1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/PseudoProbe.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <string> 48 #include <utility> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "basicblock-utils" 54 55 void llvm::DetatchDeadBlocks( 56 ArrayRef<BasicBlock *> BBs, 57 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 58 bool KeepOneInputPHIs) { 59 for (auto *BB : BBs) { 60 // Loop through all of our successors and make sure they know that one 61 // of their predecessors is going away. 62 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 63 for (BasicBlock *Succ : successors(BB)) { 64 Succ->removePredecessor(BB, KeepOneInputPHIs); 65 if (Updates && UniqueSuccessors.insert(Succ).second) 66 Updates->push_back({DominatorTree::Delete, BB, Succ}); 67 } 68 69 // Zap all the instructions in the block. 70 while (!BB->empty()) { 71 Instruction &I = BB->back(); 72 // If this instruction is used, replace uses with an arbitrary value. 73 // Because control flow can't get here, we don't care what we replace the 74 // value with. Note that since this block is unreachable, and all values 75 // contained within it must dominate their uses, that all uses will 76 // eventually be removed (they are themselves dead). 77 if (!I.use_empty()) 78 I.replaceAllUsesWith(UndefValue::get(I.getType())); 79 BB->getInstList().pop_back(); 80 } 81 new UnreachableInst(BB->getContext(), BB); 82 assert(BB->getInstList().size() == 1 && 83 isa<UnreachableInst>(BB->getTerminator()) && 84 "The successor list of BB isn't empty before " 85 "applying corresponding DTU updates."); 86 } 87 } 88 89 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 90 bool KeepOneInputPHIs) { 91 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 92 } 93 94 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 95 bool KeepOneInputPHIs) { 96 #ifndef NDEBUG 97 // Make sure that all predecessors of each dead block is also dead. 98 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 99 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 100 for (auto *BB : Dead) 101 for (BasicBlock *Pred : predecessors(BB)) 102 assert(Dead.count(Pred) && "All predecessors must be dead!"); 103 #endif 104 105 SmallVector<DominatorTree::UpdateType, 4> Updates; 106 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 107 108 if (DTU) 109 DTU->applyUpdates(Updates); 110 111 for (BasicBlock *BB : BBs) 112 if (DTU) 113 DTU->deleteBB(BB); 114 else 115 BB->eraseFromParent(); 116 } 117 118 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 119 bool KeepOneInputPHIs) { 120 df_iterator_default_set<BasicBlock*> Reachable; 121 122 // Mark all reachable blocks. 123 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 124 (void)BB/* Mark all reachable blocks */; 125 126 // Collect all dead blocks. 127 std::vector<BasicBlock*> DeadBlocks; 128 for (BasicBlock &BB : F) 129 if (!Reachable.count(&BB)) 130 DeadBlocks.push_back(&BB); 131 132 // Delete the dead blocks. 133 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 134 135 return !DeadBlocks.empty(); 136 } 137 138 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 139 MemoryDependenceResults *MemDep) { 140 if (!isa<PHINode>(BB->begin())) 141 return false; 142 143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 144 if (PN->getIncomingValue(0) != PN) 145 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 146 else 147 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 148 149 if (MemDep) 150 MemDep->removeInstruction(PN); // Memdep updates AA itself. 151 152 PN->eraseFromParent(); 153 } 154 return true; 155 } 156 157 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 158 MemorySSAUpdater *MSSAU) { 159 // Recursively deleting a PHI may cause multiple PHIs to be deleted 160 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 161 SmallVector<WeakTrackingVH, 8> PHIs; 162 for (PHINode &PN : BB->phis()) 163 PHIs.push_back(&PN); 164 165 bool Changed = false; 166 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 167 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 168 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 169 170 return Changed; 171 } 172 173 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 174 LoopInfo *LI, MemorySSAUpdater *MSSAU, 175 MemoryDependenceResults *MemDep, 176 bool PredecessorWithTwoSuccessors) { 177 if (BB->hasAddressTaken()) 178 return false; 179 180 // Can't merge if there are multiple predecessors, or no predecessors. 181 BasicBlock *PredBB = BB->getUniquePredecessor(); 182 if (!PredBB) return false; 183 184 // Don't break self-loops. 185 if (PredBB == BB) return false; 186 // Don't break unwinding instructions. 187 if (PredBB->getTerminator()->isExceptionalTerminator()) 188 return false; 189 190 // Can't merge if there are multiple distinct successors. 191 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 192 return false; 193 194 // Currently only allow PredBB to have two predecessors, one being BB. 195 // Update BI to branch to BB's only successor instead of BB. 196 BranchInst *PredBB_BI; 197 BasicBlock *NewSucc = nullptr; 198 unsigned FallThruPath; 199 if (PredecessorWithTwoSuccessors) { 200 if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator()))) 201 return false; 202 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 203 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 204 return false; 205 NewSucc = BB_JmpI->getSuccessor(0); 206 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 207 } 208 209 // Can't merge if there is PHI loop. 210 for (PHINode &PN : BB->phis()) 211 if (llvm::is_contained(PN.incoming_values(), &PN)) 212 return false; 213 214 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 215 << PredBB->getName() << "\n"); 216 217 // Begin by getting rid of unneeded PHIs. 218 SmallVector<AssertingVH<Value>, 4> IncomingValues; 219 if (isa<PHINode>(BB->front())) { 220 for (PHINode &PN : BB->phis()) 221 if (!isa<PHINode>(PN.getIncomingValue(0)) || 222 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 223 IncomingValues.push_back(PN.getIncomingValue(0)); 224 FoldSingleEntryPHINodes(BB, MemDep); 225 } 226 227 // DTU update: Collect all the edges that exit BB. 228 // These dominator edges will be redirected from Pred. 229 std::vector<DominatorTree::UpdateType> Updates; 230 if (DTU) { 231 SmallPtrSet<BasicBlock *, 2> SuccsOfBB(succ_begin(BB), succ_end(BB)); 232 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 233 succ_begin(PredBB)); 234 Updates.reserve(Updates.size() + 2 * SuccsOfBB.size() + 1); 235 // Add insert edges first. Experimentally, for the particular case of two 236 // blocks that can be merged, with a single successor and single predecessor 237 // respectively, it is beneficial to have all insert updates first. Deleting 238 // edges first may lead to unreachable blocks, followed by inserting edges 239 // making the blocks reachable again. Such DT updates lead to high compile 240 // times. We add inserts before deletes here to reduce compile time. 241 for (BasicBlock *SuccOfBB : SuccsOfBB) 242 // This successor of BB may already be a PredBB's successor. 243 if (!SuccsOfPredBB.contains(SuccOfBB)) 244 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 245 for (BasicBlock *SuccOfBB : SuccsOfBB) 246 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 247 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 248 } 249 250 Instruction *PTI = PredBB->getTerminator(); 251 Instruction *STI = BB->getTerminator(); 252 Instruction *Start = &*BB->begin(); 253 // If there's nothing to move, mark the starting instruction as the last 254 // instruction in the block. Terminator instruction is handled separately. 255 if (Start == STI) 256 Start = PTI; 257 258 // Move all definitions in the successor to the predecessor... 259 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), 260 BB->begin(), STI->getIterator()); 261 262 if (MSSAU) 263 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 264 265 // Make all PHI nodes that referred to BB now refer to Pred as their 266 // source... 267 BB->replaceAllUsesWith(PredBB); 268 269 if (PredecessorWithTwoSuccessors) { 270 // Delete the unconditional branch from BB. 271 BB->getInstList().pop_back(); 272 273 // Update branch in the predecessor. 