xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/CallPromotionUtils.cpp (revision 65f8467e3351c38a9d57b538b85cf6c5fab5818e)
1 //===- CallPromotionUtils.cpp - Utilities for call promotion ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements utilities useful for promoting indirect call sites to
10 // direct call sites.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
15 #include "llvm/Analysis/Loads.h"
16 #include "llvm/Analysis/TypeMetadataUtils.h"
17 #include "llvm/IR/IRBuilder.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
20 
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "call-promotion-utils"
24 
25 /// Fix-up phi nodes in an invoke instruction's normal destination.
26 ///
27 /// After versioning an invoke instruction, values coming from the original
28 /// block will now be coming from the "merge" block. For example, in the code
29 /// below:
30 ///
31 ///   then_bb:
32 ///     %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
33 ///
34 ///   else_bb:
35 ///     %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
36 ///
37 ///   merge_bb:
38 ///     %t2 = phi i32 [ %t0, %then_bb ], [ %t1, %else_bb ]
39 ///     br %normal_dst
40 ///
41 ///   normal_dst:
42 ///     %t3 = phi i32 [ %x, %orig_bb ], ...
43 ///
44 /// "orig_bb" is no longer a predecessor of "normal_dst", so the phi nodes in
45 /// "normal_dst" must be fixed to refer to "merge_bb":
46 ///
47 ///    normal_dst:
48 ///      %t3 = phi i32 [ %x, %merge_bb ], ...
49 ///
50 static void fixupPHINodeForNormalDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
51                                       BasicBlock *MergeBlock) {
52   for (PHINode &Phi : Invoke->getNormalDest()->phis()) {
53     int Idx = Phi.getBasicBlockIndex(OrigBlock);
54     if (Idx == -1)
55       continue;
56     Phi.setIncomingBlock(Idx, MergeBlock);
57   }
58 }
59 
60 /// Fix-up phi nodes in an invoke instruction's unwind destination.
61 ///
62 /// After versioning an invoke instruction, values coming from the original
63 /// block will now be coming from either the "then" block or the "else" block.
64 /// For example, in the code below:
65 ///
66 ///   then_bb:
67 ///     %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
68 ///
69 ///   else_bb:
70 ///     %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
71 ///
72 ///   unwind_dst:
73 ///     %t3 = phi i32 [ %x, %orig_bb ], ...
74 ///
75 /// "orig_bb" is no longer a predecessor of "unwind_dst", so the phi nodes in
76 /// "unwind_dst" must be fixed to refer to "then_bb" and "else_bb":
77 ///
78 ///   unwind_dst:
79 ///     %t3 = phi i32 [ %x, %then_bb ], [ %x, %else_bb ], ...
80 ///
81 static void fixupPHINodeForUnwindDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
82                                       BasicBlock *ThenBlock,
83                                       BasicBlock *ElseBlock) {
84   for (PHINode &Phi : Invoke->getUnwindDest()->phis()) {
85     int Idx = Phi.getBasicBlockIndex(OrigBlock);
86     if (Idx == -1)
87       continue;
88     auto *V = Phi.getIncomingValue(Idx);
89     Phi.setIncomingBlock(Idx, ThenBlock);
90     Phi.addIncoming(V, ElseBlock);
91   }
92 }
93 
94 /// Create a phi node for the returned value of a call or invoke instruction.
95 ///
96 /// After versioning a call or invoke instruction that returns a value, we have
97 /// to merge the value of the original and new instructions. We do this by
98 /// creating a phi node and replacing uses of the original instruction with this
99 /// phi node.
100 ///
101 /// For example, if \p OrigInst is defined in "else_bb" and \p NewInst is
102 /// defined in "then_bb", we create the following phi node:
103 ///
104 ///   ; Uses of the original instruction are replaced by uses of the phi node.
