalityFn( 107 MapValue(OldFunc->getPersonalityFn(), VMap, 108 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 109 TypeMapper, Materializer)); 110 111 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 112 AttributeList OldAttrs = OldFunc->getAttributes(); 113 114 // Clone any argument attributes that are present in the VMap. 115 for (const Argument &OldArg : OldFunc->args()) { 116 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 117 NewArgAttrs[NewArg->getArgNo()] = 118 OldAttrs.getParamAttributes(OldArg.getArgNo()); 119 } 120 } 121 122 NewFunc->setAttributes( 123 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), 124 OldAttrs.getRetAttributes(), NewArgAttrs)); 125 126 bool MustCloneSP = 127 OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent(); 128 DISubprogram *SP = OldFunc->getSubprogram(); 129 if (SP) { 130 assert(!MustCloneSP || ModuleLevelChanges); 131 // Add mappings for some DebugInfo nodes that we don't want duplicated 132 // even if they're distinct. 133 auto &MD = VMap.MD(); 134 MD[SP->getUnit()].reset(SP->getUnit()); 135 MD[SP->getType()].reset(SP->getType()); 136 MD[SP->getFile()].reset(SP->getFile()); 137 // If we're not cloning into the same module, no need to clone the 138 // subprogram 139 if (!MustCloneSP) 140 MD[SP].reset(SP); 141 } 142 143 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 144 OldFunc->getAllMetadata(MDs); 145 for (auto MD : MDs) { 146 NewFunc->addMetadata( 147 MD.first, 148 *MapMetadata(MD.second, VMap, 149 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 150 TypeMapper, Materializer)); 151 } 152 153 // When we remap instructions, we want to avoid duplicating inlined 154 // DISubprograms, so record all subprograms we find as we duplicate 155 // instructions and then freeze them in the MD map. 156 // We also record information about dbg.value and dbg.declare to avoid 157 // duplicating the types. 158 DebugInfoFinder DIFinder; 159 160 // Loop over all of the basic blocks in the function, cloning them as 161 // appropriate. Note that we save BE this way in order to handle cloning of 162 // recursive functions into themselves. 163 // 164 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 165 BI != BE; ++BI) { 166 const BasicBlock &BB = *BI; 167 168 // Create a new basic block and copy instructions into it! 169 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, 170 ModuleLevelChanges ? &DIFinder : nullptr); 171 172 // Add basic block mapping. 173 VMap[&BB] = CBB; 174 175 // It is only legal to clone a function if a block address within that 176 // function is never referenced outside of the function. Given that, we 177 // want to map block addresses from the old function to block addresses in 178 // the clone. (This is different from the generic ValueMapper 179 // implementation, which generates an invalid blockaddress when 180 // cloning a function.) 181 if (BB.hasAddressTaken()) { 182 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 183 const_cast<BasicBlock*>(&BB)); 184 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 185 } 186 187 // Note return instructions for the caller. 188 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 189 Returns.push_back(RI); 190 } 191 192 for (DISubprogram *ISP : DIFinder.subprograms()) 193 if (ISP != SP) 194 VMap.MD()[ISP].reset(ISP); 195 196 for (DICompileUnit *CU : DIFinder.compile_units()) 197 VMap.MD()[CU].reset(CU); 198 199 for (DIType *Type : DIFinder.types()) 200 VMap.MD()[Type].reset(Type); 201 202 // Loop over all of the instructions in the function, fixing up operand 203 // references as we go. This uses VMap to do all the hard work. 204 for (Function::iterator BB = 205 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 206 BE = NewFunc->end(); 207 BB != BE; ++BB) 208 // Loop over all instructions, fixing each one as we find it... 209 for (Instruction &II : *BB) 210 RemapInstruction(&II, VMap, 211 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 212 TypeMapper, Materializer); 213 214 // Register all DICompileUnits of the old parent module in the new parent module 215 auto* OldModule = OldFunc->getParent(); 216 auto* NewModule = NewFunc->getParent(); 217 