xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision ccfd87fe2ac0e2e6aeb1911a7d7cce6712a8564f)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <string>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "basicblock-utils"
54 
55 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
56     "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
57     cl::desc("Set the maximum path length when checking whether a basic block "
58              "is followed by a block that either has a terminating "
59              "deoptimizing call or is terminated with an unreachable"));
60 
61 void llvm::detachDeadBlocks(
62     ArrayRef<BasicBlock *> BBs,
63     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
64     bool KeepOneInputPHIs) {
65   for (auto *BB : BBs) {
66     // Loop through all of our successors and make sure they know that one
67     // of their predecessors is going away.
68     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
69     for (BasicBlock *Succ : successors(BB)) {
70       Succ->removePredecessor(BB, KeepOneInputPHIs);
71       if (Updates && UniqueSuccessors.insert(Succ).second)
72         Updates->push_back({DominatorTree::Delete, BB, Succ});
73     }
74 
75     // Zap all the instructions in the block.
76     while (!BB->empty()) {
77       Instruction &I = BB->back();
78       // If this instruction is used, replace uses with an arbitrary value.
79       // Because control flow can't get here, we don't care what we replace the
80       // value with.  Note that since this block is unreachable, and all values
81       // contained within it must dominate their uses, that all uses will
82       // eventually be removed (they are themselves dead).
83       if (!I.use_empty())
84         I.replaceAllUsesWith(PoisonValue::get(I.getType()));
85       BB->back().eraseFromParent();
86     }
87     new UnreachableInst(BB->getContext(), BB);
88     assert(BB->size() == 1 &&
89            isa<UnreachableInst>(BB->getTerminator()) &&
90            "The successor list of BB isn't empty before "
91            "applying corresponding DTU updates.");
92   }
93 }
94 
95 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
96                            bool KeepOneInputPHIs) {
97   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
98 }
99 
100 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
101                             bool KeepOneInputPHIs) {
102 #ifndef NDEBUG
103   // Make sure that all predecessors of each dead block is also dead.
104   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
105   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
106   for (auto *BB : Dead)
107     for (BasicBlock *Pred : predecessors(BB))
108       assert(Dead.count(Pred) && "All predecessors must be dead!");
109 #endif
110 
111   SmallVector<DominatorTree::UpdateType, 4> Updates;
112   detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
113 
114   if (DTU)
115     DTU->applyUpdates(Updates);
116 
117   for (BasicBlock *BB : BBs)
118     if (DTU)
119       DTU->deleteBB(BB);
120     else
121       BB->eraseFromParent();
122 }
123 
124 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
125                                       bool KeepOneInputPHIs) {
126   df_iterator_default_set<BasicBlock*> Reachable;
127 
128   // Mark all reachable blocks.
129   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
130     (void)BB/* Mark all reachable blocks */;
131 
132   // Collect all dead blocks.
133   std::vector<BasicBlock*> DeadBlocks;
134   for (BasicBlock &BB : F)
135     if (!Reachable.count(&BB))
136       DeadBlocks.push_back(&BB);
137 
138   // Delete the dead blocks.
139   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
140 
141   return !DeadBlocks.empty();
142 }
143 
144 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
145                                    MemoryDependenceResults *MemDep) {
146   if (!isa<PHINode>(BB->begin()))
147     return false;
148 
149   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
150     if (PN->getIncomingValue(0) != PN)
151       PN->replaceAllUsesWith(PN->getIncomingValue(0));
152     else
153       PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
154 
155     if (MemDep)
156       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
157 
158     PN->eraseFromParent();
159   }
160   return true;
161 }
162 
163 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
164                           MemorySSAUpdater *MSSAU) {
165   // Recursively deleting a PHI may cause multiple PHIs to be deleted
166   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
167   SmallVector<WeakTrackingVH, 8> PHIs;
168   for (PHINode &PN : BB->phis())
169     PHIs.push_back(&PN);
170 
171   bool Changed = false;
172   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
173     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
174       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
175 
176   return Changed;
177 }
178 
179 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
180                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
181                                      MemoryDependenceResults *MemDep,
182                                      bool PredecessorWithTwoSuccessors,
183                                      DominatorTree *DT) {
184   if (BB->hasAddressTaken())
185     return false;
186 
187   // Can't merge if there are multiple predecessors, or no predecessors.
188   BasicBlock *PredBB = BB->getUniquePredecessor();
189   if (!PredBB) return false;
190 
191   // Don't break self-loops.
192   if (PredBB == BB) return false;
193 
194   // Don't break unwinding instructions or terminators with other side-effects.
195   Instruction *PTI = PredBB->getTerminator();
196   if (PTI->isExceptionalTerminator() || PTI->mayHaveSideEffects())
197     return false;
198 
199   // Can't merge if there are multiple distinct successors.
200   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
201     return false;
202 
203   // Currently only allow PredBB to have two predecessors, one being BB.
204   // Update BI to branch to BB's only successor instead of BB.
205   BranchInst *PredBB_BI;
206   BasicBlock *NewSucc = nullptr;
207   unsigned FallThruPath;
208   if (PredecessorWithTwoSuccessors) {
209     if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
210       return false;
211     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
212     if (!BB_JmpI || !BB_JmpI->isUnconditional())
213       return false;
214     NewSucc = BB_JmpI->getSuccessor(0);
215     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
216   }
217 
218   // Can't merge if there is PHI loop.
219   for (PHINode &PN : BB->phis())
220     if (llvm::is_contained(PN.incoming_values(), &PN))
221       return false;
222 
223   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
224                     << PredBB->getName() << "\n");
225 
226   // Begin by getting rid of unneeded PHIs.
227   SmallVector<AssertingVH<Value>, 4> IncomingValues;
228   if (isa<PHINode>(BB->front())) {
229     for (PHINode &PN : BB->phis())
230       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
231           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
232         IncomingValues.push_back(PN.getIncomingValue(0));
233     FoldSingleEntryPHINodes(BB, MemDep);
234   }
235 
236   if (DT) {
237     assert(!DTU && "cannot use both DT and DTU for updates");
238     DomTreeNode *PredNode = DT->getNode(PredBB);
239     DomTreeNode *BBNode = DT->getNode(BB);
240     if (PredNode) {
241       assert(BBNode && "PredNode unreachable but BBNode reachable?");
242       for (DomTreeNode *C : to_vector(BBNode->children()))
243         C->setIDom(PredNode);
244     }
245   }
246   // DTU update: Collect all the edges that exit BB.
247   // These dominator edges will be redirected from Pred.
248   std::vector<DominatorTree::UpdateType> Updates;
249   if (DTU) {
250     assert(!DT && "cannot use both DT and DTU for updates");
251     // To avoid processing the same predecessor more than once.
252     SmallPtrSet<BasicBlock *, 8> SeenSuccs;
253     SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
254                                                succ_end(PredBB));
255     Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
256     // Add insert edges first. Experimentally, for the particular case of two
257     // blocks that can be merged, with a single successor and single predecessor
258     // respectively, it is beneficial to have all insert updates first. Deleting
259     // edges first may lead to unreachable blocks, followed by inserting edges
260     // making the blocks reachable again. Such DT updates lead to high compile
261     // times. We add inserts before deletes here to reduce compile time.
262     for (BasicBlock *SuccOfBB : successors(BB))
263       // This successor of BB may already be a PredBB's successor.
264       if (!SuccsOfPredBB.contains(SuccOfBB))
265         if (SeenSuccs.insert(SuccOfBB).second)
266           Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
267     SeenSuccs.clear();
268     for (BasicBlock *SuccOfBB : successors(BB))
269       if (SeenSuccs.insert(SuccOfBB).second)
270         Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
271     Updates.push_back({DominatorTree::Delete, PredBB, BB});
272   }
273 
274   Instruction *STI = BB->getTerminator();
275   Instruction *Start = &*BB->begin();
276   // If there's nothing to move, mark the starting instruction as the last
277   // instruction in the block. Terminator instruction is handled separately.
278   if (Start == STI)
279     Start = PTI;
280 
281   // Move all definitions in the successor to the predecessor...
282   PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
283 
284   if (MSSAU)
285     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
286 
287   // Make all PHI nodes that referred to BB now refer to Pred as their
288   // source...
289   BB->replaceAllUsesWith(PredBB);
290 
291   if (PredecessorWithTwoSuccessors) {
292     // Delete the unconditional branch from BB.
293     BB->back().eraseFromParent();
294 
295     // Update branch in the predecessor.
296     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
297   } else {
298     // Delete the unconditional branch from the predecessor.
299     PredBB->back().eraseFromParent();
300 
301     // Move terminator instruction.