274 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 275 } else { 276 // Delete the unconditional branch from the predecessor. 277 PredBB->getInstList().pop_back(); 278 279 // Move terminator instruction. 280 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 281 282 // Terminator may be a memory accessing instruction too. 283 if (MSSAU) 284 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 285 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 286 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 287 } 288 // Add unreachable to now empty BB. 289 new UnreachableInst(BB->getContext(), BB); 290 291 // Inherit predecessors name if it exists. 292 if (!PredBB->hasName()) 293 PredBB->takeName(BB); 294 295 if (LI) 296 LI->removeBlock(BB); 297 298 if (MemDep) 299 MemDep->invalidateCachedPredecessors(); 300 301 if (DTU) 302 DTU->applyUpdates(Updates); 303 304 // Finally, erase the old block and update dominator info. 305 DeleteDeadBlock(BB, DTU); 306 307 return true; 308 } 309 310 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 311 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 312 LoopInfo *LI) { 313 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 314 315 bool BlocksHaveBeenMerged = false; 316 while (!MergeBlocks.empty()) { 317 BasicBlock *BB = *MergeBlocks.begin(); 318 BasicBlock *Dest = BB->getSingleSuccessor(); 319 if (Dest && (!L || L->contains(Dest))) { 320 BasicBlock *Fold = Dest->getUniquePredecessor(); 321 (void)Fold; 322 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 323 assert(Fold == BB && 324 "Expecting BB to be unique predecessor of the Dest block"); 325 MergeBlocks.erase(Dest); 326 BlocksHaveBeenMerged = true; 327 } else 328 MergeBlocks.erase(BB); 329 } else 330 MergeBlocks.erase(BB); 331 } 332 return BlocksHaveBeenMerged; 333 } 334 335 /// Remove redundant instructions within sequences of consecutive dbg.value 336 /// instructions. This is done using a backward scan to keep the last dbg.value 337 /// describing a specific variable/fragment. 338 /// 339 /// BackwardScan strategy: 340 /// ---------------------- 341 /// Given a sequence of consecutive DbgValueInst like this 342 /// 343 /// dbg.value ..., "x", FragmentX1 (*) 344 /// dbg.value ..., "y", FragmentY1 345 /// dbg.value ..., "x", FragmentX2 346 /// dbg.value ..., "x", FragmentX1 (**) 347 /// 348 /// then the instruction marked with (*) can be removed (it is guaranteed to be 349 /// obsoleted by the instruction marked with (**) as the latter instruction is 350 /// describing the same variable using the same fragment info). 351 /// 352 /// Possible improvements: 353 /// - Check fully overlapping fragments and not only identical fragments. 354 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta 355 /// instructions being part of the sequence of consecutive instructions. 356 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 357 SmallVector<DbgValueInst *, 8> ToBeRemoved; 358 SmallDenseSet<DebugVariable> VariableSet; 359 for (auto &I : reverse(*BB)) { 360 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 361 DebugVariable Key(DVI->getVariable(), 362 DVI->getExpression(), 363 DVI->getDebugLoc()->getInlinedAt()); 364 auto R = VariableSet.insert(Key); 365 // If the same variable fragment is described more than once it is enough 366 // to keep the last one (i.e. the first found since we for reverse 367 // iteration). 368 if (!R.second) 369 ToBeRemoved.push_back(DVI); 370 continue; 371 } 372 // Sequence with consecutive dbg.value instrs ended. Clear the map to 373 // restart identifying redundant instructions if case we find another 374 // dbg.value sequence. 375 VariableSet.clear(); 376 } 377 378 for (auto &Instr : ToBeRemoved) 379 Instr->eraseFromParent(); 380 381 return !ToBeRemoved.empty(); 382 } 383 384 /// Remove redundant dbg.value instructions using a forward scan. This can 385 /// remove a dbg.value instruction that is redundant due to indicating that a 386 /// variable has the same value as already being indicated by an earlier 387 /// dbg.value. 388 /// 389 /// ForwardScan strategy: 390 /// --------------------- 391 /// Given two identical dbg.value instructions, separated by a block of 392 /// instructions that isn't describing the same variable, like this 393 /// 394 /// dbg.value X1, "x", FragmentX1 (**) 395 /// <block of instructions, none being "dbg.value ..., "x", ..."> 396 /// dbg.value X1, "x", FragmentX1 (*) 397 /// 398 /// then the instruction marked with (*) can be removed. Variable "x" is already 399 /// described as being mapped to the SSA value X1. 400 /// 401 /// Possible improvements: 402 /// - Keep track of non-overlapping fragments. 403 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 404 SmallVector<DbgValueInst *, 8> ToBeRemoved; 405 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 406 VariableMap; 407 for (auto &I : *BB) { 408 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 409 DebugVariable Key(DVI->getVariable(), 410 NoneType(), 411 DVI->getDebugLoc()->getInlinedAt()); 412 auto VMI = VariableMap.find(Key); 413 // Update the map if we found a new value/expression describing the 414 // variable, or if the variable wasn't mapped already. 415 SmallVector<Value *, 4> Values(DVI->getValues()); 416 if (VMI == VariableMap.end() || VMI->second.first != Values || 417 VMI->second.second != DVI->getExpression()) { 418 VariableMap[Key] = {Values, DVI->getExpression()}; 419 continue; 420 } 421 // Found an identical mapping. Remember the instruction for later removal. 422 ToBeRemoved.push_back(DVI); 423 } 424 } 425 426 for (auto &Instr : ToBeRemoved) 427 Instr->eraseFromParent(); 428 429 return !ToBeRemoved.empty(); 430 } 431 432 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 433 bool MadeChanges = false; 434 // By using the "backward scan" strategy before the "forward scan" strategy we 435 // can remove both dbg.value (2) and (3) in a situation like this: 436 // 437 // (1) dbg.value V1, "x", DIExpression() 438 // ... 439 // (2) dbg.value V2, "x", DIExpression() 440 // (3) dbg.value V1, "x", DIExpression() 441 // 442 // The backward scan will remove (2), it is made obsolete by (3). After 443 // getting (2) out of the way, the foward scan will remove (3) since "x" 444 // already is described as having the value V1 at (1). 445 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 446 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 447 448 if (MadeChanges) 449 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 450 << BB->getName() << "\n"); 451 return MadeChanges; 452 } 453 454 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 455 BasicBlock::iterator &BI, Value *V) { 456 Instruction &I = *BI; 457 // Replaces all of the uses of the instruction with uses of the value 458 I.replaceAllUsesWith(V); 459 460 // Make sure to propagate a name if there is one already. 461 if (I.hasName() && !V->hasName()) 462 V->takeName(&I); 463 464 // Delete the unnecessary instruction now... 465 BI = BIL.erase(BI); 466 } 467 468 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 469 BasicBlock::iterator &BI, Instruction *I) { 470 assert(I->getParent() == nullptr && 471 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 472 473 // Copy debug location to newly added instruction, if it wasn't already set 474 // by the caller. 475 if (!I->getDebugLoc()) 476 I->setDebugLoc(BI->getDebugLoc()); 477 478 // Insert the new instruction into the basic block... 