1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <string> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "basicblock-utils" 53 54 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( 55 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, 56 cl::desc("Set the maximum path length when checking whether a basic block " 57 "is followed by a block that either has a terminating " 58 "deoptimizing call or is terminated with an unreachable")); 59 60 void llvm::detachDeadBlocks( 61 ArrayRef<BasicBlock *> BBs, 62 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 63 bool KeepOneInputPHIs) { 64 for (auto *BB : BBs) { 65 // Loop through all of our successors and make sure they know that one 66 // of their predecessors is going away. 67 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 68 for (BasicBlock *Succ : successors(BB)) { 69 Succ->removePredecessor(BB, KeepOneInputPHIs); 70 if (Updates && UniqueSuccessors.insert(Succ).second) 71 Updates->push_back({DominatorTree::Delete, BB, Succ}); 72 } 73 74 // Zap all the instructions in the block. 75 while (!BB->empty()) { 76 Instruction &I = BB->back(); 77 // If this instruction is used, replace uses with an arbitrary value. 78 // Because control flow can't get here, we don't care what we replace the 79 // value with. Note that since this block is unreachable, and all values 80 // contained within it must dominate their uses, that all uses will 81 // eventually be removed (they are themselves dead). 82 if (!I.use_empty()) 83 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 84 BB->getInstList().pop_back(); 85 } 86 new UnreachableInst(BB->getContext(), BB); 87 assert(BB->getInstList().size() == 1 && 88 isa<UnreachableInst>(BB->getTerminator()) && 89 "The successor list of BB isn't empty before " 90 "applying corresponding DTU updates."); 91 } 92 } 93 94 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 95 bool KeepOneInputPHIs) { 96 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 97 } 98 99 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 100 bool KeepOneInputPHIs) { 101 #ifndef NDEBUG 102 // Make sure that all predecessors of each dead block is also dead. 103 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 104 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 105 for (auto *BB : Dead) 106 for (BasicBlock *Pred : predecessors(BB)) 107 assert(Dead.count(Pred) && "All predecessors must be dead!"); 108 #endif 109 110 SmallVector<DominatorTree::UpdateType, 4> Updates; 111 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 112 113 if (DTU) 114 DTU->applyUpdates(Updates); 115 116 for (BasicBlock *BB : BBs) 117 if (DTU) 118 DTU->deleteBB(BB); 119 else 120 BB->eraseFromParent(); 121 } 122 123 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 124 bool KeepOneInputPHIs) { 125 df_iterator_default_set<BasicBlock*> Reachable; 126 127 // Mark all reachable blocks. 128 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 129 (void)BB/* Mark all reachable blocks */; 130 131 // Collect all dead blocks. 132 std::vector<BasicBlock*> DeadBlocks; 133 for (BasicBlock &BB : F) 134 if (!Reachable.count(&BB)) 135 DeadBlocks.push_back(&BB); 136 137 // Delete the dead blocks. 138 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 139 140 return !DeadBlocks.empty(); 141 } 142 143 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 144 MemoryDependenceResults *MemDep) { 145 if (!isa<PHINode>(BB->begin())) 146 return false; 147 148 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 149 if (PN->getIncomingValue(0) != PN) 150 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 151 else 152 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 153 154 if (MemDep) 155 MemDep->removeInstruction(PN); // Memdep updates AA itself. 156 157 PN->eraseFromParent(); 158 } 159 return true; 160 } 161 162 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 163 MemorySSAUpdater *MSSAU) { 164 // Recursively deleting a PHI may cause multiple PHIs to be deleted 165 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 166 SmallVector<WeakTrackingVH, 8> PHIs; 167 for (PHINode &PN : BB->phis()) 168 PHIs.push_back(&PN); 169 170 bool Changed = false; 171 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 172 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 173 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 174 175 return Changed; 176 } 177 178 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 179 LoopInfo *LI, MemorySSAUpdater *MSSAU, 180 MemoryDependenceResults *MemDep, 181 bool PredecessorWithTwoSuccessors) { 182 if (BB->hasAddressTaken()) 183 return false; 184 185 // Can't merge if there are multiple predecessors, or no predecessors. 186 BasicBlock *PredBB = BB->getUniquePredecessor(); 187 if (!PredBB) return false; 188 189 // Don't break self-loops. 190 if (PredBB == BB) return false; 191 192 // Don't break unwinding instructions or terminators with other side-effects. 193 Instruction *PTI = PredBB->getTerminator(); 194 if (PTI->isExceptionalTerminator() || PTI->mayHaveSideEffects()) 195 return false; 196 197 // Can't merge if there are multiple distinct successors. 198 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 199 return false; 200 201 // Currently only allow PredBB to have two predecessors, one being BB. 202 // Update BI to branch to BB's only successor instead of BB. 203 BranchInst *PredBB_BI; 204 BasicBlock *NewSucc = nullptr; 205 unsigned FallThruPath; 206 if (PredecessorWithTwoSuccessors) { 207 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI))) 208 return false; 209 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 210 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 211 return false; 212 NewSucc = BB_JmpI->getSuccessor(0); 213 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 214 } 215 216 // Can't merge if there is PHI loop. 217 for (PHINode &PN : BB->phis()) 218 if (llvm::is_contained(PN.incoming_values(), &PN)) 219 return false; 220 221 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 222 << PredBB->getName() << "\n"); 223 224 // Begin by getting rid of unneeded PHIs. 225 SmallVector<AssertingVH<Value>, 4> IncomingValues; 226 if (isa<PHINode>(BB->front())) { 227 for (PHINode &PN : BB->phis()) 228 if (!isa<PHINode>(PN.getIncomingValue(0)) || 229 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 230 IncomingValues.push_back(PN.getIncomingValue(0)); 231 FoldSingleEntryPHINodes(BB, MemDep); 232 } 233 234 // DTU update: Collect all the edges that exit BB. 235 // These dominator edges will be redirected from Pred. 236 std::vector<DominatorTree::UpdateType> Updates; 237 if (DTU) { 238 // To avoid processing the same predecessor more than once. 239 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 240 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 241 succ_end(PredBB)); 242 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1); 243 // Add insert edges first. Experimentally, for the particular case of two 244 // blocks that can be merged, with a single successor and single predecessor 245 // respectively, it is beneficial to have all insert updates first. Deleting 246 // edges first may lead to unreachable blocks, followed by inserting edges 247 // making the blocks reachable again. Such DT updates lead to high compile 248 // times. We add inserts before deletes here to reduce compile time. 249 for (BasicBlock *SuccOfBB : successors(BB)) 250 // This successor of BB may already be a PredBB's successor. 251 if (!SuccsOfPredBB.contains(SuccOfBB)) 252 if (SeenSuccs.insert(SuccOfBB).second) 253 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 254 SeenSuccs.clear(); 255 for (BasicBlock *SuccOfBB : successors(BB)) 256 if (SeenSuccs.insert(SuccOfBB).second) 257 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 258 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 259 } 260 261 Instruction *STI = BB->getTerminator(); 262 Instruction *Start = &*BB->begin(); 263 // If there's nothing to move, mark the starting instruction as the last 264 // instruction in the block. Terminator instruction is handled separately. 265 if (Start == STI) 266 Start = PTI; 267 268 // Move all definitions in the successor to the predecessor... 