1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include <cassert> 47 #include <cstdint> 48 #include <string> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "basicblock-utils" 55 56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( 57 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, 58 cl::desc("Set the maximum path length when checking whether a basic block " 59 "is followed by a block that either has a terminating " 60 "deoptimizing call or is terminated with an unreachable")); 61 62 void llvm::detachDeadBlocks( 63 ArrayRef<BasicBlock *> BBs, 64 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 65 bool KeepOneInputPHIs) { 66 for (auto *BB : BBs) { 67 // Loop through all of our successors and make sure they know that one 68 // of their predecessors is going away. 69 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 70 for (BasicBlock *Succ : successors(BB)) { 71 Succ->removePredecessor(BB, KeepOneInputPHIs); 72 if (Updates && UniqueSuccessors.insert(Succ).second) 73 Updates->push_back({DominatorTree::Delete, BB, Succ}); 74 } 75 76 // Zap all the instructions in the block. 77 while (!BB->empty()) { 78 Instruction &I = BB->back(); 79 // If this instruction is used, replace uses with an arbitrary value. 80 // Because control flow can't get here, we don't care what we replace the 81 // value with. Note that since this block is unreachable, and all values 82 // contained within it must dominate their uses, that all uses will 83 // eventually be removed (they are themselves dead). 84 if (!I.use_empty()) 85 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 86 BB->back().eraseFromParent(); 87 } 88 new UnreachableInst(BB->getContext(), BB); 89 assert(BB->size() == 1 && 90 isa<UnreachableInst>(BB->getTerminator()) && 91 "The successor list of BB isn't empty before " 92 "applying corresponding DTU updates."); 93 } 94 } 95 96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 97 bool KeepOneInputPHIs) { 98 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 99 } 100 101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 102 bool KeepOneInputPHIs) { 103 #ifndef NDEBUG 104 // Make sure that all predecessors of each dead block is also dead. 105 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 106 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 107 for (auto *BB : Dead) 108 for (BasicBlock *Pred : predecessors(BB)) 109 assert(Dead.count(Pred) && "All predecessors must be dead!"); 110 #endif 111 112 SmallVector<DominatorTree::UpdateType, 4> Updates; 113 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 114 115 if (DTU) 116 DTU->applyUpdates(Updates); 117 118 for (BasicBlock *BB : BBs) 119 if (DTU) 120 DTU->deleteBB(BB); 121 else 122 BB->eraseFromParent(); 123 } 124 125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 126 bool KeepOneInputPHIs) { 127 df_iterator_default_set<BasicBlock*> Reachable; 128 129 // Mark all reachable blocks. 130 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 131 (void)BB/* Mark all reachable blocks */; 132 133 // Collect all dead blocks. 134 std::vector<BasicBlock*> DeadBlocks; 135 for (BasicBlock &BB : F) 136 if (!Reachable.count(&BB)) 137 DeadBlocks.push_back(&BB); 138 139 // Delete the dead blocks. 140 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 141 142 return !DeadBlocks.empty(); 143 } 144 145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 146 MemoryDependenceResults *MemDep) { 147 if (!isa<PHINode>(BB->begin())) 148 return false; 149 150 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 151 if (PN->getIncomingValue(0) != PN) 152 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 153 else 154 PN->replaceAllUsesWith(PoisonValue::get(PN->getType())); 155 156 if (MemDep) 157 MemDep->removeInstruction(PN); // Memdep updates AA itself. 158 159 PN->eraseFromParent(); 160 } 161 return true; 162 } 163 164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 165 MemorySSAUpdater *MSSAU) { 166 // Recursively deleting a PHI may cause multiple PHIs to be deleted 167 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 168 SmallVector<WeakTrackingVH, 8> PHIs; 169 for (PHINode &PN : BB->phis()) 170 PHIs.push_back(&PN); 171 172 bool Changed = false; 173 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 174 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 175 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 176 177 return Changed; 178 } 179 180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 181 LoopInfo *LI, MemorySSAUpdater *MSSAU, 182 MemoryDependenceResults *MemDep, 183 bool PredecessorWithTwoSuccessors, 184 DominatorTree *DT) { 185 if (BB->hasAddressTaken()) 186 return false; 187 188 // Can't merge if there are multiple predecessors, or no predecessors. 189 BasicBlock *PredBB = BB->getUniquePredecessor(); 190 if (!PredBB) return false; 191 192 // Don't break self-loops. 193 if (PredBB == BB) return false; 194 195 // Don't break unwinding instructions or terminators with other side-effects. 196 Instruction *PTI = PredBB->getTerminator(); 197 if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects()) 198 return false; 199 200 // Can't merge if there are multiple distinct successors. 201 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 202 return false; 203 204 // Currently only allow PredBB to have two predecessors, one being BB. 205 // Update BI to branch to BB's only successor instead of BB. 206 BranchInst *PredBB_BI; 207 BasicBlock *NewSucc = nullptr; 208 unsigned FallThruPath; 209 if (PredecessorWithTwoSuccessors) { 210 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI))) 211 return false; 212 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 214 return false; 215 NewSucc = BB_JmpI->getSuccessor(0); 216 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 217 } 218 219 // Can't merge if there is PHI loop. 220 for (PHINode &PN : BB->phis()) 221 if (llvm::is_contained(PN.incoming_values(), &PN)) 222 return false; 223 224 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 225 << PredBB->getName() << "\n"); 226 227 // Begin by getting rid of unneeded PHIs. 228 SmallVector<AssertingVH<Value>, 4> IncomingValues; 229 if (isa<PHINode>(BB->front())) { 230 for (PHINode &PN : BB->phis()) 231 if (!isa<PHINode>(PN.getIncomingValue(0)) || 232 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 233 IncomingValues.push_back(PN.getIncomingValue(0)); 234 FoldSingleEntryPHINodes(BB, MemDep); 235 } 236 237 if (DT) { 238 assert(!DTU && "cannot use both DT and DTU for updates"); 239 DomTreeNode *PredNode = DT->getNode(PredBB); 240 DomTreeNode *BBNode = DT->getNode(BB); 241 if (PredNode) { 242 assert(BBNode && "PredNode unreachable but BBNode reachable?"); 243 for (DomTreeNode *C : to_vector(BBNode->children())) 244 C->setIDom(PredNode); 245 } 246 } 247 // DTU update: Collect all the edges that exit BB. 248 // These dominator edges will be redirected from Pred. 249 std::vector<DominatorTree::UpdateType> Updates; 250 if (DTU) { 251 assert(!DT && "cannot use both DT and DTU for updates"); 252 // To avoid processing the same predecessor more than once. 253 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 254 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 255 succ_end(PredBB)); 256 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1); 257 // Add insert edges first. Experimentally, for the particular case of two 258 // blocks that can be merged, with a single successor and single predecessor 259 // respectively, it is beneficial to have all insert updates first. Deleting 260 // edges first may lead to unreachable blocks, followed by inserting edges 261 // making the blocks reachable again. Such DT updates lead to high compile 262 // times. We add inserts before deletes here to reduce compile time. 263 for (BasicBlock *SuccOfBB : successors(BB)) 264 // This successor of BB may already be a PredBB's successor. 265 if (!SuccsOfPredBB.contains(SuccOfBB)) 266 if (SeenSuccs.insert(SuccOfBB).second) 267 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 268 SeenSuccs.clear(); 269 for (BasicBlock *SuccOfBB : successors(BB)) 270 if (SeenSuccs.insert(SuccOfBB).second) 271 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 272 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 273 } 274 275 Instruction *STI = BB->getTerminator(); 276 Instruction *Start = &*BB->begin(); 277 // If there's nothing to move, mark the starting instruction as the last 278 // instruction in the block. Terminator instruction is handled separately. 279 if (Start == STI) 280 Start = PTI; 281 282 // Move all definitions in the successor to the predecessor... 283 PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator()); 284 285 if (MSSAU) 286 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 287 288 // Make all PHI nodes that referred to BB now refer to Pred as their 289 // source... 290 BB->replaceAllUsesWith(PredBB); 291 292 if (PredecessorWithTwoSuccessors) { 293 // Delete the unconditional branch from BB. 294 BB->back().eraseFromParent(); 295 296 // Update branch in the predecessor. 297 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 298 } else { 299 // Delete the unconditional branch from the predecessor. 300 PredBB->back().eraseFromParent(); 301 302 // Move terminator instruction. 303 BB->back().moveBeforePreserving(*PredBB, PredBB->end()); 304 305 // Terminator may be a memory accessing instruction too. 306 if (MSSAU) 307 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 308 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 309 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 310 } 311 // Add unreachable to now empty BB. 312 new UnreachableInst(BB->getContext(), BB); 313 314 // Inherit predecessors name if it exists. 