if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) { 218 auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu"); 219 // Avoid multiple insertions of the same DICompileUnit to NMD. 220 SmallPtrSet<const void*, 8> Visited; 221 for (auto* Operand : NMD->operands()) 222 Visited.insert(Operand); 223 for (auto* Unit : DIFinder.compile_units()) 224 // VMap.MD()[Unit] == Unit 225 if (Visited.insert(Unit).second) 226 NMD->addOperand(Unit); 227 } 228 } 229 230 /// Return a copy of the specified function and add it to that function's 231 /// module. Also, any references specified in the VMap are changed to refer to 232 /// their mapped value instead of the original one. If any of the arguments to 233 /// the function are in the VMap, the arguments are deleted from the resultant 234 /// function. The VMap is updated to include mappings from all of the 235 /// instructions and basicblocks in the function from their old to new values. 236 /// 237 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 238 ClonedCodeInfo *CodeInfo) { 239 std::vector<Type*> ArgTypes; 240 241 // The user might be deleting arguments to the function by specifying them in 242 // the VMap. If so, we need to not add the arguments to the arg ty vector 243 // 244 for (const Argument &I : F->args()) 245 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 246 ArgTypes.push_back(I.getType()); 247 248 // Create a new function type... 249 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 250 ArgTypes, F->getFunctionType()->isVarArg()); 251 252 // Create the new function... 253 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), 254 F->getName(), F->getParent()); 255 256 // Loop over the arguments, copying the names of the mapped arguments over... 257 Function::arg_iterator DestI = NewF->arg_begin(); 258 for (const Argument & I : F->args()) 259 if (VMap.count(&I) == 0) { // Is this argument preserved? 260 DestI->setName(I.getName()); // Copy the name over... 261 VMap[&I] = &*DestI++; // Add mapping to VMap 262 } 263 264 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 265 CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "", 266 CodeInfo); 267 268 return NewF; 269 } 270 271 272 273 namespace { 274 /// This is a private class used to implement CloneAndPruneFunctionInto. 275 struct PruningFunctionCloner { 276 Function *NewFunc; 277 const Function *OldFunc; 278 ValueToValueMapTy &VMap; 279 bool ModuleLevelChanges; 280 const char *NameSuffix; 281 ClonedCodeInfo *CodeInfo; 282 283 public: 284 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 285 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 286 const char *nameSuffix, ClonedCodeInfo *codeInfo) 287 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 288 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 289 CodeInfo(codeInfo) {} 290 291 /// The specified block is found to be reachable, clone it and 292 /// anything that it can reach. 293 void CloneBlock(const BasicBlock *BB, 294 BasicBlock::const_iterator StartingInst, 295 std::vector<const BasicBlock*> &ToClone); 296 }; 297 } 298 299 /// The specified block is found to be reachable, clone it and 300 /// anything that it can reach. 301 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 302 BasicBlock::const_iterator StartingInst, 303 std::vector<const BasicBlock*> &ToClone){ 304 WeakTrackingVH &BBEntry = VMap[BB]; 305 306 // Have we already cloned this block? 307 if (BBEntry) return; 308 309 // Nope, clone it now. 310 BasicBlock *NewBB; 311 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 312 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 313 314 // It is only legal to clone a function if a block address within that 315 // function is never referenced outside of the function. Given that, we 316 // want to map block addresses from the old function to block addresses in 317 // the clone. (This is different from the generic ValueMapper 318 // implementation, which generates an invalid blockaddress when 319 // cloning a function.) 