105 ///   %t0 = phi i32 [ %orig_inst, %else_bb ], [ %new_inst, %then_bb ],
106 ///
107 static void createRetPHINode(Instruction *OrigInst, Instruction *NewInst,
108                              BasicBlock *MergeBlock, IRBuilder<> &Builder) {
109 
110   if (OrigInst->getType()->isVoidTy() || OrigInst->use_empty())
111     return;
112 
113   Builder.SetInsertPoint(&MergeBlock->front());
114   PHINode *Phi = Builder.CreatePHI(OrigInst->getType(), 0);
115   SmallVector<User *, 16> UsersToUpdate(OrigInst->users());
116   for (User *U : UsersToUpdate)
117     U->replaceUsesOfWith(OrigInst, Phi);
118   Phi->addIncoming(OrigInst, OrigInst->getParent());
119   Phi->addIncoming(NewInst, NewInst->getParent());
120 }
121 
122 /// Cast a call or invoke instruction to the given type.
123 ///
124 /// When promoting a call site, the return type of the call site might not match
125 /// that of the callee. If this is the case, we have to cast the returned value
126 /// to the correct type. The location of the cast depends on if we have a call
127 /// or invoke instruction.
128 ///
129 /// For example, if the call instruction below requires a bitcast after
130 /// promotion:
131 ///
132 ///   orig_bb:
133 ///     %t0 = call i32 @func()
134 ///     ...
135 ///
136 /// The bitcast is placed after the call instruction:
137 ///
138 ///   orig_bb:
139 ///     ; Uses of the original return value are replaced by uses of the bitcast.
140 ///     %t0 = call i32 @func()
141 ///     %t1 = bitcast i32 %t0 to ...
142 ///     ...
143 ///
144 /// A similar transformation is performed for invoke instructions. However,
145 /// since invokes are terminating, a new block is created for the bitcast. For
146 /// example, if the invoke instruction below requires a bitcast after promotion:
147 ///
148 ///   orig_bb:
149 ///     %t0 = invoke i32 @func() to label %normal_dst unwind label %unwind_dst
150 ///
151 /// The edge between the original block and the invoke's normal destination is
152 /// split, and the bitcast is placed there:
153 ///
154 ///   orig_bb:
155 ///     %t0 = invoke i32 @func() to label %split_bb unwind label %unwind_dst
156 ///
157 ///   split_bb:
158 ///     ; Uses of the original return value are replaced by uses of the bitcast.
159 ///     %t1 = bitcast i32 %t0 to ...
160 ///     br label %normal_dst
161 ///
162 static void createRetBitCast(CallBase &CB, Type *RetTy, CastInst **RetBitCast) {
163 
164   // Save the users of the calling instruction. These uses will be changed to
165   // use the bitcast after we create it.
166   SmallVector<User *, 16> UsersToUpdate(CB.users());
167 
168   // Determine an appropriate location to create the bitcast for the return
169   // value. The location depends on if we have a call or invoke instruction.
170   Instruction *InsertBefore = nullptr;
171   if (auto *Invoke = dyn_cast<InvokeInst>(&CB))
172     InsertBefore =
173         &SplitEdge(Invoke->getParent(), Invoke->getNormalDest())->front();
174   else
175     InsertBefore = &*std::next(CB.getIterator());
176 
177   // Bitcast the return value to the correct type.
178   auto *Cast = CastInst::CreateBitOrPointerCast(&CB, RetTy, "", InsertBefore);
179   if (RetBitCast)
180     *RetBitCast = Cast;
181 
182   // Replace all the original uses of the calling instruction with the bitcast.
183   for (User *U : UsersToUpdate)
184     U->replaceUsesOfWith(&CB, Cast);
185 }
186 
187 /// Predicate and clone the given call site.
188 ///
189 /// This function creates an if-then-else structure at the location of the call
190 /// site. The "if" condition compares the call site's called value to the given
191 /// callee. The original call site is moved into the "else" block, and a clone
192 /// of the call site is placed in the "then" block. The cloned instruction is
193 /// returned.