269 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), 270 BB->begin(), STI->getIterator()); 271 272 if (MSSAU) 273 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 274 275 // Make all PHI nodes that referred to BB now refer to Pred as their 276 // source... 277 BB->replaceAllUsesWith(PredBB); 278 279 if (PredecessorWithTwoSuccessors) { 280 // Delete the unconditional branch from BB. 281 BB->getInstList().pop_back(); 282 283 // Update branch in the predecessor. 284 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 285 } else { 286 // Delete the unconditional branch from the predecessor. 287 PredBB->getInstList().pop_back(); 288 289 // Move terminator instruction. 290 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 291 292 // Terminator may be a memory accessing instruction too. 293 if (MSSAU) 294 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 295 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 296 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 297 } 298 // Add unreachable to now empty BB. 299 new UnreachableInst(BB->getContext(), BB); 300 301 // Inherit predecessors name if it exists. 302 if (!PredBB->hasName()) 303 PredBB->takeName(BB); 304 305 if (LI) 306 LI->removeBlock(BB); 307 308 if (MemDep) 309 MemDep->invalidateCachedPredecessors(); 310 311 if (DTU) 312 DTU->applyUpdates(Updates); 313 314 // Finally, erase the old block and update dominator info. 315 DeleteDeadBlock(BB, DTU); 316 317 return true; 318 } 319 320 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 321 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 322 LoopInfo *LI) { 323 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 324 325 bool BlocksHaveBeenMerged = false; 326 while (!MergeBlocks.empty()) { 327 BasicBlock *BB = *MergeBlocks.begin(); 328 BasicBlock *Dest = BB->getSingleSuccessor(); 329 if (Dest && (!L || L->contains(Dest))) { 330 BasicBlock *Fold = Dest->getUniquePredecessor(); 331 (void)Fold; 332 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 333 assert(Fold == BB && 334 "Expecting BB to be unique predecessor of the Dest block"); 335 MergeBlocks.erase(Dest); 336 BlocksHaveBeenMerged = true; 337 } else 338 MergeBlocks.erase(BB); 339 } else 340 MergeBlocks.erase(BB); 341 } 342 return BlocksHaveBeenMerged; 343 } 344 345 /// Remove redundant instructions within sequences of consecutive dbg.value 346 /// instructions. This is done using a backward scan to keep the last dbg.value 347 /// describing a specific variable/fragment. 348 /// 349 /// BackwardScan strategy: 350 /// ---------------------- 351 /// Given a sequence of consecutive DbgValueInst like this 352 /// 353 /// dbg.value ..., "x", FragmentX1 (*) 354 /// dbg.value ..., "y", FragmentY1 355 /// dbg.value ..., "x", FragmentX2 356 /// dbg.value ..., "x", FragmentX1 (**) 357 /// 358 /// then the instruction marked with (*) can be removed (it is guaranteed to be 359 /// obsoleted by the instruction marked with (**) as the latter instruction is 360 /// describing the same variable using the same fragment info). 361 /// 362 /// Possible improvements: 363 /// - Check fully overlapping fragments and not only identical fragments. 364 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta 365 /// instructions being part of the sequence of consecutive instructions. 366 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 367 SmallVector<DbgValueInst *, 8> ToBeRemoved; 368 SmallDenseSet<DebugVariable> VariableSet; 369 for (auto &I : reverse(*BB)) { 370 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 371 DebugVariable Key(DVI->getVariable(), 372 DVI->getExpression(), 373 DVI->getDebugLoc()->getInlinedAt()); 374 auto R = VariableSet.insert(Key); 375 // If the same variable fragment is described more than once it is enough 376 // to keep the last one (i.e. the first found since we for reverse 377 // iteration). 378 if (!R.second) 379 ToBeRemoved.push_back(DVI); 380 continue; 381 } 382 // Sequence with consecutive dbg.value instrs ended. Clear the map to 383 // restart identifying redundant instructions if case we find another 384 // dbg.value sequence. 385 VariableSet.clear(); 386 } 387 388 for (auto &Instr : ToBeRemoved) 389 Instr->eraseFromParent(); 390 391 return !ToBeRemoved.empty(); 392 } 393 394 /// Remove redundant dbg.value instructions using a forward scan. This can 395 /// remove a dbg.value instruction that is redundant due to indicating that a 396 /// variable has the same value as already being indicated by an earlier 397 /// dbg.value. 398 /// 399 /// ForwardScan strategy: 400 /// --------------------- 401 /// Given two identical dbg.value instructions, separated by a block of 402 /// instructions that isn't describing the same variable, like this 403 /// 404 /// dbg.value X1, "x", FragmentX1 (**) 405 /// <block of instructions, none being "dbg.value ..., "x", ..."> 406 /// dbg.value X1, "x", FragmentX1 (*) 407 /// 408 /// then the instruction marked with (*) can be removed. Variable "x" is already 409 /// described as being mapped to the SSA value X1. 410 /// 411 /// Possible improvements: 412 /// - Keep track of non-overlapping fragments. 413 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 414 SmallVector<DbgValueInst *, 8> ToBeRemoved; 415 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 416 VariableMap; 417 for (auto &I : *BB) { 418 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 419 DebugVariable Key(DVI->getVariable(), 420 NoneType(), 421 DVI->getDebugLoc()->getInlinedAt()); 422 auto VMI = VariableMap.find(Key); 423 // Update the map if we found a new value/expression describing the 424 // variable, or if the variable wasn't mapped already. 425 SmallVector<Value *, 4> Values(DVI->getValues()); 426 if (VMI == VariableMap.end() || VMI->second.first != Values || 427 VMI->second.second != DVI->getExpression()) { 428 VariableMap[Key] = {Values, DVI->getExpression()}; 429 continue; 430 } 431 // Found an identical mapping. Remember the instruction for later removal. 432 ToBeRemoved.push_back(DVI); 433 } 434 } 435 436 for (auto &Instr : ToBeRemoved) 437 Instr->eraseFromParent(); 438 439 return !ToBeRemoved.empty(); 440 } 441 442 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 443 bool MadeChanges = false; 444 // By using the "backward scan" strategy before the "forward scan" strategy we 445 // can remove both dbg.value (2) and (3) in a situation like this: 446 // 447 // (1) dbg.value V1, "x", DIExpression() 448 // ... 449 // (2) dbg.value V2, "x", DIExpression() 450 // (3) dbg.value V1, "x", DIExpression() 451 // 452 // The backward scan will remove (2), it is made obsolete by (3). After 453 // getting (2) out of the way, the foward scan will remove (3) since "x" 454 // already is described as having the value V1 at (1). 455 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 456 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 457 458 if (MadeChanges) 459 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 460 << BB->getName() << "\n"); 461 return MadeChanges; 462 } 463 464 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 465 BasicBlock::iterator &BI, Value *V) { 466 Instruction &I = *BI; 467 // Replaces all of the uses of the instruction with uses of the value 468 I.replaceAllUsesWith(V); 469 470 // Make sure to propagate a name if there is one already. 471 if (I.hasName() && !V->hasName()) 472 V->takeName(&I); 473 474 // Delete the unnecessary instruction now... 475 BI = BIL.erase(BI); 476 } 477 478 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 479 BasicBlock::iterator &BI, Instruction *I) { 480 assert(I->getParent() == nullptr && 481 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 482 483 // Copy debug location to newly added instruction, if it wasn't already set 484 // by the caller. 485 if (!I->getDebugLoc()) 486 I->setDebugLoc(BI->getDebugLoc()); 487 488 // Insert the new instruction into the basic block... 