320 // 321 // Note that we don't need to fix the mapping for unreachable blocks; 322 // the default mapping there is safe. 323 if (BB->hasAddressTaken()) { 324 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 325 const_cast<BasicBlock*>(BB)); 326 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 327 } 328 329 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 330 331 // Loop over all instructions, and copy them over, DCE'ing as we go. This 332 // loop doesn't include the terminator. 333 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 334 II != IE; ++II) { 335 336 Instruction *NewInst = II->clone(); 337 338 // Eagerly remap operands to the newly cloned instruction, except for PHI 339 // nodes for which we defer processing until we update the CFG. 340 if (!isa<PHINode>(NewInst)) { 341 RemapInstruction(NewInst, VMap, 342 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 343 344 // If we can simplify this instruction to some other value, simply add 345 // a mapping to that value rather than inserting a new instruction into 346 // the basic block. 347 if (Value *V = 348 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 349 // On the off-chance that this simplifies to an instruction in the old 350 // function, map it back into the new function. 351 if (NewFunc != OldFunc) 352 if (Value *MappedV = VMap.lookup(V)) 353 V = MappedV; 354 355 if (!NewInst->mayHaveSideEffects()) { 356 VMap[&*II] = V; 357 NewInst->deleteValue(); 358 continue; 359 } 360 } 361 } 362 363 if (II->hasName()) 364 NewInst->setName(II->getName()+NameSuffix); 365 VMap[&*II] = NewInst; // Add instruction map to value. 366 NewBB->getInstList().push_back(NewInst); 367 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 368 369 if (CodeInfo) 370 if (auto CS = ImmutableCallSite(&*II)) 371 if (CS.hasOperandBundles()) 372 CodeInfo->OperandBundleCallSites.push_back(NewInst); 373 374 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 375 if (isa<ConstantInt>(AI->getArraySize())) 376 hasStaticAllocas = true; 377 else 378 hasDynamicAllocas = true; 379 } 380 } 381 382 // Finally, clone over the terminator. 383 const Instruction *OldTI = BB->getTerminator(); 384 bool TerminatorDone = false; 385 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 386 if (BI->isConditional()) { 387 // If the condition was a known constant in the callee... 388 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 389 // Or is a known constant in the caller... 390 if (!Cond) { 391 Value *V = VMap.lookup(BI->getCondition()); 392 Cond = dyn_cast_or_null<ConstantInt>(V); 393 } 394 395 // Constant fold to uncond branch! 396 if (Cond) { 397 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 398 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 399 ToClone.push_back(Dest); 400 TerminatorDone = true; 401 } 402 } 403 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 404 // If switching on a value known constant in the caller. 405 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 406 if (!Cond) { // Or known constant after constant prop in the callee... 407 Value *V = VMap.lookup(SI->getCondition()); 408 Cond = dyn_cast_or_null<ConstantInt>(V); 409 } 410 if (Cond) { // Constant fold to uncond branch! 411 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 412 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 413 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 414 ToClone.push_back(Dest); 415 TerminatorDone = true; 416 } 417 } 418 419 if (!TerminatorDone) { 420 Instruction *NewInst = OldTI->clone(); 421 if (OldTI->hasName()) 422 NewInst->setName(OldTI->getName()+NameSuffix); 423 NewBB->getInstList().push_back(NewInst); 424 VMap[OldTI] = NewInst; // Add instruction map to value. 425 426 if (CodeInfo) 427 if (auto CS = ImmutableCallSite(OldTI)) 428 if (CS.hasOperandBundles()) 429 CodeInfo->OperandBundleCallSites.push_back(NewInst); 430 431 // Recursively clone any reachable successor blocks. 432 const Instruction *TI = BB->getTerminator(); 433 for (const BasicBlock *Succ : successors(TI)) 434 ToClone.push_back(Succ); 435 } 436 437 if (CodeInfo) { 438 CodeInfo->ContainsCalls |= hasCalls; 439 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 440 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 441 BB != &BB->getParent()->front(); 442 } 443 } 444 445 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 446 /// entire function. Instead it starts at an instruction provided by the caller 447 /// and copies (and prunes) only the code reachable from that instruction. 