479 BasicBlock::iterator New = BIL.insert(BI, I); 480 481 // Replace all uses of the old instruction, and delete it. 482 ReplaceInstWithValue(BIL, BI, I); 483 484 // Move BI back to point to the newly inserted instruction 485 BI = New; 486 } 487 488 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 489 BasicBlock::iterator BI(From); 490 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 491 } 492 493 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 494 LoopInfo *LI, MemorySSAUpdater *MSSAU, 495 const Twine &BBName) { 496 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 497 498 Instruction *LatchTerm = BB->getTerminator(); 499 500 CriticalEdgeSplittingOptions Options = 501 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 502 503 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 504 // If it is a critical edge, and the succesor is an exception block, handle 505 // the split edge logic in this specific function 506 if (Succ->isEHPad()) 507 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 508 509 // If this is a critical edge, let SplitKnownCriticalEdge do it. 510 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 511 } 512 513 // If the edge isn't critical, then BB has a single successor or Succ has a 514 // single pred. Split the block. 515 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 516 // If the successor only has a single pred, split the top of the successor 517 // block. 518 assert(SP == BB && "CFG broken"); 519 SP = nullptr; 520 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 521 /*Before=*/true); 522 } 523 524 // Otherwise, if BB has a single successor, split it at the bottom of the 525 // block. 526 assert(BB->getTerminator()->getNumSuccessors() == 1 && 527 "Should have a single succ!"); 528 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 529 } 530 531 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 532 if (auto *II = dyn_cast<InvokeInst>(TI)) 533 II->setUnwindDest(Succ); 534 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 535 CS->setUnwindDest(Succ); 536 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 537 CR->setUnwindDest(Succ); 538 else 539 llvm_unreachable("unexpected terminator instruction"); 540 } 541 542 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 543 BasicBlock *NewPred, PHINode *Until) { 544 int BBIdx = 0; 545 for (PHINode &PN : DestBB->phis()) { 546 // We manually update the LandingPadReplacement PHINode and it is the last 547 // PHI Node. So, if we find it, we are done. 548 if (Until == &PN) 549 break; 550 551 // Reuse the previous value of BBIdx if it lines up. In cases where we 552 // have multiple phi nodes with *lots* of predecessors, this is a speed 553 // win because we don't have to scan the PHI looking for TIBB. This 554 // happens because the BB list of PHI nodes are usually in the same 555 // order. 556 if (PN.getIncomingBlock(BBIdx) != OldPred) 557 BBIdx = PN.getBasicBlockIndex(OldPred); 558 559 assert(BBIdx != -1 && "Invalid PHI Index!"); 560 PN.setIncomingBlock(BBIdx, NewPred); 561 } 562 } 563 564 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 565 LandingPadInst *OriginalPad, 566 PHINode *LandingPadReplacement, 567 const CriticalEdgeSplittingOptions &Options, 568 const Twine &BBName) { 569 570 auto *PadInst = Succ->getFirstNonPHI(); 571 if (!LandingPadReplacement && !PadInst->isEHPad()) 572 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 573 574 auto *LI = Options.LI; 575 SmallVector<BasicBlock *, 4> LoopPreds; 576 // Check if extra modifications will be required to preserve loop-simplify 577 // form after splitting. If it would require splitting blocks with IndirectBr 578 // terminators, bail out if preserving loop-simplify form is requested. 579 if (Options.PreserveLoopSimplify && LI) { 580 if (Loop *BBLoop = LI->getLoopFor(BB)) { 581 582 // The only way that we can break LoopSimplify form by splitting a 583 // critical edge is when there exists some edge from BBLoop to Succ *and* 584 // the only edge into Succ from outside of BBLoop is that of NewBB after 585 // the split. If the first isn't true, then LoopSimplify still holds, 586 // NewBB is the new exit block and it has no non-loop predecessors. If the 587 // second isn't true, then Succ was not in LoopSimplify form prior to 588 // the split as it had a non-loop predecessor. In both of these cases, 589 // the predecessor must be directly in BBLoop, not in a subloop, or again 590 // LoopSimplify doesn't hold. 591 for (BasicBlock *P : predecessors(Succ)) { 592 if (P == BB) 593 continue; // The new block is known. 594 if (LI->getLoopFor(P) != BBLoop) { 595 // Loop is not in LoopSimplify form, no need to re simplify after 596 // splitting edge. 597 LoopPreds.clear(); 598 break; 599 } 600 LoopPreds.push_back(P); 601 } 602 // Loop-simplify form can be preserved, if we can split all in-loop 603 // predecessors. 604 if (any_of(LoopPreds, [](BasicBlock *Pred) { 605 return isa<IndirectBrInst>(Pred->getTerminator()); 606 })) { 607 return nullptr; 608 } 609 } 610 } 611 612 auto *NewBB = 613 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 614 setUnwindEdgeTo(BB->getTerminator(), NewBB); 615 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 616 617 if (LandingPadReplacement) { 618 auto *NewLP = OriginalPad->clone(); 619 auto *Terminator = BranchInst::Create(Succ, NewBB); 620 NewLP->insertBefore(Terminator); 621 LandingPadReplacement->addIncoming(NewLP, NewBB); 622 } else { 623 Value *ParentPad = nullptr; 624 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 625 ParentPad = FuncletPad->getParentPad(); 626 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 627 ParentPad = CatchSwitch->getParentPad(); 628 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 629 ParentPad = CleanupPad->getParentPad(); 630 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 631 ParentPad = LandingPad->getParent(); 632 else 633 llvm_unreachable("handling for other EHPads not implemented yet"); 634 635 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 636 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 637 } 638 639 auto *DT = Options.DT; 640 auto *MSSAU = Options.MSSAU; 641 if (!DT && !LI) 642 return NewBB; 643 644 if (DT) { 645 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 646 SmallVector<DominatorTree::UpdateType, 3> Updates; 647 648 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 649 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 650 Updates.push_back({DominatorTree::Delete, BB, Succ}); 651 652 DTU.applyUpdates(Updates); 653 DTU.flush(); 654 655 if (MSSAU) { 656 MSSAU->applyUpdates(Updates, *DT); 657 if (VerifyMemorySSA) 658 MSSAU->getMemorySSA()->verifyMemorySSA(); 659 } 660 } 661 662 if (LI) { 663 if (Loop *BBLoop = LI->getLoopFor(BB)) { 664 // If one or the other blocks were not in a loop, the new block is not 665 // either, and thus LI doesn't need to be updated. 666 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 667 if (BBLoop == SuccLoop) { 668 // Both in the same loop, the NewBB joins loop. 669 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 670 } else if (BBLoop->contains(SuccLoop)) { 671 // Edge from an outer loop to an inner loop. Add to the outer loop. 672 BBLoop->addBasicBlockToLoop(NewBB, *LI); 673 } else if (SuccLoop->contains(BBLoop)) { 674 // Edge from an inner loop to an outer loop. Add to the outer loop. 675 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 676 } else { 677 // Edge from two loops with no containment relation. Because these 678 // are natural loops, we know that the destination block must be the 679 // header of its loop (adding a branch into a loop elsewhere would 680 // create an irreducible loop). 681 assert(SuccLoop->getHeader() == Succ && 682 "Should not create irreducible loops!"); 683 if (Loop *P = SuccLoop->getParentLoop()) 684 P->addBasicBlockToLoop(NewBB, *LI); 685 } 686 } 687 688 // If BB is in a loop and Succ is outside of that loop, we may need to 689 // update LoopSimplify form and LCSSA form. 690 if (!BBLoop->contains(Succ)) { 691 assert(!BBLoop->contains(NewBB) && 692 "Split point for loop exit is contained in loop!"); 693 694 // Update LCSSA form in the newly created exit block. 695 if (Options.PreserveLCSSA) { 696 createPHIsForSplitLoopExit(BB, NewBB, Succ); 697 } 698 699 if (!LoopPreds.empty()) { 700 BasicBlock *NewExitBB = SplitBlockPredecessors( 701 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 702 if (Options.PreserveLCSSA) 703 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 704 } 705 } 706 } 707 } 708 709 return NewBB; 710 } 711 712 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 713 BasicBlock *SplitBB, BasicBlock *DestBB) { 714 // SplitBB shouldn't have anything non-trivial in it yet. 715 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 716 SplitBB->isLandingPad()) && 717 "SplitBB has non-PHI nodes!"); 718 719 // For each PHI in the destination block. 