1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/PseudoProbe.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include <cassert> 47 #include <cstdint> 48 #include <string> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "basicblock-utils" 55 56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( 57 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, 58 cl::desc("Set the maximum path length when checking whether a basic block " 59 "is followed by a block that either has a terminating " 60 "deoptimizing call or is terminated with an unreachable")); 61 62 void llvm::detachDeadBlocks( 63 ArrayRef<BasicBlock *> BBs, 64 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 65 bool KeepOneInputPHIs) { 66 for (auto *BB : BBs) { 67 // Loop through all of our successors and make sure they know that one 68 // of their predecessors is going away. 69 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 70 for (BasicBlock *Succ : successors(BB)) { 71 Succ->removePredecessor(BB, KeepOneInputPHIs); 72 if (Updates && UniqueSuccessors.insert(Succ).second) 73 Updates->push_back({DominatorTree::Delete, BB, Succ}); 74 } 75 76 // Zap all the instructions in the block. 77 while (!BB->empty()) { 78 Instruction &I = BB->back(); 79 // If this instruction is used, replace uses with an arbitrary value. 80 // Because control flow can't get here, we don't care what we replace the 81 // value with. Note that since this block is unreachable, and all values 82 // contained within it must dominate their uses, that all uses will 83 // eventually be removed (they are themselves dead). 84 if (!I.use_empty()) 85 I.replaceAllUsesWith(UndefValue::get(I.getType())); 86 BB->getInstList().pop_back(); 87 } 88 new UnreachableInst(BB->getContext(), BB); 89 assert(BB->getInstList().size() == 1 && 90 isa<UnreachableInst>(BB->getTerminator()) && 91 "The successor list of BB isn't empty before " 92 "applying corresponding DTU updates."); 93 } 94 } 95 96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 97 bool KeepOneInputPHIs) { 98 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 99 } 100 101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 102 bool KeepOneInputPHIs) { 103 #ifndef NDEBUG 104 // Make sure that all predecessors of each dead block is also dead. 105 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 106 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 107 for (auto *BB : Dead) 108 for (BasicBlock *Pred : predecessors(BB)) 109 assert(Dead.count(Pred) && "All predecessors must be dead!"); 110 #endif 111 112 SmallVector<DominatorTree::UpdateType, 4> Updates; 113 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 114 115 if (DTU) 116 DTU->applyUpdates(Updates); 117 118 for (BasicBlock *BB : BBs) 119 if (DTU) 120 DTU->deleteBB(BB); 121 else 122 BB->eraseFromParent(); 123 } 124 125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 126 bool KeepOneInputPHIs) { 127 df_iterator_default_set<BasicBlock*> Reachable; 128 129 // Mark all reachable blocks. 130 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 131 (void)BB/* Mark all reachable blocks */; 132 133 // Collect all dead blocks. 134 std::vector<BasicBlock*> DeadBlocks; 135 for (BasicBlock &BB : F) 136 if (!Reachable.count(&BB)) 137 DeadBlocks.push_back(&BB); 138 139 // Delete the dead blocks. 140 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 141 142 return !DeadBlocks.empty(); 143 } 144 145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 146 MemoryDependenceResults *MemDep) { 147 if (!isa<PHINode>(BB->begin())) 148 return false; 149 150 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 151 if (PN->getIncomingValue(0) != PN) 152 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 153 else 154 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 155 156 if (MemDep) 157 MemDep->removeInstruction(PN); // Memdep updates AA itself. 