302     PredBB->splice(PredBB->end(), BB);
303 
304     // Terminator may be a memory accessing instruction too.
305     if (MSSAU)
306       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
307               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
308         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
309   }
310   // Add unreachable to now empty BB.
311   new UnreachableInst(BB->getContext(), BB);
312 
313   // Inherit predecessors name if it exists.
314   if (!PredBB->hasName())
315     PredBB->takeName(BB);
316 
317   if (LI)
318     LI->removeBlock(BB);
319 
320   if (MemDep)
321     MemDep->invalidateCachedPredecessors();
322 
323   if (DTU)
324     DTU->applyUpdates(Updates);
325 
326   if (DT) {
327     assert(succ_empty(BB) &&
328            "successors should have been transferred to PredBB");
329     DT->eraseNode(BB);
330   }
331 
332   // Finally, erase the old block and update dominator info.
333   DeleteDeadBlock(BB, DTU);
334 
335   return true;
336 }
337 
338 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
339     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
340     LoopInfo *LI) {
341   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
342 
343   bool BlocksHaveBeenMerged = false;
344   while (!MergeBlocks.empty()) {
345     BasicBlock *BB = *MergeBlocks.begin();
346     BasicBlock *Dest = BB->getSingleSuccessor();
347     if (Dest && (!L || L->contains(Dest))) {
348       BasicBlock *Fold = Dest->getUniquePredecessor();
349       (void)Fold;
350       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
351         assert(Fold == BB &&
352                "Expecting BB to be unique predecessor of the Dest block");
353         MergeBlocks.erase(Dest);
354         BlocksHaveBeenMerged = true;
355       } else
356         MergeBlocks.erase(BB);
357     } else
358       MergeBlocks.erase(BB);
359   }
360   return BlocksHaveBeenMerged;
361 }
362 
363 /// Remove redundant instructions within sequences of consecutive dbg.value
364 /// instructions. This is done using a backward scan to keep the last dbg.value
365 /// describing a specific variable/fragment.
366 ///
367 /// BackwardScan strategy:
368 /// ----------------------
369 /// Given a sequence of consecutive DbgValueInst like this
370 ///
371 ///   dbg.value ..., "x", FragmentX1  (*)
372 ///   dbg.value ..., "y", FragmentY1
373 ///   dbg.value ..., "x", FragmentX2
374 ///   dbg.value ..., "x", FragmentX1  (**)
375 ///
376 /// then the instruction marked with (*) can be removed (it is guaranteed to be
377 /// obsoleted by the instruction marked with (**) as the latter instruction is
378 /// describing the same variable using the same fragment info).
379 ///
380 /// Possible improvements:
381 /// - Check fully overlapping fragments and not only identical fragments.
382 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
383 ///   instructions being part of the sequence of consecutive instructions.
384 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
385   SmallVector<DbgValueInst *, 8> ToBeRemoved;
386   SmallDenseSet<DebugVariable> VariableSet;
387   for (auto &I : reverse(*BB)) {
388     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
389       DebugVariable Key(DVI->getVariable(),
390                         DVI->getExpression(),
391                         DVI->getDebugLoc()->getInlinedAt());
392       auto R = VariableSet.insert(Key);
393       // If the variable fragment hasn't been seen before then we don't want
394       // to remove this dbg intrinsic.
395       if (R.second)
396         continue;
397 
398       if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
399         // Don't delete dbg.assign intrinsics that are linked to instructions.
400         if (!at::getAssignmentInsts(DAI).empty())
401           continue;
402         // Unlinked dbg.assign intrinsics can be treated like dbg.values.
403       }
404 
405       // If the same variable fragment is described more than once it is enough
406       // to keep the last one (i.e. the first found since we for reverse
407       // iteration).
408       ToBeRemoved.push_back(DVI);
409       continue;
410     }
411     // Sequence with consecutive dbg.value instrs ended. Clear the map to
412     // restart identifying redundant instructions if case we find another
413     // dbg.value sequence.
414     VariableSet.clear();
415   }
416 
417   for (auto &Instr : ToBeRemoved)
418     Instr->eraseFromParent();
419 
420   return !ToBeRemoved.empty();
421 }
422 
423 /// Remove redundant dbg.value instructions using a forward scan. This can
424 /// remove a dbg.value instruction that is redundant due to indicating that a
425 /// variable has the same value as already being indicated by an earlier
426 /// dbg.value.
427 ///
428 /// ForwardScan strategy:
429 /// ---------------------
430 /// Given two identical dbg.value instructions, separated by a block of
431 /// instructions that isn't describing the same variable, like this
432 ///
433 ///   dbg.value X1, "x", FragmentX1  (**)
434 ///   <block of instructions, none being "dbg.value ..., "x", ...">
435 ///   dbg.value X1, "x", FragmentX1  (*)
436 ///
437 /// then the instruction marked with (*) can be removed. Variable "x" is already
438 /// described as being mapped to the SSA value X1.
439 ///
440 /// Possible improvements:
441 /// - Keep track of non-overlapping fragments.
442 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
443   SmallVector<DbgValueInst *, 8> ToBeRemoved;
444   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
445       VariableMap;
446   for (auto &I : *BB) {
447     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
448       DebugVariable Key(DVI->getVariable(), std::nullopt,
449                         DVI->getDebugLoc()->getInlinedAt());
450       auto VMI = VariableMap.find(Key);
451       auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
452       // A dbg.assign with no linked instructions can be treated like a
453       // dbg.value (i.e. can be deleted).
454       bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
455 
456       // Update the map if we found a new value/expression describing the
457       // variable, or if the variable wasn't mapped already.
458       SmallVector<Value *, 4> Values(DVI->getValues());
459       if (VMI == VariableMap.end() || VMI->second.first != Values ||
460           VMI->second.second != DVI->getExpression()) {
461         // Use a sentinal value (nullptr) for the DIExpression when we see a
462         // linked dbg.assign so that the next debug intrinsic will never match
463         // it (i.e. always treat linked dbg.assigns as if they're unique).
464         if (IsDbgValueKind)
465           VariableMap[Key] = {Values, DVI->getExpression()};
466         else
467           VariableMap[Key] = {Values, nullptr};
468         continue;
469       }
470 
471       // Don't delete dbg.assign intrinsics that are linked to instructions.
472       if (!IsDbgValueKind)
473         continue;
474       ToBeRemoved.push_back(DVI);
475     }
476   }
477 
478   for (auto &Instr : ToBeRemoved)
479     Instr->eraseFromParent();
480 
481   return !ToBeRemoved.empty();
482 }
483 
484 /// Remove redundant undef dbg.assign intrinsic from an entry block using a
485 /// forward scan.
486 /// Strategy:
487 /// ---------------------
488 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
489 /// linked to an intrinsic, and don't share an aggregate variable with a debug
490 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
491 /// that come before non-undef debug intrinsics for the variable are
492 /// deleted. Given:
493 ///
494 ///   dbg.assign undef, "x", FragmentX1 (*)
495 ///   <block of instructions, none being "dbg.value ..., "x", ...">
496 ///   dbg.value %V, "x", FragmentX2
497 ///   <block of instructions, none being "dbg.value ..., "x", ...">
498 ///   dbg.assign undef, "x", FragmentX1
499 ///
500 /// then (only) the instruction marked with (*) can be removed.
501 /// Possible improvements:
502 /// - Keep track of non-overlapping fragments.
503 static bool remomveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
504   assert(BB->isEntryBlock() && "expected entry block");
505   SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved;
506   DenseSet<DebugVariable> SeenDefForAggregate;
507   // Returns the DebugVariable for DVI with no fragment info.
508   auto GetAggregateVariable = [](DbgValueInst *DVI) {
509     return DebugVariable(DVI->getVariable(), std::nullopt,
510                          DVI->getDebugLoc()->getInlinedAt());
511   };
512 
513   // Remove undef dbg.assign intrinsics that are encountered before
514   // any non-undef intrinsics from the entry block.
515   for (auto &I : *BB) {
516     DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I);
517     if (!DVI)
518       continue;
519     auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
520     bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
521     DebugVariable Aggregate = GetAggregateVariable(DVI);
522     if (!SeenDefForAggregate.contains(Aggregate)) {
523       bool IsKill = DVI->isKillLocation() && IsDbgValueKind;
524       if (!IsKill) {
525         SeenDefForAggregate.insert(Aggregate);
526       } else if (DAI) {
527         ToBeRemoved.push_back(DAI);
528       }
529     }
530   }
531 
532   for (DbgAssignIntrinsic *DAI : ToBeRemoved)
533     DAI->eraseFromParent();
534 
535   return !ToBeRemoved.empty();
536 }
537 
538 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
539   bool MadeChanges = false;
540   // By using the "backward scan" strategy before the "forward scan" strategy we
541   // can remove both dbg.value (2) and (3) in a situation like this:
542   //
543   //   (1) dbg.value V1, "x", DIExpression()
544   //       ...