194 ///
195 /// For example, the call instruction below:
196 ///
197 ///   orig_bb:
198 ///     %t0 = call i32 %ptr()
199 ///     ...
200 ///
201 /// Is replace by the following:
202 ///
203 ///   orig_bb:
204 ///     %cond = icmp eq i32 ()* %ptr, @func
205 ///     br i1 %cond, %then_bb, %else_bb
206 ///
207 ///   then_bb:
208 ///     ; The clone of the original call instruction is placed in the "then"
209 ///     ; block. It is not yet promoted.
210 ///     %t1 = call i32 %ptr()
211 ///     br merge_bb
212 ///
213 ///   else_bb:
214 ///     ; The original call instruction is moved to the "else" block.
215 ///     %t0 = call i32 %ptr()
216 ///     br merge_bb
217 ///
218 ///   merge_bb:
219 ///     ; Uses of the original call instruction are replaced by uses of the phi
220 ///     ; node.
221 ///     %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
222 ///     ...
223 ///
224 /// A similar transformation is performed for invoke instructions. However,
225 /// since invokes are terminating, more work is required. For example, the
226 /// invoke instruction below:
227 ///
228 ///   orig_bb:
229 ///     %t0 = invoke %ptr() to label %normal_dst unwind label %unwind_dst
230 ///
231 /// Is replace by the following:
232 ///
233 ///   orig_bb:
234 ///     %cond = icmp eq i32 ()* %ptr, @func
235 ///     br i1 %cond, %then_bb, %else_bb
236 ///
237 ///   then_bb:
238 ///     ; The clone of the original invoke instruction is placed in the "then"
239 ///     ; block, and its normal destination is set to the "merge" block. It is
240 ///     ; not yet promoted.
241 ///     %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
242 ///
243 ///   else_bb:
244 ///     ; The original invoke instruction is moved into the "else" block, and
245 ///     ; its normal destination is set to the "merge" block.
246 ///     %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
247 ///
248 ///   merge_bb:
249 ///     ; Uses of the original invoke instruction are replaced by uses of the
250 ///     ; phi node, and the merge block branches to the normal destination.
251 ///     %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
252 ///     br %normal_dst
253 ///
254 /// An indirect musttail call is processed slightly differently in that:
255 /// 1. No merge block needed for the orginal and the cloned callsite, since
256 ///    either one ends the flow. No phi node is needed either.
257 /// 2. The return statement following the original call site is duplicated too
258 ///    and placed immediately after the cloned call site per the IR convention.
259 ///
260 /// For example, the musttail call instruction below:
261 ///
262 ///   orig_bb:
263 ///     %t0 = musttail call i32 %ptr()
264 ///     ...
265 ///
266 /// Is replaced by the following:
267 ///
268 ///   cond_bb:
269 ///     %cond = icmp eq i32 ()* %ptr, @func
270 ///     br i1 %cond, %then_bb, %orig_bb
271 ///
272 ///   then_bb:
273 ///     ; The clone of the original call instruction is placed in the "then"
274 ///     ; block. It is not yet promoted.
275 ///     %t1 = musttail call i32 %ptr()
276 ///     ret %t1
277 ///
278 ///   orig_bb:
279 ///     ; The original call instruction stays in its original block.
280 ///     %t0 = musttail call i32 %ptr()
281 ///     ret %t0
282 CallBase &llvm::versionCallSite(CallBase &CB, Value *Callee,
283                                 MDNode *BranchWeights) {
284 
285   IRBuilder<> Builder(&CB);
286   CallBase *OrigInst = &CB;
287   BasicBlock *OrigBlock = OrigInst->getParent();
288 
289   // Create the compare. The called value and callee must have the same type to
290   // be compared.