158 159 PN->eraseFromParent(); 160 } 161 return true; 162 } 163 164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 165 MemorySSAUpdater *MSSAU) { 166 // Recursively deleting a PHI may cause multiple PHIs to be deleted 167 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 168 SmallVector<WeakTrackingVH, 8> PHIs; 169 for (PHINode &PN : BB->phis()) 170 PHIs.push_back(&PN); 171 172 bool Changed = false; 173 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 174 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 175 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 176 177 return Changed; 178 } 179 180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 181 LoopInfo *LI, MemorySSAUpdater *MSSAU, 182 MemoryDependenceResults *MemDep, 183 bool PredecessorWithTwoSuccessors) { 184 if (BB->hasAddressTaken()) 185 return false; 186 187 // Can't merge if there are multiple predecessors, or no predecessors. 188 BasicBlock *PredBB = BB->getUniquePredecessor(); 189 if (!PredBB) return false; 190 191 // Don't break self-loops. 192 if (PredBB == BB) return false; 193 // Don't break unwinding instructions. 194 if (PredBB->getTerminator()->isExceptionalTerminator()) 195 return false; 196 197 // Can't merge if there are multiple distinct successors. 198 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 199 return false; 200 201 // Currently only allow PredBB to have two predecessors, one being BB. 202 // Update BI to branch to BB's only successor instead of BB. 203 BranchInst *PredBB_BI; 204 BasicBlock *NewSucc = nullptr; 205 unsigned FallThruPath; 206 if (PredecessorWithTwoSuccessors) { 207 if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator()))) 208 return false; 209 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 210 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 211 return false; 212 NewSucc = BB_JmpI->getSuccessor(0); 213 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 214 } 215 216 // Can't merge if there is PHI loop. 217 for (PHINode &PN : BB->phis()) 218 if (llvm::is_contained(PN.incoming_values(), &PN)) 219 return false; 220 221 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 222 << PredBB->getName() << "\n"); 223 224 // Begin by getting rid of unneeded PHIs. 225 SmallVector<AssertingVH<Value>, 4> IncomingValues; 226 if (isa<PHINode>(BB->front())) { 227 for (PHINode &PN : BB->phis()) 228 if (!isa<PHINode>(PN.getIncomingValue(0)) || 229 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 230 IncomingValues.push_back(PN.getIncomingValue(0)); 231 FoldSingleEntryPHINodes(BB, MemDep); 232 } 233 234 // DTU update: Collect all the edges that exit BB. 235 // These dominator edges will be redirected from Pred. 236 std::vector<DominatorTree::UpdateType> Updates; 237 if (DTU) { 238 // To avoid processing the same predecessor more than once. 239 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 240 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 241 succ_end(PredBB)); 242 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1); 243 // Add insert edges first. Experimentally, for the particular case of two 244 // blocks that can be merged, with a single successor and single predecessor 245 // respectively, it is beneficial to have all insert updates first. Deleting 246 // edges first may lead to unreachable blocks, followed by inserting edges 247 // making the blocks reachable again. Such DT updates lead to high compile 248 // times. We add inserts before deletes here to reduce compile time. 249 for (BasicBlock *SuccOfBB : successors(BB)) 250 // This successor of BB may already be a PredBB's successor. 251 if (!SuccsOfPredBB.contains(SuccOfBB)) 252 if (SeenSuccs.insert(SuccOfBB).second) 253 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 254 SeenSuccs.clear(); 255 for (BasicBlock *SuccOfBB : successors(BB)) 256 if (SeenSuccs.insert(SuccOfBB).second) 257 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 258 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 259 } 260 261 Instruction *PTI = PredBB->getTerminator(); 262 Instruction *STI = BB->getTerminator(); 263 Instruction *Start = &*BB->begin(); 264 // If there's nothing to move, mark the starting instruction as the last 265 // instruction in the block. Terminator instruction is handled separately. 266 if (Start == STI) 267 Start = PTI; 268 269 // Move all definitions in the successor to the predecessor... 270 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), 271 BB->begin(), STI->getIterator()); 272 273 if (MSSAU) 274 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 275 276 // Make all PHI nodes that referred to BB now refer to Pred as their 277 // source... 