xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp (revision 77013d11e6483b970af25e13c9b892075742f7e5)
1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10 // inserting a dummy basic block.  This pass may be "required" by passes that
11 // cannot deal with critical edges.  For this usage, the structure type is
12 // forward declared.  This pass obviously invalidates the CFG, but can update
13 // dominator trees.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Transforms/Utils.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/ValueMapper.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "break-crit-edges"
40 
41 STATISTIC(NumBroken, "Number of blocks inserted");
42 
43 namespace {
44   struct BreakCriticalEdges : public FunctionPass {
45     static char ID; // Pass identification, replacement for typeid
46     BreakCriticalEdges() : FunctionPass(ID) {
47       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
48     }
49 
50     bool runOnFunction(Function &F) override {
51       auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
52       auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
53 
54       auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
55       auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
56 
57       auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
58       auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
59       unsigned N =
60           SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
61       NumBroken += N;
62       return N > 0;
63     }
64 
65     void getAnalysisUsage(AnalysisUsage &AU) const override {
66       AU.addPreserved<DominatorTreeWrapperPass>();
67       AU.addPreserved<LoopInfoWrapperPass>();
68 
69       // No loop canonicalization guarantees are broken by this pass.
70       AU.addPreservedID(LoopSimplifyID);
71     }
72   };
73 }
74 
75 char BreakCriticalEdges::ID = 0;
76 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
77                 "Break critical edges in CFG", false, false)
78 
79 // Publicly exposed interface to pass...
80 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
81 FunctionPass *llvm::createBreakCriticalEdgesPass() {
82   return new BreakCriticalEdges();
83 }
84 
85 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
86                                               FunctionAnalysisManager &AM) {
87   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
88   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
89   unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
90   NumBroken += N;
91   if (N == 0)
92     return PreservedAnalyses::all();
93   PreservedAnalyses PA;
94   PA.preserve<DominatorTreeAnalysis>();
95   PA.preserve<LoopAnalysis>();
96   return PA;
97 }
98 
99 //===----------------------------------------------------------------------===//
100 //    Implementation of the external critical edge manipulation functions
101 //===----------------------------------------------------------------------===//
102 
103 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new
104 /// exit block. This function inserts the new PHIs, as needed. Preds is a list
105 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
106 /// the old loop exit, now the successor of SplitBB.
107 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
108                                        BasicBlock *SplitBB,
109                                        BasicBlock *DestBB) {
110   // SplitBB shouldn't have anything non-trivial in it yet.
111   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
112           SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
113 
114   // For each PHI in the destination block.
115   for (PHINode &PN : DestBB->phis()) {
116     unsigned Idx = PN.getBasicBlockIndex(SplitBB);
117     Value *V = PN.getIncomingValue(Idx);
118 
119     // If the input is a PHI which already satisfies LCSSA, don't create
120     // a new one.
121     if (const PHINode *VP = dyn_cast<PHINode>(V))
122       if (VP->getParent() == SplitBB)
123         continue;
124 
125     // Otherwise a new PHI is needed. Create one and populate it.
126     PHINode *NewPN = PHINode::Create(
127         PN.getType(), Preds.size(), "split",
128         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
129     for (unsigned i = 0, e = Preds.size(); i != e; ++i)
130       NewPN->addIncoming(V, Preds[i]);
131 
132     // Update the original PHI.
133     PN.setIncomingValue(Idx, NewPN);
134   }
135 }
136 
137 BasicBlock *llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
138                                     const CriticalEdgeSplittingOptions &Options,
139                                     const Twine &BBName) {
140   if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
141     return nullptr;
142 
143   assert(!isa<IndirectBrInst>(TI) &&
144          "Cannot split critical edge from IndirectBrInst");
145 
146   BasicBlock *TIBB = TI->getParent();
147   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
148 
149   // Splitting the critical edge to a pad block is non-trivial. Don't do
150   // it in this generic function.
151   if (DestBB->isEHPad()) return nullptr;
152 
153   if (Options.IgnoreUnreachableDests &&
154       isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
155     return nullptr;
156 
157   auto *LI = Options.LI;
158   SmallVector<BasicBlock *, 4> LoopPreds;
159   // Check if extra modifications will be required to preserve loop-simplify
160   // form after splitting. If it would require splitting blocks with IndirectBr
161   // or CallBr terminators, bail out if preserving loop-simplify form is
162   // requested.