291   if (CB.getCalledOperand()->getType() != Callee->getType())
292     Callee = Builder.CreateBitCast(Callee, CB.getCalledOperand()->getType());
293   auto *Cond = Builder.CreateICmpEQ(CB.getCalledOperand(), Callee);
294 
295   if (OrigInst->isMustTailCall()) {
296     // Create an if-then structure. The original instruction stays in its block,
297     // and a clone of the original instruction is placed in the "then" block.
298     Instruction *ThenTerm =
299         SplitBlockAndInsertIfThen(Cond, &CB, false, BranchWeights);
300     BasicBlock *ThenBlock = ThenTerm->getParent();
301     ThenBlock->setName("if.true.direct_targ");
302     CallBase *NewInst = cast<CallBase>(OrigInst->clone());
303     NewInst->insertBefore(ThenTerm);
304 
305     // Place a clone of the optional bitcast after the new call site.
306     Value *NewRetVal = NewInst;
307     auto Next = OrigInst->getNextNode();
308     if (auto *BitCast = dyn_cast_or_null<BitCastInst>(Next)) {
309       assert(BitCast->getOperand(0) == OrigInst &&
310              "bitcast following musttail call must use the call");
311       auto NewBitCast = BitCast->clone();
312       NewBitCast->replaceUsesOfWith(OrigInst, NewInst);
313       NewBitCast->insertBefore(ThenTerm);
314       NewRetVal = NewBitCast;
315       Next = BitCast->getNextNode();
316     }
317 
318     // Place a clone of the return instruction after the new call site.
319     ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
320     assert(Ret && "musttail call must precede a ret with an optional bitcast");
321     auto NewRet = Ret->clone();
322     if (Ret->getReturnValue())
323       NewRet->replaceUsesOfWith(Ret->getReturnValue(), NewRetVal);
324     NewRet->insertBefore(ThenTerm);
325 
326     // A return instructions is terminating, so we don't need the terminator
327     // instruction just created.
328     ThenTerm->eraseFromParent();
329 
330     return *NewInst;
331   }
332 
333   // Create an if-then-else structure. The original instruction is moved into
334   // the "else" block, and a clone of the original instruction is placed in the
335   // "then" block.
336   Instruction *ThenTerm = nullptr;
337   Instruction *ElseTerm = nullptr;
338   SplitBlockAndInsertIfThenElse(Cond, &CB, &ThenTerm, &ElseTerm, BranchWeights);
339   BasicBlock *ThenBlock = ThenTerm->getParent();
340   BasicBlock *ElseBlock = ElseTerm->getParent();
341   BasicBlock *MergeBlock = OrigInst->getParent();
342 
343   ThenBlock->setName("if.true.direct_targ");
344   ElseBlock->setName("if.false.orig_indirect");
345   MergeBlock->setName("if.end.icp");
346 
347   CallBase *NewInst = cast<CallBase>(OrigInst->clone());
348   OrigInst->moveBefore(ElseTerm);
349   NewInst->insertBefore(ThenTerm);
350 
351   // If the original call site is an invoke instruction, we have extra work to
352   // do since invoke instructions are terminating. We have to fix-up phi nodes
353   // in the invoke's normal and unwind destinations.
354   if (auto *OrigInvoke = dyn_cast<InvokeInst>(OrigInst)) {
355     auto *NewInvoke = cast<InvokeInst>(NewInst);
356 
357     // Invoke instructions are terminating, so we don't need the terminator
358     // instructions that were just created.
359     ThenTerm->eraseFromParent();
360     ElseTerm->eraseFromParent();
361 
362     // Branch from the "merge" block to the original normal destination.
363     Builder.SetInsertPoint(MergeBlock);
364     Builder.CreateBr(OrigInvoke->getNormalDest());
365 
366     // Fix-up phi nodes in the original invoke's normal and unwind destinations.
