1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by 10 // inserting a dummy basic block. This pass may be "required" by passes that 11 // cannot deal with critical edges. For this usage, the structure type is 12 // forward declared. This pass obviously invalidates the CFG, but can update 13 // dominator trees. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemorySSAUpdater.h" 26 #include "llvm/Analysis/PostDominators.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Transforms/Utils.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/ValueMapper.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "break-crit-edges" 40 41 STATISTIC(NumBroken, "Number of blocks inserted"); 42 43 namespace { 44 struct BreakCriticalEdges : public FunctionPass { 45 static char ID; // Pass identification, replacement for typeid 46 BreakCriticalEdges() : FunctionPass(ID) { 47 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry()); 48 } 49 50 bool runOnFunction(Function &F) override { 51 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 52 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 53 54 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 55 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 56 57 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 58 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 59 unsigned N = 60 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT)); 61 NumBroken += N; 62 return N > 0; 63 } 64 65 void getAnalysisUsage(AnalysisUsage &AU) const override { 66 AU.addPreserved<DominatorTreeWrapperPass>(); 67 AU.addPreserved<LoopInfoWrapperPass>(); 68 69 // No loop canonicalization guarantees are broken by this pass. 70 AU.addPreservedID(LoopSimplifyID); 71 } 72 }; 73 } 74 75 char BreakCriticalEdges::ID = 0; 76 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges", 77 "Break critical edges in CFG", false, false) 78 79 // Publicly exposed interface to pass... 80 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID; 81 FunctionPass *llvm::createBreakCriticalEdgesPass() { 82 return new BreakCriticalEdges(); 83 } 84 85 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F, 86 FunctionAnalysisManager &AM) { 87 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 88 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 89 unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); 90 NumBroken += N; 91 if (N == 0) 92 return PreservedAnalyses::all(); 93 PreservedAnalyses PA; 94 PA.preserve<DominatorTreeAnalysis>(); 95 PA.preserve<LoopAnalysis>(); 96 return PA; 97 } 98 99 //===----------------------------------------------------------------------===// 100 // Implementation of the external critical edge manipulation functions 101 //===----------------------------------------------------------------------===// 102 103 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new 104 /// exit block. This function inserts the new PHIs, as needed. Preds is a list 105 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is 106 /// the old loop exit, now the successor of SplitBB. 107 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 108 BasicBlock *SplitBB, 109 BasicBlock *DestBB) { 110 // SplitBB shouldn't have anything non-trivial in it yet. 111 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 112 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!"); 113 114 // For each PHI in the destination block. 115 for (PHINode &PN : DestBB->phis()) { 116 unsigned Idx = PN.getBasicBlockIndex(SplitBB); 117 Value *V = PN.getIncomingValue(Idx); 118 119 // If the input is a PHI which already satisfies LCSSA, don't create 120 // a new one. 121 if (const PHINode *VP = dyn_cast<PHINode>(V)) 122 if (VP->getParent() == SplitBB) 123 continue; 124 125 // Otherwise a new PHI is needed. Create one and populate it. 126 PHINode *NewPN = PHINode::Create( 127 PN.getType(), Preds.size(), "split", 128 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 129 for (unsigned i = 0, e = Preds.size(); i != e; ++i) 130 NewPN->addIncoming(V, Preds[i]); 131 132 // Update the original PHI. 133 PN.setIncomingValue(Idx, NewPN); 134 } 135 } 136 137 BasicBlock * 138 llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum, 139 const CriticalEdgeSplittingOptions &Options) { 140 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges)) 141 return nullptr; 142 143 assert(!isa<IndirectBrInst>(TI) && 144 "Cannot split critical edge from IndirectBrInst"); 145 146 BasicBlock *TIBB = TI->getParent(); 147 BasicBlock *DestBB = TI->getSuccessor(SuccNum); 148 149 // Splitting the critical edge to a pad block is non-trivial. Don't do 150 // it in this generic function. 