163   if (LI) {
164     if (Loop *TIL = LI->getLoopFor(TIBB)) {
165 
166       // The only way that we can break LoopSimplify form by splitting a
167       // critical edge is if after the split there exists some edge from TIL to
168       // DestBB *and* the only edge into DestBB from outside of TIL is that of
169       // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
170       // is the new exit block and it has no non-loop predecessors. If the
171       // second isn't true, then DestBB was not in LoopSimplify form prior to
172       // the split as it had a non-loop predecessor. In both of these cases,
173       // the predecessor must be directly in TIL, not in a subloop, or again
174       // LoopSimplify doesn't hold.
175       for (BasicBlock *P : predecessors(DestBB)) {
176         if (P == TIBB)
177           continue; // The new block is known.
178         if (LI->getLoopFor(P) != TIL) {
179           // No need to re-simplify, it wasn't to start with.
180           LoopPreds.clear();
181           break;
182         }
183         LoopPreds.push_back(P);
184       }
185       // Loop-simplify form can be preserved, if we can split all in-loop
186       // predecessors.
187       if (any_of(LoopPreds, [](BasicBlock *Pred) {
188             const Instruction *T = Pred->getTerminator();
189             if (const auto *CBR = dyn_cast<CallBrInst>(T))
190               return CBR->getDefaultDest() != Pred;
191             return isa<IndirectBrInst>(T);
192           })) {
193         if (Options.PreserveLoopSimplify)
194           return nullptr;
195         LoopPreds.clear();
196       }
197     }
198   }
199 
200   // Create a new basic block, linking it into the CFG.
201   BasicBlock *NewBB = nullptr;
202   if (BBName.str() != "")
203     NewBB = BasicBlock::Create(TI->getContext(), BBName);
204   else
205     NewBB = BasicBlock::Create(TI->getContext(), TIBB->getName() + "." +
206                                                      DestBB->getName() +
207                                                      "_crit_edge");
208   // Create our unconditional branch.
209   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
210   NewBI->setDebugLoc(TI->getDebugLoc());
211 
212   // Insert the block into the function... right after the block TI lives in.
213   Function &F = *TIBB->getParent();
214   Function::iterator FBBI = TIBB->getIterator();
215   F.getBasicBlockList().insert(++FBBI, NewBB);
216 
217   // Branch to the new block, breaking the edge.
218   TI->setSuccessor(SuccNum, NewBB);
219 
220   // If there are any PHI nodes in DestBB, we need to update them so that they
221   // merge incoming values from NewBB instead of from TIBB.
222   {
223     unsigned BBIdx = 0;
224     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
225       // We no longer enter through TIBB, now we come in through NewBB.
226       // Revector exactly one entry in the PHI node that used to come from
227       // TIBB to come from NewBB.
228       PHINode *PN = cast<PHINode>(I);
229 
230       // Reuse the previous value of BBIdx if it lines up.  In cases where we
231       // have multiple phi nodes with *lots* of predecessors, this is a speed
232       // win because we don't have to scan the PHI looking for TIBB.  This
233       // happens because the BB list of PHI nodes are usually in the same
234       // order.
235       if (PN->getIncomingBlock(BBIdx) != TIBB)
236         BBIdx = PN->getBasicBlockIndex(TIBB);
237       PN->setIncomingBlock(BBIdx, NewBB);
238     }
239   }
240 
241   // If there are any other edges from TIBB to DestBB, update those to go
242   // through the split block, making those edges non-critical as well (and
243   // reducing the number of phi entries in the DestBB if relevant).
244   if (Options.MergeIdenticalEdges) {
245     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
246       if (TI->getSuccessor(i) != DestBB) continue;
247 
248       // Remove an entry for TIBB from DestBB phi nodes.
249       DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
250 
251       // We found another edge to DestBB, go to NewBB instead.
252       TI->setSuccessor(i, NewBB);
253     }
254   }
255 
256   // If we have nothing to update, just return.