315 if (!PredBB->hasName()) 316 PredBB->takeName(BB); 317 318 if (LI) 319 LI->removeBlock(BB); 320 321 if (MemDep) 322 MemDep->invalidateCachedPredecessors(); 323 324 if (DTU) 325 DTU->applyUpdates(Updates); 326 327 if (DT) { 328 assert(succ_empty(BB) && 329 "successors should have been transferred to PredBB"); 330 DT->eraseNode(BB); 331 } 332 333 // Finally, erase the old block and update dominator info. 334 DeleteDeadBlock(BB, DTU); 335 336 return true; 337 } 338 339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 340 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 341 LoopInfo *LI) { 342 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 343 344 bool BlocksHaveBeenMerged = false; 345 while (!MergeBlocks.empty()) { 346 BasicBlock *BB = *MergeBlocks.begin(); 347 BasicBlock *Dest = BB->getSingleSuccessor(); 348 if (Dest && (!L || L->contains(Dest))) { 349 BasicBlock *Fold = Dest->getUniquePredecessor(); 350 (void)Fold; 351 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 352 assert(Fold == BB && 353 "Expecting BB to be unique predecessor of the Dest block"); 354 MergeBlocks.erase(Dest); 355 BlocksHaveBeenMerged = true; 356 } else 357 MergeBlocks.erase(BB); 358 } else 359 MergeBlocks.erase(BB); 360 } 361 return BlocksHaveBeenMerged; 362 } 363 364 /// Remove redundant instructions within sequences of consecutive dbg.value 365 /// instructions. This is done using a backward scan to keep the last dbg.value 366 /// describing a specific variable/fragment. 367 /// 368 /// BackwardScan strategy: 369 /// ---------------------- 370 /// Given a sequence of consecutive DbgValueInst like this 371 /// 372 /// dbg.value ..., "x", FragmentX1 (*) 373 /// dbg.value ..., "y", FragmentY1 374 /// dbg.value ..., "x", FragmentX2 375 /// dbg.value ..., "x", FragmentX1 (**) 376 /// 377 /// then the instruction marked with (*) can be removed (it is guaranteed to be 378 /// obsoleted by the instruction marked with (**) as the latter instruction is 379 /// describing the same variable using the same fragment info). 380 /// 381 /// Possible improvements: 382 /// - Check fully overlapping fragments and not only identical fragments. 383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being 384 /// part of the sequence of consecutive instructions. 385 static bool 386 DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 387 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 388 SmallDenseSet<DebugVariable> VariableSet; 389 for (auto &I : reverse(*BB)) { 390 for (DbgRecord &DR : reverse(I.getDbgRecordRange())) { 391 if (isa<DbgLabelRecord>(DR)) { 392 // Emulate existing behaviour (see comment below for dbg.declares). 393 // FIXME: Don't do this. 394 VariableSet.clear(); 395 continue; 396 } 397 398 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 399 // Skip declare-type records, as the debug intrinsic method only works 400 // on dbg.value intrinsics. 401 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 402 // The debug intrinsic method treats dbg.declares are "non-debug" 403 // instructions (i.e., a break in a consecutive range of debug 404 // intrinsics). Emulate that to create identical outputs. See 405 // "Possible improvements" above. 406 // FIXME: Delete the line below. 407 VariableSet.clear(); 408 continue; 409 } 410 411 DebugVariable Key(DVR.getVariable(), DVR.getExpression(), 412 DVR.getDebugLoc()->getInlinedAt()); 413 auto R = VariableSet.insert(Key); 414 // If the same variable fragment is described more than once it is enough 415 // to keep the last one (i.e. the first found since we for reverse 416 // iteration). 417 if (R.second) 418 continue; 419 420 if (DVR.isDbgAssign()) { 421 // Don't delete dbg.assign intrinsics that are linked to instructions. 422 if (!at::getAssignmentInsts(&DVR).empty()) 423 continue; 424 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 425 } 426 427 ToBeRemoved.push_back(&DVR); 428 continue; 429 } 430 // Sequence with consecutive dbg.value instrs ended. Clear the map to 431 // restart identifying redundant instructions if case we find another 432 // dbg.value sequence. 433 VariableSet.clear(); 434 } 435 436 for (auto &DVR : ToBeRemoved) 437 DVR->eraseFromParent(); 438 439 return !ToBeRemoved.empty(); 440 } 441 442 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 443 if (BB->IsNewDbgInfoFormat) 444 return DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BB); 445 446 SmallVector<DbgValueInst *, 8> ToBeRemoved; 447 SmallDenseSet<DebugVariable> VariableSet; 448 for (auto &I : reverse(*BB)) { 449 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 450 DebugVariable Key(DVI->getVariable(), 451 DVI->getExpression(), 452 DVI->getDebugLoc()->getInlinedAt()); 453 auto R = VariableSet.insert(Key); 454 // If the variable fragment hasn't been seen before then we don't want 455 // to remove this dbg intrinsic. 456 if (R.second) 457 continue; 458 459 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) { 460 // Don't delete dbg.assign intrinsics that are linked to instructions. 461 if (!at::getAssignmentInsts(DAI).empty()) 462 continue; 463 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 464 } 465 466 // If the same variable fragment is described more than once it is enough 467 // to keep the last one (i.e. the first found since we for reverse 468 // iteration). 469 ToBeRemoved.push_back(DVI); 470 continue; 471 } 472 // Sequence with consecutive dbg.value instrs ended. Clear the map to 473 // restart identifying redundant instructions if case we find another 474 // dbg.value sequence. 475 VariableSet.clear(); 476 } 477 478 for (auto &Instr : ToBeRemoved) 479 Instr->eraseFromParent(); 480 481 return !ToBeRemoved.empty(); 482 } 483 484 /// Remove redundant dbg.value instructions using a forward scan. This can 485 /// remove a dbg.value instruction that is redundant due to indicating that a 486 /// variable has the same value as already being indicated by an earlier 487 /// dbg.value. 488 /// 489 /// ForwardScan strategy: 490 /// --------------------- 491 /// Given two identical dbg.value instructions, separated by a block of 492 /// instructions that isn't describing the same variable, like this 493 /// 494 /// dbg.value X1, "x", FragmentX1 (**) 495 /// <block of instructions, none being "dbg.value ..., "x", ..."> 496 /// dbg.value X1, "x", FragmentX1 (*) 497 /// 498 /// then the instruction marked with (*) can be removed. Variable "x" is already 499 /// described as being mapped to the SSA value X1. 500 /// 501 /// Possible improvements: 502 /// - Keep track of non-overlapping fragments. 503 static bool 504 DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 505 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 506 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 507 VariableMap; 508 for (auto &I : *BB) { 509 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 510 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) 511 continue; 512 DebugVariable Key(DVR.getVariable(), std::nullopt, 513 DVR.getDebugLoc()->getInlinedAt()); 514 auto VMI = VariableMap.find(Key); 515 // A dbg.assign with no linked instructions can be treated like a 516 // dbg.value (i.e. can be deleted). 517 bool IsDbgValueKind = 518 (!DVR.isDbgAssign() || at::getAssignmentInsts(&DVR).empty()); 519 520 // Update the map if we found a new value/expression describing the 521 // variable, or if the variable wasn't mapped already. 522 SmallVector<Value *, 4> Values(DVR.location_ops()); 523 if (VMI == VariableMap.end() || VMI->second.first != Values || 524 VMI->second.second != DVR.getExpression()) { 525 if (IsDbgValueKind) 526 VariableMap[Key] = {Values, DVR.getExpression()}; 527 else 528 VariableMap[Key] = {Values, nullptr}; 529 continue; 530 } 531 // Don't delete dbg.assign intrinsics that are linked to instructions. 532 if (!IsDbgValueKind) 533 continue; 534 // Found an identical mapping. Remember the instruction for later removal. 535 ToBeRemoved.push_back(&DVR); 536 } 537 } 538 539 for (auto *DVR : ToBeRemoved) 540 DVR->eraseFromParent(); 541 542 return !ToBeRemoved.empty(); 543 } 544 545 static bool 546 DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 547 assert(BB->isEntryBlock() && "expected entry block"); 548 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 549 DenseSet<DebugVariable> SeenDefForAggregate; 550 // Returns the DebugVariable for DVI with no fragment info. 551 auto GetAggregateVariable = [](const DbgVariableRecord &DVR) { 552 return DebugVariable(DVR.getVariable(), std::nullopt, 553 DVR.getDebugLoc().getInlinedAt()); 554 }; 555 556 // Remove undef dbg.assign intrinsics that are encountered before 557 // any non-undef intrinsics from the entry block. 558 for (auto &I : *BB) { 559 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 560 if (!DVR.isDbgValue() && !DVR.isDbgAssign()) 561 continue; 562 bool IsDbgValueKind = 563 (DVR.isDbgValue() || at::getAssignmentInsts(&DVR).empty()); 564 DebugVariable Aggregate = GetAggregateVariable(DVR); 565 if (!SeenDefForAggregate.contains(Aggregate)) { 566 bool IsKill = DVR.isKillLocation() && IsDbgValueKind; 567 if (!IsKill) { 568 SeenDefForAggregate.insert(Aggregate); 569 } else if (DVR.isDbgAssign()) { 570 ToBeRemoved.push_back(&DVR); 571 } 572 } 573 } 574 } 575 576 for (DbgVariableRecord *DVR : ToBeRemoved) 577 DVR->eraseFromParent(); 578 579 return !ToBeRemoved.empty(); 580 } 581 582 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 583 if (BB->IsNewDbgInfoFormat) 584 return DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BB); 585 586 SmallVector<DbgValueInst *, 8> ToBeRemoved; 587 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 588 VariableMap; 589 for (auto &I : *BB) { 590 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 591 DebugVariable Key(DVI->getVariable(), std::nullopt, 592 DVI->getDebugLoc()->getInlinedAt()); 593 auto VMI = VariableMap.find(Key); 594 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 595 // A dbg.assign with no linked instructions can be treated like a 596 // dbg.value (i.e. can be deleted). 597 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 598 599 // Update the map if we found a new value/expression describing the 600 // variable, or if the variable wasn't mapped already. 601 SmallVector<Value *, 4> Values(DVI->getValues()); 602 if (VMI == VariableMap.end() || VMI->second.first != Values || 603 VMI->second.second != DVI->getExpression()) { 604 // Use a sentinel value (nullptr) for the DIExpression when we see a 605 // linked dbg.assign so that the next debug intrinsic will never match 606 // it (i.e. always treat linked dbg.assigns as if they're unique). 