489 BasicBlock::iterator New = BIL.insert(BI, I); 490 491 // Replace all uses of the old instruction, and delete it. 492 ReplaceInstWithValue(BIL, BI, I); 493 494 // Move BI back to point to the newly inserted instruction 495 BI = New; 496 } 497 498 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { 499 // Remember visited blocks to avoid infinite loop 500 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 501 unsigned Depth = 0; 502 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && 503 VisitedBlocks.insert(BB).second) { 504 if (BB->getTerminatingDeoptimizeCall() || 505 isa<UnreachableInst>(BB->getTerminator())) 506 return true; 507 BB = BB->getUniqueSuccessor(); 508 } 509 return false; 510 } 511 512 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 513 BasicBlock::iterator BI(From); 514 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 515 } 516 517 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 518 LoopInfo *LI, MemorySSAUpdater *MSSAU, 519 const Twine &BBName) { 520 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 521 522 Instruction *LatchTerm = BB->getTerminator(); 523 524 CriticalEdgeSplittingOptions Options = 525 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 526 527 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 528 // If it is a critical edge, and the succesor is an exception block, handle 529 // the split edge logic in this specific function 530 if (Succ->isEHPad()) 531 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 532 533 // If this is a critical edge, let SplitKnownCriticalEdge do it. 534 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 535 } 536 537 // If the edge isn't critical, then BB has a single successor or Succ has a 538 // single pred. Split the block. 539 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 540 // If the successor only has a single pred, split the top of the successor 541 // block. 542 assert(SP == BB && "CFG broken"); 543 SP = nullptr; 544 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 545 /*Before=*/true); 546 } 547 548 // Otherwise, if BB has a single successor, split it at the bottom of the 549 // block. 550 assert(BB->getTerminator()->getNumSuccessors() == 1 && 551 "Should have a single succ!"); 552 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 553 } 554 555 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 556 if (auto *II = dyn_cast<InvokeInst>(TI)) 557 II->setUnwindDest(Succ); 558 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 559 CS->setUnwindDest(Succ); 560 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 561 CR->setUnwindDest(Succ); 562 else 563 llvm_unreachable("unexpected terminator instruction"); 564 } 565 566 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 567 BasicBlock *NewPred, PHINode *Until) { 568 int BBIdx = 0; 569 for (PHINode &PN : DestBB->phis()) { 570 // We manually update the LandingPadReplacement PHINode and it is the last 571 // PHI Node. So, if we find it, we are done. 572 if (Until == &PN) 573 break; 574 575 // Reuse the previous value of BBIdx if it lines up. In cases where we 576 // have multiple phi nodes with *lots* of predecessors, this is a speed 577 // win because we don't have to scan the PHI looking for TIBB. This 578 // happens because the BB list of PHI nodes are usually in the same 579 // order. 580 if (PN.getIncomingBlock(BBIdx) != OldPred) 581 BBIdx = PN.getBasicBlockIndex(OldPred); 582 583 assert(BBIdx != -1 && "Invalid PHI Index!"); 584 PN.setIncomingBlock(BBIdx, NewPred); 585 } 586 } 587 588 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 589 LandingPadInst *OriginalPad, 590 PHINode *LandingPadReplacement, 591 const CriticalEdgeSplittingOptions &Options, 592 const Twine &BBName) { 593 594 auto *PadInst = Succ->getFirstNonPHI(); 595 if (!LandingPadReplacement && !PadInst->isEHPad()) 596 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 597 598 auto *LI = Options.LI; 599 SmallVector<BasicBlock *, 4> LoopPreds; 600 // Check if extra modifications will be required to preserve loop-simplify 601 // form after splitting. If it would require splitting blocks with IndirectBr 602 // terminators, bail out if preserving loop-simplify form is requested. 603 if (Options.PreserveLoopSimplify && LI) { 604 if (Loop *BBLoop = LI->getLoopFor(BB)) { 605 606 // The only way that we can break LoopSimplify form by splitting a 607 // critical edge is when there exists some edge from BBLoop to Succ *and* 608 // the only edge into Succ from outside of BBLoop is that of NewBB after 609 // the split. If the first isn't true, then LoopSimplify still holds, 610 // NewBB is the new exit block and it has no non-loop predecessors. If the 611 // second isn't true, then Succ was not in LoopSimplify form prior to 612 // the split as it had a non-loop predecessor. In both of these cases, 613 // the predecessor must be directly in BBLoop, not in a subloop, or again 614 // LoopSimplify doesn't hold. 615 for (BasicBlock *P : predecessors(Succ)) { 616 if (P == BB) 617 continue; // The new block is known. 618 if (LI->getLoopFor(P) != BBLoop) { 619 // Loop is not in LoopSimplify form, no need to re simplify after 620 // splitting edge. 621 LoopPreds.clear(); 622 break; 623 } 624 LoopPreds.push_back(P); 625 } 626 // Loop-simplify form can be preserved, if we can split all in-loop 627 // predecessors. 628 if (any_of(LoopPreds, [](BasicBlock *Pred) { 629 return isa<IndirectBrInst>(Pred->getTerminator()); 630 })) { 631 return nullptr; 632 } 633 } 634 } 635 636 auto *NewBB = 637 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 638 setUnwindEdgeTo(BB->getTerminator(), NewBB); 639 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 640 641 if (LandingPadReplacement) { 642 auto *NewLP = OriginalPad->clone(); 643 auto *Terminator = BranchInst::Create(Succ, NewBB); 644 NewLP->insertBefore(Terminator); 645 LandingPadReplacement->addIncoming(NewLP, NewBB); 646 } else { 647 Value *ParentPad = nullptr; 648 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 649 ParentPad = FuncletPad->getParentPad(); 650 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 651 ParentPad = CatchSwitch->getParentPad(); 652 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 653 ParentPad = CleanupPad->getParentPad(); 654 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 655 ParentPad = LandingPad->getParent(); 656 else 657 llvm_unreachable("handling for other EHPads not implemented yet"); 658 659 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 660 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 661 } 662 663 auto *DT = Options.DT; 664 auto *MSSAU = Options.MSSAU; 665 if (!DT && !LI) 666 return NewBB; 667 668 if (DT) { 669 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 670 SmallVector<DominatorTree::UpdateType, 3> Updates; 671 672 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 673 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 674 Updates.push_back({DominatorTree::Delete, BB, Succ}); 675 676 DTU.applyUpdates(Updates); 677 DTU.flush(); 678 679 if (MSSAU) { 680 MSSAU->applyUpdates(Updates, *DT); 681 if (VerifyMemorySSA) 682 MSSAU->getMemorySSA()->verifyMemorySSA(); 683 } 684 } 685 686 if (LI) { 687 if (Loop *BBLoop = LI->getLoopFor(BB)) { 688 // If one or the other blocks were not in a loop, the new block is not 689 // either, and thus LI doesn't need to be updated. 690 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 691 if (BBLoop == SuccLoop) { 692 // Both in the same loop, the NewBB joins loop. 693 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 694 } else if (BBLoop->contains(SuccLoop)) { 695 // Edge from an outer loop to an inner loop. Add to the outer loop. 696 BBLoop->addBasicBlockToLoop(NewBB, *LI); 697 } else if (SuccLoop->contains(BBLoop)) { 698 // Edge from an inner loop to an outer loop. Add to the outer loop. 699 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 700 } else { 701 // Edge from two loops with no containment relation. Because these 702 // are natural loops, we know that the destination block must be the 703 // header of its loop (adding a branch into a loop elsewhere would 704 // create an irreducible loop). 705 assert(SuccLoop->getHeader() == Succ && 706 "Should not create irreducible loops!"); 707 if (Loop *P = SuccLoop->getParentLoop()) 708 P->addBasicBlockToLoop(NewBB, *LI); 709 } 710 } 711 712 // If BB is in a loop and Succ is outside of that loop, we may need to 713 // update LoopSimplify form and LCSSA form. 714 if (!BBLoop->contains(Succ)) { 715 assert(!BBLoop->contains(NewBB) && 716 "Split point for loop exit is contained in loop!"); 717 718 // Update LCSSA form in the newly created exit block. 