xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision bfce69ae9a0731f87574fcbe96f14e5f8e77f036)
1  //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This family of functions perform manipulations on basic blocks, and
10  // instructions contained within basic blocks.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15  #include "llvm/ADT/ArrayRef.h"
16  #include "llvm/ADT/SmallPtrSet.h"
17  #include "llvm/ADT/SmallVector.h"
18  #include "llvm/ADT/Twine.h"
19  #include "llvm/Analysis/CFG.h"
20  #include "llvm/Analysis/DomTreeUpdater.h"
21  #include "llvm/Analysis/LoopInfo.h"
22  #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23  #include "llvm/Analysis/MemorySSAUpdater.h"
24  #include "llvm/Analysis/PostDominators.h"
25  #include "llvm/IR/BasicBlock.h"
26  #include "llvm/IR/CFG.h"
27  #include "llvm/IR/Constants.h"
28  #include "llvm/IR/DebugInfoMetadata.h"
29  #include "llvm/IR/Dominators.h"
30  #include "llvm/IR/Function.h"
31  #include "llvm/IR/InstrTypes.h"
32  #include "llvm/IR/Instruction.h"
33  #include "llvm/IR/Instructions.h"
34  #include "llvm/IR/IntrinsicInst.h"
35  #include "llvm/IR/LLVMContext.h"
36  #include "llvm/IR/Type.h"
37  #include "llvm/IR/User.h"
38  #include "llvm/IR/Value.h"
39  #include "llvm/IR/ValueHandle.h"
40  #include "llvm/Support/Casting.h"
41  #include "llvm/Support/Debug.h"
42  #include "llvm/Support/raw_ostream.h"
43  #include "llvm/Transforms/Utils/Local.h"
44  #include <cassert>
45  #include <cstdint>
46  #include <string>
47  #include <utility>
48  #include <vector>
49  
50  using namespace llvm;
51  
52  #define DEBUG_TYPE "basicblock-utils"
53  
54  void llvm::DetatchDeadBlocks(
55      ArrayRef<BasicBlock *> BBs,
56      SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57      bool KeepOneInputPHIs) {
58    for (auto *BB : BBs) {
59      // Loop through all of our successors and make sure they know that one
60      // of their predecessors is going away.
61      SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62      for (BasicBlock *Succ : successors(BB)) {
63        Succ->removePredecessor(BB, KeepOneInputPHIs);
64        if (Updates && UniqueSuccessors.insert(Succ).second)
65          Updates->push_back({DominatorTree::Delete, BB, Succ});
66      }
67  
68      // Zap all the instructions in the block.
69      while (!BB->empty()) {
70        Instruction &I = BB->back();
71        // If this instruction is used, replace uses with an arbitrary value.
72        // Because control flow can't get here, we don't care what we replace the
73        // value with.  Note that since this block is unreachable, and all values
74        // contained within it must dominate their uses, that all uses will
75        // eventually be removed (they are themselves dead).
76        if (!I.use_empty())
77          I.replaceAllUsesWith(UndefValue::get(I.getType()));
78        BB->getInstList().pop_back();
79      }
80      new UnreachableInst(BB->getContext(), BB);
81      assert(BB->getInstList().size() == 1 &&
82             isa<UnreachableInst>(BB->getTerminator()) &&
83             "The successor list of BB isn't empty before "
84             "applying corresponding DTU updates.");
85    }
86  }
87  
88  void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                             bool KeepOneInputPHIs) {
90    DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91  }
92  
93  void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                              bool KeepOneInputPHIs) {
95  #ifndef NDEBUG
96    // Make sure that all predecessors of each dead block is also dead.
97    SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98    assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99    for (auto *BB : Dead)
100      for (BasicBlock *Pred : predecessors(BB))
101        assert(Dead.count(Pred) && "All predecessors must be dead!");
102  #endif
103  
104    SmallVector<DominatorTree::UpdateType, 4> Updates;
105    DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106  
107    if (DTU)
108      DTU->applyUpdates(Updates);
109  
110    for (BasicBlock *BB : BBs)
111      if (DTU)
112        DTU->deleteBB(BB);
113      else
114        BB->eraseFromParent();
115  }
116  
117  bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                        bool KeepOneInputPHIs) {
119    df_iterator_default_set<BasicBlock*> Reachable;
120  
121    // Mark all reachable blocks.
122    for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123      (void)BB/* Mark all reachable blocks */;
124  
125    // Collect all dead blocks.
126    std::vector<BasicBlock*> DeadBlocks;
127    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128      if (!Reachable.count(&*I)) {
129        BasicBlock *BB = &*I;
130        DeadBlocks.push_back(BB);
131      }
132  
133    // Delete the dead blocks.
134    DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135  
136    return !DeadBlocks.empty();
137  }
138  
139  bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                     MemoryDependenceResults *MemDep) {
141    if (!isa<PHINode>(BB->begin()))
142      return false;
143  
144    while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
145      if (PN->getIncomingValue(0) != PN)
146        PN->replaceAllUsesWith(PN->getIncomingValue(0));
147      else
148        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
149  
150      if (MemDep)
151        MemDep->removeInstruction(PN);  // Memdep updates AA itself.
152  
153      PN->eraseFromParent();
154    }
155    return true;
156  }
157  
158  bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
159                            MemorySSAUpdater *MSSAU) {
160    // Recursively deleting a PHI may cause multiple PHIs to be deleted
161    // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
162    SmallVector<WeakTrackingVH, 8> PHIs;
163    for (PHINode &PN : BB->phis())
164      PHIs.push_back(&PN);
165  
166    bool Changed = false;
167    for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
168      if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
169        Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
170  
171    return Changed;
172  }
173  
174  bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
175                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
176                                       MemoryDependenceResults *MemDep,
177                                       bool PredecessorWithTwoSuccessors) {
178    if (BB->hasAddressTaken())
179      return false;
180  
181    // Can't merge if there are multiple predecessors, or no predecessors.
182    BasicBlock *PredBB = BB->getUniquePredecessor();
183    if (!PredBB) return false;
184  
185    // Don't break self-loops.
186    if (PredBB == BB) return false;
187    // Don't break unwinding instructions.
188    if (PredBB->getTerminator()->isExceptionalTerminator())
189      return false;
190  
191    // Can't merge if there are multiple distinct successors.
192    if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
193      return false;
194  
195    // Currently only allow PredBB to have two predecessors, one being BB.
196    // Update BI to branch to BB's only successor instead of BB.
197    BranchInst *PredBB_BI;
198    BasicBlock *NewSucc = nullptr;
199    unsigned FallThruPath;
200    if (PredecessorWithTwoSuccessors) {
201      if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
202        return false;
203      BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
204      if (!BB_JmpI || !BB_JmpI->isUnconditional())
205        return false;
206      NewSucc = BB_JmpI->getSuccessor(0);
207      FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
208    }
209  
210    // Can't merge if there is PHI loop.