720 for (PHINode &PN : DestBB->phis()) { 721 int Idx = PN.getBasicBlockIndex(SplitBB); 722 assert(Idx >= 0 && "Invalid Block Index"); 723 Value *V = PN.getIncomingValue(Idx); 724 725 // If the input is a PHI which already satisfies LCSSA, don't create 726 // a new one. 727 if (const PHINode *VP = dyn_cast<PHINode>(V)) 728 if (VP->getParent() == SplitBB) 729 continue; 730 731 // Otherwise a new PHI is needed. Create one and populate it. 732 PHINode *NewPN = PHINode::Create( 733 PN.getType(), Preds.size(), "split", 734 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 735 for (BasicBlock *BB : Preds) 736 NewPN->addIncoming(V, BB); 737 738 // Update the original PHI. 739 PN.setIncomingValue(Idx, NewPN); 740 } 741 } 742 743 unsigned 744 llvm::SplitAllCriticalEdges(Function &F, 745 const CriticalEdgeSplittingOptions &Options) { 746 unsigned NumBroken = 0; 747 for (BasicBlock &BB : F) { 748 Instruction *TI = BB.getTerminator(); 749 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) && 750 !isa<CallBrInst>(TI)) 751 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 752 if (SplitCriticalEdge(TI, i, Options)) 753 ++NumBroken; 754 } 755 return NumBroken; 756 } 757 758 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt, 759 DomTreeUpdater *DTU, DominatorTree *DT, 760 LoopInfo *LI, MemorySSAUpdater *MSSAU, 761 const Twine &BBName, bool Before) { 762 if (Before) { 763 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 764 return splitBlockBefore(Old, SplitPt, 765 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 766 BBName); 767 } 768 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 769 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 770 ++SplitIt; 771 assert(SplitIt != SplitPt->getParent()->end()); 772 } 773 std::string Name = BBName.str(); 774 BasicBlock *New = Old->splitBasicBlock( 775 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 776 777 // The new block lives in whichever loop the old one did. This preserves 778 // LCSSA as well, because we force the split point to be after any PHI nodes. 779 if (LI) 780 if (Loop *L = LI->getLoopFor(Old)) 781 L->addBasicBlockToLoop(New, *LI); 782 783 if (DTU) { 784 SmallVector<DominatorTree::UpdateType, 8> Updates; 785 // Old dominates New. New node dominates all other nodes dominated by Old. 786 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New), 787 succ_end(New)); 788 Updates.push_back({DominatorTree::Insert, Old, New}); 789 Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size()); 790 for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) { 791 Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld}); 792 Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld}); 793 } 794 795 DTU->applyUpdates(Updates); 796 } else if (DT) 797 // Old dominates New. New node dominates all other nodes dominated by Old. 798 if (DomTreeNode *OldNode = DT->getNode(Old)) { 799 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 800 801 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 802 for (DomTreeNode *I : Children) 803 DT->changeImmediateDominator(I, NewNode); 804 } 805 806 // Move MemoryAccesses still tracked in Old, but part of New now. 807 // Update accesses in successor blocks accordingly. 808 if (MSSAU) 809 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 810 811 return New; 812 } 813 814 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 815 DominatorTree *DT, LoopInfo *LI, 816 MemorySSAUpdater *MSSAU, const Twine &BBName, 817 bool Before) { 818 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 819 Before); 820 } 821 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 822 DomTreeUpdater *DTU, LoopInfo *LI, 823 MemorySSAUpdater *MSSAU, const Twine &BBName, 824 bool Before) { 825 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 826 Before); 827 } 828 829 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt, 830 DomTreeUpdater *DTU, LoopInfo *LI, 831 MemorySSAUpdater *MSSAU, 832 const Twine &BBName) { 833 834 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 835 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 836 ++SplitIt; 837 std::string Name = BBName.str(); 838 BasicBlock *New = Old->splitBasicBlock( 839 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 840 /* Before=*/true); 841 842 // The new block lives in whichever loop the old one did. This preserves 843 // LCSSA as well, because we force the split point to be after any PHI nodes. 844 if (LI) 845 if (Loop *L = LI->getLoopFor(Old)) 846 L->addBasicBlockToLoop(New, *LI); 847 848 if (DTU) { 849 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 850 // New dominates Old. The predecessor nodes of the Old node dominate 851 // New node. 852 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New), 853 pred_end(New)); 854 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 855 DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size()); 856 for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) { 857 DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New}); 858 DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old}); 859 } 860 861 DTU->applyUpdates(DTUpdates); 862 863 // Move MemoryAccesses still tracked in Old, but part of New now. 864 // Update accesses in successor blocks accordingly. 865 if (MSSAU) { 866 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 867 if (VerifyMemorySSA) 868 MSSAU->getMemorySSA()->verifyMemorySSA(); 869 } 870 } 871 return New; 872 } 873 874 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 875 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 876 ArrayRef<BasicBlock *> Preds, 877 DomTreeUpdater *DTU, DominatorTree *DT, 878 LoopInfo *LI, MemorySSAUpdater *MSSAU, 879 bool PreserveLCSSA, bool &HasLoopExit) { 880 // Update dominator tree if available. 881 if (DTU) { 882 // Recalculation of DomTree is needed when updating a forward DomTree and 883 // the Entry BB is replaced. 884 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 885 // The entry block was removed and there is no external interface for 886 // the dominator tree to be notified of this change. In this corner-case 887 // we recalculate the entire tree. 888 DTU->recalculate(*NewBB->getParent()); 889 } else { 890 // Split block expects NewBB to have a non-empty set of predecessors. 891 SmallVector<DominatorTree::UpdateType, 8> Updates; 892 SmallPtrSet<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end()); 893 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 894 Updates.reserve(Updates.size() + 2 * UniquePreds.size()); 895 for (auto *UniquePred : UniquePreds) { 896 Updates.push_back({DominatorTree::Insert, UniquePred, NewBB}); 897 Updates.push_back({DominatorTree::Delete, UniquePred, OldBB}); 898 } 899 DTU->applyUpdates(Updates); 900 } 901 } else if (DT) { 902 if (OldBB == DT->getRootNode()->getBlock()) { 903 assert(NewBB->isEntryBlock()); 904 DT->setNewRoot(NewBB); 905 } else { 906 // Split block expects NewBB to have a non-empty set of predecessors. 907 DT->splitBlock(NewBB); 908 } 909 } 910 911 // Update MemoryPhis after split if MemorySSA is available 912 if (MSSAU) 913 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 914 915 // The rest of the logic is only relevant for updating the loop structures. 916 if (!LI) 917 return; 918 919 if (DTU && DTU->hasDomTree()) 920 DT = &DTU->getDomTree(); 921 assert(DT && "DT should be available to update LoopInfo!"); 922 Loop *L = LI->getLoopFor(OldBB); 923 924 // If we need to preserve loop analyses, collect some information about how 925 // this split will affect loops. 926 bool IsLoopEntry = !!L; 927 bool SplitMakesNewLoopHeader = false; 928 for (BasicBlock *Pred : Preds) { 929 // Preds that are not reachable from entry should not be used to identify if 930 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 931 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 932 // as true and make the NewBB the header of some loop. This breaks LI. 933 if (!DT->isReachableFromEntry(Pred)) 934 continue; 935 // If we need to preserve LCSSA, determine if any of the preds is a loop 936 // exit. 937 if (PreserveLCSSA) 938 if (Loop *PL = LI->getLoopFor(Pred)) 939 if (!PL->contains(OldBB)) 940 HasLoopExit = true; 941 942 // If we need to preserve LoopInfo, note whether any of the preds crosses 943 // an interesting loop boundary. 