545   //   (2) dbg.value V2, "x", DIExpression()
546   //   (3) dbg.value V1, "x", DIExpression()
547   //
548   // The backward scan will remove (2), it is made obsolete by (3). After
549   // getting (2) out of the way, the foward scan will remove (3) since "x"
550   // already is described as having the value V1 at (1).
551   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
552   if (BB->isEntryBlock() &&
553       isAssignmentTrackingEnabled(*BB->getParent()->getParent()))
554     MadeChanges |= remomveUndefDbgAssignsFromEntryBlock(BB);
555   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
556 
557   if (MadeChanges)
558     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
559                       << BB->getName() << "\n");
560   return MadeChanges;
561 }
562 
563 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) {
564   Instruction &I = *BI;
565   // Replaces all of the uses of the instruction with uses of the value
566   I.replaceAllUsesWith(V);
567 
568   // Make sure to propagate a name if there is one already.
569   if (I.hasName() && !V->hasName())
570     V->takeName(&I);
571 
572   // Delete the unnecessary instruction now...
573   BI = BI->eraseFromParent();
574 }
575 
576 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI,
577                                Instruction *I) {
578   assert(I->getParent() == nullptr &&
579          "ReplaceInstWithInst: Instruction already inserted into basic block!");
580 
581   // Copy debug location to newly added instruction, if it wasn't already set
582   // by the caller.
583   if (!I->getDebugLoc())
584     I->setDebugLoc(BI->getDebugLoc());
585 
586   // Insert the new instruction into the basic block...
587   BasicBlock::iterator New = I->insertInto(BB, BI);
588 
589   // Replace all uses of the old instruction, and delete it.
590   ReplaceInstWithValue(BI, I);
591 
592   // Move BI back to point to the newly inserted instruction
593   BI = New;
594 }
595 
596 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
597   // Remember visited blocks to avoid infinite loop
598   SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
599   unsigned Depth = 0;
600   while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
601          VisitedBlocks.insert(BB).second) {
602     if (BB->getTerminatingDeoptimizeCall() ||
603         isa<UnreachableInst>(BB->getTerminator()))
604       return true;
605     BB = BB->getUniqueSuccessor();
606   }
607   return false;
608 }
609 
610 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
611   BasicBlock::iterator BI(From);
612   ReplaceInstWithInst(From->getParent(), BI, To);
613 }
614 
615 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
616                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
617                             const Twine &BBName) {
618   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
619 
620   Instruction *LatchTerm = BB->getTerminator();
621 
622   CriticalEdgeSplittingOptions Options =
623       CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
624 
625   if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
626     // If it is a critical edge, and the succesor is an exception block, handle
627     // the split edge logic in this specific function
628     if (Succ->isEHPad())
629       return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
630 
631     // If this is a critical edge, let SplitKnownCriticalEdge do it.
632     return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
633   }
634 
635   // If the edge isn't critical, then BB has a single successor or Succ has a
636   // single pred.  Split the block.
637   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
638     // If the successor only has a single pred, split the top of the successor
639     // block.
640     assert(SP == BB && "CFG broken");
641     SP = nullptr;
642     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
643                       /*Before=*/true);
644   }
645 
646   // Otherwise, if BB has a single successor, split it at the bottom of the
647   // block.
648   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
649          "Should have a single succ!");
650   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
651 }
652 
653 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
654   if (auto *II = dyn_cast<InvokeInst>(TI))
655     II->setUnwindDest(Succ);
656   else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
657     CS->setUnwindDest(Succ);
658   else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
659     CR->setUnwindDest(Succ);
660   else
661     llvm_unreachable("unexpected terminator instruction");
662 }
663 
664 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
665                           BasicBlock *NewPred, PHINode *Until) {
666   int BBIdx = 0;
667   for (PHINode &PN : DestBB->phis()) {
668     // We manually update the LandingPadReplacement PHINode and it is the last
669     // PHI Node. So, if we find it, we are done.
670     if (Until == &PN)
671       break;
672 
673     // Reuse the previous value of BBIdx if it lines up.  In cases where we
674     // have multiple phi nodes with *lots* of predecessors, this is a speed
675     // win because we don't have to scan the PHI looking for TIBB.  This
676     // happens because the BB list of PHI nodes are usually in the same
677     // order.
678     if (PN.getIncomingBlock(BBIdx) != OldPred)
679       BBIdx = PN.getBasicBlockIndex(OldPred);
680 
681     assert(BBIdx != -1 && "Invalid PHI Index!");
682     PN.setIncomingBlock(BBIdx, NewPred);
683   }
684 }
685 
686 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
687                                    LandingPadInst *OriginalPad,
688                                    PHINode *LandingPadReplacement,
689                                    const CriticalEdgeSplittingOptions &Options,
690                                    const Twine &BBName) {
691 
692   auto *PadInst = Succ->getFirstNonPHI();
693   if (!LandingPadReplacement && !PadInst->isEHPad())
694     return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
695 
696   auto *LI = Options.LI;
697   SmallVector<BasicBlock *, 4> LoopPreds;
698   // Check if extra modifications will be required to preserve loop-simplify
699   // form after splitting. If it would require splitting blocks with IndirectBr
700   // terminators, bail out if preserving loop-simplify form is requested.
701   if (Options.PreserveLoopSimplify && LI) {
702     if (Loop *BBLoop = LI->getLoopFor(BB)) {
703 
704       // The only way that we can break LoopSimplify form by splitting a
705       // critical edge is when there exists some edge from BBLoop to Succ *and*
706       // the only edge into Succ from outside of BBLoop is that of NewBB after
707       // the split. If the first isn't true, then LoopSimplify still holds,
708       // NewBB is the new exit block and it has no non-loop predecessors. If the
709       // second isn't true, then Succ was not in LoopSimplify form prior to
710       // the split as it had a non-loop predecessor. In both of these cases,
711       // the predecessor must be directly in BBLoop, not in a subloop, or again
712       // LoopSimplify doesn't hold.
713       for (BasicBlock *P : predecessors(Succ)) {
714         if (P == BB)
715           continue; // The new block is known.
716         if (LI->getLoopFor(P) != BBLoop) {
717           // Loop is not in LoopSimplify form, no need to re simplify after
718           // splitting edge.
719           LoopPreds.clear();
720           break;
721         }
722         LoopPreds.push_back(P);
723       }
724       // Loop-simplify form can be preserved, if we can split all in-loop
725       // predecessors.
726       if (any_of(LoopPreds, [](BasicBlock *Pred) {
727             return isa<IndirectBrInst>(Pred->getTerminator());
728           })) {
729         return nullptr;
730       }
731     }
732   }
733 
734   auto *NewBB =
735       BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
736   setUnwindEdgeTo(BB->getTerminator(), NewBB);
737   updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
738 
739   if (LandingPadReplacement) {
740     auto *NewLP = OriginalPad->clone();
741     auto *Terminator = BranchInst::Create(Succ, NewBB);
742     NewLP->insertBefore(Terminator);
743     LandingPadReplacement->addIncoming(NewLP, NewBB);
744   } else {
745     Value *ParentPad = nullptr;
746     if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
747       ParentPad = FuncletPad->getParentPad();
748     else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
749       ParentPad = CatchSwitch->getParentPad();
750     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
751       ParentPad = CleanupPad->getParentPad();
752     else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
753       ParentPad = LandingPad->getParent();
754     else
755       llvm_unreachable("handling for other EHPads not implemented yet");
756 
757     auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
758     CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
759   }
760 
761   auto *DT = Options.DT;
762   auto *MSSAU = Options.MSSAU;
763   if (!DT && !LI)
764     return NewBB;
765 
766   if (DT) {
767     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
768     SmallVector<DominatorTree::UpdateType, 3> Updates;
769 
770     Updates.push_back({DominatorTree::Insert, BB, NewBB});
771     Updates.push_back({DominatorTree::Insert, NewBB, Succ});
772     Updates.push_back({DominatorTree::Delete, BB, Succ});
773 
774     DTU.applyUpdates(Updates);
775     DTU.flush();
776 
777     if (MSSAU) {
778       MSSAU->applyUpdates(Updates, *DT);
779       if (VerifyMemorySSA)
780         MSSAU->getMemorySSA()->verifyMemorySSA();
781     }
782   }
783 
784   if (LI) {
785     if (Loop *BBLoop = LI->getLoopFor(BB)) {
786       // If one or the other blocks were not in a loop, the new block is not
787       // either, and thus LI doesn't need to be updated.
