xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp (revision 82d4dc0621c92e3c05a86013eec35afbdec057a5)
1  //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10  // inserting a dummy basic block.  This pass may be "required" by passes that
11  // cannot deal with critical edges.  For this usage, the structure type is
12  // forward declared.  This pass obviously invalidates the CFG, but can update
13  // dominator trees.
14  //
15  //===----------------------------------------------------------------------===//
16  
17  #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18  #include "llvm/ADT/SetVector.h"
19  #include "llvm/ADT/SmallVector.h"
20  #include "llvm/ADT/Statistic.h"
21  #include "llvm/Analysis/BlockFrequencyInfo.h"
22  #include "llvm/Analysis/BranchProbabilityInfo.h"
23  #include "llvm/Analysis/CFG.h"
24  #include "llvm/Analysis/LoopInfo.h"
25  #include "llvm/Analysis/MemorySSAUpdater.h"
26  #include "llvm/Analysis/PostDominators.h"
27  #include "llvm/IR/CFG.h"
28  #include "llvm/IR/Dominators.h"
29  #include "llvm/IR/Instructions.h"
30  #include "llvm/IR/Type.h"
31  #include "llvm/InitializePasses.h"
32  #include "llvm/Support/ErrorHandling.h"
33  #include "llvm/Transforms/Utils.h"
34  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35  #include "llvm/Transforms/Utils/Cloning.h"
36  #include "llvm/Transforms/Utils/ValueMapper.h"
37  using namespace llvm;
38  
39  #define DEBUG_TYPE "break-crit-edges"
40  
41  STATISTIC(NumBroken, "Number of blocks inserted");
42  
43  namespace {
44    struct BreakCriticalEdges : public FunctionPass {
45      static char ID; // Pass identification, replacement for typeid
46      BreakCriticalEdges() : FunctionPass(ID) {
47        initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
48      }
49  
50      bool runOnFunction(Function &F) override {
51        auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
52        auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
53  
54        auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
55        auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
56  
57        auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
58        auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
59        unsigned N =
60            SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
61        NumBroken += N;
62        return N > 0;
63      }
64  
65      void getAnalysisUsage(AnalysisUsage &AU) const override {
66        AU.addPreserved<DominatorTreeWrapperPass>();
67        AU.addPreserved<LoopInfoWrapperPass>();
68  
69        // No loop canonicalization guarantees are broken by this pass.
70        AU.addPreservedID(LoopSimplifyID);
71      }
72    };
73  }
74  
75  char BreakCriticalEdges::ID = 0;
76  INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
77                  "Break critical edges in CFG", false, false)
78  
79  // Publicly exposed interface to pass...
80  char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
81  FunctionPass *llvm::createBreakCriticalEdgesPass() {
82    return new BreakCriticalEdges();
83  }
84  
85  PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
86                                                FunctionAnalysisManager &AM) {
87    auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
88    auto *LI = AM.getCachedResult<LoopAnalysis>(F);
89    unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
90    NumBroken += N;
91    if (N == 0)
92      return PreservedAnalyses::all();
93    PreservedAnalyses PA;
94    PA.preserve<DominatorTreeAnalysis>();
95    PA.preserve<LoopAnalysis>();
96    return PA;
97  }
98  
99  //===----------------------------------------------------------------------===//
100  //    Implementation of the external critical edge manipulation functions
101  //===----------------------------------------------------------------------===//
102  
103  BasicBlock *llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
104                                      const CriticalEdgeSplittingOptions &Options,
105                                      const Twine &BBName) {
106    if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
107      return nullptr;
108  
109    return SplitKnownCriticalEdge(TI, SuccNum, Options, BBName);
110  }
111  
112  BasicBlock *
113  llvm::SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum,
114                               const CriticalEdgeSplittingOptions &Options,
115                               const Twine &BBName) {
116    assert(!isa<IndirectBrInst>(TI) &&
117           "Cannot split critical edge from IndirectBrInst");
118  
119    BasicBlock *TIBB = TI->getParent();
120    BasicBlock *DestBB = TI->getSuccessor(SuccNum);
121  
122    // Splitting the critical edge to a pad block is non-trivial. Don't do
123    // it in this generic function.