944 if (!L) 945 continue; 946 if (L->contains(Pred)) 947 IsLoopEntry = false; 948 else 949 SplitMakesNewLoopHeader = true; 950 } 951 952 // Unless we have a loop for OldBB, nothing else to do here. 953 if (!L) 954 return; 955 956 if (IsLoopEntry) { 957 // Add the new block to the nearest enclosing loop (and not an adjacent 958 // loop). To find this, examine each of the predecessors and determine which 959 // loops enclose them, and select the most-nested loop which contains the 960 // loop containing the block being split. 961 Loop *InnermostPredLoop = nullptr; 962 for (BasicBlock *Pred : Preds) { 963 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 964 // Seek a loop which actually contains the block being split (to avoid 965 // adjacent loops). 966 while (PredLoop && !PredLoop->contains(OldBB)) 967 PredLoop = PredLoop->getParentLoop(); 968 969 // Select the most-nested of these loops which contains the block. 970 if (PredLoop && PredLoop->contains(OldBB) && 971 (!InnermostPredLoop || 972 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 973 InnermostPredLoop = PredLoop; 974 } 975 } 976 977 if (InnermostPredLoop) 978 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 979 } else { 980 L->addBasicBlockToLoop(NewBB, *LI); 981 if (SplitMakesNewLoopHeader) 982 L->moveToHeader(NewBB); 983 } 984 } 985 986 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 987 /// This also updates AliasAnalysis, if available. 988 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 989 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 990 bool HasLoopExit) { 991 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 992 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 993 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 994 PHINode *PN = cast<PHINode>(I++); 995 996 // Check to see if all of the values coming in are the same. If so, we 997 // don't need to create a new PHI node, unless it's needed for LCSSA. 998 Value *InVal = nullptr; 999 if (!HasLoopExit) { 1000 InVal = PN->getIncomingValueForBlock(Preds[0]); 1001 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1002 if (!PredSet.count(PN->getIncomingBlock(i))) 1003 continue; 1004 if (!InVal) 1005 InVal = PN->getIncomingValue(i); 1006 else if (InVal != PN->getIncomingValue(i)) { 1007 InVal = nullptr; 1008 break; 1009 } 1010 } 1011 } 1012 1013 if (InVal) { 1014 // If all incoming values for the new PHI would be the same, just don't 1015 // make a new PHI. Instead, just remove the incoming values from the old 1016 // PHI. 1017 1018 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1019 // the cost of removal if we end up removing a large number of values, and 1020 // second off, this ensures that the indices for the incoming values 1021 // aren't invalidated when we remove one. 1022 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 1023 if (PredSet.count(PN->getIncomingBlock(i))) 1024 PN->removeIncomingValue(i, false); 1025 1026 // Add an incoming value to the PHI node in the loop for the preheader 1027 // edge. 1028 PN->addIncoming(InVal, NewBB); 1029 continue; 1030 } 1031 1032 // If the values coming into the block are not the same, we need a new 1033 // PHI. 1034 // Create the new PHI node, insert it into NewBB at the end of the block 1035 PHINode *NewPHI = 1036 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 1037 1038 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1039 // the cost of removal if we end up removing a large number of values, and 1040 // second off, this ensures that the indices for the incoming values aren't 1041 // invalidated when we remove one. 1042 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1043 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1044 if (PredSet.count(IncomingBB)) { 1045 Value *V = PN->removeIncomingValue(i, false); 1046 NewPHI->addIncoming(V, IncomingBB); 1047 } 1048 } 1049 1050 PN->addIncoming(NewPHI, NewBB); 1051 } 1052 } 1053 1054 static void SplitLandingPadPredecessorsImpl( 1055 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1056 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1057 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1058 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1059 1060 static BasicBlock * 1061 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1062 const char *Suffix, DomTreeUpdater *DTU, 1063 DominatorTree *DT, LoopInfo *LI, 1064 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1065 // Do not attempt to split that which cannot be split. 1066 if (!BB->canSplitPredecessors()) 1067 return nullptr; 1068 1069 // For the landingpads we need to act a bit differently. 1070 // Delegate this work to the SplitLandingPadPredecessors. 1071 if (BB->isLandingPad()) { 1072 SmallVector<BasicBlock*, 2> NewBBs; 1073 std::string NewName = std::string(Suffix) + ".split-lp"; 1074 1075 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1076 DTU, DT, LI, MSSAU, PreserveLCSSA); 1077 return NewBBs[0]; 1078 } 1079 1080 // Create new basic block, insert right before the original block. 1081 BasicBlock *NewBB = BasicBlock::Create( 1082 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1083 1084 // The new block unconditionally branches to the old block. 1085 BranchInst *BI = BranchInst::Create(BB, NewBB); 1086 1087 Loop *L = nullptr; 1088 BasicBlock *OldLatch = nullptr; 1089 // Splitting the predecessors of a loop header creates a preheader block. 1090 if (LI && LI->isLoopHeader(BB)) { 1091 L = LI->getLoopFor(BB); 1092 // Using the loop start line number prevents debuggers stepping into the 1093 // loop body for this instruction. 1094 BI->setDebugLoc(L->getStartLoc()); 1095 1096 // If BB is the header of the Loop, it is possible that the loop is 1097 // modified, such that the current latch does not remain the latch of the 1098 // loop. If that is the case, the loop metadata from the current latch needs 1099 // to be applied to the new latch. 1100 OldLatch = L->getLoopLatch(); 1101 } else 1102 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1103 1104 // Move the edges from Preds to point to NewBB instead of BB. 1105 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 1106 // This is slightly more strict than necessary; the minimum requirement 1107 // is that there be no more than one indirectbr branching to BB. And 1108 // all BlockAddress uses would need to be updated. 1109 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 1110 "Cannot split an edge from an IndirectBrInst"); 1111 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 1112 "Cannot split an edge from a CallBrInst"); 1113 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 1114 } 1115 1116 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1117 // node becomes an incoming value for BB's phi node. However, if the Preds 1118 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1119 // account for the newly created predecessor. 1120 if (Preds.empty()) { 1121 // Insert dummy values as the incoming value. 1122 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1123 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 1124 } 1125 1126 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1127 bool HasLoopExit = false; 1128 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1129 HasLoopExit); 1130 1131 if (!Preds.empty()) { 1132 // Update the PHI nodes in BB with the values coming from NewBB. 