xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 972a253a57b6f144b0e4a3e2080a2a0076ec55a0)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
55     "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
56     cl::desc("Set the maximum path length when checking whether a basic block "
57              "is followed by a block that either has a terminating "
58              "deoptimizing call or is terminated with an unreachable"));
59 
60 void llvm::detachDeadBlocks(
61     ArrayRef<BasicBlock *> BBs,
62     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
63     bool KeepOneInputPHIs) {
64   for (auto *BB : BBs) {
65     // Loop through all of our successors and make sure they know that one
66     // of their predecessors is going away.
67     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
68     for (BasicBlock *Succ : successors(BB)) {
69       Succ->removePredecessor(BB, KeepOneInputPHIs);
70       if (Updates && UniqueSuccessors.insert(Succ).second)
71         Updates->push_back({DominatorTree::Delete, BB, Succ});
72     }
73 
74     // Zap all the instructions in the block.
75     while (!BB->empty()) {
76       Instruction &I = BB->back();
77       // If this instruction is used, replace uses with an arbitrary value.
78       // Because control flow can't get here, we don't care what we replace the
79       // value with.  Note that since this block is unreachable, and all values
80       // contained within it must dominate their uses, that all uses will
81       // eventually be removed (they are themselves dead).
82       if (!I.use_empty())
83         I.replaceAllUsesWith(PoisonValue::get(I.getType()));
84       BB->getInstList().pop_back();
85     }
86     new UnreachableInst(BB->getContext(), BB);
87     assert(BB->getInstList().size() == 1 &&
88            isa<UnreachableInst>(BB->getTerminator()) &&
89            "The successor list of BB isn't empty before "
90            "applying corresponding DTU updates.");
91   }
92 }
93 
94 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
95                            bool KeepOneInputPHIs) {
96   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
97 }
98 
99 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
100                             bool KeepOneInputPHIs) {
101 #ifndef NDEBUG
102   // Make sure that all predecessors of each dead block is also dead.
103   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
104   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
105   for (auto *BB : Dead)
106     for (BasicBlock *Pred : predecessors(BB))
107       assert(Dead.count(Pred) && "All predecessors must be dead!");
108 #endif
109 
110   SmallVector<DominatorTree::UpdateType, 4> Updates;
111   detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
112 
113   if (DTU)
114     DTU->applyUpdates(Updates);
115 
116   for (BasicBlock *BB : BBs)
117     if (DTU)
118       DTU->deleteBB(BB);
119     else
120       BB->eraseFromParent();
121 }
122 
123 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
124                                       bool KeepOneInputPHIs) {
125   df_iterator_default_set<BasicBlock*> Reachable;
126 
127   // Mark all reachable blocks.
128   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
129     (void)BB/* Mark all reachable blocks */;
130 
131   // Collect all dead blocks.
132   std::vector<BasicBlock*> DeadBlocks;
133   for (BasicBlock &BB : F)
134     if (!Reachable.count(&BB))
135       DeadBlocks.push_back(&BB);
136 
137   // Delete the dead blocks.
138   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
139 
140   return !DeadBlocks.empty();
141 }
142 
143 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
144                                    MemoryDependenceResults *MemDep) {
145   if (!isa<PHINode>(BB->begin()))
146     return false;
147 
148   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
149     if (PN->getIncomingValue(0) != PN)
150       PN->replaceAllUsesWith(PN->getIncomingValue(0));
151     else
152       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
153 
154     if (MemDep)
155       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
156 
157     PN->eraseFromParent();
158   }
159   return true;
160 }
161 
162 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
163                           MemorySSAUpdater *MSSAU) {
164   // Recursively deleting a PHI may cause multiple PHIs to be deleted
165   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
166   SmallVector<WeakTrackingVH, 8> PHIs;
167   for (PHINode &PN : BB->phis())
168     PHIs.push_back(&PN);
169 
170   bool Changed = false;
171   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
172     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
173       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
174 
175   return Changed;
176 }
177 
178 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
179                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
180                                      MemoryDependenceResults *MemDep,
181                                      bool PredecessorWithTwoSuccessors) {
182   if (BB->hasAddressTaken())
183     return false;
184 
185   // Can't merge if there are multiple predecessors, or no predecessors.
186   BasicBlock *PredBB = BB->getUniquePredecessor();
187   if (!PredBB) return false;
188 
189   // Don't break self-loops.
190   if (PredBB == BB) return false;
191 
192   // Don't break unwinding instructions or terminators with other side-effects.
193   Instruction *PTI = PredBB->getTerminator();
194   if (PTI->isExceptionalTerminator() || PTI->mayHaveSideEffects())
195     return false;
196 
197   // Can't merge if there are multiple distinct successors.
198   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
199     return false;
200 
201   // Currently only allow PredBB to have two predecessors, one being BB.
202   // Update BI to branch to BB's only successor instead of BB.
203   BranchInst *PredBB_BI;
204   BasicBlock *NewSucc = nullptr;
205   unsigned FallThruPath;
206   if (PredecessorWithTwoSuccessors) {
207     if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
208       return false;
209     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
210     if (!BB_JmpI || !BB_JmpI->isUnconditional())
211       return false;
212     NewSucc = BB_JmpI->getSuccessor(0);
213     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
214   }
215 
216   // Can't merge if there is PHI loop.
217   for (PHINode &PN : BB->phis())
218     if (llvm::is_contained(PN.incoming_values(), &PN))
219       return false;
220 
221   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
222                     << PredBB->getName() << "\n");
223 
224   // Begin by getting rid of unneeded PHIs.
225   SmallVector<AssertingVH<Value>, 4> IncomingValues;
226   if (isa<PHINode>(BB->front())) {
227     for (PHINode &PN : BB->phis())
228       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
229           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
230         IncomingValues.push_back(PN.getIncomingValue(0));
231     FoldSingleEntryPHINodes(BB, MemDep);
232   }
233 
234   // DTU update: Collect all the edges that exit BB.
235   // These dominator edges will be redirected from Pred.
236   std::vector<DominatorTree::UpdateType> Updates;
237   if (DTU) {
238     // To avoid processing the same predecessor more than once.
239     SmallPtrSet<BasicBlock *, 8> SeenSuccs;
240     SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
241                                                succ_end(PredBB));
242     Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
243     // Add insert edges first. Experimentally, for the particular case of two
244     // blocks that can be merged, with a single successor and single predecessor
245     // respectively, it is beneficial to have all insert updates first. Deleting
246     // edges first may lead to unreachable blocks, followed by inserting edges
247     // making the blocks reachable again. Such DT updates lead to high compile
248     // times. We add inserts before deletes here to reduce compile time.
249     for (BasicBlock *SuccOfBB : successors(BB))
250       // This successor of BB may already be a PredBB's successor.
251       if (!SuccsOfPredBB.contains(SuccOfBB))
252         if (SeenSuccs.insert(SuccOfBB).second)
253           Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
254     SeenSuccs.clear();
255     for (BasicBlock *SuccOfBB : successors(BB))
256       if (SeenSuccs.insert(SuccOfBB).second)
257         Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
258     Updates.push_back({DominatorTree::Delete, PredBB, BB});
259   }
260 
261   Instruction *STI = BB->getTerminator();
262   Instruction *Start = &*BB->begin();
263   // If there's nothing to move, mark the starting instruction as the last
264   // instruction in the block. Terminator instruction is handled separately.
265   if (Start == STI)
266     Start = PTI;
267 
268   // Move all definitions in the successor to the predecessor...
269   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
270                                BB->begin(), STI->getIterator());
271 
272   if (MSSAU)
273     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
274 
275   // Make all PHI nodes that referred to BB now refer to Pred as their
276   // source...