719 if (Options.PreserveLCSSA) { 720 createPHIsForSplitLoopExit(BB, NewBB, Succ); 721 } 722 723 if (!LoopPreds.empty()) { 724 BasicBlock *NewExitBB = SplitBlockPredecessors( 725 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 726 if (Options.PreserveLCSSA) 727 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 728 } 729 } 730 } 731 } 732 733 return NewBB; 734 } 735 736 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 737 BasicBlock *SplitBB, BasicBlock *DestBB) { 738 // SplitBB shouldn't have anything non-trivial in it yet. 739 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 740 SplitBB->isLandingPad()) && 741 "SplitBB has non-PHI nodes!"); 742 743 // For each PHI in the destination block. 744 for (PHINode &PN : DestBB->phis()) { 745 int Idx = PN.getBasicBlockIndex(SplitBB); 746 assert(Idx >= 0 && "Invalid Block Index"); 747 Value *V = PN.getIncomingValue(Idx); 748 749 // If the input is a PHI which already satisfies LCSSA, don't create 750 // a new one. 751 if (const PHINode *VP = dyn_cast<PHINode>(V)) 752 if (VP->getParent() == SplitBB) 753 continue; 754 755 // Otherwise a new PHI is needed. Create one and populate it. 756 PHINode *NewPN = PHINode::Create( 757 PN.getType(), Preds.size(), "split", 758 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 759 for (BasicBlock *BB : Preds) 760 NewPN->addIncoming(V, BB); 761 762 // Update the original PHI. 763 PN.setIncomingValue(Idx, NewPN); 764 } 765 } 766 767 unsigned 768 llvm::SplitAllCriticalEdges(Function &F, 769 const CriticalEdgeSplittingOptions &Options) { 770 unsigned NumBroken = 0; 771 for (BasicBlock &BB : F) { 772 Instruction *TI = BB.getTerminator(); 773 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 774 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 775 if (SplitCriticalEdge(TI, i, Options)) 776 ++NumBroken; 777 } 778 return NumBroken; 779 } 780 781 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt, 782 DomTreeUpdater *DTU, DominatorTree *DT, 783 LoopInfo *LI, MemorySSAUpdater *MSSAU, 784 const Twine &BBName, bool Before) { 785 if (Before) { 786 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 787 return splitBlockBefore(Old, SplitPt, 788 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 789 BBName); 790 } 791 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 792 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 793 ++SplitIt; 794 assert(SplitIt != SplitPt->getParent()->end()); 795 } 796 std::string Name = BBName.str(); 797 BasicBlock *New = Old->splitBasicBlock( 798 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 799 800 // The new block lives in whichever loop the old one did. This preserves 801 // LCSSA as well, because we force the split point to be after any PHI nodes. 802 if (LI) 803 if (Loop *L = LI->getLoopFor(Old)) 804 L->addBasicBlockToLoop(New, *LI); 805 806 if (DTU) { 807 SmallVector<DominatorTree::UpdateType, 8> Updates; 808 // Old dominates New. New node dominates all other nodes dominated by Old. 809 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; 810 Updates.push_back({DominatorTree::Insert, Old, New}); 811 Updates.reserve(Updates.size() + 2 * succ_size(New)); 812 for (BasicBlock *SuccessorOfOld : successors(New)) 813 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) { 814 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld}); 815 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld}); 816 } 817 818 DTU->applyUpdates(Updates); 819 } else if (DT) 820 // Old dominates New. New node dominates all other nodes dominated by Old. 821 if (DomTreeNode *OldNode = DT->getNode(Old)) { 822 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 823 824 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 825 for (DomTreeNode *I : Children) 826 DT->changeImmediateDominator(I, NewNode); 827 } 828 829 // Move MemoryAccesses still tracked in Old, but part of New now. 830 // Update accesses in successor blocks accordingly. 831 if (MSSAU) 832 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 833 834 return New; 835 } 836 837 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 838 DominatorTree *DT, LoopInfo *LI, 839 MemorySSAUpdater *MSSAU, const Twine &BBName, 840 bool Before) { 841 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 842 Before); 843 } 844 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 845 DomTreeUpdater *DTU, LoopInfo *LI, 846 MemorySSAUpdater *MSSAU, const Twine &BBName, 847 bool Before) { 848 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 849 Before); 850 } 851 852 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt, 853 DomTreeUpdater *DTU, LoopInfo *LI, 854 MemorySSAUpdater *MSSAU, 855 const Twine &BBName) { 856 857 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 858 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 859 ++SplitIt; 860 std::string Name = BBName.str(); 861 BasicBlock *New = Old->splitBasicBlock( 862 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 863 /* Before=*/true); 864 865 // The new block lives in whichever loop the old one did. This preserves 866 // LCSSA as well, because we force the split point to be after any PHI nodes. 867 if (LI) 868 if (Loop *L = LI->getLoopFor(Old)) 869 L->addBasicBlockToLoop(New, *LI); 870 871 if (DTU) { 872 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 873 // New dominates Old. The predecessor nodes of the Old node dominate 874 // New node. 875 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; 876 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 877 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New)); 878 for (BasicBlock *PredecessorOfOld : predecessors(New)) 879 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) { 880 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New}); 881 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old}); 882 } 883 884 DTU->applyUpdates(DTUpdates); 885 886 // Move MemoryAccesses still tracked in Old, but part of New now. 887 // Update accesses in successor blocks accordingly. 888 if (MSSAU) { 889 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 890 if (VerifyMemorySSA) 891 MSSAU->getMemorySSA()->verifyMemorySSA(); 892 } 893 } 894 return New; 895 } 896 897 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 898 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 899 ArrayRef<BasicBlock *> Preds, 900 DomTreeUpdater *DTU, DominatorTree *DT, 901 LoopInfo *LI, MemorySSAUpdater *MSSAU, 902 bool PreserveLCSSA, bool &HasLoopExit) { 903 // Update dominator tree if available. 904 if (DTU) { 905 // Recalculation of DomTree is needed when updating a forward DomTree and 906 // the Entry BB is replaced. 907 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 908 // The entry block was removed and there is no external interface for 909 // the dominator tree to be notified of this change. In this corner-case 910 // we recalculate the entire tree. 911 DTU->recalculate(*NewBB->getParent()); 912 } else { 913 // Split block expects NewBB to have a non-empty set of predecessors. 914 SmallVector<DominatorTree::UpdateType, 8> Updates; 915 SmallPtrSet<BasicBlock *, 8> UniquePreds; 916 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 917 Updates.reserve(Updates.size() + 2 * Preds.size()); 918 for (auto *Pred : Preds) 919 if (UniquePreds.insert(Pred).second) { 920 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 921 Updates.push_back({DominatorTree::Delete, Pred, OldBB}); 922 } 923 DTU->applyUpdates(Updates); 924 } 925 } else if (DT) { 926 if (OldBB == DT->getRootNode()->getBlock()) { 927 assert(NewBB->isEntryBlock()); 928 DT->setNewRoot(NewBB); 929 } else { 930 // Split block expects NewBB to have a non-empty set of predecessors. 931 DT->splitBlock(NewBB); 932 } 933 } 934 935 // Update MemoryPhis after split if MemorySSA is available 936 if (MSSAU) 937 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 938 939 // The rest of the logic is only relevant for updating the loop structures. 940 if (!LI) 941 return; 942 943 if (DTU && DTU->hasDomTree()) 944 DT = &DTU->getDomTree(); 945 assert(DT && "DT should be available to update LoopInfo!"); 946 Loop *L = LI->getLoopFor(OldBB); 947 948 // If we need to preserve loop analyses, collect some information about how 949 // this split will affect loops. 