448 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 449 const Instruction *StartingInst, 450 ValueToValueMapTy &VMap, 451 bool ModuleLevelChanges, 452 SmallVectorImpl<ReturnInst *> &Returns, 453 const char *NameSuffix, 454 ClonedCodeInfo *CodeInfo) { 455 assert(NameSuffix && "NameSuffix cannot be null!"); 456 457 ValueMapTypeRemapper *TypeMapper = nullptr; 458 ValueMaterializer *Materializer = nullptr; 459 460 #ifndef NDEBUG 461 // If the cloning starts at the beginning of the function, verify that 462 // the function arguments are mapped. 463 if (!StartingInst) 464 for (const Argument &II : OldFunc->args()) 465 assert(VMap.count(&II) && "No mapping from source argument specified!"); 466 #endif 467 468 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 469 NameSuffix, CodeInfo); 470 const BasicBlock *StartingBB; 471 if (StartingInst) 472 StartingBB = StartingInst->getParent(); 473 else { 474 StartingBB = &OldFunc->getEntryBlock(); 475 StartingInst = &StartingBB->front(); 476 } 477 478 // Clone the entry block, and anything recursively reachable from it. 479 std::vector<const BasicBlock*> CloneWorklist; 480 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 481 while (!CloneWorklist.empty()) { 482 const BasicBlock *BB = CloneWorklist.back(); 483 CloneWorklist.pop_back(); 484 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 485 } 486 487 // Loop over all of the basic blocks in the old function. If the block was 488 // reachable, we have cloned it and the old block is now in the value map: 489 // insert it into the new function in the right order. If not, ignore it. 490 // 491 // Defer PHI resolution until rest of function is resolved. 492 SmallVector<const PHINode*, 16> PHIToResolve; 493 for (const BasicBlock &BI : *OldFunc) { 494 Value *V = VMap.lookup(&BI); 495 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 496 if (!NewBB) continue; // Dead block. 497 498 // Add the new block to the new function. 499 NewFunc->getBasicBlockList().push_back(NewBB); 500 501 // Handle PHI nodes specially, as we have to remove references to dead 502 // blocks. 503 for (const PHINode &PN : BI.phis()) { 504 // PHI nodes may have been remapped to non-PHI nodes by the caller or 505 // during the cloning process. 506 if (isa<PHINode>(VMap[&PN])) 507 PHIToResolve.push_back(&PN); 508 else 509 break; 510 } 511 512 // Finally, remap the terminator instructions, as those can't be remapped 513 // until all BBs are mapped. 514 RemapInstruction(NewBB->getTerminator(), VMap, 515 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 516 TypeMapper, Materializer); 517 } 518 519 // Defer PHI resolution until rest of function is resolved, PHI resolution 520 // requires the CFG to be up-to-date. 521 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 522 const PHINode *OPN = PHIToResolve[phino]; 523 unsigned NumPreds = OPN->getNumIncomingValues(); 524 const BasicBlock *OldBB = OPN->getParent(); 525 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 526 527 // Map operands for blocks that are live and remove operands for blocks 528 // that are dead. 529 for (; phino != PHIToResolve.size() && 530 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 531 OPN = PHIToResolve[phino]; 532 PHINode *PN = cast<PHINode>(VMap[OPN]); 533 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 534 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 535 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 536 Value *InVal = MapValue(PN->getIncomingValue(pred), 537 VMap, 538 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 539 assert(InVal && "Unknown input value?"); 540 PN->setIncomingValue(pred, InVal); 541 PN->setIncomingBlock(pred, MappedBlock); 542 } else { 543 PN->removeIncomingValue(pred, false); 544 --pred; // Revisit the next entry. 