211    for (PHINode &PN : BB->phis())
212      for (Value *IncValue : PN.incoming_values())
213        if (IncValue == &PN)
214          return false;
215  
216    LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
217                      << PredBB->getName() << "\n");
218  
219    // Begin by getting rid of unneeded PHIs.
220    SmallVector<AssertingVH<Value>, 4> IncomingValues;
221    if (isa<PHINode>(BB->front())) {
222      for (PHINode &PN : BB->phis())
223        if (!isa<PHINode>(PN.getIncomingValue(0)) ||
224            cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
225          IncomingValues.push_back(PN.getIncomingValue(0));
226      FoldSingleEntryPHINodes(BB, MemDep);
227    }
228  
229    // DTU update: Collect all the edges that exit BB.
230    // These dominator edges will be redirected from Pred.
231    std::vector<DominatorTree::UpdateType> Updates;
232    if (DTU) {
233      SmallSetVector<BasicBlock *, 2> UniqueSuccessors(succ_begin(BB),
234                                                       succ_end(BB));
235      Updates.reserve(1 + (2 * UniqueSuccessors.size()));
236      // Add insert edges first. Experimentally, for the particular case of two
237      // blocks that can be merged, with a single successor and single predecessor
238      // respectively, it is beneficial to have all insert updates first. Deleting
239      // edges first may lead to unreachable blocks, followed by inserting edges
240      // making the blocks reachable again. Such DT updates lead to high compile
241      // times. We add inserts before deletes here to reduce compile time.
242      for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
243        // This successor of BB may already have PredBB as a predecessor.
244        if (!llvm::is_contained(successors(PredBB), UniqueSuccessor))
245          Updates.push_back({DominatorTree::Insert, PredBB, UniqueSuccessor});
246      for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
247        Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
248      Updates.push_back({DominatorTree::Delete, PredBB, BB});
249    }
250  
251    Instruction *PTI = PredBB->getTerminator();
252    Instruction *STI = BB->getTerminator();
253    Instruction *Start = &*BB->begin();
254    // If there's nothing to move, mark the starting instruction as the last
255    // instruction in the block. Terminator instruction is handled separately.
256    if (Start == STI)
257      Start = PTI;
258  
259    // Move all definitions in the successor to the predecessor...
260    PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
261                                 BB->begin(), STI->getIterator());
262  
263    if (MSSAU)
264      MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
265  
266    // Make all PHI nodes that referred to BB now refer to Pred as their
267    // source...
268    BB->replaceAllUsesWith(PredBB);
269  
270    if (PredecessorWithTwoSuccessors) {
271      // Delete the unconditional branch from BB.
272      BB->getInstList().pop_back();
273  
274      // Update branch in the predecessor.
275      PredBB_BI->setSuccessor(FallThruPath, NewSucc);
276    } else {
277      // Delete the unconditional branch from the predecessor.
278      PredBB->getInstList().pop_back();
279  
280      // Move terminator instruction.
281      PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
282  
283      // Terminator may be a memory accessing instruction too.
284      if (MSSAU)
285        if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
286                MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
287          MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
288    }
289    // Add unreachable to now empty BB.
290    new UnreachableInst(BB->getContext(), BB);
291  
292    // Inherit predecessors name if it exists.
293    if (!PredBB->hasName())
294      PredBB->takeName(BB);
295  
296    if (LI)
297      LI->removeBlock(BB);
298  
299    if (MemDep)
300      MemDep->invalidateCachedPredecessors();
301  
302    // Finally, erase the old block and update dominator info.
303    if (DTU) {
304      assert(BB->getInstList().size() == 1 &&
305             isa<UnreachableInst>(BB->getTerminator()) &&
306             "The successor list of BB isn't empty before "
307             "applying corresponding DTU updates.");
308      DTU->applyUpdates(Updates);
309      DTU->deleteBB(BB);
310    } else {
311      BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
312    }
313  
314    return true;
315  }
316  
317  bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
318      SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
319      LoopInfo *LI) {
320    assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
321  
322    bool BlocksHaveBeenMerged = false;
323    while (!MergeBlocks.empty()) {
324      BasicBlock *BB = *MergeBlocks.begin();
325      BasicBlock *Dest = BB->getSingleSuccessor();
326      if (Dest && (!L || L->contains(Dest))) {
327        BasicBlock *Fold = Dest->getUniquePredecessor();
328        (void)Fold;
329        if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
330          assert(Fold == BB &&
331                 "Expecting BB to be unique predecessor of the Dest block");
332          MergeBlocks.erase(Dest);
333          BlocksHaveBeenMerged = true;
334        } else
335          MergeBlocks.erase(BB);
336      } else
337        MergeBlocks.erase(BB);
338    }
339    return BlocksHaveBeenMerged;
340  }
341  
342  /// Remove redundant instructions within sequences of consecutive dbg.value
343  /// instructions. This is done using a backward scan to keep the last dbg.value
344  /// describing a specific variable/fragment.
345  ///
346  /// BackwardScan strategy:
347  /// ----------------------
348  /// Given a sequence of consecutive DbgValueInst like this
349  ///
350  ///   dbg.value ..., "x", FragmentX1  (*)
351  ///   dbg.value ..., "y", FragmentY1
352  ///   dbg.value ..., "x", FragmentX2
353  ///   dbg.value ..., "x", FragmentX1  (**)
354  ///
355  /// then the instruction marked with (*) can be removed (it is guaranteed to be
356  /// obsoleted by the instruction marked with (**) as the latter instruction is
357  /// describing the same variable using the same fragment info).
358  ///
359  /// Possible improvements:
360  /// - Check fully overlapping fragments and not only identical fragments.
361  /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
362  ///   instructions being part of the sequence of consecutive instructions.
363  static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
364    SmallVector<DbgValueInst *, 8> ToBeRemoved;
365    SmallDenseSet<DebugVariable> VariableSet;
366    for (auto &I : reverse(*BB)) {
367      if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
368        DebugVariable Key(DVI->getVariable(),
369                          DVI->getExpression(),
370                          DVI->getDebugLoc()->getInlinedAt());
371        auto R = VariableSet.insert(Key);
372        // If the same variable fragment is described more than once it is enough
373        // to keep the last one (i.e. the first found since we for reverse
374        // iteration).
375        if (!R.second)
376          ToBeRemoved.push_back(DVI);
377        continue;
378      }
379      // Sequence with consecutive dbg.value instrs ended. Clear the map to
380      // restart identifying redundant instructions if case we find another
381      // dbg.value sequence.
382      VariableSet.clear();
383    }
384  
385    for (auto &Instr : ToBeRemoved)
386      Instr->eraseFromParent();
387  
388    return !ToBeRemoved.empty();
389  }
390  
391  /// Remove redundant dbg.value instructions using a forward scan. This can
392  /// remove a dbg.value instruction that is redundant due to indicating that a
393  /// variable has the same value as already being indicated by an earlier
394  /// dbg.value.