277   BB->replaceAllUsesWith(PredBB);
278 
279   if (PredecessorWithTwoSuccessors) {
280     // Delete the unconditional branch from BB.
281     BB->getInstList().pop_back();
282 
283     // Update branch in the predecessor.
284     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
285   } else {
286     // Delete the unconditional branch from the predecessor.
287     PredBB->getInstList().pop_back();
288 
289     // Move terminator instruction.
290     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
291 
292     // Terminator may be a memory accessing instruction too.
293     if (MSSAU)
294       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
295               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
296         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
297   }
298   // Add unreachable to now empty BB.
299   new UnreachableInst(BB->getContext(), BB);
300 
301   // Inherit predecessors name if it exists.
302   if (!PredBB->hasName())
303     PredBB->takeName(BB);
304 
305   if (LI)
306     LI->removeBlock(BB);
307 
308   if (MemDep)
309     MemDep->invalidateCachedPredecessors();
310 
311   if (DTU)
312     DTU->applyUpdates(Updates);
313 
314   // Finally, erase the old block and update dominator info.
315   DeleteDeadBlock(BB, DTU);
316 
317   return true;
318 }
319 
320 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
321     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
322     LoopInfo *LI) {
323   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
324 
325   bool BlocksHaveBeenMerged = false;
326   while (!MergeBlocks.empty()) {
327     BasicBlock *BB = *MergeBlocks.begin();
328     BasicBlock *Dest = BB->getSingleSuccessor();
329     if (Dest && (!L || L->contains(Dest))) {
330       BasicBlock *Fold = Dest->getUniquePredecessor();
331       (void)Fold;
332       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
333         assert(Fold == BB &&
334                "Expecting BB to be unique predecessor of the Dest block");
335         MergeBlocks.erase(Dest);
336         BlocksHaveBeenMerged = true;
337       } else
338         MergeBlocks.erase(BB);
339     } else
340       MergeBlocks.erase(BB);
341   }
342   return BlocksHaveBeenMerged;
343 }
344 
345 /// Remove redundant instructions within sequences of consecutive dbg.value
346 /// instructions. This is done using a backward scan to keep the last dbg.value
347 /// describing a specific variable/fragment.
348 ///
349 /// BackwardScan strategy:
350 /// ----------------------
351 /// Given a sequence of consecutive DbgValueInst like this
352 ///
353 ///   dbg.value ..., "x", FragmentX1  (*)
354 ///   dbg.value ..., "y", FragmentY1
355 ///   dbg.value ..., "x", FragmentX2
356 ///   dbg.value ..., "x", FragmentX1  (**)
357 ///
358 /// then the instruction marked with (*) can be removed (it is guaranteed to be
359 /// obsoleted by the instruction marked with (**) as the latter instruction is
360 /// describing the same variable using the same fragment info).
361 ///
362 /// Possible improvements:
363 /// - Check fully overlapping fragments and not only identical fragments.
364 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
365 ///   instructions being part of the sequence of consecutive instructions.
366 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
367   SmallVector<DbgValueInst *, 8> ToBeRemoved;
368   SmallDenseSet<DebugVariable> VariableSet;
369   for (auto &I : reverse(*BB)) {
370     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
371       DebugVariable Key(DVI->getVariable(),
372                         DVI->getExpression(),
373                         DVI->getDebugLoc()->getInlinedAt());
374       auto R = VariableSet.insert(Key);
375       // If the same variable fragment is described more than once it is enough
376       // to keep the last one (i.e. the first found since we for reverse
377       // iteration).
378       if (!R.second)
379         ToBeRemoved.push_back(DVI);
380       continue;
381     }
382     // Sequence with consecutive dbg.value instrs ended. Clear the map to
383     // restart identifying redundant instructions if case we find another
384     // dbg.value sequence.
385     VariableSet.clear();
386   }
387 
388   for (auto &Instr : ToBeRemoved)
389     Instr->eraseFromParent();
390 
391   return !ToBeRemoved.empty();
392 }
393 
394 /// Remove redundant dbg.value instructions using a forward scan. This can
395 /// remove a dbg.value instruction that is redundant due to indicating that a
396 /// variable has the same value as already being indicated by an earlier
397 /// dbg.value.
398 ///
399 /// ForwardScan strategy:
400 /// ---------------------
401 /// Given two identical dbg.value instructions, separated by a block of
402 /// instructions that isn't describing the same variable, like this
403 ///
404 ///   dbg.value X1, "x", FragmentX1  (**)
405 ///   <block of instructions, none being "dbg.value ..., "x", ...">
406 ///   dbg.value X1, "x", FragmentX1  (*)
407 ///
408 /// then the instruction marked with (*) can be removed. Variable "x" is already
409 /// described as being mapped to the SSA value X1.
410 ///
411 /// Possible improvements:
412 /// - Keep track of non-overlapping fragments.
413 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
414   SmallVector<DbgValueInst *, 8> ToBeRemoved;
415   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
416       VariableMap;
417   for (auto &I : *BB) {
418     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
419       DebugVariable Key(DVI->getVariable(),
420                         NoneType(),
421                         DVI->getDebugLoc()->getInlinedAt());
422       auto VMI = VariableMap.find(Key);
423       // Update the map if we found a new value/expression describing the
424       // variable, or if the variable wasn't mapped already.
425       SmallVector<Value *, 4> Values(DVI->getValues());
426       if (VMI == VariableMap.end() || VMI->second.first != Values ||
427           VMI->second.second != DVI->getExpression()) {
428         VariableMap[Key] = {Values, DVI->getExpression()};
429         continue;
430       }
431       // Found an identical mapping. Remember the instruction for later removal.
432       ToBeRemoved.push_back(DVI);
433     }
434   }
435 
436   for (auto &Instr : ToBeRemoved)
437     Instr->eraseFromParent();
438 
439   return !ToBeRemoved.empty();
440 }
441 
442 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
443   bool MadeChanges = false;
444   // By using the "backward scan" strategy before the "forward scan" strategy we
445   // can remove both dbg.value (2) and (3) in a situation like this:
446   //
447   //   (1) dbg.value V1, "x", DIExpression()
448   //       ...
449   //   (2) dbg.value V2, "x", DIExpression()
450   //   (3) dbg.value V1, "x", DIExpression()
451   //
452   // The backward scan will remove (2), it is made obsolete by (3). After
453   // getting (2) out of the way, the foward scan will remove (3) since "x"
454   // already is described as having the value V1 at (1).
455   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
456   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
457 
458   if (MadeChanges)
459     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
460                       << BB->getName() << "\n");
461   return MadeChanges;
462 }
463 
464 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
465                                 BasicBlock::iterator &BI, Value *V) {
466   Instruction &I = *BI;
467   // Replaces all of the uses of the instruction with uses of the value
468   I.replaceAllUsesWith(V);
469 
470   // Make sure to propagate a name if there is one already.
471   if (I.hasName() && !V->hasName())
472     V->takeName(&I);
473 
474   // Delete the unnecessary instruction now...
475   BI = BIL.erase(BI);
476 }
477 
478 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
479                                BasicBlock::iterator &BI, Instruction *I) {
480   assert(I->getParent() == nullptr &&
481          "ReplaceInstWithInst: Instruction already inserted into basic block!");
482 
483   // Copy debug location to newly added instruction, if it wasn't already set
484   // by the caller.
485   if (!I->getDebugLoc())
486     I->setDebugLoc(BI->getDebugLoc());
487 
488   // Insert the new instruction into the basic block...
489   BasicBlock::iterator New = BIL.insert(BI, I);
490 
491   // Replace all uses of the old instruction, and delete it.