367     fixupPHINodeForNormalDest(OrigInvoke, OrigBlock, MergeBlock);
368     fixupPHINodeForUnwindDest(OrigInvoke, MergeBlock, ThenBlock, ElseBlock);
369 
370     // Now set the normal destinations of the invoke instructions to be the
371     // "merge" block.
372     OrigInvoke->setNormalDest(MergeBlock);
373     NewInvoke->setNormalDest(MergeBlock);
374   }
375 
376   // Create a phi node for the returned value of the call site.
377   createRetPHINode(OrigInst, NewInst, MergeBlock, Builder);
378 
379   return *NewInst;
380 }
381 
382 bool llvm::isLegalToPromote(const CallBase &CB, Function *Callee,
383                             const char **FailureReason) {
384   assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");
385 
386   auto &DL = Callee->getParent()->getDataLayout();
387 
388   // Check the return type. The callee's return value type must be bitcast
389   // compatible with the call site's type.
390   Type *CallRetTy = CB.getType();
391   Type *FuncRetTy = Callee->getReturnType();
392   if (CallRetTy != FuncRetTy)
393     if (!CastInst::isBitOrNoopPointerCastable(FuncRetTy, CallRetTy, DL)) {
394       if (FailureReason)
395         *FailureReason = "Return type mismatch";
396       return false;
397     }
398 
399   // The number of formal arguments of the callee.
400   unsigned NumParams = Callee->getFunctionType()->getNumParams();
401 
402   // The number of actual arguments in the call.
403   unsigned NumArgs = CB.arg_size();
404 
405   // Check the number of arguments. The callee and call site must agree on the
406   // number of arguments.
407   if (NumArgs != NumParams && !Callee->isVarArg()) {
408     if (FailureReason)
409       *FailureReason = "The number of arguments mismatch";
410     return false;
411   }
412 
413   // Check the argument types. The callee's formal argument types must be
414   // bitcast compatible with the corresponding actual argument types of the call
415   // site.
416   unsigned I = 0;
417   for (; I < NumParams; ++I) {
418     // Make sure that the callee and call agree on byval/inalloca. The types do
419     // not have to match.
420     if (Callee->hasParamAttribute(I, Attribute::ByVal) !=
421         CB.getAttributes().hasParamAttr(I, Attribute::ByVal)) {
422       if (FailureReason)
423         *FailureReason = "byval mismatch";
424       return false;
425     }
426     if (Callee->hasParamAttribute(I, Attribute::InAlloca) !=
427         CB.getAttributes().hasParamAttr(I, Attribute::InAlloca)) {
428       if (FailureReason)
429         *FailureReason = "inalloca mismatch";
430       return false;
431     }
432 
433     Type *FormalTy = Callee->getFunctionType()->getFunctionParamType(I);
434     Type *ActualTy = CB.getArgOperand(I)->getType();
435     if (FormalTy == ActualTy)
436       continue;
437     if (!CastInst::isBitOrNoopPointerCastable(ActualTy, FormalTy, DL)) {
438       if (FailureReason)
439         *FailureReason = "Argument type mismatch";
440       return false;
441     }
442 
443     // MustTail call needs stricter type match. See
444     // Verifier::verifyMustTailCall().
445     if (CB.isMustTailCall()) {
446       PointerType *PF = dyn_cast<PointerType>(FormalTy);
447       PointerType *PA = dyn_cast<PointerType>(ActualTy);
448       if (!PF || !PA || PF->getAddressSpace() != PA->getAddressSpace()) {
449         if (FailureReason)
450           *FailureReason = "Musttail call Argument type mismatch";
451         return false;
452       }
453     }
454   }
455   for (; I < NumArgs; I++) {
456     // Vararg functions can have more arguments than parameters.
457     assert(Callee->isVarArg());
458     if (CB.paramHasAttr(I, Attribute::StructRet)) {
459       if (FailureReason)
460         *FailureReason = "SRet arg to vararg function";
461       return false;
462     }
463   }
464 
465   return true;
466 }
467 
468 CallBase &llvm::promoteCall(CallBase &CB, Function *Callee,
469                             CastInst **RetBitCast) {
470   assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");
471 
472   // Set the called function of the call site to be the given callee (but don't
473   // change the type).