124    if (DestBB->isEHPad()) return nullptr;
125  
126    if (Options.IgnoreUnreachableDests &&
127        isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
128      return nullptr;
129  
130    auto *LI = Options.LI;
131    SmallVector<BasicBlock *, 4> LoopPreds;
132    // Check if extra modifications will be required to preserve loop-simplify
133    // form after splitting. If it would require splitting blocks with IndirectBr
134    // or CallBr terminators, bail out if preserving loop-simplify form is
135    // requested.
136    if (LI) {
137      if (Loop *TIL = LI->getLoopFor(TIBB)) {
138  
139        // The only way that we can break LoopSimplify form by splitting a
140        // critical edge is if after the split there exists some edge from TIL to
141        // DestBB *and* the only edge into DestBB from outside of TIL is that of
142        // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
143        // is the new exit block and it has no non-loop predecessors. If the
144        // second isn't true, then DestBB was not in LoopSimplify form prior to
145        // the split as it had a non-loop predecessor. In both of these cases,
146        // the predecessor must be directly in TIL, not in a subloop, or again
147        // LoopSimplify doesn't hold.
148        for (BasicBlock *P : predecessors(DestBB)) {
149          if (P == TIBB)
150            continue; // The new block is known.
151          if (LI->getLoopFor(P) != TIL) {
152            // No need to re-simplify, it wasn't to start with.
153            LoopPreds.clear();
154            break;
155          }
156          LoopPreds.push_back(P);
157        }
158        // Loop-simplify form can be preserved, if we can split all in-loop
159        // predecessors.
160        if (any_of(LoopPreds, [](BasicBlock *Pred) {
161              const Instruction *T = Pred->getTerminator();
162              if (const auto *CBR = dyn_cast<CallBrInst>(T))
163                return CBR->getDefaultDest() != Pred;
164              return isa<IndirectBrInst>(T);
165            })) {
166          if (Options.PreserveLoopSimplify)
167            return nullptr;
168          LoopPreds.clear();
169        }
170      }
171    }
172  
173    // Create a new basic block, linking it into the CFG.
174    BasicBlock *NewBB = nullptr;
175    if (BBName.str() != "")
176      NewBB = BasicBlock::Create(TI->getContext(), BBName);
177    else
178      NewBB = BasicBlock::Create(TI->getContext(), TIBB->getName() + "." +
179                                                       DestBB->getName() +
180                                                       "_crit_edge");
181    // Create our unconditional branch.
182    BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
183    NewBI->setDebugLoc(TI->getDebugLoc());
184  
185    // Insert the block into the function... right after the block TI lives in.
186    Function &F = *TIBB->getParent();
187    Function::iterator FBBI = TIBB->getIterator();
188    F.getBasicBlockList().insert(++FBBI, NewBB);
189  
190    // Branch to the new block, breaking the edge.
191    TI->setSuccessor(SuccNum, NewBB);
192  
193    // If there are any PHI nodes in DestBB, we need to update them so that they
194    // merge incoming values from NewBB instead of from TIBB.
195    {
196      unsigned BBIdx = 0;
197      for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
198        // We no longer enter through TIBB, now we come in through NewBB.
199        // Revector exactly one entry in the PHI node that used to come from
200        // TIBB to come from NewBB.
201        PHINode *PN = cast<PHINode>(I);
202  
203        // Reuse the previous value of BBIdx if it lines up.  In cases where we
204        // have multiple phi nodes with *lots* of predecessors, this is a speed
205        // win because we don't have to scan the PHI looking for TIBB.  This
206        // happens because the BB list of PHI nodes are usually in the same
207        // order.
208        if (PN->getIncomingBlock(BBIdx) != TIBB)
209          BBIdx = PN->getBasicBlockIndex(TIBB);
210        PN->setIncomingBlock(BBIdx, NewBB);
211      }
212    }
213  
214    // If there are any other edges from TIBB to DestBB, update those to go
215    // through the split block, making those edges non-critical as well (and
216    // reducing the number of phi entries in the DestBB if relevant).
217    if (Options.MergeIdenticalEdges) {
218      for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
219        if (TI->getSuccessor(i) != DestBB) continue;
220  
221        // Remove an entry for TIBB from DestBB phi nodes.
222        DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
223  
224        // We found another edge to DestBB, go to NewBB instead.
225        TI->setSuccessor(i, NewBB);
226      }
227    }
228  
229    // If we have nothing to update, just return.