607 if (IsDbgValueKind) 608 VariableMap[Key] = {Values, DVI->getExpression()}; 609 else 610 VariableMap[Key] = {Values, nullptr}; 611 continue; 612 } 613 614 // Don't delete dbg.assign intrinsics that are linked to instructions. 615 if (!IsDbgValueKind) 616 continue; 617 ToBeRemoved.push_back(DVI); 618 } 619 } 620 621 for (auto &Instr : ToBeRemoved) 622 Instr->eraseFromParent(); 623 624 return !ToBeRemoved.empty(); 625 } 626 627 /// Remove redundant undef dbg.assign intrinsic from an entry block using a 628 /// forward scan. 629 /// Strategy: 630 /// --------------------- 631 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not 632 /// linked to an intrinsic, and don't share an aggregate variable with a debug 633 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns 634 /// that come before non-undef debug intrinsics for the variable are 635 /// deleted. Given: 636 /// 637 /// dbg.assign undef, "x", FragmentX1 (*) 638 /// <block of instructions, none being "dbg.value ..., "x", ..."> 639 /// dbg.value %V, "x", FragmentX2 640 /// <block of instructions, none being "dbg.value ..., "x", ..."> 641 /// dbg.assign undef, "x", FragmentX1 642 /// 643 /// then (only) the instruction marked with (*) can be removed. 644 /// Possible improvements: 645 /// - Keep track of non-overlapping fragments. 646 static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 647 if (BB->IsNewDbgInfoFormat) 648 return DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BB); 649 650 assert(BB->isEntryBlock() && "expected entry block"); 651 SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved; 652 DenseSet<DebugVariable> SeenDefForAggregate; 653 // Returns the DebugVariable for DVI with no fragment info. 654 auto GetAggregateVariable = [](DbgValueInst *DVI) { 655 return DebugVariable(DVI->getVariable(), std::nullopt, 656 DVI->getDebugLoc()->getInlinedAt()); 657 }; 658 659 // Remove undef dbg.assign intrinsics that are encountered before 660 // any non-undef intrinsics from the entry block. 661 for (auto &I : *BB) { 662 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I); 663 if (!DVI) 664 continue; 665 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 666 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 667 DebugVariable Aggregate = GetAggregateVariable(DVI); 668 if (!SeenDefForAggregate.contains(Aggregate)) { 669 bool IsKill = DVI->isKillLocation() && IsDbgValueKind; 670 if (!IsKill) { 671 SeenDefForAggregate.insert(Aggregate); 672 } else if (DAI) { 673 ToBeRemoved.push_back(DAI); 674 } 675 } 676 } 677 678 for (DbgAssignIntrinsic *DAI : ToBeRemoved) 679 DAI->eraseFromParent(); 680 681 return !ToBeRemoved.empty(); 682 } 683 684 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 685 bool MadeChanges = false; 686 // By using the "backward scan" strategy before the "forward scan" strategy we 687 // can remove both dbg.value (2) and (3) in a situation like this: 688 // 689 // (1) dbg.value V1, "x", DIExpression() 690 // ... 691 // (2) dbg.value V2, "x", DIExpression() 692 // (3) dbg.value V1, "x", DIExpression() 693 // 694 // The backward scan will remove (2), it is made obsolete by (3). After 695 // getting (2) out of the way, the foward scan will remove (3) since "x" 696 // already is described as having the value V1 at (1). 697 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 698 if (BB->isEntryBlock() && 699 isAssignmentTrackingEnabled(*BB->getParent()->getParent())) 700 MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB); 701 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 702 703 if (MadeChanges) 704 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 705 << BB->getName() << "\n"); 706 return MadeChanges; 707 } 708 709 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) { 710 Instruction &I = *BI; 711 // Replaces all of the uses of the instruction with uses of the value 712 I.replaceAllUsesWith(V); 713 714 // Make sure to propagate a name if there is one already. 715 if (I.hasName() && !V->hasName()) 716 V->takeName(&I); 717 718 // Delete the unnecessary instruction now... 719 BI = BI->eraseFromParent(); 720 } 721 722 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, 723 Instruction *I) { 724 assert(I->getParent() == nullptr && 725 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 726 727 // Copy debug location to newly added instruction, if it wasn't already set 728 // by the caller. 729 if (!I->getDebugLoc()) 730 I->setDebugLoc(BI->getDebugLoc()); 731 732 // Insert the new instruction into the basic block... 733 BasicBlock::iterator New = I->insertInto(BB, BI); 734 735 // Replace all uses of the old instruction, and delete it. 736 ReplaceInstWithValue(BI, I); 737 738 // Move BI back to point to the newly inserted instruction 739 BI = New; 740 } 741 742 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { 743 // Remember visited blocks to avoid infinite loop 744 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 745 unsigned Depth = 0; 746 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && 747 VisitedBlocks.insert(BB).second) { 748 if (isa<UnreachableInst>(BB->getTerminator()) || 749 BB->getTerminatingDeoptimizeCall()) 750 return true; 751 BB = BB->getUniqueSuccessor(); 752 } 753 return false; 754 } 755 756 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 757 BasicBlock::iterator BI(From); 758 ReplaceInstWithInst(From->getParent(), BI, To); 759 } 760 761 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 762 LoopInfo *LI, MemorySSAUpdater *MSSAU, 763 const Twine &BBName) { 764 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 765 766 Instruction *LatchTerm = BB->getTerminator(); 767 768 CriticalEdgeSplittingOptions Options = 769 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 770 771 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 772 // If it is a critical edge, and the succesor is an exception block, handle 773 // the split edge logic in this specific function 774 if (Succ->isEHPad()) 775 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 776 777 // If this is a critical edge, let SplitKnownCriticalEdge do it. 778 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 779 } 780 781 // If the edge isn't critical, then BB has a single successor or Succ has a 782 // single pred. Split the block. 783 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 784 // If the successor only has a single pred, split the top of the successor 785 // block. 786 assert(SP == BB && "CFG broken"); 787 (void)SP; 788 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 789 /*Before=*/true); 790 } 791 792 // Otherwise, if BB has a single successor, split it at the bottom of the 793 // block. 794 assert(BB->getTerminator()->getNumSuccessors() == 1 && 795 "Should have a single succ!"); 796 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 797 } 798 799 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 800 if (auto *II = dyn_cast<InvokeInst>(TI)) 801 II->setUnwindDest(Succ); 802 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 803 CS->setUnwindDest(Succ); 804 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 805 CR->setUnwindDest(Succ); 806 else 807 llvm_unreachable("unexpected terminator instruction"); 808 } 809 810 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 811 BasicBlock *NewPred, PHINode *Until) { 812 int BBIdx = 0; 813 for (PHINode &PN : DestBB->phis()) { 814 // We manually update the LandingPadReplacement PHINode and it is the last 815 // PHI Node. So, if we find it, we are done. 816 if (Until == &PN) 817 break; 818 819 // Reuse the previous value of BBIdx if it lines up. In cases where we 820 // have multiple phi nodes with *lots* of predecessors, this is a speed 821 // win because we don't have to scan the PHI looking for TIBB. This 822 // happens because the BB list of PHI nodes are usually in the same 823 // order. 824 if (PN.getIncomingBlock(BBIdx) != OldPred) 825 BBIdx = PN.getBasicBlockIndex(OldPred); 826 827 assert(BBIdx != -1 && "Invalid PHI Index!"); 828 PN.setIncomingBlock(BBIdx, NewPred); 829 } 830 } 831 832 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 833 LandingPadInst *OriginalPad, 834 PHINode *LandingPadReplacement, 835 const CriticalEdgeSplittingOptions &Options, 836 const Twine &BBName) { 837 838 auto *PadInst = Succ->getFirstNonPHI(); 839 if (!LandingPadReplacement && !PadInst->isEHPad()) 840 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 841 842 auto *LI = Options.LI; 843 SmallVector<BasicBlock *, 4> LoopPreds; 844 // Check if extra modifications will be required to preserve loop-simplify 845 // form after splitting. If it would require splitting blocks with IndirectBr 846 // terminators, bail out if preserving loop-simplify form is requested. 847 if (Options.PreserveLoopSimplify && LI) { 848 if (Loop *BBLoop = LI->getLoopFor(BB)) { 849 850 // The only way that we can break LoopSimplify form by splitting a 851 // critical edge is when there exists some edge from BBLoop to Succ *and* 852 // the only edge into Succ from outside of BBLoop is that of NewBB after 853 // the split. If the first isn't true, then LoopSimplify still holds, 854 // NewBB is the new exit block and it has no non-loop predecessors. If the 855 // second isn't true, then Succ was not in LoopSimplify form prior to 856 // the split as it had a non-loop predecessor. In both of these cases, 857 // the predecessor must be directly in BBLoop, not in a subloop, or again 858 // LoopSimplify doesn't hold. 859 for (BasicBlock *P : predecessors(Succ)) { 860 if (P == BB) 861 continue; // The new block is known. 862 if (LI->getLoopFor(P) != BBLoop) { 863 // Loop is not in LoopSimplify form, no need to re simplify after 864 // splitting edge. 865 LoopPreds.clear(); 866 break; 867 } 868 LoopPreds.push_back(P); 869 } 870 // Loop-simplify form can be preserved, if we can split all in-loop 871 // predecessors. 