278 BB->replaceAllUsesWith(PredBB); 279 280 if (PredecessorWithTwoSuccessors) { 281 // Delete the unconditional branch from BB. 282 BB->getInstList().pop_back(); 283 284 // Update branch in the predecessor. 285 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 286 } else { 287 // Delete the unconditional branch from the predecessor. 288 PredBB->getInstList().pop_back(); 289 290 // Move terminator instruction. 291 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 292 293 // Terminator may be a memory accessing instruction too. 294 if (MSSAU) 295 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 296 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 297 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 298 } 299 // Add unreachable to now empty BB. 300 new UnreachableInst(BB->getContext(), BB); 301 302 // Inherit predecessors name if it exists. 303 if (!PredBB->hasName()) 304 PredBB->takeName(BB); 305 306 if (LI) 307 LI->removeBlock(BB); 308 309 if (MemDep) 310 MemDep->invalidateCachedPredecessors(); 311 312 if (DTU) 313 DTU->applyUpdates(Updates); 314 315 // Finally, erase the old block and update dominator info. 316 DeleteDeadBlock(BB, DTU); 317 318 return true; 319 } 320 321 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 322 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 323 LoopInfo *LI) { 324 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 325 326 bool BlocksHaveBeenMerged = false; 327 while (!MergeBlocks.empty()) { 328 BasicBlock *BB = *MergeBlocks.begin(); 329 BasicBlock *Dest = BB->getSingleSuccessor(); 330 if (Dest && (!L || L->contains(Dest))) { 331 BasicBlock *Fold = Dest->getUniquePredecessor(); 332 (void)Fold; 333 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 334 assert(Fold == BB && 335 "Expecting BB to be unique predecessor of the Dest block"); 336 MergeBlocks.erase(Dest); 337 BlocksHaveBeenMerged = true; 338 } else 339 MergeBlocks.erase(BB); 340 } else 341 MergeBlocks.erase(BB); 342 } 343 return BlocksHaveBeenMerged; 344 } 345 346 /// Remove redundant instructions within sequences of consecutive dbg.value 347 /// instructions. This is done using a backward scan to keep the last dbg.value 348 /// describing a specific variable/fragment. 349 /// 350 /// BackwardScan strategy: 351 /// ---------------------- 352 /// Given a sequence of consecutive DbgValueInst like this 353 /// 354 /// dbg.value ..., "x", FragmentX1 (*) 355 /// dbg.value ..., "y", FragmentY1 356 /// dbg.value ..., "x", FragmentX2 357 /// dbg.value ..., "x", FragmentX1 (**) 358 /// 359 /// then the instruction marked with (*) can be removed (it is guaranteed to be 360 /// obsoleted by the instruction marked with (**) as the latter instruction is 361 /// describing the same variable using the same fragment info). 362 /// 363 /// Possible improvements: 364 /// - Check fully overlapping fragments and not only identical fragments. 365 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta 366 /// instructions being part of the sequence of consecutive instructions. 367 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 368 SmallVector<DbgValueInst *, 8> ToBeRemoved; 369 SmallDenseSet<DebugVariable> VariableSet; 370 for (auto &I : reverse(*BB)) { 371 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 372 DebugVariable Key(DVI->getVariable(), 373 DVI->getExpression(), 374 DVI->getDebugLoc()->getInlinedAt()); 375 auto R = VariableSet.insert(Key); 376 // If the same variable fragment is described more than once it is enough 377 // to keep the last one (i.e. the first found since we for reverse 378 // iteration). 379 if (!R.second) 380 ToBeRemoved.push_back(DVI); 381 continue; 382 } 383 // Sequence with consecutive dbg.value instrs ended. Clear the map to 384 // restart identifying redundant instructions if case we find another 385 // dbg.value sequence. 386 VariableSet.clear(); 387 } 388 389 for (auto &Instr : ToBeRemoved) 390 Instr->eraseFromParent(); 391 392 return !ToBeRemoved.empty(); 393 } 394 395 /// Remove redundant dbg.value instructions using a forward scan. This can 396 /// remove a dbg.value instruction that is redundant due to indicating that a 397 /// variable has the same value as already being indicated by an earlier 398 /// dbg.value. 