395  ///
396  /// ForwardScan strategy:
397  /// ---------------------
398  /// Given two identical dbg.value instructions, separated by a block of
399  /// instructions that isn't describing the same variable, like this
400  ///
401  ///   dbg.value X1, "x", FragmentX1  (**)
402  ///   <block of instructions, none being "dbg.value ..., "x", ...">
403  ///   dbg.value X1, "x", FragmentX1  (*)
404  ///
405  /// then the instruction marked with (*) can be removed. Variable "x" is already
406  /// described as being mapped to the SSA value X1.
407  ///
408  /// Possible improvements:
409  /// - Keep track of non-overlapping fragments.
410  static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
411    SmallVector<DbgValueInst *, 8> ToBeRemoved;
412    DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
413    for (auto &I : *BB) {
414      if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
415        DebugVariable Key(DVI->getVariable(),
416                          NoneType(),
417                          DVI->getDebugLoc()->getInlinedAt());
418        auto VMI = VariableMap.find(Key);
419        // Update the map if we found a new value/expression describing the
420        // variable, or if the variable wasn't mapped already.
421        if (VMI == VariableMap.end() ||
422            VMI->second.first != DVI->getValue() ||
423            VMI->second.second != DVI->getExpression()) {
424          VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
425          continue;
426        }
427        // Found an identical mapping. Remember the instruction for later removal.
428        ToBeRemoved.push_back(DVI);
429      }
430    }
431  
432    for (auto &Instr : ToBeRemoved)
433      Instr->eraseFromParent();
434  
435    return !ToBeRemoved.empty();
436  }
437  
438  bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
439    bool MadeChanges = false;
440    // By using the "backward scan" strategy before the "forward scan" strategy we
441    // can remove both dbg.value (2) and (3) in a situation like this:
442    //
443    //   (1) dbg.value V1, "x", DIExpression()
444    //       ...
445    //   (2) dbg.value V2, "x", DIExpression()
446    //   (3) dbg.value V1, "x", DIExpression()
447    //
448    // The backward scan will remove (2), it is made obsolete by (3). After
449    // getting (2) out of the way, the foward scan will remove (3) since "x"
450    // already is described as having the value V1 at (1).
451    MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
452    MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
453  
454    if (MadeChanges)
455      LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
456                        << BB->getName() << "\n");
457    return MadeChanges;
458  }
459  
460  void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
461                                  BasicBlock::iterator &BI, Value *V) {
462    Instruction &I = *BI;
463    // Replaces all of the uses of the instruction with uses of the value
464    I.replaceAllUsesWith(V);
465  
466    // Make sure to propagate a name if there is one already.
467    if (I.hasName() && !V->hasName())
468      V->takeName(&I);
469  
470    // Delete the unnecessary instruction now...
471    BI = BIL.erase(BI);
472  }
473  
474  void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
475                                 BasicBlock::iterator &BI, Instruction *I) {
476    assert(I->getParent() == nullptr &&
477           "ReplaceInstWithInst: Instruction already inserted into basic block!");
478  
479    // Copy debug location to newly added instruction, if it wasn't already set
480    // by the caller.
481    if (!I->getDebugLoc())
482      I->setDebugLoc(BI->getDebugLoc());
483  
484    // Insert the new instruction into the basic block...
485    BasicBlock::iterator New = BIL.insert(BI, I);
486  
487    // Replace all uses of the old instruction, and delete it.
488    ReplaceInstWithValue(BIL, BI, I);
489  
490    // Move BI back to point to the newly inserted instruction
491    BI = New;
492  }
493  
494  void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
495    BasicBlock::iterator BI(From);
496    ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
497  }
498  
499  BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
500                              LoopInfo *LI, MemorySSAUpdater *MSSAU,
501                              const Twine &BBName) {
502    unsigned SuccNum = GetSuccessorNumber(BB, Succ);
503  
504    // If this is a critical edge, let SplitCriticalEdge do it.
505    Instruction *LatchTerm = BB->getTerminator();
506    if (SplitCriticalEdge(
507            LatchTerm, SuccNum,
508            CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(),
509            BBName))
510      return LatchTerm->getSuccessor(SuccNum);
511  
512    // If the edge isn't critical, then BB has a single successor or Succ has a
513    // single pred.  Split the block.
514    if (BasicBlock *SP = Succ->getSinglePredecessor()) {
515      // If the successor only has a single pred, split the top of the successor
516      // block.
517      assert(SP == BB && "CFG broken");
518      SP = nullptr;
519      return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
520                        /*Before=*/true);
521    }
522  
523    // Otherwise, if BB has a single successor, split it at the bottom of the
524    // block.
525    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
526           "Should have a single succ!");
527    return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
528  }
529  
530  unsigned
531  llvm::SplitAllCriticalEdges(Function &F,
532                              const CriticalEdgeSplittingOptions &Options) {
533    unsigned NumBroken = 0;
534    for (BasicBlock &BB : F) {
535      Instruction *TI = BB.getTerminator();
536      if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
537          !isa<CallBrInst>(TI))
538        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
539          if (SplitCriticalEdge(TI, i, Options))
540            ++NumBroken;
541    }
542    return NumBroken;
543  }
544  
545  static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
546                                    DomTreeUpdater *DTU, DominatorTree *DT,
547                                    LoopInfo *LI, MemorySSAUpdater *MSSAU,
548                                    const Twine &BBName, bool Before) {
549    if (Before) {
550      DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
551      return splitBlockBefore(Old, SplitPt,
552                              DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
553                              BBName);
554    }
555    BasicBlock::iterator SplitIt = SplitPt->getIterator();
556    while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
557      ++SplitIt;
558    std::string Name = BBName.str();
559    BasicBlock *New = Old->splitBasicBlock(
560        SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
561  
562    // The new block lives in whichever loop the old one did. This preserves
563    // LCSSA as well, because we force the split point to be after any PHI nodes.
564    if (LI)
565      if (Loop *L = LI->getLoopFor(Old))
566        L->addBasicBlockToLoop(New, *LI);
567  
568    if (DTU) {
569      SmallVector<DominatorTree::UpdateType, 8> Updates;
570      // Old dominates New. New node dominates all other nodes dominated by Old.
571      SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New),
572                                                            succ_end(New));
573      Updates.push_back({DominatorTree::Insert, Old, New});
574      Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size());
575      for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) {
576        Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld});
577        Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld});
578      }
579  
580      DTU->applyUpdates(Updates);
581    } else if (DT)
582      // Old dominates New. New node dominates all other nodes dominated by Old.
583      if (DomTreeNode *OldNode = DT->getNode(Old)) {
584        std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
585  
586        DomTreeNode *NewNode = DT->addNewBlock(New, Old);
587        for (DomTreeNode *I : Children)
588          DT->changeImmediateDominator(I, NewNode);
589      }
590  
591    // Move MemoryAccesses still tracked in Old, but part of New now.
592    // Update accesses in successor blocks accordingly.