788       if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
789         if (BBLoop == SuccLoop) {
790           // Both in the same loop, the NewBB joins loop.
791           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
792         } else if (BBLoop->contains(SuccLoop)) {
793           // Edge from an outer loop to an inner loop.  Add to the outer loop.
794           BBLoop->addBasicBlockToLoop(NewBB, *LI);
795         } else if (SuccLoop->contains(BBLoop)) {
796           // Edge from an inner loop to an outer loop.  Add to the outer loop.
797           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
798         } else {
799           // Edge from two loops with no containment relation.  Because these
800           // are natural loops, we know that the destination block must be the
801           // header of its loop (adding a branch into a loop elsewhere would
802           // create an irreducible loop).
803           assert(SuccLoop->getHeader() == Succ &&
804                  "Should not create irreducible loops!");
805           if (Loop *P = SuccLoop->getParentLoop())
806             P->addBasicBlockToLoop(NewBB, *LI);
807         }
808       }
809 
810       // If BB is in a loop and Succ is outside of that loop, we may need to
811       // update LoopSimplify form and LCSSA form.
812       if (!BBLoop->contains(Succ)) {
813         assert(!BBLoop->contains(NewBB) &&
814                "Split point for loop exit is contained in loop!");
815 
816         // Update LCSSA form in the newly created exit block.
817         if (Options.PreserveLCSSA) {
818           createPHIsForSplitLoopExit(BB, NewBB, Succ);
819         }
820 
821         if (!LoopPreds.empty()) {
822           BasicBlock *NewExitBB = SplitBlockPredecessors(
823               Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
824           if (Options.PreserveLCSSA)
825             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
826         }
827       }
828     }
829   }
830 
831   return NewBB;
832 }
833 
834 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
835                                       BasicBlock *SplitBB, BasicBlock *DestBB) {
836   // SplitBB shouldn't have anything non-trivial in it yet.
837   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
838           SplitBB->isLandingPad()) &&
839          "SplitBB has non-PHI nodes!");
840 
841   // For each PHI in the destination block.
842   for (PHINode &PN : DestBB->phis()) {
843     int Idx = PN.getBasicBlockIndex(SplitBB);
844     assert(Idx >= 0 && "Invalid Block Index");
845     Value *V = PN.getIncomingValue(Idx);
846 
847     // If the input is a PHI which already satisfies LCSSA, don't create
848     // a new one.
849     if (const PHINode *VP = dyn_cast<PHINode>(V))
850       if (VP->getParent() == SplitBB)
851         continue;
852 
853     // Otherwise a new PHI is needed. Create one and populate it.
854     PHINode *NewPN = PHINode::Create(
855         PN.getType(), Preds.size(), "split",
856         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
857     for (BasicBlock *BB : Preds)
858       NewPN->addIncoming(V, BB);
859 
860     // Update the original PHI.
861     PN.setIncomingValue(Idx, NewPN);
862   }
863 }
864 
865 unsigned
866 llvm::SplitAllCriticalEdges(Function &F,
867                             const CriticalEdgeSplittingOptions &Options) {
868   unsigned NumBroken = 0;
869   for (BasicBlock &BB : F) {
870     Instruction *TI = BB.getTerminator();
871     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
872       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
873         if (SplitCriticalEdge(TI, i, Options))
874           ++NumBroken;
875   }
876   return NumBroken;
877 }
878 
879 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
880                                   DomTreeUpdater *DTU, DominatorTree *DT,
881                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
882                                   const Twine &BBName, bool Before) {
883   if (Before) {
884     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
885     return splitBlockBefore(Old, SplitPt,
886                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
887                             BBName);
888   }
889   BasicBlock::iterator SplitIt = SplitPt->getIterator();
890   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
891     ++SplitIt;
892     assert(SplitIt != SplitPt->getParent()->end());
893   }
894   std::string Name = BBName.str();
895   BasicBlock *New = Old->splitBasicBlock(
896       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
897 
898   // The new block lives in whichever loop the old one did. This preserves
899   // LCSSA as well, because we force the split point to be after any PHI nodes.
900   if (LI)
901     if (Loop *L = LI->getLoopFor(Old))
902       L->addBasicBlockToLoop(New, *LI);
903 
904   if (DTU) {
905     SmallVector<DominatorTree::UpdateType, 8> Updates;
906     // Old dominates New. New node dominates all other nodes dominated by Old.
907     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
908     Updates.push_back({DominatorTree::Insert, Old, New});
909     Updates.reserve(Updates.size() + 2 * succ_size(New));
910     for (BasicBlock *SuccessorOfOld : successors(New))
911       if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
912         Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
913         Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
914       }
915 
916     DTU->applyUpdates(Updates);
917   } else if (DT)
918     // Old dominates New. New node dominates all other nodes dominated by Old.
919     if (DomTreeNode *OldNode = DT->getNode(Old)) {
920       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
921 
922       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
923       for (DomTreeNode *I : Children)
924         DT->changeImmediateDominator(I, NewNode);
925     }
926 
927   // Move MemoryAccesses still tracked in Old, but part of New now.
928   // Update accesses in successor blocks accordingly.
929   if (MSSAU)
930     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
931 
932   return New;
933 }
934 
935 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
936                              DominatorTree *DT, LoopInfo *LI,
937                              MemorySSAUpdater *MSSAU, const Twine &BBName,
938                              bool Before) {
939   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
940                         Before);
941 }
942 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
943                              DomTreeUpdater *DTU, LoopInfo *LI,
944                              MemorySSAUpdater *MSSAU, const Twine &BBName,
945                              bool Before) {
946   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
947                         Before);
948 }
949 
950 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
951                                    DomTreeUpdater *DTU, LoopInfo *LI,
952                                    MemorySSAUpdater *MSSAU,
953                                    const Twine &BBName) {
954 
955   BasicBlock::iterator SplitIt = SplitPt->getIterator();
956   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
957     ++SplitIt;
958   std::string Name = BBName.str();
959   BasicBlock *New = Old->splitBasicBlock(
960       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
961       /* Before=*/true);
962 
963   // The new block lives in whichever loop the old one did. This preserves
964   // LCSSA as well, because we force the split point to be after any PHI nodes.
965   if (LI)
966     if (Loop *L = LI->getLoopFor(Old))
967       L->addBasicBlockToLoop(New, *LI);
968 
969   if (DTU) {
970     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
971     // New dominates Old. The predecessor nodes of the Old node dominate
972     // New node.
973     SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
974     DTUpdates.push_back({DominatorTree::Insert, New, Old});
975     DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
976     for (BasicBlock *PredecessorOfOld : predecessors(New))
977       if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
978         DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
979         DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
980       }
981 
982     DTU->applyUpdates(DTUpdates);
983 
984     // Move MemoryAccesses still tracked in Old, but part of New now.
985     // Update accesses in successor blocks accordingly.
986     if (MSSAU) {
987       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
988       if (VerifyMemorySSA)
989         MSSAU->getMemorySSA()->verifyMemorySSA();
990     }
991   }
992   return New;
993 }
994 
995 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
996 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
997                                       ArrayRef<BasicBlock *> Preds,
998                                       DomTreeUpdater *DTU, DominatorTree *DT,
999                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
1000                                       bool PreserveLCSSA, bool &HasLoopExit) {
1001   // Update dominator tree if available.
1002   if (DTU) {
1003     // Recalculation of DomTree is needed when updating a forward DomTree and
1004     // the Entry BB is replaced.
1005     if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
1006       // The entry block was removed and there is no external interface for
1007       // the dominator tree to be notified of this change. In this corner-case
1008       // we recalculate the entire tree.
1009       DTU->recalculate(*NewBB->getParent());
1010     } else {
1011       // Split block expects NewBB to have a non-empty set of predecessors.
1012       SmallVector<DominatorTree::UpdateType, 8> Updates;
1013       SmallPtrSet<BasicBlock *, 8> UniquePreds;
1014       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
1015       Updates.reserve(Updates.size() + 2 * Preds.size());
1016       for (auto *Pred : Preds)
1017         if (UniquePreds.insert(Pred).second) {
1018           Updates.push_back({DominatorTree::Insert, Pred, NewBB});
1019           Updates.push_back({DominatorTree::Delete, Pred, OldBB});
1020         }
1021       DTU->applyUpdates(Updates);
1022     }
1023   } else if (DT) {
1024     if (OldBB == DT->getRootNode()->getBlock()) {
1025       assert(NewBB->isEntryBlock());
1026       DT->setNewRoot(NewBB);
1027     } else {
1028       // Split block expects NewBB to have a non-empty set of predecessors.