872 if (any_of(LoopPreds, [](BasicBlock *Pred) { 873 return isa<IndirectBrInst>(Pred->getTerminator()); 874 })) { 875 return nullptr; 876 } 877 } 878 } 879 880 auto *NewBB = 881 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 882 setUnwindEdgeTo(BB->getTerminator(), NewBB); 883 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 884 885 if (LandingPadReplacement) { 886 auto *NewLP = OriginalPad->clone(); 887 auto *Terminator = BranchInst::Create(Succ, NewBB); 888 NewLP->insertBefore(Terminator); 889 LandingPadReplacement->addIncoming(NewLP, NewBB); 890 } else { 891 Value *ParentPad = nullptr; 892 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 893 ParentPad = FuncletPad->getParentPad(); 894 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 895 ParentPad = CatchSwitch->getParentPad(); 896 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 897 ParentPad = CleanupPad->getParentPad(); 898 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 899 ParentPad = LandingPad->getParent(); 900 else 901 llvm_unreachable("handling for other EHPads not implemented yet"); 902 903 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 904 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 905 } 906 907 auto *DT = Options.DT; 908 auto *MSSAU = Options.MSSAU; 909 if (!DT && !LI) 910 return NewBB; 911 912 if (DT) { 913 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 914 SmallVector<DominatorTree::UpdateType, 3> Updates; 915 916 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 917 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 918 Updates.push_back({DominatorTree::Delete, BB, Succ}); 919 920 DTU.applyUpdates(Updates); 921 DTU.flush(); 922 923 if (MSSAU) { 924 MSSAU->applyUpdates(Updates, *DT); 925 if (VerifyMemorySSA) 926 MSSAU->getMemorySSA()->verifyMemorySSA(); 927 } 928 } 929 930 if (LI) { 931 if (Loop *BBLoop = LI->getLoopFor(BB)) { 932 // If one or the other blocks were not in a loop, the new block is not 933 // either, and thus LI doesn't need to be updated. 934 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 935 if (BBLoop == SuccLoop) { 936 // Both in the same loop, the NewBB joins loop. 937 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 938 } else if (BBLoop->contains(SuccLoop)) { 939 // Edge from an outer loop to an inner loop. Add to the outer loop. 940 BBLoop->addBasicBlockToLoop(NewBB, *LI); 941 } else if (SuccLoop->contains(BBLoop)) { 942 // Edge from an inner loop to an outer loop. Add to the outer loop. 943 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 944 } else { 945 // Edge from two loops with no containment relation. Because these 946 // are natural loops, we know that the destination block must be the 947 // header of its loop (adding a branch into a loop elsewhere would 948 // create an irreducible loop). 949 assert(SuccLoop->getHeader() == Succ && 950 "Should not create irreducible loops!"); 951 if (Loop *P = SuccLoop->getParentLoop()) 952 P->addBasicBlockToLoop(NewBB, *LI); 953 } 954 } 955 956 // If BB is in a loop and Succ is outside of that loop, we may need to 957 // update LoopSimplify form and LCSSA form. 958 if (!BBLoop->contains(Succ)) { 959 assert(!BBLoop->contains(NewBB) && 960 "Split point for loop exit is contained in loop!"); 961 962 // Update LCSSA form in the newly created exit block. 963 if (Options.PreserveLCSSA) { 964 createPHIsForSplitLoopExit(BB, NewBB, Succ); 965 } 966 967 if (!LoopPreds.empty()) { 968 BasicBlock *NewExitBB = SplitBlockPredecessors( 969 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 970 if (Options.PreserveLCSSA) 971 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 972 } 973 } 974 } 975 } 976 977 return NewBB; 978 } 979 980 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 981 BasicBlock *SplitBB, BasicBlock *DestBB) { 982 // SplitBB shouldn't have anything non-trivial in it yet. 983 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 984 SplitBB->isLandingPad()) && 985 "SplitBB has non-PHI nodes!"); 986 987 // For each PHI in the destination block. 988 for (PHINode &PN : DestBB->phis()) { 989 int Idx = PN.getBasicBlockIndex(SplitBB); 990 assert(Idx >= 0 && "Invalid Block Index"); 991 Value *V = PN.getIncomingValue(Idx); 992 993 // If the input is a PHI which already satisfies LCSSA, don't create 994 // a new one. 995 if (const PHINode *VP = dyn_cast<PHINode>(V)) 996 if (VP->getParent() == SplitBB) 997 continue; 998 999 // Otherwise a new PHI is needed. Create one and populate it. 1000 PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split"); 1001 BasicBlock::iterator InsertPos = 1002 SplitBB->isLandingPad() ? SplitBB->begin() 1003 : SplitBB->getTerminator()->getIterator(); 1004 NewPN->insertBefore(InsertPos); 1005 for (BasicBlock *BB : Preds) 1006 NewPN->addIncoming(V, BB); 1007 1008 // Update the original PHI. 1009 PN.setIncomingValue(Idx, NewPN); 1010 } 1011 } 1012 1013 unsigned 1014 llvm::SplitAllCriticalEdges(Function &F, 1015 const CriticalEdgeSplittingOptions &Options) { 1016 unsigned NumBroken = 0; 1017 for (BasicBlock &BB : F) { 1018 Instruction *TI = BB.getTerminator(); 1019 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 1020 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1021 if (SplitCriticalEdge(TI, i, Options)) 1022 ++NumBroken; 1023 } 1024 return NumBroken; 1025 } 1026 1027 static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, 1028 DomTreeUpdater *DTU, DominatorTree *DT, 1029 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1030 const Twine &BBName, bool Before) { 1031 if (Before) { 1032 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 1033 return splitBlockBefore(Old, SplitPt, 1034 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 1035 BBName); 1036 } 1037 BasicBlock::iterator SplitIt = SplitPt; 1038 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 1039 ++SplitIt; 1040 assert(SplitIt != SplitPt->getParent()->end()); 1041 } 1042 std::string Name = BBName.str(); 1043 BasicBlock *New = Old->splitBasicBlock( 1044 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 1045 1046 // The new block lives in whichever loop the old one did. This preserves 1047 // LCSSA as well, because we force the split point to be after any PHI nodes. 1048 if (LI) 1049 if (Loop *L = LI->getLoopFor(Old)) 1050 L->addBasicBlockToLoop(New, *LI); 1051 1052 if (DTU) { 1053 SmallVector<DominatorTree::UpdateType, 8> Updates; 1054 // Old dominates New. New node dominates all other nodes dominated by Old. 1055 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; 1056 Updates.push_back({DominatorTree::Insert, Old, New}); 1057 Updates.reserve(Updates.size() + 2 * succ_size(New)); 1058 for (BasicBlock *SuccessorOfOld : successors(New)) 1059 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) { 1060 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld}); 1061 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld}); 1062 } 1063 1064 DTU->applyUpdates(Updates); 1065 } else if (DT) 1066 // Old dominates New. New node dominates all other nodes dominated by Old. 1067 if (DomTreeNode *OldNode = DT->getNode(Old)) { 1068 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1069 1070 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 1071 for (DomTreeNode *I : Children) 1072 DT->changeImmediateDominator(I, NewNode); 1073 } 1074 1075 // Move MemoryAccesses still tracked in Old, but part of New now. 1076 // Update accesses in successor blocks accordingly. 1077 if (MSSAU) 1078 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 1079 1080 return New; 1081 } 1082 1083 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1084 DominatorTree *DT, LoopInfo *LI, 1085 MemorySSAUpdater *MSSAU, const Twine &BBName, 1086 bool Before) { 1087 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 1088 Before); 1089 } 1090 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1091 DomTreeUpdater *DTU, LoopInfo *LI, 1092 MemorySSAUpdater *MSSAU, const Twine &BBName, 1093 bool Before) { 1094 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 1095 Before); 1096 } 1097 1098 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, 1099 DomTreeUpdater *DTU, LoopInfo *LI, 1100 MemorySSAUpdater *MSSAU, 1101 const Twine &BBName) { 1102 1103 BasicBlock::iterator SplitIt = SplitPt; 1104 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 1105 ++SplitIt; 1106 std::string Name = BBName.str(); 1107 BasicBlock *New = Old->splitBasicBlock( 1108 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 1109 /* Before=*/true); 1110 1111 // The new block lives in whichever loop the old one did. This preserves 1112 // LCSSA as well, because we force the split point to be after any PHI nodes. 1113 if (LI) 1114 if (Loop *L = LI->getLoopFor(Old)) 1115 L->addBasicBlockToLoop(New, *LI); 1116 1117 if (DTU) { 1118 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 1119 // New dominates Old. The predecessor nodes of the Old node dominate 1120 // New node. 1121 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; 1122 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 1123 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New)); 1124 for (BasicBlock *PredecessorOfOld : predecessors(New)) 1125 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) { 1126 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New}); 1127 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old}); 1128 } 1129 1130 DTU->applyUpdates(DTUpdates); 1131 1132 // Move MemoryAccesses still tracked in Old, but part of New now. 1133 // Update accesses in successor blocks accordingly. 1134 if (MSSAU) { 1135 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 1136 if (VerifyMemorySSA) 1137 MSSAU->getMemorySSA()->verifyMemorySSA(); 1138 } 1139 } 1140 return New; 1141 } 1142 1143 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 1144 /// Invalidates DFS Numbering when DTU or DT is provided. 1145 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 1146 ArrayRef<BasicBlock *> Preds, 1147 DomTreeUpdater *DTU, DominatorTree *DT, 1148 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1149 bool PreserveLCSSA, bool &HasLoopExit) { 1150 // Update dominator tree if available. 1151 if (DTU) { 1152 // Recalculation of DomTree is needed when updating a forward DomTree and 1153 // the Entry BB is replaced. 1154 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 1155 // The entry block was removed and there is no external interface for 1156 // the dominator tree to be notified of this change. In this corner-case 1157 // we recalculate the entire tree. 1158 DTU->recalculate(*NewBB->getParent()); 1159 } else { 1160 // Split block expects NewBB to have a non-empty set of predecessors. 