492   ReplaceInstWithValue(BIL, BI, I);
493 
494   // Move BI back to point to the newly inserted instruction
495   BI = New;
496 }
497 
498 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
499   // Remember visited blocks to avoid infinite loop
500   SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
501   unsigned Depth = 0;
502   while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
503          VisitedBlocks.insert(BB).second) {
504     if (BB->getTerminatingDeoptimizeCall() ||
505         isa<UnreachableInst>(BB->getTerminator()))
506       return true;
507     BB = BB->getUniqueSuccessor();
508   }
509   return false;
510 }
511 
512 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
513   BasicBlock::iterator BI(From);
514   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
515 }
516 
517 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
518                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
519                             const Twine &BBName) {
520   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
521 
522   Instruction *LatchTerm = BB->getTerminator();
523 
524   CriticalEdgeSplittingOptions Options =
525       CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
526 
527   if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
528     // If it is a critical edge, and the succesor is an exception block, handle
529     // the split edge logic in this specific function
530     if (Succ->isEHPad())
531       return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
532 
533     // If this is a critical edge, let SplitKnownCriticalEdge do it.
534     return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
535   }
536 
537   // If the edge isn't critical, then BB has a single successor or Succ has a
538   // single pred.  Split the block.
539   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
540     // If the successor only has a single pred, split the top of the successor
541     // block.
542     assert(SP == BB && "CFG broken");
543     SP = nullptr;
544     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
545                       /*Before=*/true);
546   }
547 
548   // Otherwise, if BB has a single successor, split it at the bottom of the
549   // block.
550   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
551          "Should have a single succ!");
552   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
553 }
554 
555 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
556   if (auto *II = dyn_cast<InvokeInst>(TI))
557     II->setUnwindDest(Succ);
558   else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
559     CS->setUnwindDest(Succ);
560   else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
561     CR->setUnwindDest(Succ);
562   else
563     llvm_unreachable("unexpected terminator instruction");
564 }
565 
566 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
567                           BasicBlock *NewPred, PHINode *Until) {
568   int BBIdx = 0;
569   for (PHINode &PN : DestBB->phis()) {
570     // We manually update the LandingPadReplacement PHINode and it is the last
571     // PHI Node. So, if we find it, we are done.
572     if (Until == &PN)
573       break;
574 
575     // Reuse the previous value of BBIdx if it lines up.  In cases where we
576     // have multiple phi nodes with *lots* of predecessors, this is a speed
577     // win because we don't have to scan the PHI looking for TIBB.  This
578     // happens because the BB list of PHI nodes are usually in the same
579     // order.
580     if (PN.getIncomingBlock(BBIdx) != OldPred)
581       BBIdx = PN.getBasicBlockIndex(OldPred);
582 
583     assert(BBIdx != -1 && "Invalid PHI Index!");
584     PN.setIncomingBlock(BBIdx, NewPred);
585   }
586 }
587 
588 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
589                                    LandingPadInst *OriginalPad,
590                                    PHINode *LandingPadReplacement,
591                                    const CriticalEdgeSplittingOptions &Options,
592                                    const Twine &BBName) {
593 
594   auto *PadInst = Succ->getFirstNonPHI();
595   if (!LandingPadReplacement && !PadInst->isEHPad())
596     return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
597 
598   auto *LI = Options.LI;
599   SmallVector<BasicBlock *, 4> LoopPreds;
600   // Check if extra modifications will be required to preserve loop-simplify
601   // form after splitting. If it would require splitting blocks with IndirectBr
602   // terminators, bail out if preserving loop-simplify form is requested.
603   if (Options.PreserveLoopSimplify && LI) {
604     if (Loop *BBLoop = LI->getLoopFor(BB)) {
605 
606       // The only way that we can break LoopSimplify form by splitting a
607       // critical edge is when there exists some edge from BBLoop to Succ *and*
608       // the only edge into Succ from outside of BBLoop is that of NewBB after
609       // the split. If the first isn't true, then LoopSimplify still holds,
610       // NewBB is the new exit block and it has no non-loop predecessors. If the
611       // second isn't true, then Succ was not in LoopSimplify form prior to
612       // the split as it had a non-loop predecessor. In both of these cases,
613       // the predecessor must be directly in BBLoop, not in a subloop, or again
614       // LoopSimplify doesn't hold.
615       for (BasicBlock *P : predecessors(Succ)) {
616         if (P == BB)
617           continue; // The new block is known.
618         if (LI->getLoopFor(P) != BBLoop) {
619           // Loop is not in LoopSimplify form, no need to re simplify after
620           // splitting edge.
621           LoopPreds.clear();
622           break;
623         }
624         LoopPreds.push_back(P);
625       }
626       // Loop-simplify form can be preserved, if we can split all in-loop
627       // predecessors.
628       if (any_of(LoopPreds, [](BasicBlock *Pred) {
629             return isa<IndirectBrInst>(Pred->getTerminator());
630           })) {
631         return nullptr;
632       }
633     }
634   }
635 
636   auto *NewBB =
637       BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
638   setUnwindEdgeTo(BB->getTerminator(), NewBB);
639   updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
640 
641   if (LandingPadReplacement) {
642     auto *NewLP = OriginalPad->clone();
643     auto *Terminator = BranchInst::Create(Succ, NewBB);
644     NewLP->insertBefore(Terminator);
645     LandingPadReplacement->addIncoming(NewLP, NewBB);
646   } else {
647     Value *ParentPad = nullptr;
648     if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
649       ParentPad = FuncletPad->getParentPad();
650     else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
651       ParentPad = CatchSwitch->getParentPad();
652     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
653       ParentPad = CleanupPad->getParentPad();
654     else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
655       ParentPad = LandingPad->getParent();
656     else
657       llvm_unreachable("handling for other EHPads not implemented yet");
658 
659     auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
660     CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
661   }
662 
663   auto *DT = Options.DT;
664   auto *MSSAU = Options.MSSAU;
665   if (!DT && !LI)
666     return NewBB;
667 
668   if (DT) {
669     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
670     SmallVector<DominatorTree::UpdateType, 3> Updates;
671 
672     Updates.push_back({DominatorTree::Insert, BB, NewBB});
673     Updates.push_back({DominatorTree::Insert, NewBB, Succ});
674     Updates.push_back({DominatorTree::Delete, BB, Succ});
675 
676     DTU.applyUpdates(Updates);
677     DTU.flush();
678 
679     if (MSSAU) {
680       MSSAU->applyUpdates(Updates, *DT);
681       if (VerifyMemorySSA)
682         MSSAU->getMemorySSA()->verifyMemorySSA();
683     }
684   }
685 
686   if (LI) {
687     if (Loop *BBLoop = LI->getLoopFor(BB)) {
688       // If one or the other blocks were not in a loop, the new block is not
689       // either, and thus LI doesn't need to be updated.
690       if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
691         if (BBLoop == SuccLoop) {
692           // Both in the same loop, the NewBB joins loop.
693           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
694         } else if (BBLoop->contains(SuccLoop)) {
695           // Edge from an outer loop to an inner loop.  Add to the outer loop.
696           BBLoop->addBasicBlockToLoop(NewBB, *LI);
697         } else if (SuccLoop->contains(BBLoop)) {
698           // Edge from an inner loop to an outer loop.  Add to the outer loop.
699           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
700         } else {
701           // Edge from two loops with no containment relation.  Because these
702           // are natural loops, we know that the destination block must be the
703           // header of its loop (adding a branch into a loop elsewhere would
704           // create an irreducible loop).