151 if (DestBB->isEHPad()) return nullptr; 152 153 if (Options.IgnoreUnreachableDests && 154 isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime())) 155 return nullptr; 156 157 auto *LI = Options.LI; 158 SmallVector<BasicBlock *, 4> LoopPreds; 159 // Check if extra modifications will be required to preserve loop-simplify 160 // form after splitting. If it would require splitting blocks with IndirectBr 161 // terminators, bail out if preserving loop-simplify form is requested. 162 if (LI) { 163 if (Loop *TIL = LI->getLoopFor(TIBB)) { 164 165 // The only that we can break LoopSimplify form by splitting a critical 166 // edge is if after the split there exists some edge from TIL to DestBB 167 // *and* the only edge into DestBB from outside of TIL is that of 168 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB 169 // is the new exit block and it has no non-loop predecessors. If the 170 // second isn't true, then DestBB was not in LoopSimplify form prior to 171 // the split as it had a non-loop predecessor. In both of these cases, 172 // the predecessor must be directly in TIL, not in a subloop, or again 173 // LoopSimplify doesn't hold. 174 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; 175 ++I) { 176 BasicBlock *P = *I; 177 if (P == TIBB) 178 continue; // The new block is known. 179 if (LI->getLoopFor(P) != TIL) { 180 // No need to re-simplify, it wasn't to start with. 181 LoopPreds.clear(); 182 break; 183 } 184 LoopPreds.push_back(P); 185 } 186 // Loop-simplify form can be preserved, if we can split all in-loop 187 // predecessors. 188 if (any_of(LoopPreds, [](BasicBlock *Pred) { 189 return isa<IndirectBrInst>(Pred->getTerminator()); 190 })) { 191 if (Options.PreserveLoopSimplify) 192 return nullptr; 193 LoopPreds.clear(); 194 } 195 } 196 } 197 198 // Create a new basic block, linking it into the CFG. 199 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(), 200 TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); 201 // Create our unconditional branch. 202 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB); 203 NewBI->setDebugLoc(TI->getDebugLoc()); 204 205 // Insert the block into the function... right after the block TI lives in. 206 Function &F = *TIBB->getParent(); 207 Function::iterator FBBI = TIBB->getIterator(); 208 F.getBasicBlockList().insert(++FBBI, NewBB); 209 210 // Branch to the new block, breaking the edge. 211 TI->setSuccessor(SuccNum, NewBB); 212 213 // If there are any PHI nodes in DestBB, we need to update them so that they 214 // merge incoming values from NewBB instead of from TIBB. 215 { 216 unsigned BBIdx = 0; 217 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) { 218 // We no longer enter through TIBB, now we come in through NewBB. 219 // Revector exactly one entry in the PHI node that used to come from 220 // TIBB to come from NewBB. 221 PHINode *PN = cast<PHINode>(I); 222 223 // Reuse the previous value of BBIdx if it lines up. In cases where we 224 // have multiple phi nodes with *lots* of predecessors, this is a speed 225 // win because we don't have to scan the PHI looking for TIBB. This 226 // happens because the BB list of PHI nodes are usually in the same 227 // order. 228 if (PN->getIncomingBlock(BBIdx) != TIBB) 229 BBIdx = PN->getBasicBlockIndex(TIBB); 230 PN->setIncomingBlock(BBIdx, NewBB); 231 } 232 } 233 234 // If there are any other edges from TIBB to DestBB, update those to go 235 // through the split block, making those edges non-critical as well (and 236 // reducing the number of phi entries in the DestBB if relevant). 237 if (Options.MergeIdenticalEdges) { 238 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { 239 if (TI->getSuccessor(i) != DestBB) continue; 240 241 // Remove an entry for TIBB from DestBB phi nodes. 242 DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs); 243 244 // We found another edge to DestBB, go to NewBB instead. 245 TI->setSuccessor(i, NewBB); 246 } 247 } 248 249 // If we have nothing to update, just return. 