1161 SmallVector<DominatorTree::UpdateType, 8> Updates; 1162 SmallPtrSet<BasicBlock *, 8> UniquePreds; 1163 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 1164 Updates.reserve(Updates.size() + 2 * Preds.size()); 1165 for (auto *Pred : Preds) 1166 if (UniquePreds.insert(Pred).second) { 1167 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 1168 Updates.push_back({DominatorTree::Delete, Pred, OldBB}); 1169 } 1170 DTU->applyUpdates(Updates); 1171 } 1172 } else if (DT) { 1173 if (OldBB == DT->getRootNode()->getBlock()) { 1174 assert(NewBB->isEntryBlock()); 1175 DT->setNewRoot(NewBB); 1176 } else { 1177 // Split block expects NewBB to have a non-empty set of predecessors. 1178 DT->splitBlock(NewBB); 1179 } 1180 } 1181 1182 // Update MemoryPhis after split if MemorySSA is available 1183 if (MSSAU) 1184 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 1185 1186 // The rest of the logic is only relevant for updating the loop structures. 1187 if (!LI) 1188 return; 1189 1190 if (DTU && DTU->hasDomTree()) 1191 DT = &DTU->getDomTree(); 1192 assert(DT && "DT should be available to update LoopInfo!"); 1193 Loop *L = LI->getLoopFor(OldBB); 1194 1195 // If we need to preserve loop analyses, collect some information about how 1196 // this split will affect loops. 1197 bool IsLoopEntry = !!L; 1198 bool SplitMakesNewLoopHeader = false; 1199 for (BasicBlock *Pred : Preds) { 1200 // Preds that are not reachable from entry should not be used to identify if 1201 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 1202 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 1203 // as true and make the NewBB the header of some loop. This breaks LI. 1204 if (!DT->isReachableFromEntry(Pred)) 1205 continue; 1206 // If we need to preserve LCSSA, determine if any of the preds is a loop 1207 // exit. 1208 if (PreserveLCSSA) 1209 if (Loop *PL = LI->getLoopFor(Pred)) 1210 if (!PL->contains(OldBB)) 1211 HasLoopExit = true; 1212 1213 // If we need to preserve LoopInfo, note whether any of the preds crosses 1214 // an interesting loop boundary. 1215 if (!L) 1216 continue; 1217 if (L->contains(Pred)) 1218 IsLoopEntry = false; 1219 else 1220 SplitMakesNewLoopHeader = true; 1221 } 1222 1223 // Unless we have a loop for OldBB, nothing else to do here. 1224 if (!L) 1225 return; 1226 1227 if (IsLoopEntry) { 1228 // Add the new block to the nearest enclosing loop (and not an adjacent 1229 // loop). To find this, examine each of the predecessors and determine which 1230 // loops enclose them, and select the most-nested loop which contains the 1231 // loop containing the block being split. 1232 Loop *InnermostPredLoop = nullptr; 1233 for (BasicBlock *Pred : Preds) { 1234 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 1235 // Seek a loop which actually contains the block being split (to avoid 1236 // adjacent loops). 1237 while (PredLoop && !PredLoop->contains(OldBB)) 1238 PredLoop = PredLoop->getParentLoop(); 1239 1240 // Select the most-nested of these loops which contains the block. 1241 if (PredLoop && PredLoop->contains(OldBB) && 1242 (!InnermostPredLoop || 1243 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 1244 InnermostPredLoop = PredLoop; 1245 } 1246 } 1247 1248 if (InnermostPredLoop) 1249 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 1250 } else { 1251 L->addBasicBlockToLoop(NewBB, *LI); 1252 if (SplitMakesNewLoopHeader) 1253 L->moveToHeader(NewBB); 1254 } 1255 } 1256 1257 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 1258 /// This also updates AliasAnalysis, if available. 1259 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 1260 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 1261 bool HasLoopExit) { 1262 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 1263 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 1264 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1265 PHINode *PN = cast<PHINode>(I++); 1266 1267 // Check to see if all of the values coming in are the same. If so, we 1268 // don't need to create a new PHI node, unless it's needed for LCSSA. 1269 Value *InVal = nullptr; 1270 if (!HasLoopExit) { 1271 InVal = PN->getIncomingValueForBlock(Preds[0]); 1272 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1273 if (!PredSet.count(PN->getIncomingBlock(i))) 1274 continue; 1275 if (!InVal) 1276 InVal = PN->getIncomingValue(i); 1277 else if (InVal != PN->getIncomingValue(i)) { 1278 InVal = nullptr; 1279 break; 1280 } 1281 } 1282 } 1283 1284 if (InVal) { 1285 // If all incoming values for the new PHI would be the same, just don't 1286 // make a new PHI. Instead, just remove the incoming values from the old 1287 // PHI. 1288 PN->removeIncomingValueIf( 1289 [&](unsigned Idx) { 1290 return PredSet.contains(PN->getIncomingBlock(Idx)); 1291 }, 1292 /* DeletePHIIfEmpty */ false); 1293 1294 // Add an incoming value to the PHI node in the loop for the preheader 1295 // edge. 1296 PN->addIncoming(InVal, NewBB); 1297 continue; 1298 } 1299 1300 // If the values coming into the block are not the same, we need a new 1301 // PHI. 1302 // Create the new PHI node, insert it into NewBB at the end of the block 1303 PHINode *NewPHI = 1304 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI->getIterator()); 1305 1306 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1307 // the cost of removal if we end up removing a large number of values, and 1308 // second off, this ensures that the indices for the incoming values aren't 1309 // invalidated when we remove one. 1310 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1311 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1312 if (PredSet.count(IncomingBB)) { 1313 Value *V = PN->removeIncomingValue(i, false); 1314 NewPHI->addIncoming(V, IncomingBB); 1315 } 1316 } 1317 1318 PN->addIncoming(NewPHI, NewBB); 1319 } 1320 } 1321 1322 static void SplitLandingPadPredecessorsImpl( 1323 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1324 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1325 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1326 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1327 1328 static BasicBlock * 1329 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1330 const char *Suffix, DomTreeUpdater *DTU, 1331 DominatorTree *DT, LoopInfo *LI, 1332 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1333 // Do not attempt to split that which cannot be split. 1334 if (!BB->canSplitPredecessors()) 1335 return nullptr; 1336 1337 // For the landingpads we need to act a bit differently. 1338 // Delegate this work to the SplitLandingPadPredecessors. 1339 if (BB->isLandingPad()) { 1340 SmallVector<BasicBlock*, 2> NewBBs; 1341 std::string NewName = std::string(Suffix) + ".split-lp"; 1342 1343 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1344 DTU, DT, LI, MSSAU, PreserveLCSSA); 1345 return NewBBs[0]; 1346 } 1347 1348 // Create new basic block, insert right before the original block. 1349 BasicBlock *NewBB = BasicBlock::Create( 1350 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1351 1352 // The new block unconditionally branches to the old block. 1353 BranchInst *BI = BranchInst::Create(BB, NewBB); 1354 1355 Loop *L = nullptr; 1356 BasicBlock *OldLatch = nullptr; 1357 // Splitting the predecessors of a loop header creates a preheader block. 1358 if (LI && LI->isLoopHeader(BB)) { 1359 L = LI->getLoopFor(BB); 1360 // Using the loop start line number prevents debuggers stepping into the 1361 // loop body for this instruction. 1362 BI->setDebugLoc(L->getStartLoc()); 1363 1364 // If BB is the header of the Loop, it is possible that the loop is 1365 // modified, such that the current latch does not remain the latch of the 1366 // loop. If that is the case, the loop metadata from the current latch needs 1367 // to be applied to the new latch. 1368 OldLatch = L->getLoopLatch(); 1369 } else 1370 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1371 1372 // Move the edges from Preds to point to NewBB instead of BB. 1373 for (BasicBlock *Pred : Preds) { 1374 // This is slightly more strict than necessary; the minimum requirement 1375 // is that there be no more than one indirectbr branching to BB. And 1376 // all BlockAddress uses would need to be updated. 1377 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1378 "Cannot split an edge from an IndirectBrInst"); 1379 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB); 1380 } 1381 1382 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1383 // node becomes an incoming value for BB's phi node. However, if the Preds 1384 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1385 // account for the newly created predecessor. 1386 if (Preds.empty()) { 1387 // Insert dummy values as the incoming value. 1388 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1389 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB); 1390 } 1391 1392 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1393 bool HasLoopExit = false; 1394 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1395 HasLoopExit); 1396 1397 if (!Preds.empty()) { 1398 // Update the PHI nodes in BB with the values coming from NewBB. 1399 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1400 } 1401 1402 if (OldLatch) { 1403 BasicBlock *NewLatch = L->getLoopLatch(); 1404 if (NewLatch != OldLatch) { 1405 MDNode *MD = OldLatch->getTerminator()->getMetadata(LLVMContext::MD_loop); 1406 NewLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, MD); 1407 // It's still possible that OldLatch is the latch of another inner loop, 1408 // in which case we do not remove the metadata. 