474   CB.setCalledOperand(Callee);
475 
476   // Since the call site will no longer be direct, we must clear metadata that
477   // is only appropriate for indirect calls. This includes !prof and !callees
478   // metadata.
479   CB.setMetadata(LLVMContext::MD_prof, nullptr);
480   CB.setMetadata(LLVMContext::MD_callees, nullptr);
481 
482   // If the function type of the call site matches that of the callee, no
483   // additional work is required.
484   if (CB.getFunctionType() == Callee->getFunctionType())
485     return CB;
486 
487   // Save the return types of the call site and callee.
488   Type *CallSiteRetTy = CB.getType();
489   Type *CalleeRetTy = Callee->getReturnType();
490 
491   // Change the function type of the call site the match that of the callee.
492   CB.mutateFunctionType(Callee->getFunctionType());
493 
494   // Inspect the arguments of the call site. If an argument's type doesn't
495   // match the corresponding formal argument's type in the callee, bitcast it
496   // to the correct type.
497   auto CalleeType = Callee->getFunctionType();
498   auto CalleeParamNum = CalleeType->getNumParams();
499 
500   LLVMContext &Ctx = Callee->getContext();
501   const AttributeList &CallerPAL = CB.getAttributes();
502   // The new list of argument attributes.
503   SmallVector<AttributeSet, 4> NewArgAttrs;
504   bool AttributeChanged = false;
505 
506   for (unsigned ArgNo = 0; ArgNo < CalleeParamNum; ++ArgNo) {
507     auto *Arg = CB.getArgOperand(ArgNo);
508     Type *FormalTy = CalleeType->getParamType(ArgNo);
509     Type *ActualTy = Arg->getType();
510     if (FormalTy != ActualTy) {
511       auto *Cast = CastInst::CreateBitOrPointerCast(Arg, FormalTy, "", &CB);
512       CB.setArgOperand(ArgNo, Cast);
513 
514       // Remove any incompatible attributes for the argument.
515       AttrBuilder ArgAttrs(Ctx, CallerPAL.getParamAttrs(ArgNo));
516       ArgAttrs.remove(AttributeFuncs::typeIncompatible(FormalTy));
517 
518       // We may have a different byval/inalloca type.
519       if (ArgAttrs.getByValType())
520         ArgAttrs.addByValAttr(Callee->getParamByValType(ArgNo));
521       if (ArgAttrs.getInAllocaType())
522         ArgAttrs.addInAllocaAttr(Callee->getParamInAllocaType(ArgNo));
523 
524       NewArgAttrs.push_back(AttributeSet::get(Ctx, ArgAttrs));
525       AttributeChanged = true;
526     } else
527       NewArgAttrs.push_back(CallerPAL.getParamAttrs(ArgNo));
528   }
529 
530   // If the return type of the call site doesn't match that of the callee, cast
531   // the returned value to the appropriate type.
532   // Remove any incompatible return value attribute.
533   AttrBuilder RAttrs(Ctx, CallerPAL.getRetAttrs());
534   if (!CallSiteRetTy->isVoidTy() && CallSiteRetTy != CalleeRetTy) {
535     createRetBitCast(CB, CallSiteRetTy, RetBitCast);
536     RAttrs.remove(AttributeFuncs::typeIncompatible(CalleeRetTy));
537     AttributeChanged = true;
538   }
539 
540   // Set the new callsite attribute.