705           assert(SuccLoop->getHeader() == Succ &&
706                  "Should not create irreducible loops!");
707           if (Loop *P = SuccLoop->getParentLoop())
708             P->addBasicBlockToLoop(NewBB, *LI);
709         }
710       }
711 
712       // If BB is in a loop and Succ is outside of that loop, we may need to
713       // update LoopSimplify form and LCSSA form.
714       if (!BBLoop->contains(Succ)) {
715         assert(!BBLoop->contains(NewBB) &&
716                "Split point for loop exit is contained in loop!");
717 
718         // Update LCSSA form in the newly created exit block.
719         if (Options.PreserveLCSSA) {
720           createPHIsForSplitLoopExit(BB, NewBB, Succ);
721         }
722 
723         if (!LoopPreds.empty()) {
724           BasicBlock *NewExitBB = SplitBlockPredecessors(
725               Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
726           if (Options.PreserveLCSSA)
727             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
728         }
729       }
730     }
731   }
732 
733   return NewBB;
734 }
735 
736 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
737                                       BasicBlock *SplitBB, BasicBlock *DestBB) {
738   // SplitBB shouldn't have anything non-trivial in it yet.
739   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
740           SplitBB->isLandingPad()) &&
741          "SplitBB has non-PHI nodes!");
742 
743   // For each PHI in the destination block.
744   for (PHINode &PN : DestBB->phis()) {
745     int Idx = PN.getBasicBlockIndex(SplitBB);
746     assert(Idx >= 0 && "Invalid Block Index");
747     Value *V = PN.getIncomingValue(Idx);
748 
749     // If the input is a PHI which already satisfies LCSSA, don't create
750     // a new one.
751     if (const PHINode *VP = dyn_cast<PHINode>(V))
752       if (VP->getParent() == SplitBB)
753         continue;
754 
755     // Otherwise a new PHI is needed. Create one and populate it.
756     PHINode *NewPN = PHINode::Create(
757         PN.getType(), Preds.size(), "split",
758         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
759     for (BasicBlock *BB : Preds)
760       NewPN->addIncoming(V, BB);
761 
762     // Update the original PHI.
763     PN.setIncomingValue(Idx, NewPN);
764   }
765 }
766 
767 unsigned
768 llvm::SplitAllCriticalEdges(Function &F,
769                             const CriticalEdgeSplittingOptions &Options) {
770   unsigned NumBroken = 0;
771   for (BasicBlock &BB : F) {
772     Instruction *TI = BB.getTerminator();
773     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
774       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
775         if (SplitCriticalEdge(TI, i, Options))
776           ++NumBroken;
777   }
778   return NumBroken;
779 }
780 
781 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
782                                   DomTreeUpdater *DTU, DominatorTree *DT,
783                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
784                                   const Twine &BBName, bool Before) {
785   if (Before) {
786     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
787     return splitBlockBefore(Old, SplitPt,
788                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
789                             BBName);
790   }
791   BasicBlock::iterator SplitIt = SplitPt->getIterator();
792   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
793     ++SplitIt;
794     assert(SplitIt != SplitPt->getParent()->end());
795   }
796   std::string Name = BBName.str();
797   BasicBlock *New = Old->splitBasicBlock(
798       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
799 
800   // The new block lives in whichever loop the old one did. This preserves
801   // LCSSA as well, because we force the split point to be after any PHI nodes.
802   if (LI)
803     if (Loop *L = LI->getLoopFor(Old))
804       L->addBasicBlockToLoop(New, *LI);
805 
806   if (DTU) {
807     SmallVector<DominatorTree::UpdateType, 8> Updates;
808     // Old dominates New. New node dominates all other nodes dominated by Old.
809     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
810     Updates.push_back({DominatorTree::Insert, Old, New});
811     Updates.reserve(Updates.size() + 2 * succ_size(New));
812     for (BasicBlock *SuccessorOfOld : successors(New))
813       if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
814         Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
815         Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
816       }
817 
818     DTU->applyUpdates(Updates);
819   } else if (DT)
820     // Old dominates New. New node dominates all other nodes dominated by Old.
821     if (DomTreeNode *OldNode = DT->getNode(Old)) {
822       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
823 
824       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
825       for (DomTreeNode *I : Children)
826         DT->changeImmediateDominator(I, NewNode);
827     }
828 
829   // Move MemoryAccesses still tracked in Old, but part of New now.
830   // Update accesses in successor blocks accordingly.
831   if (MSSAU)
832     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
833 
834   return New;
835 }
836 
837 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
838                              DominatorTree *DT, LoopInfo *LI,
839                              MemorySSAUpdater *MSSAU, const Twine &BBName,
840                              bool Before) {
841   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
842                         Before);
843 }
844 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
845                              DomTreeUpdater *DTU, LoopInfo *LI,
846                              MemorySSAUpdater *MSSAU, const Twine &BBName,
847                              bool Before) {
848   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
849                         Before);
850 }
851 
852 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
853                                    DomTreeUpdater *DTU, LoopInfo *LI,
854                                    MemorySSAUpdater *MSSAU,
855                                    const Twine &BBName) {
856 
857   BasicBlock::iterator SplitIt = SplitPt->getIterator();
858   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
859     ++SplitIt;
860   std::string Name = BBName.str();
861   BasicBlock *New = Old->splitBasicBlock(
862       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
863       /* Before=*/true);
864 
865   // The new block lives in whichever loop the old one did. This preserves
866   // LCSSA as well, because we force the split point to be after any PHI nodes.
867   if (LI)
868     if (Loop *L = LI->getLoopFor(Old))
869       L->addBasicBlockToLoop(New, *LI);
870 
871   if (DTU) {
872     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
873     // New dominates Old. The predecessor nodes of the Old node dominate
874     // New node.
875     SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
876     DTUpdates.push_back({DominatorTree::Insert, New, Old});
877     DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
878     for (BasicBlock *PredecessorOfOld : predecessors(New))
879       if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
880         DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
881         DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
882       }
883 
884     DTU->applyUpdates(DTUpdates);
885 
886     // Move MemoryAccesses still tracked in Old, but part of New now.
887     // Update accesses in successor blocks accordingly.
888     if (MSSAU) {
889       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
890       if (VerifyMemorySSA)
891         MSSAU->getMemorySSA()->verifyMemorySSA();
892     }
893   }
894   return New;
895 }
896 
897 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
898 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
899                                       ArrayRef<BasicBlock *> Preds,
900                                       DomTreeUpdater *DTU, DominatorTree *DT,
901                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
902                                       bool PreserveLCSSA, bool &HasLoopExit) {
903   // Update dominator tree if available.
904   if (DTU) {
905     // Recalculation of DomTree is needed when updating a forward DomTree and
906     // the Entry BB is replaced.
907     if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
908       // The entry block was removed and there is no external interface for
909       // the dominator tree to be notified of this change. In this corner-case
910       // we recalculate the entire tree.
911       DTU->recalculate(*NewBB->getParent());
912     } else {
913       // Split block expects NewBB to have a non-empty set of predecessors.
914       SmallVector<DominatorTree::UpdateType, 8> Updates;
915       SmallPtrSet<BasicBlock *, 8> UniquePreds;
916       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
917       Updates.reserve(Updates.size() + 2 * Preds.size());
918       for (auto *Pred : Preds)
919         if (UniquePreds.insert(Pred).second) {
920           Updates.push_back({DominatorTree::Insert, Pred, NewBB});
921           Updates.push_back({DominatorTree::Delete, Pred, OldBB});
922         }
923       DTU->applyUpdates(Updates);
924     }
925   } else if (DT) {
926     if (OldBB == DT->getRootNode()->getBlock()) {
927       assert(NewBB->isEntryBlock());
928       DT->setNewRoot(NewBB);
929     } else {
930       // Split block expects NewBB to have a non-empty set of predecessors.