230    auto *DT = Options.DT;
231    auto *PDT = Options.PDT;
232    auto *MSSAU = Options.MSSAU;
233    if (MSSAU)
234      MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
235          DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
236  
237    if (!DT && !PDT && !LI)
238      return NewBB;
239  
240    if (DT || PDT) {
241      // Update the DominatorTree.
242      //       ---> NewBB -----\
243      //      /                 V
244      //  TIBB -------\\------> DestBB
245      //
246      // First, inform the DT about the new path from TIBB to DestBB via NewBB,
247      // then delete the old edge from TIBB to DestBB. By doing this in that order
248      // DestBB stays reachable in the DT the whole time and its subtree doesn't
249      // get disconnected.
250      SmallVector<DominatorTree::UpdateType, 3> Updates;
251      Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
252      Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
253      if (!llvm::is_contained(successors(TIBB), DestBB))
254        Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
255  
256      if (DT)
257        DT->applyUpdates(Updates);
258      if (PDT)
259        PDT->applyUpdates(Updates);
260    }
261  
262    // Update LoopInfo if it is around.
263    if (LI) {
264      if (Loop *TIL = LI->getLoopFor(TIBB)) {
265        // If one or the other blocks were not in a loop, the new block is not
266        // either, and thus LI doesn't need to be updated.
267        if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
268          if (TIL == DestLoop) {
269            // Both in the same loop, the NewBB joins loop.
270            DestLoop->addBasicBlockToLoop(NewBB, *LI);
271          } else if (TIL->contains(DestLoop)) {
272            // Edge from an outer loop to an inner loop.  Add to the outer loop.
273            TIL->addBasicBlockToLoop(NewBB, *LI);
274          } else if (DestLoop->contains(TIL)) {
275            // Edge from an inner loop to an outer loop.  Add to the outer loop.
276            DestLoop->addBasicBlockToLoop(NewBB, *LI);
277          } else {
278            // Edge from two loops with no containment relation.  Because these
279            // are natural loops, we know that the destination block must be the
280            // header of its loop (adding a branch into a loop elsewhere would
281            // create an irreducible loop).
282            assert(DestLoop->getHeader() == DestBB &&
283                   "Should not create irreducible loops!");
284            if (Loop *P = DestLoop->getParentLoop())
285              P->addBasicBlockToLoop(NewBB, *LI);
286          }
287        }
288  
289        // If TIBB is in a loop and DestBB is outside of that loop, we may need
290        // to update LoopSimplify form and LCSSA form.
291        if (!TIL->contains(DestBB)) {
292          assert(!TIL->contains(NewBB) &&
293                 "Split point for loop exit is contained in loop!");
294  
295          // Update LCSSA form in the newly created exit block.
296          if (Options.PreserveLCSSA) {
297            createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
298          }
299  
300          if (!LoopPreds.empty()) {
301            assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
302            BasicBlock *NewExitBB = SplitBlockPredecessors(
303                DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
304            if (Options.PreserveLCSSA)
305              createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
306          }
307        }
308      }
309    }
310  
311    return NewBB;
312  }
313  
314  // Return the unique indirectbr predecessor of a block. This may return null
315  // even if such a predecessor exists, if it's not useful for splitting.
316  // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
317  // predecessors of BB.
318  static BasicBlock *
319  findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
320    // If the block doesn't have any PHIs, we don't care about it, since there's
321    // no point in splitting it.
322    PHINode *PN = dyn_cast<PHINode>(BB->begin());
323    if (!PN)
324      return nullptr;
325  
326    // Verify we have exactly one IBR predecessor.
327    // Conservatively bail out if one of the other predecessors is not a "regular"
328    // terminator (that is, not a switch or a br).