257   auto *DT = Options.DT;
258   auto *PDT = Options.PDT;
259   auto *MSSAU = Options.MSSAU;
260   if (MSSAU)
261     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
262         DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
263 
264   if (!DT && !PDT && !LI)
265     return NewBB;
266 
267   if (DT || PDT) {
268     // Update the DominatorTree.
269     //       ---> NewBB -----\
270     //      /                 V
271     //  TIBB -------\\------> DestBB
272     //
273     // First, inform the DT about the new path from TIBB to DestBB via NewBB,
274     // then delete the old edge from TIBB to DestBB. By doing this in that order
275     // DestBB stays reachable in the DT the whole time and its subtree doesn't
276     // get disconnected.
277     SmallVector<DominatorTree::UpdateType, 3> Updates;
278     Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
279     Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
280     if (!llvm::is_contained(successors(TIBB), DestBB))
281       Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
282 
283     if (DT)
284       DT->applyUpdates(Updates);
285     if (PDT)
286       PDT->applyUpdates(Updates);
287   }
288 
289   // Update LoopInfo if it is around.
290   if (LI) {
291     if (Loop *TIL = LI->getLoopFor(TIBB)) {
292       // If one or the other blocks were not in a loop, the new block is not
293       // either, and thus LI doesn't need to be updated.
294       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
295         if (TIL == DestLoop) {
296           // Both in the same loop, the NewBB joins loop.
297           DestLoop->addBasicBlockToLoop(NewBB, *LI);
298         } else if (TIL->contains(DestLoop)) {
299           // Edge from an outer loop to an inner loop.  Add to the outer loop.
300           TIL->addBasicBlockToLoop(NewBB, *LI);
301         } else if (DestLoop->contains(TIL)) {
302           // Edge from an inner loop to an outer loop.  Add to the outer loop.
303           DestLoop->addBasicBlockToLoop(NewBB, *LI);
304         } else {
305           // Edge from two loops with no containment relation.  Because these
306           // are natural loops, we know that the destination block must be the
307           // header of its loop (adding a branch into a loop elsewhere would
308           // create an irreducible loop).
309           assert(DestLoop->getHeader() == DestBB &&
310                  "Should not create irreducible loops!");
311           if (Loop *P = DestLoop->getParentLoop())
312             P->addBasicBlockToLoop(NewBB, *LI);
313         }
314       }
315 
316       // If TIBB is in a loop and DestBB is outside of that loop, we may need
317       // to update LoopSimplify form and LCSSA form.
318       if (!TIL->contains(DestBB)) {
319         assert(!TIL->contains(NewBB) &&
320                "Split point for loop exit is contained in loop!");
321 
322         // Update LCSSA form in the newly created exit block.
323         if (Options.PreserveLCSSA) {
324           createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
325         }
326 
327         if (!LoopPreds.empty()) {
328           assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
329           BasicBlock *NewExitBB = SplitBlockPredecessors(
330               DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
331           if (Options.PreserveLCSSA)
332             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
333         }
334       }
335     }
336   }
337 
338   return NewBB;
339 }
340 
341 // Return the unique indirectbr predecessor of a block. This may return null
342 // even if such a predecessor exists, if it's not useful for splitting.
343 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
344 // predecessors of BB.
345 static BasicBlock *
346 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
347   // If the block doesn't have any PHIs, we don't care about it, since there's
348   // no point in splitting it.
349   PHINode *PN = dyn_cast<PHINode>(BB->begin());
350   if (!PN)
351     return nullptr;
352 
353   // Verify we have exactly one IBR predecessor.
354   // Conservatively bail out if one of the other predecessors is not a "regular"
355   // terminator (that is, not a switch or a br).