1029       DT->splitBlock(NewBB);
1030     }
1031   }
1032 
1033   // Update MemoryPhis after split if MemorySSA is available
1034   if (MSSAU)
1035     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
1036 
1037   // The rest of the logic is only relevant for updating the loop structures.
1038   if (!LI)
1039     return;
1040 
1041   if (DTU && DTU->hasDomTree())
1042     DT = &DTU->getDomTree();
1043   assert(DT && "DT should be available to update LoopInfo!");
1044   Loop *L = LI->getLoopFor(OldBB);
1045 
1046   // If we need to preserve loop analyses, collect some information about how
1047   // this split will affect loops.
1048   bool IsLoopEntry = !!L;
1049   bool SplitMakesNewLoopHeader = false;
1050   for (BasicBlock *Pred : Preds) {
1051     // Preds that are not reachable from entry should not be used to identify if
1052     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
1053     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
1054     // as true and make the NewBB the header of some loop. This breaks LI.
1055     if (!DT->isReachableFromEntry(Pred))
1056       continue;
1057     // If we need to preserve LCSSA, determine if any of the preds is a loop
1058     // exit.
1059     if (PreserveLCSSA)
1060       if (Loop *PL = LI->getLoopFor(Pred))
1061         if (!PL->contains(OldBB))
1062           HasLoopExit = true;
1063 
1064     // If we need to preserve LoopInfo, note whether any of the preds crosses
1065     // an interesting loop boundary.
1066     if (!L)
1067       continue;
1068     if (L->contains(Pred))
1069       IsLoopEntry = false;
1070     else
1071       SplitMakesNewLoopHeader = true;
1072   }
1073 
1074   // Unless we have a loop for OldBB, nothing else to do here.
1075   if (!L)
1076     return;
1077 
1078   if (IsLoopEntry) {
1079     // Add the new block to the nearest enclosing loop (and not an adjacent
1080     // loop). To find this, examine each of the predecessors and determine which
1081     // loops enclose them, and select the most-nested loop which contains the
1082     // loop containing the block being split.
1083     Loop *InnermostPredLoop = nullptr;
1084     for (BasicBlock *Pred : Preds) {
1085       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
1086         // Seek a loop which actually contains the block being split (to avoid
1087         // adjacent loops).
1088         while (PredLoop && !PredLoop->contains(OldBB))
1089           PredLoop = PredLoop->getParentLoop();
1090 
1091         // Select the most-nested of these loops which contains the block.
1092         if (PredLoop && PredLoop->contains(OldBB) &&
1093             (!InnermostPredLoop ||
1094              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
1095           InnermostPredLoop = PredLoop;
1096       }
1097     }
1098 
1099     if (InnermostPredLoop)
1100       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1101   } else {
1102     L->addBasicBlockToLoop(NewBB, *LI);
1103     if (SplitMakesNewLoopHeader)
1104       L->moveToHeader(NewBB);
1105   }
1106 }
1107 
1108 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1109 /// This also updates AliasAnalysis, if available.
1110 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1111                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1112                            bool HasLoopExit) {
1113   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1114   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1115   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1116     PHINode *PN = cast<PHINode>(I++);
1117 
1118     // Check to see if all of the values coming in are the same.  If so, we
1119     // don't need to create a new PHI node, unless it's needed for LCSSA.
1120     Value *InVal = nullptr;
1121     if (!HasLoopExit) {
1122       InVal = PN->getIncomingValueForBlock(Preds[0]);
1123       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1124         if (!PredSet.count(PN->getIncomingBlock(i)))
1125           continue;
1126         if (!InVal)
1127           InVal = PN->getIncomingValue(i);
1128         else if (InVal != PN->getIncomingValue(i)) {
1129           InVal = nullptr;
1130           break;
1131         }
1132       }
1133     }
1134 
1135     if (InVal) {
1136       // If all incoming values for the new PHI would be the same, just don't
1137       // make a new PHI.  Instead, just remove the incoming values from the old
1138       // PHI.
1139 
1140       // NOTE! This loop walks backwards for a reason! First off, this minimizes
1141       // the cost of removal if we end up removing a large number of values, and
1142       // second off, this ensures that the indices for the incoming values
1143       // aren't invalidated when we remove one.
1144       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
1145         if (PredSet.count(PN->getIncomingBlock(i)))
1146           PN->removeIncomingValue(i, false);
1147 
1148       // Add an incoming value to the PHI node in the loop for the preheader
1149       // edge.
1150       PN->addIncoming(InVal, NewBB);
1151       continue;
1152     }
1153 
1154     // If the values coming into the block are not the same, we need a new
1155     // PHI.
1156     // Create the new PHI node, insert it into NewBB at the end of the block
1157     PHINode *NewPHI =
1158         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1159 
1160     // NOTE! This loop walks backwards for a reason! First off, this minimizes
1161     // the cost of removal if we end up removing a large number of values, and
1162     // second off, this ensures that the indices for the incoming values aren't
1163     // invalidated when we remove one.
1164     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1165       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1166       if (PredSet.count(IncomingBB)) {
1167         Value *V = PN->removeIncomingValue(i, false);
1168         NewPHI->addIncoming(V, IncomingBB);
1169       }
1170     }
1171 
1172     PN->addIncoming(NewPHI, NewBB);
1173   }
1174 }
1175 
1176 static void SplitLandingPadPredecessorsImpl(
1177     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1178     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1179     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1180     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1181 
1182 static BasicBlock *
1183 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1184                            const char *Suffix, DomTreeUpdater *DTU,
1185                            DominatorTree *DT, LoopInfo *LI,
1186                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1187   // Do not attempt to split that which cannot be split.
1188   if (!BB->canSplitPredecessors())
1189     return nullptr;
1190 
1191   // For the landingpads we need to act a bit differently.
1192   // Delegate this work to the SplitLandingPadPredecessors.
1193   if (BB->isLandingPad()) {
1194     SmallVector<BasicBlock*, 2> NewBBs;
1195     std::string NewName = std::string(Suffix) + ".split-lp";
1196 
1197     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1198                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
1199     return NewBBs[0];
1200   }
1201 
1202   // Create new basic block, insert right before the original block.
1203   BasicBlock *NewBB = BasicBlock::Create(
1204       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1205 
1206   // The new block unconditionally branches to the old block.
1207   BranchInst *BI = BranchInst::Create(BB, NewBB);
1208 
1209   Loop *L = nullptr;
1210   BasicBlock *OldLatch = nullptr;
1211   // Splitting the predecessors of a loop header creates a preheader block.
1212   if (LI && LI->isLoopHeader(BB)) {
1213     L = LI->getLoopFor(BB);
1214     // Using the loop start line number prevents debuggers stepping into the
1215     // loop body for this instruction.
1216     BI->setDebugLoc(L->getStartLoc());
1217 
1218     // If BB is the header of the Loop, it is possible that the loop is
1219     // modified, such that the current latch does not remain the latch of the
1220     // loop. If that is the case, the loop metadata from the current latch needs
1221     // to be applied to the new latch.
1222     OldLatch = L->getLoopLatch();
1223   } else
1224     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1225 
1226   // Move the edges from Preds to point to NewBB instead of BB.
1227   for (BasicBlock *Pred : Preds) {
1228     // This is slightly more strict than necessary; the minimum requirement
1229     // is that there be no more than one indirectbr branching to BB. And
1230     // all BlockAddress uses would need to be updated.
1231     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1232            "Cannot split an edge from an IndirectBrInst");
1233     Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
1234   }
1235 
1236   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1237   // node becomes an incoming value for BB's phi node.  However, if the Preds
1238   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1239   // account for the newly created predecessor.
1240   if (Preds.empty()) {
1241     // Insert dummy values as the incoming value.
1242     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1243       cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
1244   }
1245 
1246   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1247   bool HasLoopExit = false;
1248   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1249                             HasLoopExit);
1250 
1251   if (!Preds.empty()) {
1252     // Update the PHI nodes in BB with the values coming from NewBB.
1253     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1254   }
1255 
1256   if (OldLatch) {
1257     BasicBlock *NewLatch = L->getLoopLatch();
1258     if (NewLatch != OldLatch) {
1259       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1260       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1261       // It's still possible that OldLatch is the latch of another inner loop,
1262       // in which case we do not remove the metadata.