545 --e; 546 } 547 } 548 } 549 550 // The loop above has removed PHI entries for those blocks that are dead 551 // and has updated others. However, if a block is live (i.e. copied over) 552 // but its terminator has been changed to not go to this block, then our 553 // phi nodes will have invalid entries. Update the PHI nodes in this 554 // case. 555 PHINode *PN = cast<PHINode>(NewBB->begin()); 556 NumPreds = pred_size(NewBB); 557 if (NumPreds != PN->getNumIncomingValues()) { 558 assert(NumPreds < PN->getNumIncomingValues()); 559 // Count how many times each predecessor comes to this block. 560 std::map<BasicBlock*, unsigned> PredCount; 561 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 562 PI != E; ++PI) 563 --PredCount[*PI]; 564 565 // Figure out how many entries to remove from each PHI. 566 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 567 ++PredCount[PN->getIncomingBlock(i)]; 568 569 // At this point, the excess predecessor entries are positive in the 570 // map. Loop over all of the PHIs and remove excess predecessor 571 // entries. 572 BasicBlock::iterator I = NewBB->begin(); 573 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 574 for (const auto &PCI : PredCount) { 575 BasicBlock *Pred = PCI.first; 576 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 577 PN->removeIncomingValue(Pred, false); 578 } 579 } 580 } 581 582 // If the loops above have made these phi nodes have 0 or 1 operand, 583 // replace them with undef or the input value. We must do this for 584 // correctness, because 0-operand phis are not valid. 585 PN = cast<PHINode>(NewBB->begin()); 586 if (PN->getNumIncomingValues() == 0) { 587 BasicBlock::iterator I = NewBB->begin(); 588 BasicBlock::const_iterator OldI = OldBB->begin(); 589 while ((PN = dyn_cast<PHINode>(I++))) { 590 Value *NV = UndefValue::get(PN->getType()); 591 PN->replaceAllUsesWith(NV); 592 assert(VMap[&*OldI] == PN && "VMap mismatch"); 593 VMap[&*OldI] = NV; 594 PN->eraseFromParent(); 595 ++OldI; 596 } 597 } 598 } 599 600 // Make a second pass over the PHINodes now that all of them have been 601 // remapped into the new function, simplifying the PHINode and performing any 602 // recursive simplifications exposed. This will transparently update the 603 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce 604 // two PHINodes, the iteration over the old PHIs remains valid, and the 605 // mapping will just map us to the new node (which may not even be a PHI 606 // node). 607 const DataLayout &DL = NewFunc->getParent()->getDataLayout(); 608 SmallSetVector<const Value *, 8> Worklist; 609 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 610 if (isa<PHINode>(VMap[PHIToResolve[Idx]])) 611 Worklist.insert(PHIToResolve[Idx]); 612 613 // Note that we must test the size on each iteration, the worklist can grow. 614 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 615 const Value *OrigV = Worklist[Idx]; 616 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); 617 if (!I) 618 continue; 619 620 // Skip over non-intrinsic callsites, we don't want to remove any nodes from 621 // the CGSCC. 622 CallSite CS = CallSite(I); 623 if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic()) 624 continue; 625 626 // See if this instruction simplifies. 627 Value *SimpleV = SimplifyInstruction(I, DL); 628 if (!SimpleV) 629 continue; 630 631 // Stash away all the uses of the old instruction so we can check them for 632 // recursive simplifications after a RAUW. This is cheaper than checking all 633 // uses of To on the recursive step in most cases. 634 for (const User *U : OrigV->users()) 635 Worklist.insert(cast<Instruction>(U)); 636 637 // Replace the instruction with its simplified value. 638 I->replaceAllUsesWith(SimpleV); 639 640 // If the original instruction had no side effects, remove it. 641 if (isInstructionTriviallyDead(I)) 642 I->eraseFromParent(); 643 else 644 VMap[OrigV] = I; 645 } 646 647 // Now that the inlined function body has been fully constructed, go through 648 // and zap unconditional fall-through branches. This happens all the time when 649 // specializing code: code specialization turns conditional branches into 650 // uncond branches, and this code folds them. 651 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 652 Function::iterator I = Begin; 653 while (I != NewFunc->end()) { 654 // We need to simplify conditional branches and switches with a constant 655 // operand. We try to prune these out when cloning, but if the 656 // simplification required looking through PHI nodes, those are only 657 // available after forming the full basic block. That may leave some here, 658 // and we still want to prune the dead code as early as possible. 