356   BasicBlock *IBB = nullptr;
357   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
358     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
359     Instruction *PredTerm = PredBB->getTerminator();
360     switch (PredTerm->getOpcode()) {
361     case Instruction::IndirectBr:
362       if (IBB)
363         return nullptr;
364       IBB = PredBB;
365       break;
366     case Instruction::Br:
367     case Instruction::Switch:
368       OtherPreds.push_back(PredBB);
369       continue;
370     default:
371       return nullptr;
372     }
373   }
374 
375   return IBB;
376 }
377 
378 bool llvm::SplitIndirectBrCriticalEdges(Function &F,
379                                         BranchProbabilityInfo *BPI,
380                                         BlockFrequencyInfo *BFI) {
381   // Check whether the function has any indirectbrs, and collect which blocks
382   // they may jump to. Since most functions don't have indirect branches,
383   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
384   SmallSetVector<BasicBlock *, 16> Targets;
385   for (auto &BB : F) {
386     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
387     if (!IBI)
388       continue;
389 
390     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
391       Targets.insert(IBI->getSuccessor(Succ));
392   }
393 
394   if (Targets.empty())
395     return false;
396 
397   bool ShouldUpdateAnalysis = BPI && BFI;
398   bool Changed = false;
399   for (BasicBlock *Target : Targets) {
400     SmallVector<BasicBlock *, 16> OtherPreds;
401     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
402     // If we did not found an indirectbr, or the indirectbr is the only
403     // incoming edge, this isn't the kind of edge we're looking for.
404     if (!IBRPred || OtherPreds.empty())
405       continue;
406 
407     // Don't even think about ehpads/landingpads.
408     Instruction *FirstNonPHI = Target->getFirstNonPHI();
409     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
410       continue;
411 
412     // Remember edge probabilities if needed.
413     SmallVector<BranchProbability, 4> EdgeProbabilities;
414     if (ShouldUpdateAnalysis) {
415       EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
416       for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
417            I < E; ++I)
418         EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
419       BPI->eraseBlock(Target);
420     }
421 
422     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
423     if (ShouldUpdateAnalysis) {
424       // Copy the BFI/BPI from Target to BodyBlock.
425       BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
426       BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
427     }
428     // It's possible Target was its own successor through an indirectbr.
429     // In this case, the indirectbr now comes from BodyBlock.
430     if (IBRPred == Target)
431       IBRPred = BodyBlock;
432 
433     // At this point Target only has PHIs, and BodyBlock has the rest of the
434     // block's body. Create a copy of Target that will be used by the "direct"
435     // preds.
436     ValueToValueMapTy VMap;
437     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
438 
439     BlockFrequency BlockFreqForDirectSucc;
440     for (BasicBlock *Pred : OtherPreds) {
441       // If the target is a loop to itself, then the terminator of the split
442       // block (BodyBlock) needs to be updated.
443       BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
444       Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
445       if (ShouldUpdateAnalysis)
446         BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
447             BPI->getEdgeProbability(Src, DirectSucc);
448     }
449     if (ShouldUpdateAnalysis) {
450       BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
451       BlockFrequency NewBlockFreqForTarget =
452           BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
453       BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
454     }
455 
456     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
457     // they are clones, so the number of PHIs are the same.
458     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
459     // (b) Leave that as the only edge in the "Indirect" PHI.
460     // (c) Merge the two in the body block.
461     BasicBlock::iterator Indirect = Target->begin(),
462                          End = Target->getFirstNonPHI()->getIterator();
463     BasicBlock::iterator Direct = DirectSucc->begin();
464     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
465 
466     assert(&*End == Target->getTerminator() &&
467            "Block was expected to only contain PHIs");
468 
469     while (Indirect != End) {
470       PHINode *DirPHI = cast<PHINode>(Direct);
471       PHINode *IndPHI = cast<PHINode>(Indirect);
472 
473       // Now, clean up - the direct block shouldn't get the indirect value,
474       // and vice versa.
475       DirPHI->removeIncomingValue(IBRPred);
476       Direct++;
477 
478       // Advance the pointer here, to avoid invalidation issues when the old
479       // PHI is erased.
480       Indirect++;
481 
482       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
483       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
484                              IBRPred);
485 
486       // Create a PHI in the body block, to merge the direct and indirect
487       // predecessors.
488       PHINode *MergePHI =
489           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
490       MergePHI->addIncoming(NewIndPHI, Target);
491       MergePHI->addIncoming(DirPHI, DirectSucc);
492 
493       IndPHI->replaceAllUsesWith(MergePHI);
494       IndPHI->eraseFromParent();
495     }
496 
497     Changed = true;
498   }
499 
500   return Changed;
501 }
502