541   if (AttributeChanged)
542     CB.setAttributes(AttributeList::get(Ctx, CallerPAL.getFnAttrs(),
543                                         AttributeSet::get(Ctx, RAttrs),
544                                         NewArgAttrs));
545 
546   return CB;
547 }
548 
549 CallBase &llvm::promoteCallWithIfThenElse(CallBase &CB, Function *Callee,
550                                           MDNode *BranchWeights) {
551 
552   // Version the indirect call site. If the called value is equal to the given
553   // callee, 'NewInst' will be executed, otherwise the original call site will
554   // be executed.
555   CallBase &NewInst = versionCallSite(CB, Callee, BranchWeights);
556 
557   // Promote 'NewInst' so that it directly calls the desired function.
558   return promoteCall(NewInst, Callee);
559 }
560 
561 bool llvm::tryPromoteCall(CallBase &CB) {
562   assert(!CB.getCalledFunction());
563   Module *M = CB.getCaller()->getParent();
564   const DataLayout &DL = M->getDataLayout();
565   Value *Callee = CB.getCalledOperand();
566 
567   LoadInst *VTableEntryLoad = dyn_cast<LoadInst>(Callee);
568   if (!VTableEntryLoad)
569     return false; // Not a vtable entry load.
570   Value *VTableEntryPtr = VTableEntryLoad->getPointerOperand();
571   APInt VTableOffset(DL.getTypeSizeInBits(VTableEntryPtr->getType()), 0);
572   Value *VTableBasePtr = VTableEntryPtr->stripAndAccumulateConstantOffsets(
573       DL, VTableOffset, /* AllowNonInbounds */ true);
574   LoadInst *VTablePtrLoad = dyn_cast<LoadInst>(VTableBasePtr);
575   if (!VTablePtrLoad)
576     return false; // Not a vtable load.
577   Value *Object = VTablePtrLoad->getPointerOperand();
578   APInt ObjectOffset(DL.getTypeSizeInBits(Object->getType()), 0);
579   Value *ObjectBase = Object->stripAndAccumulateConstantOffsets(
580       DL, ObjectOffset, /* AllowNonInbounds */ true);
581   if (!(isa<AllocaInst>(ObjectBase) && ObjectOffset == 0))
582     // Not an Alloca or the offset isn't zero.
583     return false;
584 
585   // Look for the vtable pointer store into the object by the ctor.
586   BasicBlock::iterator BBI(VTablePtrLoad);
587   Value *VTablePtr = FindAvailableLoadedValue(
588       VTablePtrLoad, VTablePtrLoad->getParent(), BBI, 0, nullptr, nullptr);
589   if (!VTablePtr)
590     return false; // No vtable found.
591   APInt VTableOffsetGVBase(DL.getTypeSizeInBits(VTablePtr->getType()), 0);
592   Value *VTableGVBase = VTablePtr->stripAndAccumulateConstantOffsets(
593       DL, VTableOffsetGVBase, /* AllowNonInbounds */ true);
594   GlobalVariable *GV = dyn_cast<GlobalVariable>(VTableGVBase);
595   if (!(GV && GV->isConstant() && GV->hasDefinitiveInitializer()))
596     // Not in the form of a global constant variable with an initializer.
597     return false;
598 
599   Constant *VTableGVInitializer = GV->getInitializer();
600   APInt VTableGVOffset = VTableOffsetGVBase + VTableOffset;
601   if (!(VTableGVOffset.getActiveBits() <= 64))
602     return false; // Out of range.
603   Constant *Ptr = getPointerAtOffset(VTableGVInitializer,
604                                      VTableGVOffset.getZExtValue(),
605                                      *M);
606   if (!Ptr)
607     return false; // No constant (function) pointer found.
608   Function *DirectCallee = dyn_cast<Function>(Ptr->stripPointerCasts());
609   if (!DirectCallee)
610     return false; // No function pointer found.
611 
612   if (!isLegalToPromote(CB, DirectCallee))
613     return false;
614 
615   // Success.
616   promoteCall(CB, DirectCallee);
617   return true;
618 }
619 
620 #undef DEBUG_TYPE
621