1263       Loop *IL = LI->getLoopFor(OldLatch);
1264       if (IL && IL->getLoopLatch() != OldLatch)
1265         OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1266     }
1267   }
1268 
1269   return NewBB;
1270 }
1271 
1272 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1273                                          ArrayRef<BasicBlock *> Preds,
1274                                          const char *Suffix, DominatorTree *DT,
1275                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
1276                                          bool PreserveLCSSA) {
1277   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1278                                     MSSAU, PreserveLCSSA);
1279 }
1280 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1281                                          ArrayRef<BasicBlock *> Preds,
1282                                          const char *Suffix,
1283                                          DomTreeUpdater *DTU, LoopInfo *LI,
1284                                          MemorySSAUpdater *MSSAU,
1285                                          bool PreserveLCSSA) {
1286   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1287                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1288 }
1289 
1290 static void SplitLandingPadPredecessorsImpl(
1291     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1292     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1293     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1294     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1295   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1296 
1297   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1298   // it right before the original block.
1299   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1300                                           OrigBB->getName() + Suffix1,
1301                                           OrigBB->getParent(), OrigBB);
1302   NewBBs.push_back(NewBB1);
1303 
1304   // The new block unconditionally branches to the old block.
1305   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1306   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1307 
1308   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1309   for (BasicBlock *Pred : Preds) {
1310     // This is slightly more strict than necessary; the minimum requirement
1311     // is that there be no more than one indirectbr branching to BB. And
1312     // all BlockAddress uses would need to be updated.
1313     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1314            "Cannot split an edge from an IndirectBrInst");
1315     Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1316   }
1317 
1318   bool HasLoopExit = false;
1319   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1320                             PreserveLCSSA, HasLoopExit);
1321 
1322   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1323   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1324 
1325   // Move the remaining edges from OrigBB to point to NewBB2.
1326   SmallVector<BasicBlock*, 8> NewBB2Preds;
1327   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1328        i != e; ) {
1329     BasicBlock *Pred = *i++;
1330     if (Pred == NewBB1) continue;
1331     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1332            "Cannot split an edge from an IndirectBrInst");
1333     NewBB2Preds.push_back(Pred);
1334     e = pred_end(OrigBB);
1335   }
1336 
1337   BasicBlock *NewBB2 = nullptr;
1338   if (!NewBB2Preds.empty()) {
1339     // Create another basic block for the rest of OrigBB's predecessors.
1340     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1341                                 OrigBB->getName() + Suffix2,
1342                                 OrigBB->getParent(), OrigBB);
1343     NewBBs.push_back(NewBB2);
1344 
1345     // The new block unconditionally branches to the old block.
1346     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1347     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1348 
1349     // Move the remaining edges from OrigBB to point to NewBB2.
1350     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1351       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1352 
1353     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1354     HasLoopExit = false;
1355     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1356                               PreserveLCSSA, HasLoopExit);
1357 
1358     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1359     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1360   }
1361 
1362   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1363   Instruction *Clone1 = LPad->clone();
1364   Clone1->setName(Twine("lpad") + Suffix1);
1365   Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
1366 
1367   if (NewBB2) {
1368     Instruction *Clone2 = LPad->clone();
1369     Clone2->setName(Twine("lpad") + Suffix2);
1370     Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
1371 
1372     // Create a PHI node for the two cloned landingpad instructions only
1373     // if the original landingpad instruction has some uses.
1374     if (!LPad->use_empty()) {
1375       assert(!LPad->getType()->isTokenTy() &&
1376              "Split cannot be applied if LPad is token type. Otherwise an "
1377              "invalid PHINode of token type would be created.");
1378       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1379       PN->addIncoming(Clone1, NewBB1);
1380       PN->addIncoming(Clone2, NewBB2);
1381       LPad->replaceAllUsesWith(PN);
1382     }
1383     LPad->eraseFromParent();
1384   } else {
1385     // There is no second clone. Just replace the landing pad with the first
1386     // clone.
1387     LPad->replaceAllUsesWith(Clone1);
1388     LPad->eraseFromParent();
1389   }
1390 }
1391 
1392 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1393                                        ArrayRef<BasicBlock *> Preds,
1394                                        const char *Suffix1, const char *Suffix2,
1395                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1396                                        DominatorTree *DT, LoopInfo *LI,
1397                                        MemorySSAUpdater *MSSAU,
1398                                        bool PreserveLCSSA) {
1399   return SplitLandingPadPredecessorsImpl(
1400       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1401       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1402 }
1403 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1404                                        ArrayRef<BasicBlock *> Preds,
1405                                        const char *Suffix1, const char *Suffix2,
1406                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1407                                        DomTreeUpdater *DTU, LoopInfo *LI,
1408                                        MemorySSAUpdater *MSSAU,
1409                                        bool PreserveLCSSA) {
1410   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1411                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1412                                          PreserveLCSSA);
1413 }
1414 
1415 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1416                                              BasicBlock *Pred,
1417                                              DomTreeUpdater *DTU) {
1418   Instruction *UncondBranch = Pred->getTerminator();
1419   // Clone the return and add it to the end of the predecessor.
1420   Instruction *NewRet = RI->clone();
1421   NewRet->insertInto(Pred, Pred->end());
1422 
1423   // If the return instruction returns a value, and if the value was a
1424   // PHI node in "BB", propagate the right value into the return.
1425   for (Use &Op : NewRet->operands()) {
1426     Value *V = Op;
1427     Instruction *NewBC = nullptr;
1428     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1429       // Return value might be bitcasted. Clone and insert it before the
1430       // return instruction.
1431       V = BCI->getOperand(0);
1432       NewBC = BCI->clone();
1433       NewBC->insertInto(Pred, NewRet->getIterator());
1434       Op = NewBC;
1435     }
1436 
1437     Instruction *NewEV = nullptr;
1438     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1439       V = EVI->getOperand(0);
1440       NewEV = EVI->clone();
1441       if (NewBC) {
1442         NewBC->setOperand(0, NewEV);
1443         NewEV->insertInto(Pred, NewBC->getIterator());
1444       } else {
1445         NewEV->insertInto(Pred, NewRet->getIterator());
1446         Op = NewEV;
1447       }
1448     }
1449 
1450     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1451       if (PN->getParent() == BB) {
1452         if (NewEV) {
1453           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1454         } else if (NewBC)
1455           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1456         else
1457           Op = PN->getIncomingValueForBlock(Pred);
1458       }
1459     }
1460   }
1461 
1462   // Update any PHI nodes in the returning block to realize that we no
1463   // longer branch to them.
1464   BB->removePredecessor(Pred);
1465   UncondBranch->eraseFromParent();
1466 
1467   if (DTU)
1468     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1469 
1470   return cast<ReturnInst>(NewRet);
1471 }
1472 
1473 static Instruction *
1474 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1475                               bool Unreachable, MDNode *BranchWeights,
1476                               DomTreeUpdater *DTU, DominatorTree *DT,
1477                               LoopInfo *LI, BasicBlock *ThenBlock) {
1478   SmallVector<DominatorTree::UpdateType, 8> Updates;
1479   BasicBlock *Head = SplitBefore->getParent();
1480   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1481   if (DTU) {
1482     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead;
1483     Updates.push_back({DominatorTree::Insert, Head, Tail});
1484     Updates.reserve(Updates.size() + 2 * succ_size(Tail));
1485     for (BasicBlock *SuccessorOfHead : successors(Tail))
1486       if (UniqueSuccessorsOfHead.insert(SuccessorOfHead).second) {
1487         Updates.push_back({DominatorTree::Insert, Tail, SuccessorOfHead});
1488         Updates.push_back({DominatorTree::Delete, Head, SuccessorOfHead});
1489       }
1490   }
1491   Instruction *HeadOldTerm = Head->getTerminator();
1492   LLVMContext &C = Head->getContext();
1493   Instruction *CheckTerm;
1494   bool CreateThenBlock = (ThenBlock == nullptr);
1495   if (CreateThenBlock) {
1496     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1497     if (Unreachable)
1498       CheckTerm = new UnreachableInst(C, ThenBlock);
1499     else {
1500       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1501       if (DTU)
1502         Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1503     }
1504     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1505   } else
1506     CheckTerm = ThenBlock->getTerminator();
1507   BranchInst *HeadNewTerm =
1508       BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1509   if (DTU)
1510     Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1511   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1512   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1513 
1514   if (DTU)
1515     DTU->applyUpdates(Updates);
1516   else if (DT) {
1517     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1518       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1519 
1520       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1521       for (DomTreeNode *Child : Children)
1522         DT->changeImmediateDominator(Child, NewNode);
1523 
1524       // Head dominates ThenBlock.