950 bool IsLoopEntry = !!L; 951 bool SplitMakesNewLoopHeader = false; 952 for (BasicBlock *Pred : Preds) { 953 // Preds that are not reachable from entry should not be used to identify if 954 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 955 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 956 // as true and make the NewBB the header of some loop. This breaks LI. 957 if (!DT->isReachableFromEntry(Pred)) 958 continue; 959 // If we need to preserve LCSSA, determine if any of the preds is a loop 960 // exit. 961 if (PreserveLCSSA) 962 if (Loop *PL = LI->getLoopFor(Pred)) 963 if (!PL->contains(OldBB)) 964 HasLoopExit = true; 965 966 // If we need to preserve LoopInfo, note whether any of the preds crosses 967 // an interesting loop boundary. 968 if (!L) 969 continue; 970 if (L->contains(Pred)) 971 IsLoopEntry = false; 972 else 973 SplitMakesNewLoopHeader = true; 974 } 975 976 // Unless we have a loop for OldBB, nothing else to do here. 977 if (!L) 978 return; 979 980 if (IsLoopEntry) { 981 // Add the new block to the nearest enclosing loop (and not an adjacent 982 // loop). To find this, examine each of the predecessors and determine which 983 // loops enclose them, and select the most-nested loop which contains the 984 // loop containing the block being split. 985 Loop *InnermostPredLoop = nullptr; 986 for (BasicBlock *Pred : Preds) { 987 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 988 // Seek a loop which actually contains the block being split (to avoid 989 // adjacent loops). 990 while (PredLoop && !PredLoop->contains(OldBB)) 991 PredLoop = PredLoop->getParentLoop(); 992 993 // Select the most-nested of these loops which contains the block. 994 if (PredLoop && PredLoop->contains(OldBB) && 995 (!InnermostPredLoop || 996 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 997 InnermostPredLoop = PredLoop; 998 } 999 } 1000 1001 if (InnermostPredLoop) 1002 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 1003 } else { 1004 L->addBasicBlockToLoop(NewBB, *LI); 1005 if (SplitMakesNewLoopHeader) 1006 L->moveToHeader(NewBB); 1007 } 1008 } 1009 1010 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 1011 /// This also updates AliasAnalysis, if available. 1012 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 1013 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 1014 bool HasLoopExit) { 1015 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 1016 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 1017 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1018 PHINode *PN = cast<PHINode>(I++); 1019 1020 // Check to see if all of the values coming in are the same. If so, we 1021 // don't need to create a new PHI node, unless it's needed for LCSSA. 1022 Value *InVal = nullptr; 1023 if (!HasLoopExit) { 1024 InVal = PN->getIncomingValueForBlock(Preds[0]); 1025 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1026 if (!PredSet.count(PN->getIncomingBlock(i))) 1027 continue; 1028 if (!InVal) 1029 InVal = PN->getIncomingValue(i); 1030 else if (InVal != PN->getIncomingValue(i)) { 1031 InVal = nullptr; 1032 break; 1033 } 1034 } 1035 } 1036 1037 if (InVal) { 1038 // If all incoming values for the new PHI would be the same, just don't 1039 // make a new PHI. Instead, just remove the incoming values from the old 1040 // PHI. 1041 1042 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1043 // the cost of removal if we end up removing a large number of values, and 1044 // second off, this ensures that the indices for the incoming values 1045 // aren't invalidated when we remove one. 1046 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 1047 if (PredSet.count(PN->getIncomingBlock(i))) 1048 PN->removeIncomingValue(i, false); 1049 1050 // Add an incoming value to the PHI node in the loop for the preheader 1051 // edge. 1052 PN->addIncoming(InVal, NewBB); 1053 continue; 1054 } 1055 1056 // If the values coming into the block are not the same, we need a new 1057 // PHI. 1058 // Create the new PHI node, insert it into NewBB at the end of the block 1059 PHINode *NewPHI = 1060 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 1061 1062 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1063 // the cost of removal if we end up removing a large number of values, and 1064 // second off, this ensures that the indices for the incoming values aren't 1065 // invalidated when we remove one. 1066 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1067 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1068 if (PredSet.count(IncomingBB)) { 1069 Value *V = PN->removeIncomingValue(i, false); 1070 NewPHI->addIncoming(V, IncomingBB); 1071 } 1072 } 1073 1074 PN->addIncoming(NewPHI, NewBB); 1075 } 1076 } 1077 1078 static void SplitLandingPadPredecessorsImpl( 1079 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1080 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1081 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1082 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1083 1084 static BasicBlock * 1085 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1086 const char *Suffix, DomTreeUpdater *DTU, 1087 DominatorTree *DT, LoopInfo *LI, 1088 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1089 // Do not attempt to split that which cannot be split. 1090 if (!BB->canSplitPredecessors()) 1091 return nullptr; 1092 1093 // For the landingpads we need to act a bit differently. 1094 // Delegate this work to the SplitLandingPadPredecessors. 1095 if (BB->isLandingPad()) { 1096 SmallVector<BasicBlock*, 2> NewBBs; 1097 std::string NewName = std::string(Suffix) + ".split-lp"; 1098 1099 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1100 DTU, DT, LI, MSSAU, PreserveLCSSA); 1101 return NewBBs[0]; 1102 } 1103 1104 // Create new basic block, insert right before the original block. 1105 BasicBlock *NewBB = BasicBlock::Create( 1106 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1107 1108 // The new block unconditionally branches to the old block. 1109 BranchInst *BI = BranchInst::Create(BB, NewBB); 1110 1111 Loop *L = nullptr; 1112 BasicBlock *OldLatch = nullptr; 1113 // Splitting the predecessors of a loop header creates a preheader block. 1114 if (LI && LI->isLoopHeader(BB)) { 1115 L = LI->getLoopFor(BB); 1116 // Using the loop start line number prevents debuggers stepping into the 1117 // loop body for this instruction. 1118 BI->setDebugLoc(L->getStartLoc()); 1119 1120 // If BB is the header of the Loop, it is possible that the loop is 1121 // modified, such that the current latch does not remain the latch of the 1122 // loop. If that is the case, the loop metadata from the current latch needs 1123 // to be applied to the new latch. 1124 OldLatch = L->getLoopLatch(); 1125 } else 1126 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1127 1128 // Move the edges from Preds to point to NewBB instead of BB. 1129 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 1130 // This is slightly more strict than necessary; the minimum requirement 1131 // is that there be no more than one indirectbr branching to BB. And 1132 // all BlockAddress uses would need to be updated. 1133 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 1134 "Cannot split an edge from an IndirectBrInst"); 1135 Preds[i]->getTerminator()->replaceSuccessorWith(BB, NewBB); 1136 } 1137 1138 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1139 // node becomes an incoming value for BB's phi node. However, if the Preds 1140 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1141 // account for the newly created predecessor. 1142 if (Preds.empty()) { 1143 // Insert dummy values as the incoming value. 1144 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1145 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB); 1146 } 1147 1148 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1149 bool HasLoopExit = false; 1150 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1151 HasLoopExit); 1152 1153 if (!Preds.empty()) { 1154 // Update the PHI nodes in BB with the values coming from NewBB. 1155 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1156 } 1157 1158 if (OldLatch) { 1159 BasicBlock *NewLatch = L->getLoopLatch(); 1160 if (NewLatch != OldLatch) { 1161 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 1162 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 1163 // It's still possible that OldLatch is the latch of another inner loop, 1164 // in which case we do not remove the metadata. 