1133 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1134 } 1135 1136 if (OldLatch) { 1137 BasicBlock *NewLatch = L->getLoopLatch(); 1138 if (NewLatch != OldLatch) { 1139 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 1140 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 1141 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 1142 } 1143 } 1144 1145 return NewBB; 1146 } 1147 1148 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1149 ArrayRef<BasicBlock *> Preds, 1150 const char *Suffix, DominatorTree *DT, 1151 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1152 bool PreserveLCSSA) { 1153 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1154 MSSAU, PreserveLCSSA); 1155 } 1156 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1157 ArrayRef<BasicBlock *> Preds, 1158 const char *Suffix, 1159 DomTreeUpdater *DTU, LoopInfo *LI, 1160 MemorySSAUpdater *MSSAU, 1161 bool PreserveLCSSA) { 1162 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1163 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1164 } 1165 1166 static void SplitLandingPadPredecessorsImpl( 1167 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1168 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1169 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1170 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1171 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1172 1173 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1174 // it right before the original block. 1175 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1176 OrigBB->getName() + Suffix1, 1177 OrigBB->getParent(), OrigBB); 1178 NewBBs.push_back(NewBB1); 1179 1180 // The new block unconditionally branches to the old block. 1181 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1182 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1183 1184 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1185 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 1186 // This is slightly more strict than necessary; the minimum requirement 1187 // is that there be no more than one indirectbr branching to BB. And 1188 // all BlockAddress uses would need to be updated. 1189 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 1190 "Cannot split an edge from an IndirectBrInst"); 1191 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1192 } 1193 1194 bool HasLoopExit = false; 1195 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1196 PreserveLCSSA, HasLoopExit); 1197 1198 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1199 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1200 1201 // Move the remaining edges from OrigBB to point to NewBB2. 1202 SmallVector<BasicBlock*, 8> NewBB2Preds; 1203 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1204 i != e; ) { 1205 BasicBlock *Pred = *i++; 1206 if (Pred == NewBB1) continue; 1207 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1208 "Cannot split an edge from an IndirectBrInst"); 1209 NewBB2Preds.push_back(Pred); 1210 e = pred_end(OrigBB); 1211 } 1212 1213 BasicBlock *NewBB2 = nullptr; 1214 if (!NewBB2Preds.empty()) { 1215 // Create another basic block for the rest of OrigBB's predecessors. 1216 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1217 OrigBB->getName() + Suffix2, 1218 OrigBB->getParent(), OrigBB); 1219 NewBBs.push_back(NewBB2); 1220 1221 // The new block unconditionally branches to the old block. 1222 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1223 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1224 1225 // Move the remaining edges from OrigBB to point to NewBB2. 1226 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1227 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1228 1229 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1230 HasLoopExit = false; 1231 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1232 PreserveLCSSA, HasLoopExit); 1233 1234 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1235 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1236 } 1237 1238 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1239 Instruction *Clone1 = LPad->clone(); 1240 Clone1->setName(Twine("lpad") + Suffix1); 1241 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 1242 1243 if (NewBB2) { 1244 Instruction *Clone2 = LPad->clone(); 1245 Clone2->setName(Twine("lpad") + Suffix2); 1246 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 1247 1248 // Create a PHI node for the two cloned landingpad instructions only 1249 // if the original landingpad instruction has some uses. 1250 if (!LPad->use_empty()) { 1251 assert(!LPad->getType()->isTokenTy() && 1252 "Split cannot be applied if LPad is token type. Otherwise an " 1253 "invalid PHINode of token type would be created."); 1254 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 1255 PN->addIncoming(Clone1, NewBB1); 1256 PN->addIncoming(Clone2, NewBB2); 1257 LPad->replaceAllUsesWith(PN); 1258 } 1259 LPad->eraseFromParent(); 1260 } else { 1261 // There is no second clone. Just replace the landing pad with the first 1262 // clone. 1263 LPad->replaceAllUsesWith(Clone1); 1264 LPad->eraseFromParent(); 1265 } 1266 } 1267 1268 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1269 ArrayRef<BasicBlock *> Preds, 1270 const char *Suffix1, const char *Suffix2, 1271 SmallVectorImpl<BasicBlock *> &NewBBs, 1272 DominatorTree *DT, LoopInfo *LI, 1273 MemorySSAUpdater *MSSAU, 1274 bool PreserveLCSSA) { 1275 return SplitLandingPadPredecessorsImpl( 1276 OrigBB, Preds, Suffix1, Suffix2, NewBBs, 1277 /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA); 1278 } 1279 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1280 ArrayRef<BasicBlock *> Preds, 1281 const char *Suffix1, const char *Suffix2, 1282 SmallVectorImpl<BasicBlock *> &NewBBs, 1283 DomTreeUpdater *DTU, LoopInfo *LI, 1284 MemorySSAUpdater *MSSAU, 1285 bool PreserveLCSSA) { 1286 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1287 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1288 PreserveLCSSA); 1289 } 1290 1291 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1292 BasicBlock *Pred, 1293 DomTreeUpdater *DTU) { 1294 Instruction *UncondBranch = Pred->getTerminator(); 1295 // Clone the return and add it to the end of the predecessor. 1296 Instruction *NewRet = RI->clone(); 1297 Pred->getInstList().push_back(NewRet); 1298 1299 // If the return instruction returns a value, and if the value was a 1300 // PHI node in "BB", propagate the right value into the return. 1301 for (Use &Op : NewRet->operands()) { 1302 Value *V = Op; 1303 Instruction *NewBC = nullptr; 1304 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1305 // Return value might be bitcasted. Clone and insert it before the 1306 // return instruction. 1307 V = BCI->getOperand(0); 1308 NewBC = BCI->clone(); 1309 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 1310 Op = NewBC; 1311 } 1312 1313 Instruction *NewEV = nullptr; 1314 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1315 V = EVI->getOperand(0); 1316 NewEV = EVI->clone(); 1317 if (NewBC) { 1318 NewBC->setOperand(0, NewEV); 1319 Pred->getInstList().insert(NewBC->getIterator(), NewEV); 1320 } else { 1321 Pred->getInstList().insert(NewRet->getIterator(), NewEV); 1322 Op = NewEV; 1323 } 1324 } 1325 1326 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1327 if (PN->getParent() == BB) { 1328 if (NewEV) { 1329 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1330 } else if (NewBC) 1331 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1332 else 1333 Op = PN->getIncomingValueForBlock(Pred); 1334 } 1335 } 1336 } 1337 1338 // Update any PHI nodes in the returning block to realize that we no 1339 // longer branch to them. 1340 BB->removePredecessor(Pred); 1341 UncondBranch->eraseFromParent(); 1342 1343 if (DTU) 1344 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1345 1346 return cast<ReturnInst>(NewRet); 1347 } 1348 1349 static Instruction * 1350 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore, 1351 bool Unreachable, MDNode *BranchWeights, 1352 DomTreeUpdater *DTU, DominatorTree *DT, 1353 LoopInfo *LI, BasicBlock *ThenBlock) { 1354 SmallVector<DominatorTree::UpdateType, 8> Updates; 1355 BasicBlock *Head = SplitBefore->getParent(); 1356 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1357 if (DTU) { 1358 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail), 1359 succ_end(Tail)); 1360 Updates.push_back({DominatorTree::Insert, Head, Tail}); 1361 Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size()); 1362 