1525       if (CreateThenBlock)
1526         DT->addNewBlock(ThenBlock, Head);
1527       else
1528         DT->changeImmediateDominator(ThenBlock, Head);
1529     }
1530   }
1531 
1532   if (LI) {
1533     if (Loop *L = LI->getLoopFor(Head)) {
1534       L->addBasicBlockToLoop(ThenBlock, *LI);
1535       L->addBasicBlockToLoop(Tail, *LI);
1536     }
1537   }
1538 
1539   return CheckTerm;
1540 }
1541 
1542 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1543                                              Instruction *SplitBefore,
1544                                              bool Unreachable,
1545                                              MDNode *BranchWeights,
1546                                              DominatorTree *DT, LoopInfo *LI,
1547                                              BasicBlock *ThenBlock) {
1548   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1549                                        BranchWeights,
1550                                        /*DTU=*/nullptr, DT, LI, ThenBlock);
1551 }
1552 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1553                                              Instruction *SplitBefore,
1554                                              bool Unreachable,
1555                                              MDNode *BranchWeights,
1556                                              DomTreeUpdater *DTU, LoopInfo *LI,
1557                                              BasicBlock *ThenBlock) {
1558   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1559                                        BranchWeights, DTU, /*DT=*/nullptr, LI,
1560                                        ThenBlock);
1561 }
1562 
1563 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1564                                          Instruction **ThenTerm,
1565                                          Instruction **ElseTerm,
1566                                          MDNode *BranchWeights,
1567                                          DomTreeUpdater *DTU) {
1568   BasicBlock *Head = SplitBefore->getParent();
1569 
1570   SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
1571   if (DTU)
1572     UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head));
1573 
1574   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1575   Instruction *HeadOldTerm = Head->getTerminator();
1576   LLVMContext &C = Head->getContext();
1577   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1578   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1579   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1580   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1581   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1582   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1583   BranchInst *HeadNewTerm =
1584     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1585   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1586   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1587   if (DTU) {
1588     SmallVector<DominatorTree::UpdateType, 8> Updates;
1589     Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
1590     for (BasicBlock *Succ : successors(Head)) {
1591       Updates.push_back({DominatorTree::Insert, Head, Succ});
1592       Updates.push_back({DominatorTree::Insert, Succ, Tail});
1593     }
1594     for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1595       Updates.push_back({DominatorTree::Insert, Tail, UniqueOrigSuccessor});
1596     for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1597       Updates.push_back({DominatorTree::Delete, Head, UniqueOrigSuccessor});
1598     DTU->applyUpdates(Updates);
1599   }
1600 }
1601 
1602 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1603                                  BasicBlock *&IfFalse) {
1604   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1605   BasicBlock *Pred1 = nullptr;
1606   BasicBlock *Pred2 = nullptr;
1607 
1608   if (SomePHI) {
1609     if (SomePHI->getNumIncomingValues() != 2)
1610       return nullptr;
1611     Pred1 = SomePHI->getIncomingBlock(0);
1612     Pred2 = SomePHI->getIncomingBlock(1);
1613   } else {
1614     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1615     if (PI == PE) // No predecessor
1616       return nullptr;
1617     Pred1 = *PI++;
1618     if (PI == PE) // Only one predecessor
1619       return nullptr;
1620     Pred2 = *PI++;
1621     if (PI != PE) // More than two predecessors
1622       return nullptr;
1623   }
1624 
1625   // We can only handle branches.  Other control flow will be lowered to
1626   // branches if possible anyway.
1627   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1628   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1629   if (!Pred1Br || !Pred2Br)
1630     return nullptr;
1631 
1632   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1633   // either are.
1634   if (Pred2Br->isConditional()) {
1635     // If both branches are conditional, we don't have an "if statement".  In
1636     // reality, we could transform this case, but since the condition will be
1637     // required anyway, we stand no chance of eliminating it, so the xform is
1638     // probably not profitable.
1639     if (Pred1Br->isConditional())
1640       return nullptr;
1641 
1642     std::swap(Pred1, Pred2);
1643     std::swap(Pred1Br, Pred2Br);
1644   }
1645 
1646   if (Pred1Br->isConditional()) {
1647     // The only thing we have to watch out for here is to make sure that Pred2
1648     // doesn't have incoming edges from other blocks.  If it does, the condition
1649     // doesn't dominate BB.
1650     if (!Pred2->getSinglePredecessor())
1651       return nullptr;
1652 
1653     // If we found a conditional branch predecessor, make sure that it branches
1654     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1655     if (Pred1Br->getSuccessor(0) == BB &&
1656         Pred1Br->getSuccessor(1) == Pred2) {
1657       IfTrue = Pred1;
1658       IfFalse = Pred2;
1659     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1660                Pred1Br->getSuccessor(1) == BB) {
1661       IfTrue = Pred2;
1662       IfFalse = Pred1;
1663     } else {
1664       // We know that one arm of the conditional goes to BB, so the other must
1665       // go somewhere unrelated, and this must not be an "if statement".
1666       return nullptr;
1667     }
1668 
1669     return Pred1Br;
1670   }
1671 
1672   // Ok, if we got here, both predecessors end with an unconditional branch to
1673   // BB.  Don't panic!  If both blocks only have a single (identical)
1674   // predecessor, and THAT is a conditional branch, then we're all ok!
1675   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1676   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1677     return nullptr;
1678 
1679   // Otherwise, if this is a conditional branch, then we can use it!
1680   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1681   if (!BI) return nullptr;
1682 
1683   assert(BI->isConditional() && "Two successors but not conditional?");
1684   if (BI->getSuccessor(0) == Pred1) {
1685     IfTrue = Pred1;
1686     IfFalse = Pred2;
1687   } else {
1688     IfTrue = Pred2;
1689     IfFalse = Pred1;
1690   }
1691   return BI;
1692 }
1693 
1694 // After creating a control flow hub, the operands of PHINodes in an outgoing
1695 // block Out no longer match the predecessors of that block. Predecessors of Out
1696 // that are incoming blocks to the hub are now replaced by just one edge from
1697 // the hub. To match this new control flow, the corresponding values from each
1698 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1699 //
1700 // This operation cannot be performed with SSAUpdater, because it involves one
1701 // new use: If the block Out is in the list of Incoming blocks, then the newly
1702 // created PHI in the Hub will use itself along that edge from Out to Hub.
1703 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1704                           const SetVector<BasicBlock *> &Incoming,
1705                           BasicBlock *FirstGuardBlock) {
1706   auto I = Out->begin();
1707   while (I != Out->end() && isa<PHINode>(I)) {
1708     auto Phi = cast<PHINode>(I);
1709     auto NewPhi =
1710         PHINode::Create(Phi->getType(), Incoming.size(),
1711                         Phi->getName() + ".moved", &FirstGuardBlock->front());
1712     for (auto *In : Incoming) {
1713       Value *V = UndefValue::get(Phi->getType());
1714       if (In == Out) {
1715         V = NewPhi;
1716       } else if (Phi->getBasicBlockIndex(In) != -1) {
1717         V = Phi->removeIncomingValue(In, false);
1718       }
1719       NewPhi->addIncoming(V, In);
1720     }
1721     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1722     if (Phi->getNumOperands() == 0) {
1723       Phi->replaceAllUsesWith(NewPhi);
1724       I = Phi->eraseFromParent();
1725       continue;
1726     }
1727     Phi->addIncoming(NewPhi, GuardBlock);
1728     ++I;
1729   }
1730 }
1731 
1732 using BBPredicates = DenseMap<BasicBlock *, Instruction *>;
1733 using BBSetVector = SetVector<BasicBlock *>;
1734 
1735 // Redirects the terminator of the incoming block to the first guard
1736 // block in the hub. The condition of the original terminator (if it
1737 // was conditional) and its original successors are returned as a
1738 // tuple <condition, succ0, succ1>. The function additionally filters
1739 // out successors that are not in the set of outgoing blocks.
1740 //
1741 // - condition is non-null iff the branch is conditional.
1742 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1743 // - Succ2 is non-null iff condition is non-null and the fallthrough
1744 //         target is an outgoing block.
1745 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1746 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1747               const BBSetVector &Outgoing) {
1748   assert(isa<BranchInst>(BB->getTerminator()) &&
1749          "Only support branch terminator.");
1750   auto Branch = cast<BranchInst>(BB->getTerminator());
1751   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1752 
1753   BasicBlock *Succ0 = Branch->getSuccessor(0);
1754   BasicBlock *Succ1 = nullptr;
1755   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1756 
1757   if (Branch->isUnconditional()) {
1758     Branch->setSuccessor(0, FirstGuardBlock);
1759     assert(Succ0);
1760   } else {
1761     Succ1 = Branch->getSuccessor(1);
1762     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1763     assert(Succ0 || Succ1);
1764     if (Succ0 && !Succ1) {
1765       Branch->setSuccessor(0, FirstGuardBlock);
1766     } else if (Succ1 && !Succ0) {
1767       Branch->setSuccessor(1, FirstGuardBlock);
1768     } else {
1769       Branch->eraseFromParent();
1770       BranchInst::Create(FirstGuardBlock, BB);
1771     }
1772   }
1773 
1774   assert(Succ0 || Succ1);
1775   return std::make_tuple(Condition, Succ0, Succ1);
1776 }
1777 // Setup the branch instructions for guard blocks.