329    BasicBlock *IBB = nullptr;
330    for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
331      BasicBlock *PredBB = PN->getIncomingBlock(Pred);
332      Instruction *PredTerm = PredBB->getTerminator();
333      switch (PredTerm->getOpcode()) {
334      case Instruction::IndirectBr:
335        if (IBB)
336          return nullptr;
337        IBB = PredBB;
338        break;
339      case Instruction::Br:
340      case Instruction::Switch:
341        OtherPreds.push_back(PredBB);
342        continue;
343      default:
344        return nullptr;
345      }
346    }
347  
348    return IBB;
349  }
350  
351  bool llvm::SplitIndirectBrCriticalEdges(Function &F,
352                                          BranchProbabilityInfo *BPI,
353                                          BlockFrequencyInfo *BFI) {
354    // Check whether the function has any indirectbrs, and collect which blocks
355    // they may jump to. Since most functions don't have indirect branches,
356    // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
357    SmallSetVector<BasicBlock *, 16> Targets;
358    for (auto &BB : F) {
359      auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
360      if (!IBI)
361        continue;
362  
363      for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
364        Targets.insert(IBI->getSuccessor(Succ));
365    }
366  
367    if (Targets.empty())
368      return false;
369  
370    bool ShouldUpdateAnalysis = BPI && BFI;
371    bool Changed = false;
372    for (BasicBlock *Target : Targets) {
373      SmallVector<BasicBlock *, 16> OtherPreds;
374      BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
375      // If we did not found an indirectbr, or the indirectbr is the only
376      // incoming edge, this isn't the kind of edge we're looking for.
377      if (!IBRPred || OtherPreds.empty())
378        continue;
379  
380      // Don't even think about ehpads/landingpads.
381      Instruction *FirstNonPHI = Target->getFirstNonPHI();
382      if (FirstNonPHI->isEHPad() || Target->isLandingPad())
383        continue;
384  
385      // Remember edge probabilities if needed.
386      SmallVector<BranchProbability, 4> EdgeProbabilities;
387      if (ShouldUpdateAnalysis) {
388        EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
389        for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
390             I < E; ++I)
391          EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
392        BPI->eraseBlock(Target);
393      }
394  
395      BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
396      if (ShouldUpdateAnalysis) {
397        // Copy the BFI/BPI from Target to BodyBlock.
398        BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
399        BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
400      }
401      // It's possible Target was its own successor through an indirectbr.
402      // In this case, the indirectbr now comes from BodyBlock.
403      if (IBRPred == Target)
404        IBRPred = BodyBlock;
405  
406      // At this point Target only has PHIs, and BodyBlock has the rest of the
407      // block's body. Create a copy of Target that will be used by the "direct"
408      // preds.
409      ValueToValueMapTy VMap;
410      BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
411  
412      BlockFrequency BlockFreqForDirectSucc;
413      for (BasicBlock *Pred : OtherPreds) {
414        // If the target is a loop to itself, then the terminator of the split
415        // block (BodyBlock) needs to be updated.
416        BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
417        Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
418        if (ShouldUpdateAnalysis)
419          BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
420              BPI->getEdgeProbability(Src, DirectSucc);
421      }
422      if (ShouldUpdateAnalysis) {
423        BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
424        BlockFrequency NewBlockFreqForTarget =
425            BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
426        BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
427      }
428  
429      // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
430      // they are clones, so the number of PHIs are the same.
431      // (a) Remove the edge coming from IBRPred from the "Direct" PHI
432      // (b) Leave that as the only edge in the "Indirect" PHI.
433      // (c) Merge the two in the body block.
434      BasicBlock::iterator Indirect = Target->begin(),
435                           End = Target->getFirstNonPHI()->getIterator();
436      BasicBlock::iterator Direct = DirectSucc->begin();
437      BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
438  
439      assert(&*End == Target->getTerminator() &&
440             "Block was expected to only contain PHIs");
441  
442      while (Indirect != End) {
443        PHINode *DirPHI = cast<PHINode>(Direct);
444        PHINode *IndPHI = cast<PHINode>(Indirect);
445  
446        // Now, clean up - the direct block shouldn't get the indirect value,
447        // and vice versa.
448        DirPHI->removeIncomingValue(IBRPred);
449        Direct++;
450  
451        // Advance the pointer here, to avoid invalidation issues when the old
452        // PHI is erased.
453        Indirect++;
454  
455        PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
456        NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
457                               IBRPred);
458  
459        // Create a PHI in the body block, to merge the direct and indirect
460        // predecessors.
461        PHINode *MergePHI =
462            PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
463        MergePHI->addIncoming(NewIndPHI, Target);
464        MergePHI->addIncoming(DirPHI, DirectSucc);
465  
466        IndPHI->replaceAllUsesWith(MergePHI);
467        IndPHI->eraseFromParent();
468      }
469  
470      Changed = true;
471    }
472  
473    return Changed;
474  }
475