1409 Loop *IL = LI->getLoopFor(OldLatch); 1410 if (IL && IL->getLoopLatch() != OldLatch) 1411 OldLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, nullptr); 1412 } 1413 } 1414 1415 return NewBB; 1416 } 1417 1418 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1419 ArrayRef<BasicBlock *> Preds, 1420 const char *Suffix, DominatorTree *DT, 1421 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1422 bool PreserveLCSSA) { 1423 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1424 MSSAU, PreserveLCSSA); 1425 } 1426 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1427 ArrayRef<BasicBlock *> Preds, 1428 const char *Suffix, 1429 DomTreeUpdater *DTU, LoopInfo *LI, 1430 MemorySSAUpdater *MSSAU, 1431 bool PreserveLCSSA) { 1432 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1433 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1434 } 1435 1436 static void SplitLandingPadPredecessorsImpl( 1437 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1438 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1439 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1440 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1441 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1442 1443 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1444 // it right before the original block. 1445 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1446 OrigBB->getName() + Suffix1, 1447 OrigBB->getParent(), OrigBB); 1448 NewBBs.push_back(NewBB1); 1449 1450 // The new block unconditionally branches to the old block. 1451 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1452 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1453 1454 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1455 for (BasicBlock *Pred : Preds) { 1456 // This is slightly more strict than necessary; the minimum requirement 1457 // is that there be no more than one indirectbr branching to BB. And 1458 // all BlockAddress uses would need to be updated. 1459 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1460 "Cannot split an edge from an IndirectBrInst"); 1461 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1462 } 1463 1464 bool HasLoopExit = false; 1465 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1466 PreserveLCSSA, HasLoopExit); 1467 1468 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1469 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1470 1471 // Move the remaining edges from OrigBB to point to NewBB2. 1472 SmallVector<BasicBlock*, 8> NewBB2Preds; 1473 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1474 i != e; ) { 1475 BasicBlock *Pred = *i++; 1476 if (Pred == NewBB1) continue; 1477 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1478 "Cannot split an edge from an IndirectBrInst"); 1479 NewBB2Preds.push_back(Pred); 1480 e = pred_end(OrigBB); 1481 } 1482 1483 BasicBlock *NewBB2 = nullptr; 1484 if (!NewBB2Preds.empty()) { 1485 // Create another basic block for the rest of OrigBB's predecessors. 1486 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1487 OrigBB->getName() + Suffix2, 1488 OrigBB->getParent(), OrigBB); 1489 NewBBs.push_back(NewBB2); 1490 1491 // The new block unconditionally branches to the old block. 1492 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1493 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1494 1495 // Move the remaining edges from OrigBB to point to NewBB2. 1496 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1497 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1498 1499 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1500 HasLoopExit = false; 1501 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1502 PreserveLCSSA, HasLoopExit); 1503 1504 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1505 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1506 } 1507 1508 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1509 Instruction *Clone1 = LPad->clone(); 1510 Clone1->setName(Twine("lpad") + Suffix1); 1511 Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt()); 1512 1513 if (NewBB2) { 1514 Instruction *Clone2 = LPad->clone(); 1515 Clone2->setName(Twine("lpad") + Suffix2); 1516 Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt()); 1517 1518 // Create a PHI node for the two cloned landingpad instructions only 1519 // if the original landingpad instruction has some uses. 1520 if (!LPad->use_empty()) { 1521 assert(!LPad->getType()->isTokenTy() && 1522 "Split cannot be applied if LPad is token type. Otherwise an " 1523 "invalid PHINode of token type would be created."); 1524 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad->getIterator()); 1525 PN->addIncoming(Clone1, NewBB1); 1526 PN->addIncoming(Clone2, NewBB2); 1527 LPad->replaceAllUsesWith(PN); 1528 } 1529 LPad->eraseFromParent(); 1530 } else { 1531 // There is no second clone. Just replace the landing pad with the first 1532 // clone. 1533 LPad->replaceAllUsesWith(Clone1); 1534 LPad->eraseFromParent(); 1535 } 1536 } 1537 1538 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1539 ArrayRef<BasicBlock *> Preds, 1540 const char *Suffix1, const char *Suffix2, 1541 SmallVectorImpl<BasicBlock *> &NewBBs, 1542 DomTreeUpdater *DTU, LoopInfo *LI, 1543 MemorySSAUpdater *MSSAU, 1544 bool PreserveLCSSA) { 1545 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1546 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1547 PreserveLCSSA); 1548 } 1549 1550 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1551 BasicBlock *Pred, 1552 DomTreeUpdater *DTU) { 1553 Instruction *UncondBranch = Pred->getTerminator(); 1554 // Clone the return and add it to the end of the predecessor. 1555 Instruction *NewRet = RI->clone(); 1556 NewRet->insertInto(Pred, Pred->end()); 1557 1558 // If the return instruction returns a value, and if the value was a 1559 // PHI node in "BB", propagate the right value into the return. 1560 for (Use &Op : NewRet->operands()) { 1561 Value *V = Op; 1562 Instruction *NewBC = nullptr; 1563 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1564 // Return value might be bitcasted. Clone and insert it before the 1565 // return instruction. 1566 V = BCI->getOperand(0); 1567 NewBC = BCI->clone(); 1568 NewBC->insertInto(Pred, NewRet->getIterator()); 1569 Op = NewBC; 1570 } 1571 1572 Instruction *NewEV = nullptr; 1573 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1574 V = EVI->getOperand(0); 1575 NewEV = EVI->clone(); 1576 if (NewBC) { 1577 NewBC->setOperand(0, NewEV); 1578 NewEV->insertInto(Pred, NewBC->getIterator()); 1579 } else { 1580 NewEV->insertInto(Pred, NewRet->getIterator()); 1581 Op = NewEV; 1582 } 1583 } 1584 1585 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1586 if (PN->getParent() == BB) { 1587 if (NewEV) { 1588 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1589 } else if (NewBC) 1590 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1591 else 1592 Op = PN->getIncomingValueForBlock(Pred); 1593 } 1594 } 1595 } 1596 1597 // Update any PHI nodes in the returning block to realize that we no 1598 // longer branch to them. 1599 BB->removePredecessor(Pred); 1600 UncondBranch->eraseFromParent(); 1601 1602 if (DTU) 1603 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1604 1605 return cast<ReturnInst>(NewRet); 1606 } 1607 1608 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1609 BasicBlock::iterator SplitBefore, 1610 bool Unreachable, 1611 MDNode *BranchWeights, 1612 DomTreeUpdater *DTU, LoopInfo *LI, 1613 BasicBlock *ThenBlock) { 1614 SplitBlockAndInsertIfThenElse( 1615 Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr, 1616 /* UnreachableThen */ Unreachable, 1617 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1618 return ThenBlock->getTerminator(); 1619 } 1620 1621 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond, 1622 BasicBlock::iterator SplitBefore, 1623 bool Unreachable, 1624 MDNode *BranchWeights, 1625 DomTreeUpdater *DTU, LoopInfo *LI, 1626 BasicBlock *ElseBlock) { 1627 SplitBlockAndInsertIfThenElse( 1628 Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock, 1629 /* UnreachableThen */ false, 1630 /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI); 1631 return ElseBlock->getTerminator(); 1632 } 1633 1634 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, 1635 Instruction **ThenTerm, 1636 Instruction **ElseTerm, 1637 MDNode *BranchWeights, 1638 DomTreeUpdater *DTU, LoopInfo *LI) { 1639 BasicBlock *ThenBlock = nullptr; 1640 BasicBlock *ElseBlock = nullptr; 1641 SplitBlockAndInsertIfThenElse( 1642 Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false, 1643 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1644 1645 *ThenTerm = ThenBlock->getTerminator(); 1646 *ElseTerm = ElseBlock->getTerminator(); 1647 } 1648 1649 void llvm::SplitBlockAndInsertIfThenElse( 1650 Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock, 1651 BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse, 1652 MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) { 1653 assert((ThenBlock || ElseBlock) && 1654 "At least one branch block must be created"); 1655 assert((!UnreachableThen || !UnreachableElse) && 1656 "Split block tail must be reachable"); 1657 1658 SmallVector<DominatorTree::UpdateType, 8> Updates; 1659 SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors; 1660 BasicBlock *Head = SplitBefore->getParent(); 1661 if (DTU) { 1662 UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head)); 1663 Updates.reserve(4 + 2 * UniqueOrigSuccessors.size()); 1664 } 1665 1666 LLVMContext &C = Head->getContext(); 1667 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 1668 BasicBlock *TrueBlock = Tail; 1669 BasicBlock *FalseBlock = Tail; 1670 bool ThenToTailEdge = false; 1671 bool ElseToTailEdge = false; 1672 1673 // Encapsulate the logic around creation/insertion/etc of a new block. 1674 auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB, 1675 bool &ToTailEdge) { 1676 if (PBB == nullptr) 1677 return; // Do not create/insert a block. 1678 1679 if (*PBB) 1680 BB = *PBB; // Caller supplied block, use it. 1681 else { 1682 // Create a new block. 1683 BB = BasicBlock::Create(C, "", Head->getParent(), Tail); 1684 if (Unreachable) 1685 (void)new UnreachableInst(C, BB); 1686 else { 1687 (void)BranchInst::Create(Tail, BB); 1688 ToTailEdge = true; 1689 } 1690 BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc()); 1691 // Pass the new block back to the caller. 