593    if (MSSAU)
594      MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
595  
596    return New;
597  }
598  
599  BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
600                               DominatorTree *DT, LoopInfo *LI,
601                               MemorySSAUpdater *MSSAU, const Twine &BBName,
602                               bool Before) {
603    return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
604                          Before);
605  }
606  BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
607                               DomTreeUpdater *DTU, LoopInfo *LI,
608                               MemorySSAUpdater *MSSAU, const Twine &BBName,
609                               bool Before) {
610    return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
611                          Before);
612  }
613  
614  BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
615                                     DomTreeUpdater *DTU, LoopInfo *LI,
616                                     MemorySSAUpdater *MSSAU,
617                                     const Twine &BBName) {
618  
619    BasicBlock::iterator SplitIt = SplitPt->getIterator();
620    while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
621      ++SplitIt;
622    std::string Name = BBName.str();
623    BasicBlock *New = Old->splitBasicBlock(
624        SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
625        /* Before=*/true);
626  
627    // The new block lives in whichever loop the old one did. This preserves
628    // LCSSA as well, because we force the split point to be after any PHI nodes.
629    if (LI)
630      if (Loop *L = LI->getLoopFor(Old))
631        L->addBasicBlockToLoop(New, *LI);
632  
633    if (DTU) {
634      SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
635      // New dominates Old. The predecessor nodes of the Old node dominate
636      // New node.
637      SmallSetVector<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New),
638                                                              pred_end(New));
639      DTUpdates.push_back({DominatorTree::Insert, New, Old});
640      DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size());
641      for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) {
642        DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New});
643        DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old});
644      }
645  
646      DTU->applyUpdates(DTUpdates);
647  
648      // Move MemoryAccesses still tracked in Old, but part of New now.
649      // Update accesses in successor blocks accordingly.
650      if (MSSAU) {
651        MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
652        if (VerifyMemorySSA)
653          MSSAU->getMemorySSA()->verifyMemorySSA();
654      }
655    }
656    return New;
657  }
658  
659  /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
660  static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
661                                        ArrayRef<BasicBlock *> Preds,
662                                        DomTreeUpdater *DTU, DominatorTree *DT,
663                                        LoopInfo *LI, MemorySSAUpdater *MSSAU,
664                                        bool PreserveLCSSA, bool &HasLoopExit) {
665    // Update dominator tree if available.
666    if (DTU) {
667      // Recalculation of DomTree is needed when updating a forward DomTree and
668      // the Entry BB is replaced.
669      if (NewBB == &NewBB->getParent()->getEntryBlock() && DTU->hasDomTree()) {
670        // The entry block was removed and there is no external interface for
671        // the dominator tree to be notified of this change. In this corner-case
672        // we recalculate the entire tree.
673        DTU->recalculate(*NewBB->getParent());
674      } else {
675        // Split block expects NewBB to have a non-empty set of predecessors.
676        SmallVector<DominatorTree::UpdateType, 8> Updates;
677        SmallSetVector<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end());
678        Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
679        Updates.reserve(Updates.size() + 2 * UniquePreds.size());
680        for (auto *UniquePred : UniquePreds) {
681          Updates.push_back({DominatorTree::Insert, UniquePred, NewBB});
682          Updates.push_back({DominatorTree::Delete, UniquePred, OldBB});
683        }
684        DTU->applyUpdates(Updates);
685      }
686    } else if (DT) {
687      if (OldBB == DT->getRootNode()->getBlock()) {
688        assert(NewBB == &NewBB->getParent()->getEntryBlock());
689        DT->setNewRoot(NewBB);
690      } else {
691        // Split block expects NewBB to have a non-empty set of predecessors.
692        DT->splitBlock(NewBB);
693      }
694    }
695  
696    // Update MemoryPhis after split if MemorySSA is available
697    if (MSSAU)
698      MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
699  
700    // The rest of the logic is only relevant for updating the loop structures.
701    if (!LI)
702      return;
703  
704    if (DTU && DTU->hasDomTree())
705      DT = &DTU->getDomTree();
706    assert(DT && "DT should be available to update LoopInfo!");
707    Loop *L = LI->getLoopFor(OldBB);
708  
709    // If we need to preserve loop analyses, collect some information about how
710    // this split will affect loops.
711    bool IsLoopEntry = !!L;
712    bool SplitMakesNewLoopHeader = false;
713    for (BasicBlock *Pred : Preds) {
714      // Preds that are not reachable from entry should not be used to identify if
715      // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
716      // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
717      // as true and make the NewBB the header of some loop. This breaks LI.
718      if (!DT->isReachableFromEntry(Pred))
719        continue;
720      // If we need to preserve LCSSA, determine if any of the preds is a loop
721      // exit.
722      if (PreserveLCSSA)
723        if (Loop *PL = LI->getLoopFor(Pred))
724          if (!PL->contains(OldBB))
725            HasLoopExit = true;
726  
727      // If we need to preserve LoopInfo, note whether any of the preds crosses
728      // an interesting loop boundary.
729      if (!L)
730        continue;
731      if (L->contains(Pred))
732        IsLoopEntry = false;
733      else
734        SplitMakesNewLoopHeader = true;
735    }
736  
737    // Unless we have a loop for OldBB, nothing else to do here.
738    if (!L)
739      return;
740  
741    if (IsLoopEntry) {
742      // Add the new block to the nearest enclosing loop (and not an adjacent
743      // loop). To find this, examine each of the predecessors and determine which
744      // loops enclose them, and select the most-nested loop which contains the
745      // loop containing the block being split.
746      Loop *InnermostPredLoop = nullptr;
747      for (BasicBlock *Pred : Preds) {
748        if (Loop *PredLoop = LI->getLoopFor(Pred)) {
749          // Seek a loop which actually contains the block being split (to avoid
750          // adjacent loops).
751          while (PredLoop && !PredLoop->contains(OldBB))
752            PredLoop = PredLoop->getParentLoop();
753  
754          // Select the most-nested of these loops which contains the block.
755          if (PredLoop && PredLoop->contains(OldBB) &&
756              (!InnermostPredLoop ||
757               InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
758            InnermostPredLoop = PredLoop;
759        }
760      }
761  
762      if (InnermostPredLoop)
763        InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
764    } else {
765      L->addBasicBlockToLoop(NewBB, *LI);
766      if (SplitMakesNewLoopHeader)
767        L->moveToHeader(NewBB);
768    }
769  }
770  
771  /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
772  /// This also updates AliasAnalysis, if available.
773  static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
774                             ArrayRef<BasicBlock *> Preds, BranchInst *BI,
775                             bool HasLoopExit) {
776    // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
777    SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
778    for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
779      PHINode *PN = cast<PHINode>(I++);
780  
781      // Check to see if all of the values coming in are the same.  If so, we
782      // don't need to create a new PHI node, unless it's needed for LCSSA.
783      Value *InVal = nullptr;
784      if (!HasLoopExit) {
785        InVal = PN->getIncomingValueForBlock(Preds[0]);
786        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
787          if (!PredSet.count(PN->getIncomingBlock(i)))
788            continue;
789          if (!InVal)
790            InVal = PN->getIncomingValue(i);
791          else if (InVal != PN->getIncomingValue(i)) {
792            InVal = nullptr;
793            break;
794          }
795        }
796      }
797  
798      if (InVal) {
799        // If all incoming values for the new PHI would be the same, just don't
800        // make a new PHI.  Instead, just remove the incoming values from the old
801        // PHI.