250 auto *DT = Options.DT; 251 auto *PDT = Options.PDT; 252 auto *MSSAU = Options.MSSAU; 253 if (MSSAU) 254 MSSAU->wireOldPredecessorsToNewImmediatePredecessor( 255 DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges); 256 257 if (!DT && !PDT && !LI) 258 return NewBB; 259 260 if (DT || PDT) { 261 // Update the DominatorTree. 262 // ---> NewBB -----\ 263 // / V 264 // TIBB -------\\------> DestBB 265 // 266 // First, inform the DT about the new path from TIBB to DestBB via NewBB, 267 // then delete the old edge from TIBB to DestBB. By doing this in that order 268 // DestBB stays reachable in the DT the whole time and its subtree doesn't 269 // get disconnected. 270 SmallVector<DominatorTree::UpdateType, 3> Updates; 271 Updates.push_back({DominatorTree::Insert, TIBB, NewBB}); 272 Updates.push_back({DominatorTree::Insert, NewBB, DestBB}); 273 if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB)) 274 Updates.push_back({DominatorTree::Delete, TIBB, DestBB}); 275 276 if (DT) 277 DT->applyUpdates(Updates); 278 if (PDT) 279 PDT->applyUpdates(Updates); 280 } 281 282 // Update LoopInfo if it is around. 283 if (LI) { 284 if (Loop *TIL = LI->getLoopFor(TIBB)) { 285 // If one or the other blocks were not in a loop, the new block is not 286 // either, and thus LI doesn't need to be updated. 287 if (Loop *DestLoop = LI->getLoopFor(DestBB)) { 288 if (TIL == DestLoop) { 289 // Both in the same loop, the NewBB joins loop. 290 DestLoop->addBasicBlockToLoop(NewBB, *LI); 291 } else if (TIL->contains(DestLoop)) { 292 // Edge from an outer loop to an inner loop. Add to the outer loop. 293 TIL->addBasicBlockToLoop(NewBB, *LI); 294 } else if (DestLoop->contains(TIL)) { 295 // Edge from an inner loop to an outer loop. Add to the outer loop. 296 DestLoop->addBasicBlockToLoop(NewBB, *LI); 297 } else { 298 // Edge from two loops with no containment relation. Because these 299 // are natural loops, we know that the destination block must be the 300 // header of its loop (adding a branch into a loop elsewhere would 301 // create an irreducible loop). 302 assert(DestLoop->getHeader() == DestBB && 303 "Should not create irreducible loops!"); 304 if (Loop *P = DestLoop->getParentLoop()) 305 P->addBasicBlockToLoop(NewBB, *LI); 306 } 307 } 308 309 // If TIBB is in a loop and DestBB is outside of that loop, we may need 310 // to update LoopSimplify form and LCSSA form. 311 if (!TIL->contains(DestBB)) { 312 assert(!TIL->contains(NewBB) && 313 "Split point for loop exit is contained in loop!"); 314 315 // Update LCSSA form in the newly created exit block. 316 if (Options.PreserveLCSSA) { 317 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB); 318 } 319 320 if (!LoopPreds.empty()) { 321 assert(!DestBB->isEHPad() && "We don't split edges to EH pads!"); 322 BasicBlock *NewExitBB = SplitBlockPredecessors( 323 DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 324 if (Options.PreserveLCSSA) 325 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB); 326 } 327 } 328 } 329 } 330 331 return NewBB; 332 } 333 334 // Return the unique indirectbr predecessor of a block. This may return null 335 // even if such a predecessor exists, if it's not useful for splitting. 336 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 337 // predecessors of BB. 338 static BasicBlock * 339 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 340 // If the block doesn't have any PHIs, we don't care about it, since there's 341 // no point in splitting it. 342 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 343 if (!PN) 344 return nullptr; 345 346 // Verify we have exactly one IBR predecessor. 347 // Conservatively bail out if one of the other predecessors is not a "regular" 348 // terminator (that is, not a switch or a br). 349 BasicBlock *IBB = nullptr; 350 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 351 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 352 Instruction *PredTerm = PredBB->getTerminator(); 353 switch (PredTerm->getOpcode()) { 354 case Instruction::IndirectBr: 355 if (IBB) 356 return nullptr; 357 IBB = PredBB; 358 break; 359 case Instruction::Br: 360 case Instruction::Switch: 361 OtherPreds.push_back(PredBB); 362 continue; 363 default: 364 return nullptr; 365 } 366 } 367 368 return IBB; 369 } 370 371 bool llvm::SplitIndirectBrCriticalEdges(Function &F, 372 BranchProbabilityInfo *BPI, 373 BlockFrequencyInfo *BFI) { 374 // Check whether the function has any indirectbrs, and collect which blocks 375 // they may jump to. Since most functions don't have