1165 Loop *IL = LI->getLoopFor(OldLatch); 1166 if (IL && IL->getLoopLatch() != OldLatch) 1167 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 1168 } 1169 } 1170 1171 return NewBB; 1172 } 1173 1174 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1175 ArrayRef<BasicBlock *> Preds, 1176 const char *Suffix, DominatorTree *DT, 1177 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1178 bool PreserveLCSSA) { 1179 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1180 MSSAU, PreserveLCSSA); 1181 } 1182 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1183 ArrayRef<BasicBlock *> Preds, 1184 const char *Suffix, 1185 DomTreeUpdater *DTU, LoopInfo *LI, 1186 MemorySSAUpdater *MSSAU, 1187 bool PreserveLCSSA) { 1188 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1189 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1190 } 1191 1192 static void SplitLandingPadPredecessorsImpl( 1193 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1194 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1195 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1196 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1197 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1198 1199 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1200 // it right before the original block. 1201 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1202 OrigBB->getName() + Suffix1, 1203 OrigBB->getParent(), OrigBB); 1204 NewBBs.push_back(NewBB1); 1205 1206 // The new block unconditionally branches to the old block. 1207 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1208 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1209 1210 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1211 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 1212 // This is slightly more strict than necessary; the minimum requirement 1213 // is that there be no more than one indirectbr branching to BB. And 1214 // all BlockAddress uses would need to be updated. 1215 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 1216 "Cannot split an edge from an IndirectBrInst"); 1217 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1218 } 1219 1220 bool HasLoopExit = false; 1221 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1222 PreserveLCSSA, HasLoopExit); 1223 1224 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1225 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1226 1227 // Move the remaining edges from OrigBB to point to NewBB2. 1228 SmallVector<BasicBlock*, 8> NewBB2Preds; 1229 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1230 i != e; ) { 1231 BasicBlock *Pred = *i++; 1232 if (Pred == NewBB1) continue; 1233 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1234 "Cannot split an edge from an IndirectBrInst"); 1235 NewBB2Preds.push_back(Pred); 1236 e = pred_end(OrigBB); 1237 } 1238 1239 BasicBlock *NewBB2 = nullptr; 1240 if (!NewBB2Preds.empty()) { 1241 // Create another basic block for the rest of OrigBB's predecessors. 1242 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1243 OrigBB->getName() + Suffix2, 1244 OrigBB->getParent(), OrigBB); 1245 NewBBs.push_back(NewBB2); 1246 1247 // The new block unconditionally branches to the old block. 1248 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1249 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1250 1251 // Move the remaining edges from OrigBB to point to NewBB2. 1252 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1253 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1254 1255 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1256 HasLoopExit = false; 1257 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1258 PreserveLCSSA, HasLoopExit); 1259 1260 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1261 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1262 } 1263 1264 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1265 Instruction *Clone1 = LPad->clone(); 1266 Clone1->setName(Twine("lpad") + Suffix1); 1267 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 1268 1269 if (NewBB2) { 1270 Instruction *Clone2 = LPad->clone(); 1271 Clone2->setName(Twine("lpad") + Suffix2); 1272 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 1273 1274 // Create a PHI node for the two cloned landingpad instructions only 1275 // if the original landingpad instruction has some uses. 1276 if (!LPad->use_empty()) { 1277 assert(!LPad->getType()->isTokenTy() && 1278 "Split cannot be applied if LPad is token type. Otherwise an " 1279 "invalid PHINode of token type would be created."); 1280 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 1281 PN->addIncoming(Clone1, NewBB1); 1282 PN->addIncoming(Clone2, NewBB2); 1283 LPad->replaceAllUsesWith(PN); 1284 } 1285 LPad->eraseFromParent(); 1286 } else { 1287 // There is no second clone. Just replace the landing pad with the first 1288 // clone. 1289 LPad->replaceAllUsesWith(Clone1); 1290 LPad->eraseFromParent(); 1291 } 1292 } 1293 1294 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1295 ArrayRef<BasicBlock *> Preds, 1296 const char *Suffix1, const char *Suffix2, 1297 SmallVectorImpl<BasicBlock *> &NewBBs, 1298 DominatorTree *DT, LoopInfo *LI, 1299 MemorySSAUpdater *MSSAU, 1300 bool PreserveLCSSA) { 1301 return SplitLandingPadPredecessorsImpl( 1302 OrigBB, Preds, Suffix1, Suffix2, NewBBs, 1303 /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA); 1304 } 1305 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1306 ArrayRef<BasicBlock *> Preds, 1307 const char *Suffix1, const char *Suffix2, 1308 SmallVectorImpl<BasicBlock *> &NewBBs, 1309 DomTreeUpdater *DTU, LoopInfo *LI, 1310 MemorySSAUpdater *MSSAU, 1311 bool PreserveLCSSA) { 1312 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1313 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1314 PreserveLCSSA); 1315 } 1316 1317 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1318 BasicBlock *Pred, 1319 DomTreeUpdater *DTU) { 1320 Instruction *UncondBranch = Pred->getTerminator(); 1321 // Clone the return and add it to the end of the predecessor. 1322 Instruction *NewRet = RI->clone(); 1323 Pred->getInstList().push_back(NewRet); 1324 1325 // If the return instruction returns a value, and if the value was a 1326 // PHI node in "BB", propagate the right value into the return. 1327 for (Use &Op : NewRet->operands()) { 1328 Value *V = Op; 1329 Instruction *NewBC = nullptr; 1330 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1331 // Return value might be bitcasted. Clone and insert it before the 1332 // return instruction. 1333 V = BCI->getOperand(0); 1334 NewBC = BCI->clone(); 1335 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 1336 Op = NewBC; 1337 } 1338 1339 Instruction *NewEV = nullptr; 1340 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1341 V = EVI->getOperand(0); 1342 NewEV = EVI->clone(); 1343 if (NewBC) { 1344 NewBC->setOperand(0, NewEV); 1345 Pred->getInstList().insert(NewBC->getIterator(), NewEV); 1346 } else { 1347 Pred->getInstList().insert(NewRet->getIterator(), NewEV); 1348 Op = NewEV; 1349 } 1350 } 1351 1352 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1353 if (PN->getParent() == BB) { 1354 if (NewEV) { 1355 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1356 } else if (NewBC) 1357 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1358 else 1359 Op = PN->getIncomingValueForBlock(Pred); 1360 } 1361 } 1362 } 1363 1364 // Update any PHI nodes in the returning block to realize that we no 1365 // longer branch to them. 1366 BB->removePredecessor(Pred); 1367 UncondBranch->eraseFromParent(); 1368 1369 if (DTU) 1370 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1371 1372 return cast<ReturnInst>(NewRet); 1373 } 1374 1375 static Instruction * 1376 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore, 1377 bool Unreachable, MDNode *BranchWeights, 1378 DomTreeUpdater *DTU, DominatorTree *DT, 1379 LoopInfo *LI, BasicBlock *ThenBlock) { 1380 SmallVector<DominatorTree::UpdateType, 8> Updates; 1381 BasicBlock *Head = SplitBefore->getParent(); 1382 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1383 if (DTU) { 1384 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead; 1385 Updates.push_back({DominatorTree::Insert, Head, Tail}); 1386 Updates.reserve(Updates.size() + 2 * succ_size(Tail)); 1387 for (BasicBlock *SuccessorOfHead : successors(Tail)) 1388 if (UniqueSuccessorsOfHead.insert(SuccessorOfHead).second) { 1389 Updates.push_back({DominatorTree::Insert, Tail, SuccessorOfHead}); 1390 Updates.push_back({DominatorTree::Delete, Head, SuccessorOfHead}); 1391 } 1392 } 1393 Instruction *HeadOldTerm = Head->getTerminator(); 1394 LLVMContext &C = Head->getContext(); 1395 Instruction *CheckTerm; 1396 bool CreateThenBlock = (ThenBlock == nullptr); 1397 if (CreateThenBlock) { 1398 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1399 if (Unreachable) 1400 CheckTerm = new UnreachableInst(C, ThenBlock); 1401 else { 1402 CheckTerm = BranchInst::Create(Tail, ThenBlock); 1403 if (DTU) 1404 Updates.push_back({DominatorTree::Insert, ThenBlock, Tail}); 1405 } 1406 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 1407 } else 1408 CheckTerm = ThenBlock->getTerminator(); 1409 BranchInst *HeadNewTerm = 1410 BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond); 1411 if (DTU) 1412 Updates.push_back({DominatorTree::Insert, Head, ThenBlock}); 1413 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1414 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1415 1416 if (DTU) 1417 DTU->applyUpdates(Updates); 1418 else if (DT) { 1419 if (DomTreeNode *OldNode = DT->getNode(Head)) { 1420 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1421 1422 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 1423 for (DomTreeNode *Child : Children) 1424 DT->changeImmediateDominator(Child, NewNode); 1425 1426 // Head dominates ThenBlock. 1427 if (CreateThenBlock) 1428 DT->addNewBlock(ThenBlock, Head); 1429 else 1430 DT->changeImmediateDominator(ThenBlock, Head); 1431 } 1432 } 1433 1434 if (LI) { 1435 if (Loop *L = LI->getLoopFor(Head)) { 1436 L->addBasicBlockToLoop(ThenBlock, *LI); 1437 L->addBasicBlockToLoop(Tail, *LI); 1438 } 1439 } 1440 1441 return CheckTerm; 1442 } 1443 1444 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1445 Instruction *SplitBefore, 1446 bool Unreachable, 1447 MDNode *BranchWeights, 1448 DominatorTree *DT, LoopInfo *LI, 1449 BasicBlock *ThenBlock) { 1450 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, 1451 BranchWeights, 1452 /*DTU=*/nullptr, DT, LI, ThenBlock); 1453 } 1454 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1455 Instruction *SplitBefore, 1456 bool Unreachable, 1457 MDNode *BranchWeights, 1458 DomTreeUpdater *DTU, LoopInfo *LI, 1459 BasicBlock *ThenBlock) { 1460 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, 1461 BranchWeights, DTU, /*DT=*/nullptr, LI, 1462 ThenBlock); 1463 } 1464 1465 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 1466 Instruction **ThenTerm, 1467 Instruction **ElseTerm, 1468 MDNode *BranchWeights) { 1469 BasicBlock *Head = SplitBefore->getParent(); 1470 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1471 Instruction *HeadOldTerm = Head->getTerminator(); 1472 LLVMContext &C = Head->getContext(); 1473 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1474 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1475 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 1476 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1477 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 1478 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1479 BranchInst *HeadNewTerm = 1480 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 1481 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1482 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1483 } 1484 1485 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1486 BasicBlock *&IfFalse) { 1487 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1488 BasicBlock *Pred1 = nullptr; 1489 BasicBlock *Pred2 = nullptr; 1490 1491 if (SomePHI) { 1492 if (SomePHI->getNumIncomingValues() != 2) 1493 return nullptr; 1494 Pred1 = SomePHI->getIncomingBlock(0); 1495 Pred2 = SomePHI->getIncomingBlock(1); 1496 } else { 1497 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1498 if (PI == PE) // No predecessor 1499 return nullptr; 1500 Pred1 = *PI++; 1501 if (PI == PE) // Only one predecessor 1502 return nullptr; 1503 Pred2 = *PI++; 1504 if (PI != PE) // More than two predecessors 1505 return nullptr; 1506 } 1507 1508 // We can only handle branches. Other control flow will be lowered to 1509 // branches if possible anyway. 1510 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1511 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1512 if (!Pred1Br || !Pred2Br) 1513 return nullptr; 1514 1515 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1516 // either are. 1517 if (Pred2Br->isConditional()) { 1518 // If both branches are conditional, we don't have an "if statement". In 1519 // reality, we could transform this case, but since the condition will be 1520 // required anyway, we stand no chance of eliminating it, so the xform is 1521 // probably not profitable. 1522 if (Pred1Br->isConditional()) 1523 return nullptr; 1524 1525 std::swap(Pred1, Pred2); 1526 std::swap(Pred1Br, Pred2Br); 1527 } 1528 1529 if (Pred1Br->isConditional()) { 1530 // The only thing we have to watch out for here is to make sure that Pred2 1531 // doesn't have incoming edges from other blocks. If it does, the condition 1532 // doesn't dominate BB. 1533 if (!Pred2->getSinglePredecessor()) 1534 return nullptr; 1535 1536 // If we found a conditional branch predecessor, make sure that it branches 1537 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1538 if (Pred1Br->getSuccessor(0) == BB && 1539 Pred1Br->getSuccessor(1) == Pred2) { 1540 IfTrue = Pred1; 1541 IfFalse = Pred2; 1542 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1543 Pred1Br->getSuccessor(1) == BB) { 1544 IfTrue = Pred2; 1545 IfFalse = Pred1; 1546 } else { 1547 // We know that one arm of the conditional goes to BB, so the other must 1548 // go somewhere unrelated, and this must not be an "if statement". 1549 return nullptr; 1550 } 1551 1552 return Pred1Br; 1553 } 1554 1555 // Ok, if we got here, both predecessors end with an unconditional branch to 1556 // BB. Don't panic! If both blocks only have a single (identical) 1557 // predecessor, and THAT is a conditional branch, then we're all ok! 1558 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1559 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1560 return nullptr; 1561 1562 // Otherwise, if this is a conditional branch, then we can use it! 1563 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1564 if (!BI) return nullptr; 1565 1566 assert(BI->isConditional() && "Two successors but not conditional?"); 1567 if (BI->getSuccessor(0) == Pred1) { 1568 IfTrue = Pred1; 1569 IfFalse = Pred2; 1570 } else { 1571 IfTrue = Pred2; 1572 IfFalse = Pred1; 1573 } 1574 return BI; 1575 } 1576 1577 // After creating a control flow hub, the operands of PHINodes in an outgoing 1578 // block Out no longer match the predecessors of that block. Predecessors of Out 1579 // that are incoming blocks to the hub are now replaced by just one edge from 1580 // the hub. To match this new control flow, the corresponding values from each 1581 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1582 // 1583 // This operation cannot be performed with SSAUpdater, because it involves one 1584 // new use: If the block Out is in the list of Incoming blocks, then the newly 1585 // created PHI in the Hub will use itself along that edge from Out to Hub. 1586 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1587 const SetVector<BasicBlock *> &Incoming, 1588 BasicBlock *FirstGuardBlock) { 1589 auto I = Out->begin(); 1590 while (I != Out->end() && isa<PHINode>(I)) { 1591 auto Phi = cast<PHINode>(I); 1592 auto NewPhi = 1593 PHINode::Create(Phi->getType(), Incoming.size(), 1594 Phi->getName() + ".moved", &FirstGuardBlock->back()); 1595 for (auto In : Incoming) { 1596 Value *V = UndefValue::get(Phi->getType()); 1597 if (In == Out) { 1598 V = NewPhi; 1599 } else if (Phi->getBasicBlockIndex(In) != -1) { 1600 V = Phi->removeIncomingValue(In, false); 1601 } 1602 NewPhi->addIncoming(V, In); 1603 } 1604 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1605 if (Phi->getNumOperands() == 0) { 1606 Phi->replaceAllUsesWith(NewPhi); 1607 I = Phi->eraseFromParent(); 1608 continue; 1609 } 1610 Phi->addIncoming(NewPhi, GuardBlock); 1611 ++I; 1612 } 1613 } 1614 1615 using BBPredicates = DenseMap<BasicBlock *, PHINode *>; 1616 using BBSetVector = SetVector<BasicBlock *>; 1617 1618 // Redirects the terminator of the incoming block to the first guard 1619 // block in the hub. The condition of the original terminator (if it 1620 // was conditional) and its original successors are returned as a 1621 // tuple <condition, succ0, succ1>. The function additionally filters 1622 // out successors that are not in the set of outgoing blocks. 