659 // 660 // Do the folding before we check if the block is dead since we want code 661 // like 662 // bb: 663 // br i1 undef, label %bb, label %bb 664 // to be simplified to 665 // bb: 666 // br label %bb 667 // before we call I->getSinglePredecessor(). 668 ConstantFoldTerminator(&*I); 669 670 // Check if this block has become dead during inlining or other 671 // simplifications. Note that the first block will appear dead, as it has 672 // not yet been wired up properly. 673 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 674 I->getSinglePredecessor() == &*I)) { 675 BasicBlock *DeadBB = &*I++; 676 DeleteDeadBlock(DeadBB); 677 continue; 678 } 679 680 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 681 if (!BI || BI->isConditional()) { ++I; continue; } 682 683 BasicBlock *Dest = BI->getSuccessor(0); 684 if (!Dest->getSinglePredecessor()) { 685 ++I; continue; 686 } 687 688 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 689 // above should have zapped all of them.. 690 assert(!isa<PHINode>(Dest->begin())); 691 692 // We know all single-entry PHI nodes in the inlined function have been 693 // removed, so we just need to splice the blocks. 694 BI->eraseFromParent(); 695 696 // Make all PHI nodes that referred to Dest now refer to I as their source. 697 Dest->replaceAllUsesWith(&*I); 698 699 // Move all the instructions in the succ to the pred. 700 I->getInstList().splice(I->end(), Dest->getInstList()); 701 702 // Remove the dest block. 703 Dest->eraseFromParent(); 704 705 // Do not increment I, iteratively merge all things this block branches to. 706 } 707 708 // Make a final pass over the basic blocks from the old function to gather 709 // any return instructions which survived folding. We have to do this here 710 // because we can iteratively remove and merge returns above. 711 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 712 E = NewFunc->end(); 713 I != E; ++I) 714 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 715 Returns.push_back(RI); 716 } 717 718 719 /// This works exactly like CloneFunctionInto, 720 /// except that it does some simple constant prop and DCE on the fly. The 721 /// effect of this is to copy significantly less code in cases where (for 722 /// example) a function call with constant arguments is inlined, and those 723 /// constant arguments cause a significant amount of code in the callee to be 724 /// dead. Since this doesn't produce an exact copy of the input, it can't be 725 /// used for things like CloneFunction or CloneModule. 726 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 727 ValueToValueMapTy &VMap, 728 bool ModuleLevelChanges, 729 SmallVectorImpl<ReturnInst*> &Returns, 730 const char *NameSuffix, 731 ClonedCodeInfo *CodeInfo, 732 Instruction *TheCall) { 733 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 734 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 735 } 736 737 /// Remaps instructions in \p Blocks using the mapping in \p VMap. 738 void llvm::remapInstructionsInBlocks( 739 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 740 // Rewrite the code to refer to itself. 741 for (auto *BB : Blocks) 742 for (auto &Inst : *BB) 743 RemapInstruction(&Inst, VMap, 744 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 745 } 746 747 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 748 /// Blocks. 749 /// 750 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 751 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 752 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 753 Loop *OrigLoop, ValueToValueMapTy &VMap, 754 const Twine &NameSuffix, LoopInfo *LI, 755 DominatorTree *DT, 756 SmallVectorImpl<BasicBlock *> &Blocks) { 757 Function *F = OrigLoop->getHeader()->getParent(); 758 Loop *ParentLoop = OrigLoop->getParentLoop(); 759 DenseMap<Loop *, Loop *> LMap; 760 761 Loop *NewLoop = LI->AllocateLoop(); 762 LMap[OrigLoop] = NewLoop; 763 if (ParentLoop) 764 ParentLoop->addChildLoop(NewLoop); 765 else 766 LI->addTopLevelLoop(NewLoop); 767 768 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 769 assert(OrigPH && "No preheader"); 770 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 771 // To rename the loop PHIs. 772 VMap[OrigPH] = NewPH; 773 Blocks.push_back(NewPH); 774 775 // Update LoopInfo. 