indirect branches, 376 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 377 SmallSetVector<BasicBlock *, 16> Targets; 378 for (auto &BB : F) { 379 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 380 if (!IBI) 381 continue; 382 383 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 384 Targets.insert(IBI->getSuccessor(Succ)); 385 } 386 387 if (Targets.empty()) 388 return false; 389 390 bool ShouldUpdateAnalysis = BPI && BFI; 391 bool Changed = false; 392 for (BasicBlock *Target : Targets) { 393 SmallVector<BasicBlock *, 16> OtherPreds; 394 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 395 // If we did not found an indirectbr, or the indirectbr is the only 396 // incoming edge, this isn't the kind of edge we're looking for. 397 if (!IBRPred || OtherPreds.empty()) 398 continue; 399 400 // Don't even think about ehpads/landingpads. 401 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 402 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 403 continue; 404 405 // Remember edge probabilities if needed. 406 SmallVector<BranchProbability, 4> EdgeProbabilities; 407 if (ShouldUpdateAnalysis) { 408 EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors()); 409 for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors(); 410 I < E; ++I) 411 EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I)); 412 BPI->eraseBlock(Target); 413 } 414 415 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 416 if (ShouldUpdateAnalysis) { 417 // Copy the BFI/BPI from Target to BodyBlock. 418 BPI->setEdgeProbability(BodyBlock, EdgeProbabilities); 419 BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency()); 420 } 421 // It's possible Target was its own successor through an indirectbr. 422 // In this case, the indirectbr now comes from BodyBlock. 423 if (IBRPred == Target) 424 IBRPred = BodyBlock; 425 426 // At this point Target only has PHIs, and BodyBlock has the rest of the 427 // block's body. Create a copy of Target that will be used by the "direct" 428 // preds. 429 ValueToValueMapTy VMap; 430 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 431 432 BlockFrequency BlockFreqForDirectSucc; 433 for (BasicBlock *Pred : OtherPreds) { 434 // If the target is a loop to itself, then the terminator of the split 435 // block (BodyBlock) needs to be updated. 436 BasicBlock *Src = Pred != Target ? Pred : BodyBlock; 437 Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 438 if (ShouldUpdateAnalysis) 439 BlockFreqForDirectSucc += BFI->getBlockFreq(Src) * 440 BPI->getEdgeProbability(Src, DirectSucc); 441 } 442 if (ShouldUpdateAnalysis) { 443 BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency()); 444 BlockFrequency NewBlockFreqForTarget = 445 BFI->getBlockFreq(Target) - BlockFreqForDirectSucc; 446 BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency()); 447 } 448 449 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 450 // they are clones, so the number of PHIs are the same. 451 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 452 // (b) Leave that as the only edge in the "Indirect" PHI. 453 // (c) Merge the two in the body block. 454 BasicBlock::iterator Indirect = Target->begin(), 455 End = Target->getFirstNonPHI()->getIterator(); 456 BasicBlock::iterator Direct = DirectSucc->begin(); 457 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 458 459 assert(&*End == Target->getTerminator() && 460 "Block was expected to only contain PHIs"); 461 462 while (Indirect != End) { 463 PHINode *DirPHI = cast<PHINode>(Direct); 464 PHINode *IndPHI = cast<PHINode>(Indirect); 465 466 // Now, clean up - the direct block shouldn't get the indirect value, 467 // and vice versa. 468 DirPHI->removeIncomingValue(IBRPred); 469 Direct++; 470 471 // Advance the pointer here, to avoid invalidation issues when the old 472 // PHI is erased. 473 Indirect++; 474 475 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 476 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 477 IBRPred); 478 479 // Create a PHI in the body block, to merge the direct and indirect 480 // predecessors. 481 PHINode *MergePHI = 482 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 483 MergePHI->addIncoming(NewIndPHI, Target); 484 MergePHI->addIncoming(DirPHI, DirectSucc); 485 486 IndPHI->replaceAllUsesWith(MergePHI); 487 IndPHI->eraseFromParent(); 488 } 489 490 Changed = true; 491 } 492 493 return Changed; 494 } 495