802  
803        // NOTE! This loop walks backwards for a reason! First off, this minimizes
804        // the cost of removal if we end up removing a large number of values, and
805        // second off, this ensures that the indices for the incoming values
806        // aren't invalidated when we remove one.
807        for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
808          if (PredSet.count(PN->getIncomingBlock(i)))
809            PN->removeIncomingValue(i, false);
810  
811        // Add an incoming value to the PHI node in the loop for the preheader
812        // edge.
813        PN->addIncoming(InVal, NewBB);
814        continue;
815      }
816  
817      // If the values coming into the block are not the same, we need a new
818      // PHI.
819      // Create the new PHI node, insert it into NewBB at the end of the block
820      PHINode *NewPHI =
821          PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
822  
823      // NOTE! This loop walks backwards for a reason! First off, this minimizes
824      // the cost of removal if we end up removing a large number of values, and
825      // second off, this ensures that the indices for the incoming values aren't
826      // invalidated when we remove one.
827      for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
828        BasicBlock *IncomingBB = PN->getIncomingBlock(i);
829        if (PredSet.count(IncomingBB)) {
830          Value *V = PN->removeIncomingValue(i, false);
831          NewPHI->addIncoming(V, IncomingBB);
832        }
833      }
834  
835      PN->addIncoming(NewPHI, NewBB);
836    }
837  }
838  
839  static void SplitLandingPadPredecessorsImpl(
840      BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
841      const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
842      DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
843      MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
844  
845  static BasicBlock *
846  SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
847                             const char *Suffix, DomTreeUpdater *DTU,
848                             DominatorTree *DT, LoopInfo *LI,
849                             MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
850    // Do not attempt to split that which cannot be split.
851    if (!BB->canSplitPredecessors())
852      return nullptr;
853  
854    // For the landingpads we need to act a bit differently.
855    // Delegate this work to the SplitLandingPadPredecessors.
856    if (BB->isLandingPad()) {
857      SmallVector<BasicBlock*, 2> NewBBs;
858      std::string NewName = std::string(Suffix) + ".split-lp";
859  
860      SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
861                                      DTU, DT, LI, MSSAU, PreserveLCSSA);
862      return NewBBs[0];
863    }
864  
865    // Create new basic block, insert right before the original block.
866    BasicBlock *NewBB = BasicBlock::Create(
867        BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
868  
869    // The new block unconditionally branches to the old block.
870    BranchInst *BI = BranchInst::Create(BB, NewBB);
871  
872    Loop *L = nullptr;
873    BasicBlock *OldLatch = nullptr;
874    // Splitting the predecessors of a loop header creates a preheader block.
875    if (LI && LI->isLoopHeader(BB)) {
876      L = LI->getLoopFor(BB);
877      // Using the loop start line number prevents debuggers stepping into the
878      // loop body for this instruction.
879      BI->setDebugLoc(L->getStartLoc());
880  
881      // If BB is the header of the Loop, it is possible that the loop is
882      // modified, such that the current latch does not remain the latch of the
883      // loop. If that is the case, the loop metadata from the current latch needs
884      // to be applied to the new latch.
885      OldLatch = L->getLoopLatch();
886    } else
887      BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
888  
889    // Move the edges from Preds to point to NewBB instead of BB.
890    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
891      // This is slightly more strict than necessary; the minimum requirement
892      // is that there be no more than one indirectbr branching to BB. And
893      // all BlockAddress uses would need to be updated.
894      assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
895             "Cannot split an edge from an IndirectBrInst");
896      assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
897             "Cannot split an edge from a CallBrInst");
898      Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
899    }
900  
901    // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
902    // node becomes an incoming value for BB's phi node.  However, if the Preds
903    // list is empty, we need to insert dummy entries into the PHI nodes in BB to
904    // account for the newly created predecessor.
905    if (Preds.empty()) {
906      // Insert dummy values as the incoming value.
907      for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
908        cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
909    }
910  
911    // Update DominatorTree, LoopInfo, and LCCSA analysis information.
912    bool HasLoopExit = false;
913    UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
914                              HasLoopExit);
915  
916    if (!Preds.empty()) {
917      // Update the PHI nodes in BB with the values coming from NewBB.
918      UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
919    }
920  
921    if (OldLatch) {
922      BasicBlock *NewLatch = L->getLoopLatch();
923      if (NewLatch != OldLatch) {
924        MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
925        NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
926        OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
927      }
928    }
929  
930    return NewBB;
931  }
932  
933  BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
934                                           ArrayRef<BasicBlock *> Preds,
935                                           const char *Suffix, DominatorTree *DT,
936                                           LoopInfo *LI, MemorySSAUpdater *MSSAU,
937                                           bool PreserveLCSSA) {
938    return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
939                                      MSSAU, PreserveLCSSA);
940  }
941  BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
942                                           ArrayRef<BasicBlock *> Preds,
943                                           const char *Suffix,
944                                           DomTreeUpdater *DTU, LoopInfo *LI,
945                                           MemorySSAUpdater *MSSAU,
946                                           bool PreserveLCSSA) {
947    return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
948                                      /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
949  }
950  
951  static void SplitLandingPadPredecessorsImpl(
952      BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
953      const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
954      DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
955      MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
956    assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
957  
958    // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
959    // it right before the original block.
960    BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
961                                            OrigBB->getName() + Suffix1,
962                                            OrigBB->getParent(), OrigBB);
963    NewBBs.push_back(NewBB1);
964  
965    // The new block unconditionally branches to the old block.
966    BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
967    BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
968  
969    // Move the edges from Preds to point to NewBB1 instead of OrigBB.
970    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
971      // This is slightly more strict than necessary; the minimum requirement
972      // is that there be no more than one indirectbr branching to BB. And
973      // all BlockAddress uses would need to be updated.
974      assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
975             "Cannot split an edge from an IndirectBrInst");
976      Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
977    }
978  
979    bool HasLoopExit = false;
980    UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
981                              PreserveLCSSA, HasLoopExit);
982  
983    // Update the PHI nodes in OrigBB with the values coming from NewBB1.
984    UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
985  
986    // Move the remaining edges from OrigBB to point to NewBB2.
987    SmallVector<BasicBlock*, 8> NewBB2Preds;
988    for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
989         i != e; ) {
990      BasicBlock *Pred = *i++;
991      if (Pred == NewBB1) continue;
992      assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
993             "Cannot split an edge from an IndirectBrInst");
994      NewBB2Preds.push_back(Pred);
995      e = pred_end(OrigBB);
996    }
997  
998    BasicBlock *NewBB2 = nullptr;
999    if (!NewBB2Preds.empty()) {
1000      // Create another basic block for the rest of OrigBB's predecessors.