1623 // 1624 // - condition is non-null iff the branch is conditional. 1625 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1626 // - Succ2 is non-null iff condition is non-null and the fallthrough 1627 // target is an outgoing block. 1628 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1629 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1630 const BBSetVector &Outgoing) { 1631 auto Branch = cast<BranchInst>(BB->getTerminator()); 1632 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1633 1634 BasicBlock *Succ0 = Branch->getSuccessor(0); 1635 BasicBlock *Succ1 = nullptr; 1636 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1637 1638 if (Branch->isUnconditional()) { 1639 Branch->setSuccessor(0, FirstGuardBlock); 1640 assert(Succ0); 1641 } else { 1642 Succ1 = Branch->getSuccessor(1); 1643 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1644 assert(Succ0 || Succ1); 1645 if (Succ0 && !Succ1) { 1646 Branch->setSuccessor(0, FirstGuardBlock); 1647 } else if (Succ1 && !Succ0) { 1648 Branch->setSuccessor(1, FirstGuardBlock); 1649 } else { 1650 Branch->eraseFromParent(); 1651 BranchInst::Create(FirstGuardBlock, BB); 1652 } 1653 } 1654 1655 assert(Succ0 || Succ1); 1656 return std::make_tuple(Condition, Succ0, Succ1); 1657 } 1658 1659 // Capture the existing control flow as guard predicates, and redirect 1660 // control flow from every incoming block to the first guard block in 1661 // the hub. 1662 // 1663 // There is one guard predicate for each outgoing block OutBB. The 1664 // predicate is a PHINode with one input for each InBB which 1665 // represents whether the hub should transfer control flow to OutBB if 1666 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub 1667 // evaluates them in the same order as the Outgoing set-vector, and 1668 // control branches to the first outgoing block whose predicate 1669 // evaluates to true. 1670 static void convertToGuardPredicates( 1671 BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates, 1672 SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming, 1673 const BBSetVector &Outgoing) { 1674 auto &Context = Incoming.front()->getContext(); 1675 auto BoolTrue = ConstantInt::getTrue(Context); 1676 auto BoolFalse = ConstantInt::getFalse(Context); 1677 1678 // The predicate for the last outgoing is trivially true, and so we 1679 // process only the first N-1 successors. 1680 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1681 auto Out = Outgoing[i]; 1682 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 1683 auto Phi = 1684 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 1685 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 1686 GuardPredicates[Out] = Phi; 1687 } 1688 1689 for (auto In : Incoming) { 1690 Value *Condition; 1691 BasicBlock *Succ0; 1692 BasicBlock *Succ1; 1693 std::tie(Condition, Succ0, Succ1) = 1694 redirectToHub(In, FirstGuardBlock, Outgoing); 1695 1696 // Optimization: Consider an incoming block A with both successors 1697 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 1698 // for Succ0 and Succ1 complement each other. If Succ0 is visited 1699 // first in the loop below, control will branch to Succ0 using the 1700 // corresponding predicate. But if that branch is not taken, then 1701 // control must reach Succ1, which means that the predicate for 1702 // Succ1 is always true. 1703 bool OneSuccessorDone = false; 1704 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1705 auto Out = Outgoing[i]; 1706 auto Phi = GuardPredicates[Out]; 1707 if (Out != Succ0 && Out != Succ1) { 1708 Phi->addIncoming(BoolFalse, In); 1709 continue; 1710 } 1711 // Optimization: When only one successor is an outgoing block, 1712 // the predicate is always true. 1713 if (!Succ0 || !Succ1 || OneSuccessorDone) { 1714 Phi->addIncoming(BoolTrue, In); 1715 continue; 1716 } 1717 assert(Succ0 && Succ1); 1718 OneSuccessorDone = true; 1719 if (Out == Succ0) { 1720 Phi->addIncoming(Condition, In); 1721 continue; 1722 } 1723 auto Inverted = invertCondition(Condition); 1724 DeletionCandidates.push_back(Condition); 1725 Phi->addIncoming(Inverted, In); 1726 } 1727 } 1728 } 1729 1730 // For each outgoing block OutBB, create a guard block in the Hub. The 1731 // first guard block was already created outside, and available as the 1732 // first element in the vector of guard blocks. 1733 // 1734 // Each guard block terminates in a conditional branch that transfers 1735 // control to the corresponding outgoing block or the next guard 1736 // block. The last guard block has two outgoing blocks as successors 1737 // since the condition for the final outgoing block is trivially 1738 // true. So we create one less block (including the first guard block) 1739 // than the number of outgoing blocks. 1740 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1741 Function *F, const BBSetVector &Outgoing, 1742 BBPredicates &GuardPredicates, StringRef Prefix) { 1743 for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) { 1744 GuardBlocks.push_back( 1745 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 1746 } 1747 assert(GuardBlocks.size() == GuardPredicates.size()); 1748 1749 // To help keep the loop simple, temporarily append the last 1750 // outgoing block to the list of guard blocks. 1751 GuardBlocks.push_back(Outgoing.back()); 1752 1753 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1754 auto Out = Outgoing[i]; 1755 assert(GuardPredicates.count(Out)); 1756 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1757 GuardBlocks[i]); 1758 } 1759 1760 // Remove the last block from the guard list. 1761 GuardBlocks.pop_back(); 1762 } 1763 1764 BasicBlock *llvm::CreateControlFlowHub( 1765 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 1766 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1767 const StringRef Prefix) { 1768 auto F = Incoming.front()->getParent(); 1769 auto FirstGuardBlock = 1770 BasicBlock::Create(F->getContext(), Prefix + ".guard", F); 1771 1772 SmallVector<DominatorTree::UpdateType, 16> Updates; 1773 if (DTU) { 1774 for (auto In : Incoming) { 1775 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 1776 for (auto Succ : successors(In)) { 1777 if (Outgoing.count(Succ)) 1778 Updates.push_back({DominatorTree::Delete, In, Succ}); 1779 } 1780 } 1781 } 1782 1783 BBPredicates GuardPredicates; 1784 SmallVector<WeakVH, 8> DeletionCandidates; 1785 convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates, 1786 Incoming, Outgoing); 1787 1788 GuardBlocks.push_back(FirstGuardBlock); 1789 createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix); 1790 1791 // Update the PHINodes in each outgoing block to match the new control flow. 1792 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) { 1793 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 1794 } 1795 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 1796 1797 if (DTU) { 1798 int NumGuards = GuardBlocks.size(); 1799 assert((int)Outgoing.size() == NumGuards + 1); 1800 for (int i = 0; i != NumGuards - 1; ++i) { 1801 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 1802 Updates.push_back( 1803 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 1804 } 1805 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1806 Outgoing[NumGuards - 1]}); 1807 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1808 Outgoing[NumGuards]}); 1809 DTU->applyUpdates(Updates); 1810 } 1811 1812 for (auto I : DeletionCandidates) { 1813 if (I->use_empty()) 1814 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 1815 Inst->eraseFromParent(); 1816 } 1817 1818 return FirstGuardBlock; 1819 } 1820