for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) { 1363 Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead}); 1364 Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead}); 1365 } 1366 } 1367 Instruction *HeadOldTerm = Head->getTerminator(); 1368 LLVMContext &C = Head->getContext(); 1369 Instruction *CheckTerm; 1370 bool CreateThenBlock = (ThenBlock == nullptr); 1371 if (CreateThenBlock) { 1372 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1373 if (Unreachable) 1374 CheckTerm = new UnreachableInst(C, ThenBlock); 1375 else { 1376 CheckTerm = BranchInst::Create(Tail, ThenBlock); 1377 if (DTU) 1378 Updates.push_back({DominatorTree::Insert, ThenBlock, Tail}); 1379 } 1380 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 1381 } else 1382 CheckTerm = ThenBlock->getTerminator(); 1383 BranchInst *HeadNewTerm = 1384 BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond); 1385 if (DTU) 1386 Updates.push_back({DominatorTree::Insert, Head, ThenBlock}); 1387 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1388 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1389 1390 if (DTU) 1391 DTU->applyUpdates(Updates); 1392 else if (DT) { 1393 if (DomTreeNode *OldNode = DT->getNode(Head)) { 1394 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1395 1396 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 1397 for (DomTreeNode *Child : Children) 1398 DT->changeImmediateDominator(Child, NewNode); 1399 1400 // Head dominates ThenBlock. 1401 if (CreateThenBlock) 1402 DT->addNewBlock(ThenBlock, Head); 1403 else 1404 DT->changeImmediateDominator(ThenBlock, Head); 1405 } 1406 } 1407 1408 if (LI) { 1409 if (Loop *L = LI->getLoopFor(Head)) { 1410 L->addBasicBlockToLoop(ThenBlock, *LI); 1411 L->addBasicBlockToLoop(Tail, *LI); 1412 } 1413 } 1414 1415 return CheckTerm; 1416 } 1417 1418 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1419 Instruction *SplitBefore, 1420 bool Unreachable, 1421 MDNode *BranchWeights, 1422 DominatorTree *DT, LoopInfo *LI, 1423 BasicBlock *ThenBlock) { 1424 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, 1425 BranchWeights, 1426 /*DTU=*/nullptr, DT, LI, ThenBlock); 1427 } 1428 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1429 Instruction *SplitBefore, 1430 bool Unreachable, 1431 MDNode *BranchWeights, 1432 DomTreeUpdater *DTU, LoopInfo *LI, 1433 BasicBlock *ThenBlock) { 1434 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, 1435 BranchWeights, DTU, /*DT=*/nullptr, LI, 1436 ThenBlock); 1437 } 1438 1439 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 1440 Instruction **ThenTerm, 1441 Instruction **ElseTerm, 1442 MDNode *BranchWeights) { 1443 BasicBlock *Head = SplitBefore->getParent(); 1444 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1445 Instruction *HeadOldTerm = Head->getTerminator(); 1446 LLVMContext &C = Head->getContext(); 1447 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1448 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1449 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 1450 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1451 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 1452 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1453 BranchInst *HeadNewTerm = 1454 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 1455 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1456 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1457 } 1458 1459 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1460 BasicBlock *&IfFalse) { 1461 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1462 BasicBlock *Pred1 = nullptr; 1463 BasicBlock *Pred2 = nullptr; 1464 1465 if (SomePHI) { 1466 if (SomePHI->getNumIncomingValues() != 2) 1467 return nullptr; 1468 Pred1 = SomePHI->getIncomingBlock(0); 1469 Pred2 = SomePHI->getIncomingBlock(1); 1470 } else { 1471 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1472 if (PI == PE) // No predecessor 1473 return nullptr; 1474 Pred1 = *PI++; 1475 if (PI == PE) // Only one predecessor 1476 return nullptr; 1477 Pred2 = *PI++; 1478 if (PI != PE) // More than two predecessors 1479 return nullptr; 1480 } 1481 1482 // We can only handle branches. Other control flow will be lowered to 1483 // branches if possible anyway. 1484 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1485 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1486 if (!Pred1Br || !Pred2Br) 1487 return nullptr; 1488 1489 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1490 // either are. 1491 if (Pred2Br->isConditional()) { 1492 // If both branches are conditional, we don't have an "if statement". In 1493 // reality, we could transform this case, but since the condition will be 1494 // required anyway, we stand no chance of eliminating it, so the xform is 1495 // probably not profitable. 1496 if (Pred1Br->isConditional()) 1497 return nullptr; 1498 1499 std::swap(Pred1, Pred2); 1500 std::swap(Pred1Br, Pred2Br); 1501 } 1502 1503 if (Pred1Br->isConditional()) { 1504 // The only thing we have to watch out for here is to make sure that Pred2 1505 // doesn't have incoming edges from other blocks. If it does, the condition 1506 // doesn't dominate BB. 1507 if (!Pred2->getSinglePredecessor()) 1508 return nullptr; 1509 1510 // If we found a conditional branch predecessor, make sure that it branches 1511 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1512 if (Pred1Br->getSuccessor(0) == BB && 1513 Pred1Br->getSuccessor(1) == Pred2) { 1514 IfTrue = Pred1; 1515 IfFalse = Pred2; 1516 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1517 Pred1Br->getSuccessor(1) == BB) { 1518 IfTrue = Pred2; 1519 IfFalse = Pred1; 1520 } else { 1521 // We know that one arm of the conditional goes to BB, so the other must 1522 // go somewhere unrelated, and this must not be an "if statement". 1523 return nullptr; 1524 } 1525 1526 return Pred1Br; 1527 } 1528 1529 // Ok, if we got here, both predecessors end with an unconditional branch to 1530 // BB. Don't panic! If both blocks only have a single (identical) 1531 // predecessor, and THAT is a conditional branch, then we're all ok! 1532 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1533 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1534 return nullptr; 1535 1536 // Otherwise, if this is a conditional branch, then we can use it! 1537 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1538 if (!BI) return nullptr; 1539 1540 assert(BI->isConditional() && "Two successors but not conditional?"); 1541 if (BI->getSuccessor(0) == Pred1) { 1542 IfTrue = Pred1; 1543 IfFalse = Pred2; 1544 } else { 1545 IfTrue = Pred2; 1546 IfFalse = Pred1; 1547 } 1548 return BI; 1549 } 1550 1551 // After creating a control flow hub, the operands of PHINodes in an outgoing 1552 // block Out no longer match the predecessors of that block. Predecessors of Out 1553 // that are incoming blocks to the hub are now replaced by just one edge from 1554 // the hub. To match this new control flow, the corresponding values from each 1555 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1556 // 1557 // This operation cannot be performed with SSAUpdater, because it involves one 1558 // new use: If the block Out is in the list of Incoming blocks, then the newly 1559 // created PHI in the Hub will use itself along that edge from Out to Hub. 1560 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1561 const SetVector<BasicBlock *> &Incoming, 1562 BasicBlock *FirstGuardBlock) { 1563 auto I = Out->begin(); 1564 while (I != Out->end() && isa<PHINode>(I)) { 1565 auto Phi = cast<PHINode>(I); 1566 auto NewPhi = 1567 PHINode::Create(Phi->getType(), Incoming.size(), 1568 Phi->getName() + ".moved", &FirstGuardBlock->back()); 1569 for (auto In : Incoming) { 1570 Value *V = UndefValue::get(Phi->getType()); 1571 if (In == Out) { 1572 V = NewPhi; 1573 } else if (Phi->getBasicBlockIndex(In) != -1) { 1574 V = Phi->removeIncomingValue(In, false); 1575 } 1576 NewPhi->addIncoming(V, In); 1577 } 1578 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1579 if (Phi->getNumOperands() == 0) { 1580 Phi->replaceAllUsesWith(NewPhi); 1581 I = Phi->eraseFromParent(); 1582 continue; 1583 } 1584 Phi->addIncoming(NewPhi, GuardBlock); 1585 ++I; 1586 } 1587 } 1588 1589 using BBPredicates = DenseMap<BasicBlock *, PHINode *>; 1590 using BBSetVector = SetVector<BasicBlock *>; 1591 1592 // Redirects the terminator of the incoming block to the first guard 1593 // block in the hub. The condition of the original terminator (if it 1594 // was conditional) and its original successors are returned as a 1595 // tuple <condition, succ0, succ1>. The function additionally filters 1596 // out successors that are not in the set of outgoing blocks. 