1001      NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1002                                  OrigBB->getName() + Suffix2,
1003                                  OrigBB->getParent(), OrigBB);
1004      NewBBs.push_back(NewBB2);
1005  
1006      // The new block unconditionally branches to the old block.
1007      BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1008      BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1009  
1010      // Move the remaining edges from OrigBB to point to NewBB2.
1011      for (BasicBlock *NewBB2Pred : NewBB2Preds)
1012        NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1013  
1014      // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1015      HasLoopExit = false;
1016      UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1017                                PreserveLCSSA, HasLoopExit);
1018  
1019      // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1020      UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1021    }
1022  
1023    LandingPadInst *LPad = OrigBB->getLandingPadInst();
1024    Instruction *Clone1 = LPad->clone();
1025    Clone1->setName(Twine("lpad") + Suffix1);
1026    NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1027  
1028    if (NewBB2) {
1029      Instruction *Clone2 = LPad->clone();
1030      Clone2->setName(Twine("lpad") + Suffix2);
1031      NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1032  
1033      // Create a PHI node for the two cloned landingpad instructions only
1034      // if the original landingpad instruction has some uses.
1035      if (!LPad->use_empty()) {
1036        assert(!LPad->getType()->isTokenTy() &&
1037               "Split cannot be applied if LPad is token type. Otherwise an "
1038               "invalid PHINode of token type would be created.");
1039        PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1040        PN->addIncoming(Clone1, NewBB1);
1041        PN->addIncoming(Clone2, NewBB2);
1042        LPad->replaceAllUsesWith(PN);
1043      }
1044      LPad->eraseFromParent();
1045    } else {
1046      // There is no second clone. Just replace the landing pad with the first
1047      // clone.
1048      LPad->replaceAllUsesWith(Clone1);
1049      LPad->eraseFromParent();
1050    }
1051  }
1052  
1053  void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1054                                         ArrayRef<BasicBlock *> Preds,
1055                                         const char *Suffix1, const char *Suffix2,
1056                                         SmallVectorImpl<BasicBlock *> &NewBBs,
1057                                         DominatorTree *DT, LoopInfo *LI,
1058                                         MemorySSAUpdater *MSSAU,
1059                                         bool PreserveLCSSA) {
1060    return SplitLandingPadPredecessorsImpl(
1061        OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1062        /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1063  }
1064  void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1065                                         ArrayRef<BasicBlock *> Preds,
1066                                         const char *Suffix1, const char *Suffix2,
1067                                         SmallVectorImpl<BasicBlock *> &NewBBs,
1068                                         DomTreeUpdater *DTU, LoopInfo *LI,
1069                                         MemorySSAUpdater *MSSAU,
1070                                         bool PreserveLCSSA) {
1071    return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1072                                           NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1073                                           PreserveLCSSA);
1074  }
1075  
1076  ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1077                                               BasicBlock *Pred,
1078                                               DomTreeUpdater *DTU) {
1079    Instruction *UncondBranch = Pred->getTerminator();
1080    // Clone the return and add it to the end of the predecessor.
1081    Instruction *NewRet = RI->clone();
1082    Pred->getInstList().push_back(NewRet);
1083  
1084    // If the return instruction returns a value, and if the value was a
1085    // PHI node in "BB", propagate the right value into the return.
1086    for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
1087         i != e; ++i) {
1088      Value *V = *i;
1089      Instruction *NewBC = nullptr;
1090      if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1091        // Return value might be bitcasted. Clone and insert it before the
1092        // return instruction.
1093        V = BCI->getOperand(0);
1094        NewBC = BCI->clone();
1095        Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1096        *i = NewBC;
1097      }
1098  
1099      Instruction *NewEV = nullptr;
1100      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1101        V = EVI->getOperand(0);
1102        NewEV = EVI->clone();
1103        if (NewBC) {
1104          NewBC->setOperand(0, NewEV);
1105          Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1106        } else {
1107          Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1108          *i = NewEV;
1109        }
1110      }
1111  
1112      if (PHINode *PN = dyn_cast<PHINode>(V)) {
1113        if (PN->getParent() == BB) {
1114          if (NewEV) {
1115            NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1116          } else if (NewBC)
1117            NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1118          else
1119            *i = PN->getIncomingValueForBlock(Pred);
1120        }
1121      }
1122    }
1123  
1124    // Update any PHI nodes in the returning block to realize that we no
1125    // longer branch to them.
1126    BB->removePredecessor(Pred);
1127    UncondBranch->eraseFromParent();
1128  
1129    if (DTU)
1130      DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1131  
1132    return cast<ReturnInst>(NewRet);
1133  }
1134  
1135  static Instruction *
1136  SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1137                                bool Unreachable, MDNode *BranchWeights,
1138                                DomTreeUpdater *DTU, DominatorTree *DT,
1139                                LoopInfo *LI, BasicBlock *ThenBlock) {
1140    SmallVector<DominatorTree::UpdateType, 8> Updates;
1141    BasicBlock *Head = SplitBefore->getParent();
1142    BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1143    if (DTU) {
1144      SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail),
1145                                                             succ_end(Tail));
1146      Updates.push_back({DominatorTree::Insert, Head, Tail});
1147      Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size());
1148      for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) {
1149        Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead});
1150        Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead});
1151      }
1152    }
1153    Instruction *HeadOldTerm = Head->getTerminator();
1154    LLVMContext &C = Head->getContext();
1155    Instruction *CheckTerm;
1156    bool CreateThenBlock = (ThenBlock == nullptr);
1157    if (CreateThenBlock) {
1158      ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1159      if (Unreachable)
1160        CheckTerm = new UnreachableInst(C, ThenBlock);
1161      else {
1162        CheckTerm = BranchInst::Create(Tail, ThenBlock);
1163        if (DTU)
1164          Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1165      }
1166      CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1167    } else
1168      CheckTerm = ThenBlock->getTerminator();
1169    BranchInst *HeadNewTerm =
1170        BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1171    if (DTU)
1172      Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1173    HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1174    ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1175  
1176    if (DTU)
1177      DTU->applyUpdates(Updates);
1178    else if (DT) {
1179      if (DomTreeNode *OldNode = DT->getNode(Head)) {
1180        std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1181  
1182        DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1183        for (DomTreeNode *Child : Children)
1184          DT->changeImmediateDominator(Child, NewNode);
1185  
1186        // Head dominates ThenBlock.