931       DT->splitBlock(NewBB);
932     }
933   }
934 
935   // Update MemoryPhis after split if MemorySSA is available
936   if (MSSAU)
937     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
938 
939   // The rest of the logic is only relevant for updating the loop structures.
940   if (!LI)
941     return;
942 
943   if (DTU && DTU->hasDomTree())
944     DT = &DTU->getDomTree();
945   assert(DT && "DT should be available to update LoopInfo!");
946   Loop *L = LI->getLoopFor(OldBB);
947 
948   // If we need to preserve loop analyses, collect some information about how
949   // this split will affect loops.
950   bool IsLoopEntry = !!L;
951   bool SplitMakesNewLoopHeader = false;
952   for (BasicBlock *Pred : Preds) {
953     // Preds that are not reachable from entry should not be used to identify if
954     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
955     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
956     // as true and make the NewBB the header of some loop. This breaks LI.
957     if (!DT->isReachableFromEntry(Pred))
958       continue;
959     // If we need to preserve LCSSA, determine if any of the preds is a loop
960     // exit.
961     if (PreserveLCSSA)
962       if (Loop *PL = LI->getLoopFor(Pred))
963         if (!PL->contains(OldBB))
964           HasLoopExit = true;
965 
966     // If we need to preserve LoopInfo, note whether any of the preds crosses
967     // an interesting loop boundary.
968     if (!L)
969       continue;
970     if (L->contains(Pred))
971       IsLoopEntry = false;
972     else
973       SplitMakesNewLoopHeader = true;
974   }
975 
976   // Unless we have a loop for OldBB, nothing else to do here.
977   if (!L)
978     return;
979 
980   if (IsLoopEntry) {
981     // Add the new block to the nearest enclosing loop (and not an adjacent
982     // loop). To find this, examine each of the predecessors and determine which
983     // loops enclose them, and select the most-nested loop which contains the
984     // loop containing the block being split.
985     Loop *InnermostPredLoop = nullptr;
986     for (BasicBlock *Pred : Preds) {
987       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
988         // Seek a loop which actually contains the block being split (to avoid
989         // adjacent loops).
990         while (PredLoop && !PredLoop->contains(OldBB))
991           PredLoop = PredLoop->getParentLoop();
992 
993         // Select the most-nested of these loops which contains the block.
994         if (PredLoop && PredLoop->contains(OldBB) &&
995             (!InnermostPredLoop ||
996              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
997           InnermostPredLoop = PredLoop;
998       }
999     }
1000 
1001     if (InnermostPredLoop)
1002       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1003   } else {
1004     L->addBasicBlockToLoop(NewBB, *LI);
1005     if (SplitMakesNewLoopHeader)
1006       L->moveToHeader(NewBB);
1007   }
1008 }
1009 
1010 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1011 /// This also updates AliasAnalysis, if available.
1012 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1013                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1014                            bool HasLoopExit) {
1015   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1016   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1017   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1018     PHINode *PN = cast<PHINode>(I++);
1019 
1020     // Check to see if all of the values coming in are the same.  If so, we
1021     // don't need to create a new PHI node, unless it's needed for LCSSA.
1022     Value *InVal = nullptr;
1023     if (!HasLoopExit) {
1024       InVal = PN->getIncomingValueForBlock(Preds[0]);
1025       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1026         if (!PredSet.count(PN->getIncomingBlock(i)))
1027           continue;
1028         if (!InVal)
1029           InVal = PN->getIncomingValue(i);
1030         else if (InVal != PN->getIncomingValue(i)) {
1031           InVal = nullptr;
1032           break;
1033         }
1034       }
1035     }
1036 
1037     if (InVal) {
1038       // If all incoming values for the new PHI would be the same, just don't
1039       // make a new PHI.  Instead, just remove the incoming values from the old
1040       // PHI.
1041 
1042       // NOTE! This loop walks backwards for a reason! First off, this minimizes
1043       // the cost of removal if we end up removing a large number of values, and
1044       // second off, this ensures that the indices for the incoming values
1045       // aren't invalidated when we remove one.
1046       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
1047         if (PredSet.count(PN->getIncomingBlock(i)))
1048           PN->removeIncomingValue(i, false);
1049 
1050       // Add an incoming value to the PHI node in the loop for the preheader
1051       // edge.
1052       PN->addIncoming(InVal, NewBB);
1053       continue;
1054     }
1055 
1056     // If the values coming into the block are not the same, we need a new
1057     // PHI.
1058     // Create the new PHI node, insert it into NewBB at the end of the block
1059     PHINode *NewPHI =
1060         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1061 
1062     // NOTE! This loop walks backwards for a reason! First off, this minimizes
1063     // the cost of removal if we end up removing a large number of values, and
1064     // second off, this ensures that the indices for the incoming values aren't
1065     // invalidated when we remove one.
1066     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1067       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1068       if (PredSet.count(IncomingBB)) {
1069         Value *V = PN->removeIncomingValue(i, false);
1070         NewPHI->addIncoming(V, IncomingBB);
1071       }
1072     }
1073 
1074     PN->addIncoming(NewPHI, NewBB);
1075   }
1076 }
1077 
1078 static void SplitLandingPadPredecessorsImpl(
1079     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1080     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1081     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1082     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1083 
1084 static BasicBlock *
1085 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1086                            const char *Suffix, DomTreeUpdater *DTU,
1087                            DominatorTree *DT, LoopInfo *LI,
1088                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1089   // Do not attempt to split that which cannot be split.
1090   if (!BB->canSplitPredecessors())
1091     return nullptr;
1092 
1093   // For the landingpads we need to act a bit differently.
1094   // Delegate this work to the SplitLandingPadPredecessors.
1095   if (BB->isLandingPad()) {
1096     SmallVector<BasicBlock*, 2> NewBBs;
1097     std::string NewName = std::string(Suffix) + ".split-lp";
1098 
1099     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1100                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
1101     return NewBBs[0];
1102   }
1103 
1104   // Create new basic block, insert right before the original block.
1105   BasicBlock *NewBB = BasicBlock::Create(
1106       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1107 
1108   // The new block unconditionally branches to the old block.
1109   BranchInst *BI = BranchInst::Create(BB, NewBB);
1110 
1111   Loop *L = nullptr;
1112   BasicBlock *OldLatch = nullptr;
1113   // Splitting the predecessors of a loop header creates a preheader block.
1114   if (LI && LI->isLoopHeader(BB)) {
1115     L = LI->getLoopFor(BB);
1116     // Using the loop start line number prevents debuggers stepping into the
1117     // loop body for this instruction.
1118     BI->setDebugLoc(L->getStartLoc());
1119 
1120     // If BB is the header of the Loop, it is possible that the loop is
1121     // modified, such that the current latch does not remain the latch of the
1122     // loop. If that is the case, the loop metadata from the current latch needs
1123     // to be applied to the new latch.
1124     OldLatch = L->getLoopLatch();
1125   } else
1126     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1127 
1128   // Move the edges from Preds to point to NewBB instead of BB.
1129   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1130     // This is slightly more strict than necessary; the minimum requirement
1131     // is that there be no more than one indirectbr branching to BB. And
1132     // all BlockAddress uses would need to be updated.
1133     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1134            "Cannot split an edge from an IndirectBrInst");
1135     Preds[i]->getTerminator()->replaceSuccessorWith(BB, NewBB);
1136   }
1137 
1138   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1139   // node becomes an incoming value for BB's phi node.  However, if the Preds
1140   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1141   // account for the newly created predecessor.