1778 //
1779 // Each guard block terminates in a conditional branch that transfers
1780 // control to the corresponding outgoing block or the next guard
1781 // block. The last guard block has two outgoing blocks as successors
1782 // since the condition for the final outgoing block is trivially
1783 // true. So we create one less block (including the first guard block)
1784 // than the number of outgoing blocks.
1785 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1786                                 const BBSetVector &Outgoing,
1787                                 BBPredicates &GuardPredicates) {
1788   // To help keep the loop simple, temporarily append the last
1789   // outgoing block to the list of guard blocks.
1790   GuardBlocks.push_back(Outgoing.back());
1791 
1792   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1793     auto Out = Outgoing[i];
1794     assert(GuardPredicates.count(Out));
1795     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1796                        GuardBlocks[i]);
1797   }
1798 
1799   // Remove the last block from the guard list.
1800   GuardBlocks.pop_back();
1801 }
1802 
1803 /// We are using one integer to represent the block we are branching to. Then at
1804 /// each guard block, the predicate was calcuated using a simple `icmp eq`.
1805 static void calcPredicateUsingInteger(
1806     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1807     SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) {
1808   auto &Context = Incoming.front()->getContext();
1809   auto FirstGuardBlock = GuardBlocks.front();
1810 
1811   auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(),
1812                              "merged.bb.idx", FirstGuardBlock);
1813 
1814   for (auto In : Incoming) {
1815     Value *Condition;
1816     BasicBlock *Succ0;
1817     BasicBlock *Succ1;
1818     std::tie(Condition, Succ0, Succ1) =
1819         redirectToHub(In, FirstGuardBlock, Outgoing);
1820     Value *IncomingId = nullptr;
1821     if (Succ0 && Succ1) {
1822       // target_bb_index = Condition ? index_of_succ0 : index_of_succ1.
1823       auto Succ0Iter = find(Outgoing, Succ0);
1824       auto Succ1Iter = find(Outgoing, Succ1);
1825       Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context),
1826                                     std::distance(Outgoing.begin(), Succ0Iter));
1827       Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context),
1828                                     std::distance(Outgoing.begin(), Succ1Iter));
1829       IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
1830                                       In->getTerminator());
1831     } else {
1832       // Get the index of the non-null successor.
1833       auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
1834       IncomingId = ConstantInt::get(Type::getInt32Ty(Context),
1835                                     std::distance(Outgoing.begin(), SuccIter));
1836     }
1837     Phi->addIncoming(IncomingId, In);
1838   }
1839 
1840   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1841     auto Out = Outgoing[i];
1842     auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
1843                                 ConstantInt::get(Type::getInt32Ty(Context), i),
1844                                 Out->getName() + ".predicate", GuardBlocks[i]);
1845     GuardPredicates[Out] = Cmp;
1846   }
1847 }
1848 
1849 /// We record the predicate of each outgoing block using a phi of boolean.
1850 static void calcPredicateUsingBooleans(
1851     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1852     SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
1853     SmallVectorImpl<WeakVH> &DeletionCandidates) {
1854   auto &Context = Incoming.front()->getContext();
1855   auto BoolTrue = ConstantInt::getTrue(Context);
1856   auto BoolFalse = ConstantInt::getFalse(Context);
1857   auto FirstGuardBlock = GuardBlocks.front();
1858 
1859   // The predicate for the last outgoing is trivially true, and so we
1860   // process only the first N-1 successors.
1861   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1862     auto Out = Outgoing[i];
1863     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1864 
1865     auto Phi =
1866         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1867                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1868     GuardPredicates[Out] = Phi;
1869   }
1870 
1871   for (auto *In : Incoming) {
1872     Value *Condition;
1873     BasicBlock *Succ0;
1874     BasicBlock *Succ1;
1875     std::tie(Condition, Succ0, Succ1) =
1876         redirectToHub(In, FirstGuardBlock, Outgoing);
1877 
1878     // Optimization: Consider an incoming block A with both successors
1879     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1880     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1881     // first in the loop below, control will branch to Succ0 using the
1882     // corresponding predicate. But if that branch is not taken, then
1883     // control must reach Succ1, which means that the incoming value of
1884     // the predicate from `In` is true for Succ1.
1885     bool OneSuccessorDone = false;
1886     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1887       auto Out = Outgoing[i];
1888       PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
1889       if (Out != Succ0 && Out != Succ1) {
1890         Phi->addIncoming(BoolFalse, In);
1891       } else if (!Succ0 || !Succ1 || OneSuccessorDone) {
1892         // Optimization: When only one successor is an outgoing block,
1893         // the incoming predicate from `In` is always true.
1894         Phi->addIncoming(BoolTrue, In);
1895       } else {
1896         assert(Succ0 && Succ1);
1897         if (Out == Succ0) {
1898           Phi->addIncoming(Condition, In);
1899         } else {
1900           auto Inverted = invertCondition(Condition);
1901           DeletionCandidates.push_back(Condition);
1902           Phi->addIncoming(Inverted, In);
1903         }
1904         OneSuccessorDone = true;
1905       }
1906     }
1907   }
1908 }
1909 
1910 // Capture the existing control flow as guard predicates, and redirect
1911 // control flow from \p Incoming block through the \p GuardBlocks to the
1912 // \p Outgoing blocks.
1913 //
1914 // There is one guard predicate for each outgoing block OutBB. The
1915 // predicate represents whether the hub should transfer control flow
1916 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
1917 // them in the same order as the Outgoing set-vector, and control
1918 // branches to the first outgoing block whose predicate evaluates to true.
1919 static void
1920 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1921                          SmallVectorImpl<WeakVH> &DeletionCandidates,
1922                          const BBSetVector &Incoming,
1923                          const BBSetVector &Outgoing, const StringRef Prefix,
1924                          std::optional<unsigned> MaxControlFlowBooleans) {
1925   BBPredicates GuardPredicates;
1926   auto F = Incoming.front()->getParent();
1927 
1928   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i)
1929     GuardBlocks.push_back(
1930         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1931 
1932   // When we are using an integer to record which target block to jump to, we
1933   // are creating less live values, actually we are using one single integer to
1934   // store the index of the target block. When we are using booleans to store
1935   // the branching information, we need (N-1) boolean values, where N is the
1936   // number of outgoing block.
1937   if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
1938     calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates,
1939                                DeletionCandidates);
1940   else
1941     calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates);
1942 
1943   setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
1944 }
1945 
1946 BasicBlock *llvm::CreateControlFlowHub(
1947     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1948     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1949     const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
1950   if (Outgoing.size() < 2)
1951     return Outgoing.front();
1952 
1953   SmallVector<DominatorTree::UpdateType, 16> Updates;
1954   if (DTU) {
1955     for (auto *In : Incoming) {
1956       for (auto Succ : successors(In))
1957         if (Outgoing.count(Succ))
1958           Updates.push_back({DominatorTree::Delete, In, Succ});
1959     }
1960   }
1961 
1962   SmallVector<WeakVH, 8> DeletionCandidates;
1963   convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing,
1964                            Prefix, MaxControlFlowBooleans);
1965   auto FirstGuardBlock = GuardBlocks.front();
1966 
1967   // Update the PHINodes in each outgoing block to match the new control flow.
1968   for (int i = 0, e = GuardBlocks.size(); i != e; ++i)
1969     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1970 
1971   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1972 
1973   if (DTU) {
1974     int NumGuards = GuardBlocks.size();
1975     assert((int)Outgoing.size() == NumGuards + 1);
1976 
1977     for (auto In : Incoming)
1978       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1979 
1980     for (int i = 0; i != NumGuards - 1; ++i) {
1981       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1982       Updates.push_back(
1983           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1984     }
1985     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1986                        Outgoing[NumGuards - 1]});
1987     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1988                        Outgoing[NumGuards]});
1989     DTU->applyUpdates(Updates);
1990   }
1991 
1992   for (auto I : DeletionCandidates) {
1993     if (I->use_empty())
1994       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1995         Inst->eraseFromParent();
1996   }
1997 
1998   return FirstGuardBlock;
1999 }
2000