1187        if (CreateThenBlock)
1188          DT->addNewBlock(ThenBlock, Head);
1189        else
1190          DT->changeImmediateDominator(ThenBlock, Head);
1191      }
1192    }
1193  
1194    if (LI) {
1195      if (Loop *L = LI->getLoopFor(Head)) {
1196        L->addBasicBlockToLoop(ThenBlock, *LI);
1197        L->addBasicBlockToLoop(Tail, *LI);
1198      }
1199    }
1200  
1201    return CheckTerm;
1202  }
1203  
1204  Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1205                                               Instruction *SplitBefore,
1206                                               bool Unreachable,
1207                                               MDNode *BranchWeights,
1208                                               DominatorTree *DT, LoopInfo *LI,
1209                                               BasicBlock *ThenBlock) {
1210    return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1211                                         BranchWeights,
1212                                         /*DTU=*/nullptr, DT, LI, ThenBlock);
1213  }
1214  Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1215                                               Instruction *SplitBefore,
1216                                               bool Unreachable,
1217                                               MDNode *BranchWeights,
1218                                               DomTreeUpdater *DTU, LoopInfo *LI,
1219                                               BasicBlock *ThenBlock) {
1220    return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1221                                         BranchWeights, DTU, /*DT=*/nullptr, LI,
1222                                         ThenBlock);
1223  }
1224  
1225  void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1226                                           Instruction **ThenTerm,
1227                                           Instruction **ElseTerm,
1228                                           MDNode *BranchWeights) {
1229    BasicBlock *Head = SplitBefore->getParent();
1230    BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1231    Instruction *HeadOldTerm = Head->getTerminator();
1232    LLVMContext &C = Head->getContext();
1233    BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1234    BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1235    *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1236    (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1237    *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1238    (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1239    BranchInst *HeadNewTerm =
1240      BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1241    HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1242    ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1243  }
1244  
1245  Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1246                               BasicBlock *&IfFalse) {
1247    PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1248    BasicBlock *Pred1 = nullptr;
1249    BasicBlock *Pred2 = nullptr;
1250  
1251    if (SomePHI) {
1252      if (SomePHI->getNumIncomingValues() != 2)
1253        return nullptr;
1254      Pred1 = SomePHI->getIncomingBlock(0);
1255      Pred2 = SomePHI->getIncomingBlock(1);
1256    } else {
1257      pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1258      if (PI == PE) // No predecessor
1259        return nullptr;
1260      Pred1 = *PI++;
1261      if (PI == PE) // Only one predecessor
1262        return nullptr;
1263      Pred2 = *PI++;
1264      if (PI != PE) // More than two predecessors
1265        return nullptr;
1266    }
1267  
1268    // We can only handle branches.  Other control flow will be lowered to
1269    // branches if possible anyway.
1270    BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1271    BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1272    if (!Pred1Br || !Pred2Br)
1273      return nullptr;
1274  
1275    // Eliminate code duplication by ensuring that Pred1Br is conditional if
1276    // either are.
1277    if (Pred2Br->isConditional()) {
1278      // If both branches are conditional, we don't have an "if statement".  In
1279      // reality, we could transform this case, but since the condition will be
1280      // required anyway, we stand no chance of eliminating it, so the xform is
1281      // probably not profitable.
1282      if (Pred1Br->isConditional())
1283        return nullptr;
1284  
1285      std::swap(Pred1, Pred2);
1286      std::swap(Pred1Br, Pred2Br);
1287    }
1288  
1289    if (Pred1Br->isConditional()) {
1290      // The only thing we have to watch out for here is to make sure that Pred2
1291      // doesn't have incoming edges from other blocks.  If it does, the condition
1292      // doesn't dominate BB.
1293      if (!Pred2->getSinglePredecessor())
1294        return nullptr;
1295  
1296      // If we found a conditional branch predecessor, make sure that it branches
1297      // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1298      if (Pred1Br->getSuccessor(0) == BB &&
1299          Pred1Br->getSuccessor(1) == Pred2) {
1300        IfTrue = Pred1;
1301        IfFalse = Pred2;
1302      } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1303                 Pred1Br->getSuccessor(1) == BB) {
1304        IfTrue = Pred2;
1305        IfFalse = Pred1;
1306      } else {
1307        // We know that one arm of the conditional goes to BB, so the other must
1308        // go somewhere unrelated, and this must not be an "if statement".
1309        return nullptr;
1310      }
1311  
1312      return Pred1Br->getCondition();
1313    }
1314  
1315    // Ok, if we got here, both predecessors end with an unconditional branch to
1316    // BB.  Don't panic!  If both blocks only have a single (identical)
1317    // predecessor, and THAT is a conditional branch, then we're all ok!
1318    BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1319    if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1320      return nullptr;
1321  
1322    // Otherwise, if this is a conditional branch, then we can use it!
1323    BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1324    if (!BI) return nullptr;
1325  
1326    assert(BI->isConditional() && "Two successors but not conditional?");
1327    if (BI->getSuccessor(0) == Pred1) {
1328      IfTrue = Pred1;
1329      IfFalse = Pred2;
1330    } else {
1331      IfTrue = Pred2;
1332      IfFalse = Pred1;
1333    }
1334    return BI->getCondition();
1335  }
1336  
1337  // After creating a control flow hub, the operands of PHINodes in an outgoing
1338  // block Out no longer match the predecessors of that block. Predecessors of Out
1339  // that are incoming blocks to the hub are now replaced by just one edge from
1340  // the hub. To match this new control flow, the corresponding values from each
1341  // PHINode must now be moved a new PHINode in the first guard block of the hub.
1342  //
1343  // This operation cannot be performed with SSAUpdater, because it involves one
1344  // new use: If the block Out is in the list of Incoming blocks, then the newly
1345  // created PHI in the Hub will use itself along that edge from Out to Hub.
1346  static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1347                            const SetVector<BasicBlock *> &Incoming,
1348                            BasicBlock *FirstGuardBlock) {
1349    auto I = Out->begin();
1350    while (I != Out->end() && isa<PHINode>(I)) {
1351      auto Phi = cast<PHINode>(I);
1352      auto NewPhi =
1353          PHINode::Create(Phi->getType(), Incoming.size(),
1354                          Phi->getName() + ".moved", &FirstGuardBlock->back());
1355      for (auto In : Incoming) {
1356        Value *V = UndefValue::get(Phi->getType());
1357        if (In == Out) {
1358          V = NewPhi;
1359        } else if (Phi->getBasicBlockIndex(In) != -1) {
1360          V = Phi->removeIncomingValue(In, false);
1361        }
1362        NewPhi->addIncoming(V, In);
1363      }
1364      assert(NewPhi->getNumIncomingValues() == Incoming.size());
1365      if (Phi->getNumOperands() == 0) {
1366        Phi->replaceAllUsesWith(NewPhi);
1367        I = Phi->eraseFromParent();
1368        continue;
1369      }
1370      Phi->addIncoming(NewPhi, GuardBlock);
1371      ++I;
1372    }
1373  }
1374  
1375  using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1376  using BBSetVector = SetVector<BasicBlock *>;
1377  
1378  // Redirects the terminator of the incoming block to the first guard
1379  // block in the hub. The condition of the original terminator (if it
1380  // was conditional) and its original successors are returned as a
1381  // tuple <condition, succ0, succ1>. The function additionally filters
1382  // out successors that are not in the set of outgoing blocks.
1383  //
1384  // - condition is non-null iff the branch is conditional.
1385  // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1386  // - Succ2 is non-null iff condition is non-null and the fallthrough
1387  //         target is an outgoing block.