1142   if (Preds.empty()) {
1143     // Insert dummy values as the incoming value.
1144     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1145       cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
1146   }
1147 
1148   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1149   bool HasLoopExit = false;
1150   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1151                             HasLoopExit);
1152 
1153   if (!Preds.empty()) {
1154     // Update the PHI nodes in BB with the values coming from NewBB.
1155     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1156   }
1157 
1158   if (OldLatch) {
1159     BasicBlock *NewLatch = L->getLoopLatch();
1160     if (NewLatch != OldLatch) {
1161       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1162       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1163       // It's still possible that OldLatch is the latch of another inner loop,
1164       // in which case we do not remove the metadata.
1165       Loop *IL = LI->getLoopFor(OldLatch);
1166       if (IL && IL->getLoopLatch() != OldLatch)
1167         OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1168     }
1169   }
1170 
1171   return NewBB;
1172 }
1173 
1174 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1175                                          ArrayRef<BasicBlock *> Preds,
1176                                          const char *Suffix, DominatorTree *DT,
1177                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
1178                                          bool PreserveLCSSA) {
1179   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1180                                     MSSAU, PreserveLCSSA);
1181 }
1182 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1183                                          ArrayRef<BasicBlock *> Preds,
1184                                          const char *Suffix,
1185                                          DomTreeUpdater *DTU, LoopInfo *LI,
1186                                          MemorySSAUpdater *MSSAU,
1187                                          bool PreserveLCSSA) {
1188   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1189                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1190 }
1191 
1192 static void SplitLandingPadPredecessorsImpl(
1193     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1194     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1195     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1196     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1197   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1198 
1199   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1200   // it right before the original block.
1201   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1202                                           OrigBB->getName() + Suffix1,
1203                                           OrigBB->getParent(), OrigBB);
1204   NewBBs.push_back(NewBB1);
1205 
1206   // The new block unconditionally branches to the old block.
1207   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1208   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1209 
1210   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1211   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1212     // This is slightly more strict than necessary; the minimum requirement
1213     // is that there be no more than one indirectbr branching to BB. And
1214     // all BlockAddress uses would need to be updated.
1215     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1216            "Cannot split an edge from an IndirectBrInst");
1217     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1218   }
1219 
1220   bool HasLoopExit = false;
1221   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1222                             PreserveLCSSA, HasLoopExit);
1223 
1224   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1225   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1226 
1227   // Move the remaining edges from OrigBB to point to NewBB2.
1228   SmallVector<BasicBlock*, 8> NewBB2Preds;
1229   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1230        i != e; ) {
1231     BasicBlock *Pred = *i++;
1232     if (Pred == NewBB1) continue;
1233     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1234            "Cannot split an edge from an IndirectBrInst");
1235     NewBB2Preds.push_back(Pred);
1236     e = pred_end(OrigBB);
1237   }
1238 
1239   BasicBlock *NewBB2 = nullptr;
1240   if (!NewBB2Preds.empty()) {
1241     // Create another basic block for the rest of OrigBB's predecessors.
1242     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1243                                 OrigBB->getName() + Suffix2,
1244                                 OrigBB->getParent(), OrigBB);
1245     NewBBs.push_back(NewBB2);
1246 
1247     // The new block unconditionally branches to the old block.
1248     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1249     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1250 
1251     // Move the remaining edges from OrigBB to point to NewBB2.
1252     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1253       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1254 
1255     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1256     HasLoopExit = false;
1257     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1258                               PreserveLCSSA, HasLoopExit);
1259 
1260     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1261     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1262   }
1263 
1264   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1265   Instruction *Clone1 = LPad->clone();
1266   Clone1->setName(Twine("lpad") + Suffix1);
1267   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1268 
1269   if (NewBB2) {
1270     Instruction *Clone2 = LPad->clone();
1271     Clone2->setName(Twine("lpad") + Suffix2);
1272     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1273 
1274     // Create a PHI node for the two cloned landingpad instructions only
1275     // if the original landingpad instruction has some uses.
1276     if (!LPad->use_empty()) {
1277       assert(!LPad->getType()->isTokenTy() &&
1278              "Split cannot be applied if LPad is token type. Otherwise an "
1279              "invalid PHINode of token type would be created.");
1280       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1281       PN->addIncoming(Clone1, NewBB1);
1282       PN->addIncoming(Clone2, NewBB2);
1283       LPad->replaceAllUsesWith(PN);
1284     }
1285     LPad->eraseFromParent();
1286   } else {
1287     // There is no second clone. Just replace the landing pad with the first
1288     // clone.
1289     LPad->replaceAllUsesWith(Clone1);
1290     LPad->eraseFromParent();
1291   }
1292 }
1293 
1294 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1295                                        ArrayRef<BasicBlock *> Preds,
1296                                        const char *Suffix1, const char *Suffix2,
1297                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1298                                        DominatorTree *DT, LoopInfo *LI,
1299                                        MemorySSAUpdater *MSSAU,
1300                                        bool PreserveLCSSA) {
1301   return SplitLandingPadPredecessorsImpl(
1302       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1303       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1304 }
1305 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1306                                        ArrayRef<BasicBlock *> Preds,
1307                                        const char *Suffix1, const char *Suffix2,
1308                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1309                                        DomTreeUpdater *DTU, LoopInfo *LI,
1310                                        MemorySSAUpdater *MSSAU,
1311                                        bool PreserveLCSSA) {
1312   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1313                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1314                                          PreserveLCSSA);
1315 }
1316 
1317 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1318                                              BasicBlock *Pred,
1319                                              DomTreeUpdater *DTU) {
1320   Instruction *UncondBranch = Pred->getTerminator();
1321   // Clone the return and add it to the end of the predecessor.
1322   Instruction *NewRet = RI->clone();
1323   Pred->getInstList().push_back(NewRet);
1324 
1325   // If the return instruction returns a value, and if the value was a
1326   // PHI node in "BB", propagate the right value into the return.
1327   for (Use &Op : NewRet->operands()) {
1328     Value *V = Op;
1329     Instruction *NewBC = nullptr;
1330     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1331       // Return value might be bitcasted. Clone and insert it before the
1332       // return instruction.
1333       V = BCI->getOperand(0);
1334       NewBC = BCI->clone();
1335       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1336       Op = NewBC;
1337     }
1338 
1339     Instruction *NewEV = nullptr;
1340     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1341       V = EVI->getOperand(0);
1342       NewEV = EVI->clone();
1343       if (NewBC) {
1344         NewBC->setOperand(0, NewEV);
1345         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1346       } else {
1347         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1348         Op = NewEV;
1349       }
1350     }
1351 
1352     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1353       if (PN->getParent() == BB) {
1354         if (NewEV) {
1355           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1356         } else if (NewBC)
1357           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1358         else
1359           Op = PN->getIncomingValueForBlock(Pred);
1360       }
1361     }
1362   }
1363 
1364   // Update any PHI nodes in the returning block to realize that we no
1365   // longer branch to them.