1692 *PBB = BB; 1693 } 1694 }; 1695 1696 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge); 1697 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge); 1698 1699 Instruction *HeadOldTerm = Head->getTerminator(); 1700 BranchInst *HeadNewTerm = 1701 BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond); 1702 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1703 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1704 1705 if (DTU) { 1706 Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock); 1707 Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock); 1708 if (ThenToTailEdge) 1709 Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail); 1710 if (ElseToTailEdge) 1711 Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail); 1712 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1713 Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor); 1714 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1715 Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor); 1716 DTU->applyUpdates(Updates); 1717 } 1718 1719 if (LI) { 1720 if (Loop *L = LI->getLoopFor(Head); L) { 1721 if (ThenToTailEdge) 1722 L->addBasicBlockToLoop(TrueBlock, *LI); 1723 if (ElseToTailEdge) 1724 L->addBasicBlockToLoop(FalseBlock, *LI); 1725 L->addBasicBlockToLoop(Tail, *LI); 1726 } 1727 } 1728 } 1729 1730 std::pair<Instruction*, Value*> 1731 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) { 1732 BasicBlock *LoopPred = SplitBefore->getParent(); 1733 BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore); 1734 BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore); 1735 1736 auto *Ty = End->getType(); 1737 auto &DL = SplitBefore->getDataLayout(); 1738 const unsigned Bitwidth = DL.getTypeSizeInBits(Ty); 1739 1740 IRBuilder<> Builder(LoopBody->getTerminator()); 1741 auto *IV = Builder.CreatePHI(Ty, 2, "iv"); 1742 auto *IVNext = 1743 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 1744 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 1745 auto *IVCheck = Builder.CreateICmpEQ(IVNext, End, 1746 IV->getName() + ".check"); 1747 Builder.CreateCondBr(IVCheck, LoopExit, LoopBody); 1748 LoopBody->getTerminator()->eraseFromParent(); 1749 1750 // Populate the IV PHI. 1751 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred); 1752 IV->addIncoming(IVNext, LoopBody); 1753 1754 return std::make_pair(LoopBody->getFirstNonPHI(), IV); 1755 } 1756 1757 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC, 1758 Type *IndexTy, Instruction *InsertBefore, 1759 std::function<void(IRBuilderBase&, Value*)> Func) { 1760 1761 IRBuilder<> IRB(InsertBefore); 1762 1763 if (EC.isScalable()) { 1764 Value *NumElements = IRB.CreateElementCount(IndexTy, EC); 1765 1766 auto [BodyIP, Index] = 1767 SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore); 1768 1769 IRB.SetInsertPoint(BodyIP); 1770 Func(IRB, Index); 1771 return; 1772 } 1773 1774 unsigned Num = EC.getFixedValue(); 1775 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1776 IRB.SetInsertPoint(InsertBefore); 1777 Func(IRB, ConstantInt::get(IndexTy, Idx)); 1778 } 1779 } 1780 1781 void llvm::SplitBlockAndInsertForEachLane( 1782 Value *EVL, Instruction *InsertBefore, 1783 std::function<void(IRBuilderBase &, Value *)> Func) { 1784 1785 IRBuilder<> IRB(InsertBefore); 1786 Type *Ty = EVL->getType(); 1787 1788 if (!isa<ConstantInt>(EVL)) { 1789 auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore); 1790 IRB.SetInsertPoint(BodyIP); 1791 Func(IRB, Index); 1792 return; 1793 } 1794 1795 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue(); 1796 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1797 IRB.SetInsertPoint(InsertBefore); 1798 Func(IRB, ConstantInt::get(Ty, Idx)); 1799 } 1800 } 1801 1802 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1803 BasicBlock *&IfFalse) { 1804 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1805 BasicBlock *Pred1 = nullptr; 1806 BasicBlock *Pred2 = nullptr; 1807 1808 if (SomePHI) { 1809 if (SomePHI->getNumIncomingValues() != 2) 1810 return nullptr; 1811 Pred1 = SomePHI->getIncomingBlock(0); 1812 Pred2 = SomePHI->getIncomingBlock(1); 1813 } else { 1814 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1815 if (PI == PE) // No predecessor 1816 return nullptr; 1817 Pred1 = *PI++; 1818 if (PI == PE) // Only one predecessor 1819 return nullptr; 1820 Pred2 = *PI++; 1821 if (PI != PE) // More than two predecessors 1822 return nullptr; 1823 } 1824 1825 // We can only handle branches. Other control flow will be lowered to 1826 // branches if possible anyway. 1827 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1828 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1829 if (!Pred1Br || !Pred2Br) 1830 return nullptr; 1831 1832 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1833 // either are. 1834 if (Pred2Br->isConditional()) { 1835 // If both branches are conditional, we don't have an "if statement". In 1836 // reality, we could transform this case, but since the condition will be 1837 // required anyway, we stand no chance of eliminating it, so the xform is 1838 // probably not profitable. 1839 if (Pred1Br->isConditional()) 1840 return nullptr; 1841 1842 std::swap(Pred1, Pred2); 1843 std::swap(Pred1Br, Pred2Br); 1844 } 1845 1846 if (Pred1Br->isConditional()) { 1847 // The only thing we have to watch out for here is to make sure that Pred2 1848 // doesn't have incoming edges from other blocks. If it does, the condition 1849 // doesn't dominate BB. 1850 if (!Pred2->getSinglePredecessor()) 1851 return nullptr; 1852 1853 // If we found a conditional branch predecessor, make sure that it branches 1854 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1855 if (Pred1Br->getSuccessor(0) == BB && 1856 Pred1Br->getSuccessor(1) == Pred2) { 1857 IfTrue = Pred1; 1858 IfFalse = Pred2; 1859 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1860 Pred1Br->getSuccessor(1) == BB) { 1861 IfTrue = Pred2; 1862 IfFalse = Pred1; 1863 } else { 1864 // We know that one arm of the conditional goes to BB, so the other must 1865 // go somewhere unrelated, and this must not be an "if statement". 1866 return nullptr; 1867 } 1868 1869 return Pred1Br; 1870 } 1871 1872 // Ok, if we got here, both predecessors end with an unconditional branch to 1873 // BB. Don't panic! If both blocks only have a single (identical) 1874 // predecessor, and THAT is a conditional branch, then we're all ok! 1875 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1876 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1877 return nullptr; 1878 1879 // Otherwise, if this is a conditional branch, then we can use it! 1880 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1881 if (!BI) return nullptr; 1882 1883 assert(BI->isConditional() && "Two successors but not conditional?"); 1884 if (BI->getSuccessor(0) == Pred1) { 1885 IfTrue = Pred1; 1886 IfFalse = Pred2; 1887 } else { 1888 IfTrue = Pred2; 1889 IfFalse = Pred1; 1890 } 1891 return BI; 1892 } 1893 1894 // After creating a control flow hub, the operands of PHINodes in an outgoing 1895 // block Out no longer match the predecessors of that block. Predecessors of Out 1896 // that are incoming blocks to the hub are now replaced by just one edge from 1897 // the hub. To match this new control flow, the corresponding values from each 1898 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1899 // 1900 // This operation cannot be performed with SSAUpdater, because it involves one 1901 // new use: If the block Out is in the list of Incoming blocks, then the newly 1902 // created PHI in the Hub will use itself along that edge from Out to Hub. 1903 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1904 const SetVector<BasicBlock *> &Incoming, 1905 BasicBlock *FirstGuardBlock) { 1906 auto I = Out->begin(); 1907 while (I != Out->end() && isa<PHINode>(I)) { 1908 auto Phi = cast<PHINode>(I); 1909 auto NewPhi = 1910 PHINode::Create(Phi->getType(), Incoming.size(), 1911 Phi->getName() + ".moved", FirstGuardBlock->begin()); 1912 for (auto *In : Incoming) { 1913 Value *V = UndefValue::get(Phi->getType()); 1914 if (In == Out) { 1915 V = NewPhi; 1916 } else if (Phi->getBasicBlockIndex(In) != -1) { 1917 V = Phi->removeIncomingValue(In, false); 1918 } 1919 NewPhi->addIncoming(V, In); 1920 } 1921 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1922 if (Phi->getNumOperands() == 0) { 1923 Phi->replaceAllUsesWith(NewPhi); 1924 I = Phi->eraseFromParent(); 1925 continue; 1926 } 1927 Phi->addIncoming(NewPhi, GuardBlock); 1928 ++I; 1929 } 1930 } 1931 1932 using BBPredicates = DenseMap<BasicBlock *, Instruction *>; 1933 using BBSetVector = SetVector<BasicBlock *>; 1934 1935 // Redirects the terminator of the incoming block to the first guard 1936 // block in the hub. The condition of the original terminator (if it 1937 // was conditional) and its original successors are returned as a 1938 // tuple <condition, succ0, succ1>. The function additionally filters 1939 // out successors that are not in the set of outgoing blocks. 1940 // 1941 // - condition is non-null iff the branch is conditional. 1942 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1943 // - Succ2 is non-null iff condition is non-null and the fallthrough 1944 // target is an outgoing block. 1945 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1946 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1947 const BBSetVector &Outgoing) { 1948 assert(isa<BranchInst>(BB->getTerminator()) && 1949 "Only support branch terminator."); 1950 auto Branch = cast<BranchInst>(BB->getTerminator()); 1951 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1952 1953 BasicBlock *Succ0 = Branch->getSuccessor(0); 1954 BasicBlock *Succ1 = nullptr; 1955 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1956 1957 if (Branch->isUnconditional()) { 1958 Branch->setSuccessor(0, FirstGuardBlock); 1959 assert(Succ0); 1960 } else { 1961 Succ1 = Branch->getSuccessor(1); 1962 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1963 assert(Succ0 || Succ1); 1964 if (Succ0 && !Succ1) { 1965 Branch->setSuccessor(0, FirstGuardBlock); 1966 } else if (Succ1 && !Succ0) { 1967 Branch->setSuccessor(1, FirstGuardBlock); 1968 } else { 1969 Branch->eraseFromParent(); 1970 BranchInst::Create(FirstGuardBlock, BB); 1971 } 1972 } 1973 1974 assert(Succ0 || Succ1); 1975 return std::make_tuple(Condition, Succ0, Succ1); 1976 } 1977 // Setup the branch instructions for guard blocks. 