399 /// 400 /// ForwardScan strategy: 401 /// --------------------- 402 /// Given two identical dbg.value instructions, separated by a block of 403 /// instructions that isn't describing the same variable, like this 404 /// 405 /// dbg.value X1, "x", FragmentX1 (**) 406 /// <block of instructions, none being "dbg.value ..., "x", ..."> 407 /// dbg.value X1, "x", FragmentX1 (*) 408 /// 409 /// then the instruction marked with (*) can be removed. Variable "x" is already 410 /// described as being mapped to the SSA value X1. 411 /// 412 /// Possible improvements: 413 /// - Keep track of non-overlapping fragments. 414 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 415 SmallVector<DbgValueInst *, 8> ToBeRemoved; 416 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 417 VariableMap; 418 for (auto &I : *BB) { 419 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 420 DebugVariable Key(DVI->getVariable(), 421 NoneType(), 422 DVI->getDebugLoc()->getInlinedAt()); 423 auto VMI = VariableMap.find(Key); 424 // Update the map if we found a new value/expression describing the 425 // variable, or if the variable wasn't mapped already. 426 SmallVector<Value *, 4> Values(DVI->getValues()); 427 if (VMI == VariableMap.end() || VMI->second.first != Values || 428 VMI->second.second != DVI->getExpression()) { 429 VariableMap[Key] = {Values, DVI->getExpression()}; 430 continue; 431 } 432 // Found an identical mapping. Remember the instruction for later removal. 433 ToBeRemoved.push_back(DVI); 434 } 435 } 436 437 for (auto &Instr : ToBeRemoved) 438 Instr->eraseFromParent(); 439 440 return !ToBeRemoved.empty(); 441 } 442 443 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 444 bool MadeChanges = false; 445 // By using the "backward scan" strategy before the "forward scan" strategy we 446 // can remove both dbg.value (2) and (3) in a situation like this: 447 // 448 // (1) dbg.value V1, "x", DIExpression() 449 // ... 450 // (2) dbg.value V2, "x", DIExpression() 451 // (3) dbg.value V1, "x", DIExpression() 452 // 453 // The backward scan will remove (2), it is made obsolete by (3). After 454 // getting (2) out of the way, the foward scan will remove (3) since "x" 455 // already is described as having the value V1 at (1). 456 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 457 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 458 459 if (MadeChanges) 460 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 461 << BB->getName() << "\n"); 462 return MadeChanges; 463 } 464 465 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 466 BasicBlock::iterator &BI, Value *V) { 467 Instruction &I = *BI; 468 // Replaces all of the uses of the instruction with uses of the value 469 I.replaceAllUsesWith(V); 470 471 // Make sure to propagate a name if there is one already. 472 if (I.hasName() && !V->hasName()) 473 V->takeName(&I); 474 475 // Delete the unnecessary instruction now... 476 BI = BIL.erase(BI); 477 } 478 479 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 480 BasicBlock::iterator &BI, Instruction *I) { 481 assert(I->getParent() == nullptr && 482 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 483 484 // Copy debug location to newly added instruction, if it wasn't already set 485 // by the caller. 486 if (!I->getDebugLoc()) 487 I->setDebugLoc(BI->getDebugLoc()); 488 489 // Insert the new instruction into the basic block... 490 BasicBlock::iterator New = BIL.insert(BI, I); 491 492 // Replace all uses of the old instruction, and delete it. 493 ReplaceInstWithValue(BIL, BI, I); 494 495 // Move BI back to point to the newly inserted instruction 496 BI = New; 497 } 498 499 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { 500 // Remember visited blocks to avoid infinite loop 501 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 502 unsigned Depth = 0; 503 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && 504 VisitedBlocks.insert(BB).second) { 505 if (BB->getTerminatingDeoptimizeCall() || 506 isa<UnreachableInst>(BB->getTerminator())) 507 return true; 508 BB = BB->getUniqueSuccessor(); 509 } 510 return false; 511 } 512 513 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 514 BasicBlock::iterator BI(From); 515 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 516 } 517 518 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 519 LoopInfo *LI, MemorySSAUpdater *MSSAU, 520 const Twine &BBName) { 521 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 522 523 Instruction *LatchTerm = BB->getTerminator(); 524 525 CriticalEdgeSplittingOptions Options = 526 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 527 528 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 529 // If it is a critical edge, and the succesor is an exception block, handle 530 // the split edge logic in this specific function 531 if (Succ->isEHPad()) 532 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 533 534 // If this is a critical edge, let SplitKnownCriticalEdge do it. 535 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 536 } 537 538 // If the edge isn't critical, then BB has a single successor or Succ has a 539 // single pred. Split the block. 540 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 541 // If the successor only has a single pred, split the top of the successor 542 // block. 543 assert(SP == BB && "CFG broken"); 544 SP = nullptr; 545 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 546 /*Before=*/true); 547 } 548 549 // Otherwise, if BB has a single successor, split it at the bottom of the 550 // block. 551 assert(BB->getTerminator()->getNumSuccessors() == 1 && 552 "Should have a single succ!"); 553 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 554 } 555 556 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 557 if (auto *II = dyn_cast<InvokeInst>(TI)) 558 II->setUnwindDest(Succ); 559 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 560 CS->setUnwindDest(Succ); 561 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 562 CR->setUnwindDest(Succ); 563 else 564 llvm_unreachable("unexpected terminator instruction"); 565 } 566 567 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 568 BasicBlock *NewPred, PHINode *Until) { 569 int BBIdx = 0; 570 for (PHINode &PN : DestBB->phis()) { 571 // We manually update the LandingPadReplacement PHINode and it is the last 572 // PHI Node. So, if we find it, we are done. 573 if (Until == &PN) 574 break; 575 576 // Reuse the previous value of BBIdx if it lines up. In cases where we 577 // have multiple phi nodes with *lots* of predecessors, this is a speed 578 // win because we don't have to scan the PHI looking for TIBB. This 579 // happens because the BB list of PHI nodes are usually in the same 580 // order. 581 if (PN.getIncomingBlock(BBIdx) != OldPred) 582 BBIdx = PN.getBasicBlockIndex(OldPred); 583 584 assert(BBIdx != -1 && "Invalid PHI Index!"); 585 PN.setIncomingBlock(BBIdx, NewPred); 586 } 587 } 588 589 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 590 LandingPadInst *OriginalPad, 591 PHINode *LandingPadReplacement, 592 const CriticalEdgeSplittingOptions &Options, 593 const Twine &BBName) { 594 595 auto *PadInst = Succ->getFirstNonPHI(); 596 if (!LandingPadReplacement && !PadInst->isEHPad()) 597 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 598 599 auto *LI = Options.LI; 600 SmallVector<BasicBlock *, 4> LoopPreds; 601 // Check if extra modifications will be required to preserve loop-simplify 602 // form after splitting. If it would require splitting blocks with IndirectBr 603 // terminators, bail out if preserving loop-simplify form is requested. 604 if (Options.PreserveLoopSimplify && LI) { 605 if (Loop *BBLoop = LI->getLoopFor(BB)) { 606 607 // The only way that we can break LoopSimplify form by splitting a 608 // critical edge is when there exists some edge from BBLoop to Succ *and* 609 // the only edge into Succ from outside of BBLoop is that of NewBB after 610 // the split. If the first isn't true, then LoopSimplify still holds, 611 // NewBB is the new exit block and it has no non-loop predecessors. If the 612 // second isn't true, then Succ was not in LoopSimplify form prior to 613 // the split as it had a non-loop predecessor. In both of these cases, 614 // the predecessor must be directly in BBLoop, not in a subloop, or again 615 // LoopSimplify doesn't hold. 616 for (BasicBlock *P : predecessors(Succ)) { 617 if (P == BB) 618 continue; // The new block is known. 619 if (LI->getLoopFor(P) != BBLoop) { 620 // Loop is not in LoopSimplify form, no need to re simplify after 621 // splitting edge. 622 LoopPreds.clear(); 623 break; 624 } 625 LoopPreds.push_back(P); 626 } 627 // Loop-simplify form can be preserved, if we can split all in-loop 628 // predecessors. 