776 if (ParentLoop) 777 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 778 779 // Update DominatorTree. 780 DT->addNewBlock(NewPH, LoopDomBB); 781 782 for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) { 783 Loop *&NewLoop = LMap[CurLoop]; 784 if (!NewLoop) { 785 NewLoop = LI->AllocateLoop(); 786 787 // Establish the parent/child relationship. 788 Loop *OrigParent = CurLoop->getParentLoop(); 789 assert(OrigParent && "Could not find the original parent loop"); 790 Loop *NewParentLoop = LMap[OrigParent]; 791 assert(NewParentLoop && "Could not find the new parent loop"); 792 793 NewParentLoop->addChildLoop(NewLoop); 794 } 795 } 796 797 for (BasicBlock *BB : OrigLoop->getBlocks()) { 798 Loop *CurLoop = LI->getLoopFor(BB); 799 Loop *&NewLoop = LMap[CurLoop]; 800 assert(NewLoop && "Expecting new loop to be allocated"); 801 802 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 803 VMap[BB] = NewBB; 804 805 // Update LoopInfo. 806 NewLoop->addBasicBlockToLoop(NewBB, *LI); 807 if (BB == CurLoop->getHeader()) 808 NewLoop->moveToHeader(NewBB); 809 810 // Add DominatorTree node. After seeing all blocks, update to correct 811 // IDom. 812 DT->addNewBlock(NewBB, NewPH); 813 814 Blocks.push_back(NewBB); 815 } 816 817 for (BasicBlock *BB : OrigLoop->getBlocks()) { 818 // Update DominatorTree. 819 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 820 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 821 cast<BasicBlock>(VMap[IDomBB])); 822 } 823 824 // Move them physically from the end of the block list. 825 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 826 NewPH); 827 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 828 NewLoop->getHeader()->getIterator(), F->end()); 829 830 return NewLoop; 831 } 832 833 /// Duplicate non-Phi instructions from the beginning of block up to 834 /// StopAt instruction into a split block between BB and its predecessor. 835 BasicBlock *llvm::DuplicateInstructionsInSplitBetween( 836 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, 837 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { 838 839 assert(count(successors(PredBB), BB) == 1 && 840 "There must be a single edge between PredBB and BB!"); 841 // We are going to have to map operands from the original BB block to the new 842 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 843 // account for entry from PredBB. 844 BasicBlock::iterator BI = BB->begin(); 845 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 846 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 847 848 BasicBlock *NewBB = SplitEdge(PredBB, BB); 849 NewBB->setName(PredBB->getName() + ".split"); 850 Instruction *NewTerm = NewBB->getTerminator(); 851 852 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge 853 // in the update set here. 854 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, 855 {DominatorTree::Insert, PredBB, NewBB}, 856 {DominatorTree::Insert, NewBB, BB}}); 857 858 // Clone the non-phi instructions of BB into NewBB, keeping track of the 859 // mapping and using it to remap operands in the cloned instructions. 860 // Stop once we see the terminator too. This covers the case where BB's 861 // terminator gets replaced and StopAt == BB's terminator. 862 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { 863 Instruction *New = BI->clone(); 864 New->setName(BI->getName()); 865 New->insertBefore(NewTerm); 866 ValueMapping[&*BI] = New; 867 868 // Remap operands to patch up intra-block references. 869 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 870 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 871 auto I = ValueMapping.find(Inst); 872 if (I != ValueMapping.end()) 873 New->setOperand(i, I->second); 874 } 875 } 876 877 return NewBB; 878 } 879