1597 // 1598 // - condition is non-null iff the branch is conditional. 1599 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1600 // - Succ2 is non-null iff condition is non-null and the fallthrough 1601 // target is an outgoing block. 1602 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1603 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1604 const BBSetVector &Outgoing) { 1605 auto Branch = cast<BranchInst>(BB->getTerminator()); 1606 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1607 1608 BasicBlock *Succ0 = Branch->getSuccessor(0); 1609 BasicBlock *Succ1 = nullptr; 1610 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1611 1612 if (Branch->isUnconditional()) { 1613 Branch->setSuccessor(0, FirstGuardBlock); 1614 assert(Succ0); 1615 } else { 1616 Succ1 = Branch->getSuccessor(1); 1617 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1618 assert(Succ0 || Succ1); 1619 if (Succ0 && !Succ1) { 1620 Branch->setSuccessor(0, FirstGuardBlock); 1621 } else if (Succ1 && !Succ0) { 1622 Branch->setSuccessor(1, FirstGuardBlock); 1623 } else { 1624 Branch->eraseFromParent(); 1625 BranchInst::Create(FirstGuardBlock, BB); 1626 } 1627 } 1628 1629 assert(Succ0 || Succ1); 1630 return std::make_tuple(Condition, Succ0, Succ1); 1631 } 1632 1633 // Capture the existing control flow as guard predicates, and redirect 1634 // control flow from every incoming block to the first guard block in 1635 // the hub. 1636 // 1637 // There is one guard predicate for each outgoing block OutBB. The 1638 // predicate is a PHINode with one input for each InBB which 1639 // represents whether the hub should transfer control flow to OutBB if 1640 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub 1641 // evaluates them in the same order as the Outgoing set-vector, and 1642 // control branches to the first outgoing block whose predicate 1643 // evaluates to true. 1644 static void convertToGuardPredicates( 1645 BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates, 1646 SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming, 1647 const BBSetVector &Outgoing) { 1648 auto &Context = Incoming.front()->getContext(); 1649 auto BoolTrue = ConstantInt::getTrue(Context); 1650 auto BoolFalse = ConstantInt::getFalse(Context); 1651 1652 // The predicate for the last outgoing is trivially true, and so we 1653 // process only the first N-1 successors. 1654 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1655 auto Out = Outgoing[i]; 1656 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 1657 auto Phi = 1658 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 1659 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 1660 GuardPredicates[Out] = Phi; 1661 } 1662 1663 for (auto In : Incoming) { 1664 Value *Condition; 1665 BasicBlock *Succ0; 1666 BasicBlock *Succ1; 1667 std::tie(Condition, Succ0, Succ1) = 1668 redirectToHub(In, FirstGuardBlock, Outgoing); 1669 1670 // Optimization: Consider an incoming block A with both successors 1671 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 1672 // for Succ0 and Succ1 complement each other. If Succ0 is visited 1673 // first in the loop below, control will branch to Succ0 using the 1674 // corresponding predicate. But if that branch is not taken, then 1675 // control must reach Succ1, which means that the predicate for 1676 // Succ1 is always true. 1677 bool OneSuccessorDone = false; 1678 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1679 auto Out = Outgoing[i]; 1680 auto Phi = GuardPredicates[Out]; 1681 if (Out != Succ0 && Out != Succ1) { 1682 Phi->addIncoming(BoolFalse, In); 1683 continue; 1684 } 1685 // Optimization: When only one successor is an outgoing block, 1686 // the predicate is always true. 1687 if (!Succ0 || !Succ1 || OneSuccessorDone) { 1688 Phi->addIncoming(BoolTrue, In); 1689 continue; 1690 } 1691 assert(Succ0 && Succ1); 1692 OneSuccessorDone = true; 1693 if (Out == Succ0) { 1694 Phi->addIncoming(Condition, In); 1695 continue; 1696 } 1697 auto Inverted = invertCondition(Condition); 1698 DeletionCandidates.push_back(Condition); 1699 Phi->addIncoming(Inverted, In); 1700 } 1701 } 1702 } 1703 1704 // For each outgoing block OutBB, create a guard block in the Hub. The 1705 // first guard block was already created outside, and available as the 1706 // first element in the vector of guard blocks. 1707 // 1708 // Each guard block terminates in a conditional branch that transfers 1709 // control to the corresponding outgoing block or the next guard 1710 // block. The last guard block has two outgoing blocks as successors 1711 // since the condition for the final outgoing block is trivially 1712 // true. So we create one less block (including the first guard block) 1713 // than the number of outgoing blocks. 1714 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1715 Function *F, const BBSetVector &Outgoing, 1716 BBPredicates &GuardPredicates, StringRef Prefix) { 1717 for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) { 1718 GuardBlocks.push_back( 1719 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 1720 } 1721 assert(GuardBlocks.size() == GuardPredicates.size()); 1722 1723 // To help keep the loop simple, temporarily append the last 1724 // outgoing block to the list of guard blocks. 1725 GuardBlocks.push_back(Outgoing.back()); 1726 1727 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1728 auto Out = Outgoing[i]; 1729 assert(GuardPredicates.count(Out)); 1730 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1731 GuardBlocks[i]); 1732 } 1733 1734 // Remove the last block from the guard list. 1735 GuardBlocks.pop_back(); 1736 } 1737 1738 BasicBlock *llvm::CreateControlFlowHub( 1739 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 1740 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1741 const StringRef Prefix) { 1742 auto F = Incoming.front()->getParent(); 1743 auto FirstGuardBlock = 1744 BasicBlock::Create(F->getContext(), Prefix + ".guard", F); 1745 1746 SmallVector<DominatorTree::UpdateType, 16> Updates; 1747 if (DTU) { 1748 for (auto In : Incoming) { 1749 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 1750 for (auto Succ : successors(In)) { 1751 if (Outgoing.count(Succ)) 1752 Updates.push_back({DominatorTree::Delete, In, Succ}); 1753 } 1754 } 1755 } 1756 1757 BBPredicates GuardPredicates; 1758 SmallVector<WeakVH, 8> DeletionCandidates; 1759 convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates, 1760 Incoming, Outgoing); 1761 1762 GuardBlocks.push_back(FirstGuardBlock); 1763 createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix); 1764 1765 // Update the PHINodes in each outgoing block to match the new control flow. 1766 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) { 1767 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 1768 } 1769 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 1770 1771 if (DTU) { 1772 int NumGuards = GuardBlocks.size(); 1773 assert((int)Outgoing.size() == NumGuards + 1); 1774 for (int i = 0; i != NumGuards - 1; ++i) { 1775 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 1776 Updates.push_back( 1777 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 1778 } 1779 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1780 Outgoing[NumGuards - 1]}); 1781 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1782 Outgoing[NumGuards]}); 1783 DTU->applyUpdates(Updates); 1784 } 1785 1786 for (auto I : DeletionCandidates) { 1787 if (I->use_empty()) 1788 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 1789 Inst->eraseFromParent(); 1790 } 1791 1792 return FirstGuardBlock; 1793 } 1794