1366   BB->removePredecessor(Pred);
1367   UncondBranch->eraseFromParent();
1368 
1369   if (DTU)
1370     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1371 
1372   return cast<ReturnInst>(NewRet);
1373 }
1374 
1375 static Instruction *
1376 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1377                               bool Unreachable, MDNode *BranchWeights,
1378                               DomTreeUpdater *DTU, DominatorTree *DT,
1379                               LoopInfo *LI, BasicBlock *ThenBlock) {
1380   SmallVector<DominatorTree::UpdateType, 8> Updates;
1381   BasicBlock *Head = SplitBefore->getParent();
1382   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1383   if (DTU) {
1384     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead;
1385     Updates.push_back({DominatorTree::Insert, Head, Tail});
1386     Updates.reserve(Updates.size() + 2 * succ_size(Tail));
1387     for (BasicBlock *SuccessorOfHead : successors(Tail))
1388       if (UniqueSuccessorsOfHead.insert(SuccessorOfHead).second) {
1389         Updates.push_back({DominatorTree::Insert, Tail, SuccessorOfHead});
1390         Updates.push_back({DominatorTree::Delete, Head, SuccessorOfHead});
1391       }
1392   }
1393   Instruction *HeadOldTerm = Head->getTerminator();
1394   LLVMContext &C = Head->getContext();
1395   Instruction *CheckTerm;
1396   bool CreateThenBlock = (ThenBlock == nullptr);
1397   if (CreateThenBlock) {
1398     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1399     if (Unreachable)
1400       CheckTerm = new UnreachableInst(C, ThenBlock);
1401     else {
1402       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1403       if (DTU)
1404         Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1405     }
1406     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1407   } else
1408     CheckTerm = ThenBlock->getTerminator();
1409   BranchInst *HeadNewTerm =
1410       BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1411   if (DTU)
1412     Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1413   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1414   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1415 
1416   if (DTU)
1417     DTU->applyUpdates(Updates);
1418   else if (DT) {
1419     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1420       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1421 
1422       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1423       for (DomTreeNode *Child : Children)
1424         DT->changeImmediateDominator(Child, NewNode);
1425 
1426       // Head dominates ThenBlock.
1427       if (CreateThenBlock)
1428         DT->addNewBlock(ThenBlock, Head);
1429       else
1430         DT->changeImmediateDominator(ThenBlock, Head);
1431     }
1432   }
1433 
1434   if (LI) {
1435     if (Loop *L = LI->getLoopFor(Head)) {
1436       L->addBasicBlockToLoop(ThenBlock, *LI);
1437       L->addBasicBlockToLoop(Tail, *LI);
1438     }
1439   }
1440 
1441   return CheckTerm;
1442 }
1443 
1444 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1445                                              Instruction *SplitBefore,
1446                                              bool Unreachable,
1447                                              MDNode *BranchWeights,
1448                                              DominatorTree *DT, LoopInfo *LI,
1449                                              BasicBlock *ThenBlock) {
1450   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1451                                        BranchWeights,
1452                                        /*DTU=*/nullptr, DT, LI, ThenBlock);
1453 }
1454 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1455                                              Instruction *SplitBefore,
1456                                              bool Unreachable,
1457                                              MDNode *BranchWeights,
1458                                              DomTreeUpdater *DTU, LoopInfo *LI,
1459                                              BasicBlock *ThenBlock) {
1460   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1461                                        BranchWeights, DTU, /*DT=*/nullptr, LI,
1462                                        ThenBlock);
1463 }
1464 
1465 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1466                                          Instruction **ThenTerm,
1467                                          Instruction **ElseTerm,
1468                                          MDNode *BranchWeights) {
1469   BasicBlock *Head = SplitBefore->getParent();
1470   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1471   Instruction *HeadOldTerm = Head->getTerminator();
1472   LLVMContext &C = Head->getContext();
1473   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1474   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1475   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1476   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1477   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1478   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1479   BranchInst *HeadNewTerm =
1480     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1481   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1482   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1483 }
1484 
1485 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1486                                  BasicBlock *&IfFalse) {
1487   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1488   BasicBlock *Pred1 = nullptr;
1489   BasicBlock *Pred2 = nullptr;
1490 
1491   if (SomePHI) {
1492     if (SomePHI->getNumIncomingValues() != 2)
1493       return nullptr;
1494     Pred1 = SomePHI->getIncomingBlock(0);
1495     Pred2 = SomePHI->getIncomingBlock(1);
1496   } else {
1497     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1498     if (PI == PE) // No predecessor
1499       return nullptr;
1500     Pred1 = *PI++;
1501     if (PI == PE) // Only one predecessor
1502       return nullptr;
1503     Pred2 = *PI++;
1504     if (PI != PE) // More than two predecessors
1505       return nullptr;
1506   }
1507 
1508   // We can only handle branches.  Other control flow will be lowered to
1509   // branches if possible anyway.
1510   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1511   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1512   if (!Pred1Br || !Pred2Br)
1513     return nullptr;
1514 
1515   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1516   // either are.
1517   if (Pred2Br->isConditional()) {
1518     // If both branches are conditional, we don't have an "if statement".  In
1519     // reality, we could transform this case, but since the condition will be
1520     // required anyway, we stand no chance of eliminating it, so the xform is
1521     // probably not profitable.
1522     if (Pred1Br->isConditional())
1523       return nullptr;
1524 
1525     std::swap(Pred1, Pred2);
1526     std::swap(Pred1Br, Pred2Br);
1527   }
1528 
1529   if (Pred1Br->isConditional()) {
1530     // The only thing we have to watch out for here is to make sure that Pred2
1531     // doesn't have incoming edges from other blocks.  If it does, the condition
1532     // doesn't dominate BB.
1533     if (!Pred2->getSinglePredecessor())
1534       return nullptr;
1535 
1536     // If we found a conditional branch predecessor, make sure that it branches
1537     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1538     if (Pred1Br->getSuccessor(0) == BB &&
1539         Pred1Br->getSuccessor(1) == Pred2) {
1540       IfTrue = Pred1;
1541       IfFalse = Pred2;
1542     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1543                Pred1Br->getSuccessor(1) == BB) {
1544       IfTrue = Pred2;
1545       IfFalse = Pred1;
1546     } else {
1547       // We know that one arm of the conditional goes to BB, so the other must
1548       // go somewhere unrelated, and this must not be an "if statement".
1549       return nullptr;
1550     }
1551 
1552     return Pred1Br;
1553   }
1554 
1555   // Ok, if we got here, both predecessors end with an unconditional branch to
1556   // BB.  Don't panic!  If both blocks only have a single (identical)
1557   // predecessor, and THAT is a conditional branch, then we're all ok!
1558   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1559   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1560     return nullptr;
1561 
1562   // Otherwise, if this is a conditional branch, then we can use it!
1563   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1564   if (!BI) return nullptr;
1565 
1566   assert(BI->isConditional() && "Two successors but not conditional?");
1567   if (BI->getSuccessor(0) == Pred1) {
1568     IfTrue = Pred1;
1569     IfFalse = Pred2;
1570   } else {
1571     IfTrue = Pred2;
1572     IfFalse = Pred1;
1573   }
1574   return BI;
1575 }
1576 
1577 // After creating a control flow hub, the operands of PHINodes in an outgoing
1578 // block Out no longer match the predecessors of that block. Predecessors of Out
1579 // that are incoming blocks to the hub are now replaced by just one edge from
1580 // the hub. To match this new control flow, the corresponding values from each
1581 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1582 //
1583 // This operation cannot be performed with SSAUpdater, because it involves one
1584 // new use: If the block Out is in the list of Incoming blocks, then the newly
1585 // created PHI in the Hub will use itself along that edge from Out to Hub.