1978 // 1979 // Each guard block terminates in a conditional branch that transfers 1980 // control to the corresponding outgoing block or the next guard 1981 // block. The last guard block has two outgoing blocks as successors 1982 // since the condition for the final outgoing block is trivially 1983 // true. So we create one less block (including the first guard block) 1984 // than the number of outgoing blocks. 1985 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1986 const BBSetVector &Outgoing, 1987 BBPredicates &GuardPredicates) { 1988 // To help keep the loop simple, temporarily append the last 1989 // outgoing block to the list of guard blocks. 1990 GuardBlocks.push_back(Outgoing.back()); 1991 1992 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1993 auto Out = Outgoing[i]; 1994 assert(GuardPredicates.count(Out)); 1995 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1996 GuardBlocks[i]); 1997 } 1998 1999 // Remove the last block from the guard list. 2000 GuardBlocks.pop_back(); 2001 } 2002 2003 /// We are using one integer to represent the block we are branching to. Then at 2004 /// each guard block, the predicate was calcuated using a simple `icmp eq`. 2005 static void calcPredicateUsingInteger( 2006 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2007 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) { 2008 auto &Context = Incoming.front()->getContext(); 2009 auto FirstGuardBlock = GuardBlocks.front(); 2010 2011 auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(), 2012 "merged.bb.idx", FirstGuardBlock); 2013 2014 for (auto In : Incoming) { 2015 Value *Condition; 2016 BasicBlock *Succ0; 2017 BasicBlock *Succ1; 2018 std::tie(Condition, Succ0, Succ1) = 2019 redirectToHub(In, FirstGuardBlock, Outgoing); 2020 Value *IncomingId = nullptr; 2021 if (Succ0 && Succ1) { 2022 // target_bb_index = Condition ? index_of_succ0 : index_of_succ1. 2023 auto Succ0Iter = find(Outgoing, Succ0); 2024 auto Succ1Iter = find(Outgoing, Succ1); 2025 Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context), 2026 std::distance(Outgoing.begin(), Succ0Iter)); 2027 Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context), 2028 std::distance(Outgoing.begin(), Succ1Iter)); 2029 IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx", 2030 In->getTerminator()->getIterator()); 2031 } else { 2032 // Get the index of the non-null successor. 2033 auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1); 2034 IncomingId = ConstantInt::get(Type::getInt32Ty(Context), 2035 std::distance(Outgoing.begin(), SuccIter)); 2036 } 2037 Phi->addIncoming(IncomingId, In); 2038 } 2039 2040 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2041 auto Out = Outgoing[i]; 2042 auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi, 2043 ConstantInt::get(Type::getInt32Ty(Context), i), 2044 Out->getName() + ".predicate", GuardBlocks[i]); 2045 GuardPredicates[Out] = Cmp; 2046 } 2047 } 2048 2049 /// We record the predicate of each outgoing block using a phi of boolean. 2050 static void calcPredicateUsingBooleans( 2051 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2052 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates, 2053 SmallVectorImpl<WeakVH> &DeletionCandidates) { 2054 auto &Context = Incoming.front()->getContext(); 2055 auto BoolTrue = ConstantInt::getTrue(Context); 2056 auto BoolFalse = ConstantInt::getFalse(Context); 2057 auto FirstGuardBlock = GuardBlocks.front(); 2058 2059 // The predicate for the last outgoing is trivially true, and so we 2060 // process only the first N-1 successors. 2061 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2062 auto Out = Outgoing[i]; 2063 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 2064 2065 auto Phi = 2066 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 2067 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 2068 GuardPredicates[Out] = Phi; 2069 } 2070 2071 for (auto *In : Incoming) { 2072 Value *Condition; 2073 BasicBlock *Succ0; 2074 BasicBlock *Succ1; 2075 std::tie(Condition, Succ0, Succ1) = 2076 redirectToHub(In, FirstGuardBlock, Outgoing); 2077 2078 // Optimization: Consider an incoming block A with both successors 2079 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 2080 // for Succ0 and Succ1 complement each other. If Succ0 is visited 2081 // first in the loop below, control will branch to Succ0 using the 2082 // corresponding predicate. But if that branch is not taken, then 2083 // control must reach Succ1, which means that the incoming value of 2084 // the predicate from `In` is true for Succ1. 2085 bool OneSuccessorDone = false; 2086 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2087 auto Out = Outgoing[i]; 2088 PHINode *Phi = cast<PHINode>(GuardPredicates[Out]); 2089 if (Out != Succ0 && Out != Succ1) { 2090 Phi->addIncoming(BoolFalse, In); 2091 } else if (!Succ0 || !Succ1 || OneSuccessorDone) { 2092 // Optimization: When only one successor is an outgoing block, 2093 // the incoming predicate from `In` is always true. 2094 Phi->addIncoming(BoolTrue, In); 2095 } else { 2096 assert(Succ0 && Succ1); 2097 if (Out == Succ0) { 2098 Phi->addIncoming(Condition, In); 2099 } else { 2100 auto Inverted = invertCondition(Condition); 2101 DeletionCandidates.push_back(Condition); 2102 Phi->addIncoming(Inverted, In); 2103 } 2104 OneSuccessorDone = true; 2105 } 2106 } 2107 } 2108 } 2109 2110 // Capture the existing control flow as guard predicates, and redirect 2111 // control flow from \p Incoming block through the \p GuardBlocks to the 2112 // \p Outgoing blocks. 2113 // 2114 // There is one guard predicate for each outgoing block OutBB. The 2115 // predicate represents whether the hub should transfer control flow 2116 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates 2117 // them in the same order as the Outgoing set-vector, and control 2118 // branches to the first outgoing block whose predicate evaluates to true. 2119 static void 2120 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks, 2121 SmallVectorImpl<WeakVH> &DeletionCandidates, 2122 const BBSetVector &Incoming, 2123 const BBSetVector &Outgoing, const StringRef Prefix, 2124 std::optional<unsigned> MaxControlFlowBooleans) { 2125 BBPredicates GuardPredicates; 2126 auto F = Incoming.front()->getParent(); 2127 2128 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) 2129 GuardBlocks.push_back( 2130 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 2131 2132 // When we are using an integer to record which target block to jump to, we 2133 // are creating less live values, actually we are using one single integer to 2134 // store the index of the target block. When we are using booleans to store 2135 // the branching information, we need (N-1) boolean values, where N is the 2136 // number of outgoing block. 2137 if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans) 2138 calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates, 2139 DeletionCandidates); 2140 else 2141 calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates); 2142 2143 setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates); 2144 } 2145 2146 BasicBlock *llvm::CreateControlFlowHub( 2147 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 2148 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2149 const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) { 2150 if (Outgoing.size() < 2) 2151 return Outgoing.front(); 2152 2153 SmallVector<DominatorTree::UpdateType, 16> Updates; 2154 if (DTU) { 2155 for (auto *In : Incoming) { 2156 for (auto Succ : successors(In)) 2157 if (Outgoing.count(Succ)) 2158 Updates.push_back({DominatorTree::Delete, In, Succ}); 2159 } 2160 } 2161 2162 SmallVector<WeakVH, 8> DeletionCandidates; 2163 convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing, 2164 Prefix, MaxControlFlowBooleans); 2165 auto FirstGuardBlock = GuardBlocks.front(); 2166 2167 // Update the PHINodes in each outgoing block to match the new control flow. 2168 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) 2169 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 2170 2171 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 2172 2173 if (DTU) { 2174 int NumGuards = GuardBlocks.size(); 2175 assert((int)Outgoing.size() == NumGuards + 1); 2176 2177 for (auto In : Incoming) 2178 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 2179 2180 for (int i = 0; i != NumGuards - 1; ++i) { 2181 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 2182 Updates.push_back( 2183 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 2184 } 2185 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2186 Outgoing[NumGuards - 1]}); 2187 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2188 Outgoing[NumGuards]}); 2189 DTU->applyUpdates(Updates); 2190 } 2191 2192 for (auto I : DeletionCandidates) { 2193 if (I->use_empty()) 2194 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 2195 Inst->eraseFromParent(); 2196 } 2197 2198 return FirstGuardBlock; 2199 } 2200 2201 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) { 2202 Value *NewCond = PBI->getCondition(); 2203 // If this is a "cmp" instruction, only used for branching (and nowhere 2204 // else), then we can simply invert the predicate. 2205 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2206 CmpInst *CI = cast<CmpInst>(NewCond); 2207 CI->setPredicate(CI->getInversePredicate()); 2208 } else 2209 NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not"); 2210 2211 PBI->setCondition(NewCond); 2212 PBI->swapSuccessors(); 2213 } 2214 2215 bool llvm::hasOnlySimpleTerminator(const Function &F) { 2216 for (auto &BB : F) { 2217 auto *Term = BB.getTerminator(); 2218 if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) || 2219 isa<BranchInst>(Term))) 2220 return false; 2221 } 2222 return true; 2223 } 2224 2225 bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src, 2226 const BasicBlock &Dest) { 2227 assert(Src.getParent() == Dest.getParent()); 2228 if (!Src.getParent()->isPresplitCoroutine()) 2229 return false; 2230 if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator())) 2231 if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition())) 2232 return Intr->getIntrinsicID() == Intrinsic::coro_suspend && 2233 SW->getDefaultDest() == &Dest; 2234 return false; 2235 } 2236