1388  static std::tuple<Value *, BasicBlock *, BasicBlock *>
1389  redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1390                const BBSetVector &Outgoing) {
1391    auto Branch = cast<BranchInst>(BB->getTerminator());
1392    auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1393  
1394    BasicBlock *Succ0 = Branch->getSuccessor(0);
1395    BasicBlock *Succ1 = nullptr;
1396    Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1397  
1398    if (Branch->isUnconditional()) {
1399      Branch->setSuccessor(0, FirstGuardBlock);
1400      assert(Succ0);
1401    } else {
1402      Succ1 = Branch->getSuccessor(1);
1403      Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1404      assert(Succ0 || Succ1);
1405      if (Succ0 && !Succ1) {
1406        Branch->setSuccessor(0, FirstGuardBlock);
1407      } else if (Succ1 && !Succ0) {
1408        Branch->setSuccessor(1, FirstGuardBlock);
1409      } else {
1410        Branch->eraseFromParent();
1411        BranchInst::Create(FirstGuardBlock, BB);
1412      }
1413    }
1414  
1415    assert(Succ0 || Succ1);
1416    return std::make_tuple(Condition, Succ0, Succ1);
1417  }
1418  
1419  // Capture the existing control flow as guard predicates, and redirect
1420  // control flow from every incoming block to the first guard block in
1421  // the hub.
1422  //
1423  // There is one guard predicate for each outgoing block OutBB. The
1424  // predicate is a PHINode with one input for each InBB which
1425  // represents whether the hub should transfer control flow to OutBB if
1426  // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1427  // evaluates them in the same order as the Outgoing set-vector, and
1428  // control branches to the first outgoing block whose predicate
1429  // evaluates to true.
1430  static void convertToGuardPredicates(
1431      BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1432      SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1433      const BBSetVector &Outgoing) {
1434    auto &Context = Incoming.front()->getContext();
1435    auto BoolTrue = ConstantInt::getTrue(Context);
1436    auto BoolFalse = ConstantInt::getFalse(Context);
1437  
1438    // The predicate for the last outgoing is trivially true, and so we
1439    // process only the first N-1 successors.
1440    for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1441      auto Out = Outgoing[i];
1442      LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1443      auto Phi =
1444          PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1445                          StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1446      GuardPredicates[Out] = Phi;
1447    }
1448  
1449    for (auto In : Incoming) {
1450      Value *Condition;
1451      BasicBlock *Succ0;
1452      BasicBlock *Succ1;
1453      std::tie(Condition, Succ0, Succ1) =
1454          redirectToHub(In, FirstGuardBlock, Outgoing);
1455  
1456      // Optimization: Consider an incoming block A with both successors
1457      // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1458      // for Succ0 and Succ1 complement each other. If Succ0 is visited
1459      // first in the loop below, control will branch to Succ0 using the
1460      // corresponding predicate. But if that branch is not taken, then
1461      // control must reach Succ1, which means that the predicate for
1462      // Succ1 is always true.
1463      bool OneSuccessorDone = false;
1464      for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1465        auto Out = Outgoing[i];
1466        auto Phi = GuardPredicates[Out];
1467        if (Out != Succ0 && Out != Succ1) {
1468          Phi->addIncoming(BoolFalse, In);
1469          continue;
1470        }
1471        // Optimization: When only one successor is an outgoing block,
1472        // the predicate is always true.
1473        if (!Succ0 || !Succ1 || OneSuccessorDone) {
1474          Phi->addIncoming(BoolTrue, In);
1475          continue;
1476        }
1477        assert(Succ0 && Succ1);
1478        OneSuccessorDone = true;
1479        if (Out == Succ0) {
1480          Phi->addIncoming(Condition, In);
1481          continue;
1482        }
1483        auto Inverted = invertCondition(Condition);
1484        DeletionCandidates.push_back(Condition);
1485        Phi->addIncoming(Inverted, In);
1486      }
1487    }
1488  }
1489  
1490  // For each outgoing block OutBB, create a guard block in the Hub. The
1491  // first guard block was already created outside, and available as the
1492  // first element in the vector of guard blocks.
1493  //
1494  // Each guard block terminates in a conditional branch that transfers
1495  // control to the corresponding outgoing block or the next guard
1496  // block. The last guard block has two outgoing blocks as successors
1497  // since the condition for the final outgoing block is trivially
1498  // true. So we create one less block (including the first guard block)
1499  // than the number of outgoing blocks.
1500  static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1501                                Function *F, const BBSetVector &Outgoing,
1502                                BBPredicates &GuardPredicates, StringRef Prefix) {
1503    for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1504      GuardBlocks.push_back(
1505          BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1506    }
1507    assert(GuardBlocks.size() == GuardPredicates.size());
1508  
1509    // To help keep the loop simple, temporarily append the last
1510    // outgoing block to the list of guard blocks.
1511    GuardBlocks.push_back(Outgoing.back());
1512  
1513    for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1514      auto Out = Outgoing[i];
1515      assert(GuardPredicates.count(Out));
1516      BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1517                         GuardBlocks[i]);
1518    }
1519  
1520    // Remove the last block from the guard list.
1521    GuardBlocks.pop_back();
1522  }
1523  
1524  BasicBlock *llvm::CreateControlFlowHub(
1525      DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1526      const BBSetVector &Incoming, const BBSetVector &Outgoing,
1527      const StringRef Prefix) {
1528    auto F = Incoming.front()->getParent();
1529    auto FirstGuardBlock =
1530        BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1531  
1532    SmallVector<DominatorTree::UpdateType, 16> Updates;
1533    if (DTU) {
1534      for (auto In : Incoming) {
1535        Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1536        for (auto Succ : successors(In)) {
1537          if (Outgoing.count(Succ))
1538            Updates.push_back({DominatorTree::Delete, In, Succ});
1539        }
1540      }
1541    }
1542  
1543    BBPredicates GuardPredicates;
1544    SmallVector<WeakVH, 8> DeletionCandidates;
1545    convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1546                             Incoming, Outgoing);
1547  
1548    GuardBlocks.push_back(FirstGuardBlock);
1549    createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1550  
1551    // Update the PHINodes in each outgoing block to match the new control flow.
1552    for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1553      reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1554    }
1555    reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1556  
1557    if (DTU) {
1558      int NumGuards = GuardBlocks.size();
1559      assert((int)Outgoing.size() == NumGuards + 1);
1560      for (int i = 0; i != NumGuards - 1; ++i) {
1561        Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1562        Updates.push_back(
1563            {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1564      }
1565      Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1566                         Outgoing[NumGuards - 1]});
1567      Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1568                         Outgoing[NumGuards]});
1569      DTU->applyUpdates(Updates);
1570    }
1571  
1572    for (auto I : DeletionCandidates) {
1573      if (I->use_empty())
1574        if (auto Inst = dyn_cast_or_null<Instruction>(I))
1575          Inst->eraseFromParent();
1576    }
1577  
1578    return FirstGuardBlock;
1579  }
1580