1586 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1587                           const SetVector<BasicBlock *> &Incoming,
1588                           BasicBlock *FirstGuardBlock) {
1589   auto I = Out->begin();
1590   while (I != Out->end() && isa<PHINode>(I)) {
1591     auto Phi = cast<PHINode>(I);
1592     auto NewPhi =
1593         PHINode::Create(Phi->getType(), Incoming.size(),
1594                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1595     for (auto In : Incoming) {
1596       Value *V = UndefValue::get(Phi->getType());
1597       if (In == Out) {
1598         V = NewPhi;
1599       } else if (Phi->getBasicBlockIndex(In) != -1) {
1600         V = Phi->removeIncomingValue(In, false);
1601       }
1602       NewPhi->addIncoming(V, In);
1603     }
1604     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1605     if (Phi->getNumOperands() == 0) {
1606       Phi->replaceAllUsesWith(NewPhi);
1607       I = Phi->eraseFromParent();
1608       continue;
1609     }
1610     Phi->addIncoming(NewPhi, GuardBlock);
1611     ++I;
1612   }
1613 }
1614 
1615 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1616 using BBSetVector = SetVector<BasicBlock *>;
1617 
1618 // Redirects the terminator of the incoming block to the first guard
1619 // block in the hub. The condition of the original terminator (if it
1620 // was conditional) and its original successors are returned as a
1621 // tuple <condition, succ0, succ1>. The function additionally filters
1622 // out successors that are not in the set of outgoing blocks.
1623 //
1624 // - condition is non-null iff the branch is conditional.
1625 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1626 // - Succ2 is non-null iff condition is non-null and the fallthrough
1627 //         target is an outgoing block.
1628 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1629 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1630               const BBSetVector &Outgoing) {
1631   auto Branch = cast<BranchInst>(BB->getTerminator());
1632   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1633 
1634   BasicBlock *Succ0 = Branch->getSuccessor(0);
1635   BasicBlock *Succ1 = nullptr;
1636   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1637 
1638   if (Branch->isUnconditional()) {
1639     Branch->setSuccessor(0, FirstGuardBlock);
1640     assert(Succ0);
1641   } else {
1642     Succ1 = Branch->getSuccessor(1);
1643     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1644     assert(Succ0 || Succ1);
1645     if (Succ0 && !Succ1) {
1646       Branch->setSuccessor(0, FirstGuardBlock);
1647     } else if (Succ1 && !Succ0) {
1648       Branch->setSuccessor(1, FirstGuardBlock);
1649     } else {
1650       Branch->eraseFromParent();
1651       BranchInst::Create(FirstGuardBlock, BB);
1652     }
1653   }
1654 
1655   assert(Succ0 || Succ1);
1656   return std::make_tuple(Condition, Succ0, Succ1);
1657 }
1658 
1659 // Capture the existing control flow as guard predicates, and redirect
1660 // control flow from every incoming block to the first guard block in
1661 // the hub.
1662 //
1663 // There is one guard predicate for each outgoing block OutBB. The
1664 // predicate is a PHINode with one input for each InBB which
1665 // represents whether the hub should transfer control flow to OutBB if
1666 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1667 // evaluates them in the same order as the Outgoing set-vector, and
1668 // control branches to the first outgoing block whose predicate
1669 // evaluates to true.
1670 static void convertToGuardPredicates(
1671     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1672     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1673     const BBSetVector &Outgoing) {
1674   auto &Context = Incoming.front()->getContext();
1675   auto BoolTrue = ConstantInt::getTrue(Context);
1676   auto BoolFalse = ConstantInt::getFalse(Context);
1677 
1678   // The predicate for the last outgoing is trivially true, and so we
1679   // process only the first N-1 successors.
1680   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1681     auto Out = Outgoing[i];
1682     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1683     auto Phi =
1684         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1685                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1686     GuardPredicates[Out] = Phi;
1687   }
1688 
1689   for (auto In : Incoming) {
1690     Value *Condition;
1691     BasicBlock *Succ0;
1692     BasicBlock *Succ1;
1693     std::tie(Condition, Succ0, Succ1) =
1694         redirectToHub(In, FirstGuardBlock, Outgoing);
1695 
1696     // Optimization: Consider an incoming block A with both successors
1697     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1698     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1699     // first in the loop below, control will branch to Succ0 using the
1700     // corresponding predicate. But if that branch is not taken, then
1701     // control must reach Succ1, which means that the predicate for
1702     // Succ1 is always true.
1703     bool OneSuccessorDone = false;
1704     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1705       auto Out = Outgoing[i];
1706       auto Phi = GuardPredicates[Out];
1707       if (Out != Succ0 && Out != Succ1) {
1708         Phi->addIncoming(BoolFalse, In);
1709         continue;
1710       }
1711       // Optimization: When only one successor is an outgoing block,
1712       // the predicate is always true.
1713       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1714         Phi->addIncoming(BoolTrue, In);
1715         continue;
1716       }
1717       assert(Succ0 && Succ1);
1718       OneSuccessorDone = true;
1719       if (Out == Succ0) {
1720         Phi->addIncoming(Condition, In);
1721         continue;
1722       }
1723       auto Inverted = invertCondition(Condition);
1724       DeletionCandidates.push_back(Condition);
1725       Phi->addIncoming(Inverted, In);
1726     }
1727   }
1728 }
1729 
1730 // For each outgoing block OutBB, create a guard block in the Hub. The
1731 // first guard block was already created outside, and available as the
1732 // first element in the vector of guard blocks.
1733 //
1734 // Each guard block terminates in a conditional branch that transfers
1735 // control to the corresponding outgoing block or the next guard
1736 // block. The last guard block has two outgoing blocks as successors
1737 // since the condition for the final outgoing block is trivially
1738 // true. So we create one less block (including the first guard block)
1739 // than the number of outgoing blocks.
1740 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1741                               Function *F, const BBSetVector &Outgoing,
1742                               BBPredicates &GuardPredicates, StringRef Prefix) {
1743   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1744     GuardBlocks.push_back(
1745         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1746   }
1747   assert(GuardBlocks.size() == GuardPredicates.size());
1748 
1749   // To help keep the loop simple, temporarily append the last
1750   // outgoing block to the list of guard blocks.
1751   GuardBlocks.push_back(Outgoing.back());
1752 
1753   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1754     auto Out = Outgoing[i];
1755     assert(GuardPredicates.count(Out));
1756     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1757                        GuardBlocks[i]);
1758   }
1759 
1760   // Remove the last block from the guard list.
1761   GuardBlocks.pop_back();
1762 }
1763 
1764 BasicBlock *llvm::CreateControlFlowHub(
1765     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1766     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1767     const StringRef Prefix) {
1768   auto F = Incoming.front()->getParent();
1769   auto FirstGuardBlock =
1770       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1771 
1772   SmallVector<DominatorTree::UpdateType, 16> Updates;
1773   if (DTU) {
1774     for (auto In : Incoming) {
1775       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1776       for (auto Succ : successors(In)) {
1777         if (Outgoing.count(Succ))
1778           Updates.push_back({DominatorTree::Delete, In, Succ});
1779       }
1780     }
1781   }
1782 
1783   BBPredicates GuardPredicates;
1784   SmallVector<WeakVH, 8> DeletionCandidates;
1785   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1786                            Incoming, Outgoing);
1787 
1788   GuardBlocks.push_back(FirstGuardBlock);
1789   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1790 
1791   // Update the PHINodes in each outgoing block to match the new control flow.
1792   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1793     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1794   }
1795   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1796 
1797   if (DTU) {
1798     int NumGuards = GuardBlocks.size();
1799     assert((int)Outgoing.size() == NumGuards + 1);
1800     for (int i = 0; i != NumGuards - 1; ++i) {
1801       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1802       Updates.push_back(
1803           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1804     }
1805     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1806                        Outgoing[NumGuards - 1]});
1807     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1808                        Outgoing[NumGuards]});
1809     DTU->applyUpdates(Updates);
1810   }
1811 
1812   for (auto I : DeletionCandidates) {
1813     if (I->use_empty())
1814       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1815         Inst->eraseFromParent();
1816   }
1817 
1818   return FirstGuardBlock;
1819 }
1820