629 if (any_of(LoopPreds, [](BasicBlock *Pred) { 630 return isa<IndirectBrInst>(Pred->getTerminator()); 631 })) { 632 return nullptr; 633 } 634 } 635 } 636 637 auto *NewBB = 638 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 639 setUnwindEdgeTo(BB->getTerminator(), NewBB); 640 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 641 642 if (LandingPadReplacement) { 643 auto *NewLP = OriginalPad->clone(); 644 auto *Terminator = BranchInst::Create(Succ, NewBB); 645 NewLP->insertBefore(Terminator); 646 LandingPadReplacement->addIncoming(NewLP, NewBB); 647 } else { 648 Value *ParentPad = nullptr; 649 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 650 ParentPad = FuncletPad->getParentPad(); 651 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 652 ParentPad = CatchSwitch->getParentPad(); 653 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 654 ParentPad = CleanupPad->getParentPad(); 655 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 656 ParentPad = LandingPad->getParent(); 657 else 658 llvm_unreachable("handling for other EHPads not implemented yet"); 659 660 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 661 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 662 } 663 664 auto *DT = Options.DT; 665 auto *MSSAU = Options.MSSAU; 666 if (!DT && !LI) 667 return NewBB; 668 669 if (DT) { 670 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 671 SmallVector<DominatorTree::UpdateType, 3> Updates; 672 673 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 674 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 675 Updates.push_back({DominatorTree::Delete, BB, Succ}); 676 677 DTU.applyUpdates(Updates); 678 DTU.flush(); 679 680 if (MSSAU) { 681 MSSAU->applyUpdates(Updates, *DT); 682 if (VerifyMemorySSA) 683 MSSAU->getMemorySSA()->verifyMemorySSA(); 684 } 685 } 686 687 if (LI) { 688 if (Loop *BBLoop = LI->getLoopFor(BB)) { 689 // If one or the other blocks were not in a loop, the new block is not 690 // either, and thus LI doesn't need to be updated. 691 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 692 if (BBLoop == SuccLoop) { 693 // Both in the same loop, the NewBB joins loop. 694 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 695 } else if (BBLoop->contains(SuccLoop)) { 696 // Edge from an outer loop to an inner loop. Add to the outer loop. 697 BBLoop->addBasicBlockToLoop(NewBB, *LI); 698 } else if (SuccLoop->contains(BBLoop)) { 699 // Edge from an inner loop to an outer loop. Add to the outer loop. 700 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 701 } else { 702 // Edge from two loops with no containment relation. Because these 703 // are natural loops, we know that the destination block must be the 704 // header of its loop (adding a branch into a loop elsewhere would 705 // create an irreducible loop). 706 assert(SuccLoop->getHeader() == Succ && 707 "Should not create irreducible loops!"); 708 if (Loop *P = SuccLoop->getParentLoop()) 709 P->addBasicBlockToLoop(NewBB, *LI); 710 } 711 } 712 713 // If BB is in a loop and Succ is outside of that loop, we may need to 714 // update LoopSimplify form and LCSSA form. 715 if (!BBLoop->contains(Succ)) { 716 assert(!BBLoop->contains(NewBB) && 717 "Split point for loop exit is contained in loop!"); 718 719 // Update LCSSA form in the newly created exit block. 720 if (Options.PreserveLCSSA) { 721 createPHIsForSplitLoopExit(BB, NewBB, Succ); 722 } 723 724 if (!LoopPreds.empty()) { 725 BasicBlock *NewExitBB = SplitBlockPredecessors( 726 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 727 if (Options.PreserveLCSSA) 728 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 729 } 730 } 731 } 732 } 733 734 return NewBB; 735 } 736 737 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 738 BasicBlock *SplitBB, BasicBlock *DestBB) { 739 // SplitBB shouldn't have anything non-trivial in it yet. 740 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 741 SplitBB->isLandingPad()) && 742 "SplitBB has non-PHI nodes!"); 743 744 // For each PHI in the destination block. 745 for (PHINode &PN : DestBB->phis()) { 746 int Idx = PN.getBasicBlockIndex(SplitBB); 747 assert(Idx >= 0 && "Invalid Block Index"); 748 Value *V = PN.getIncomingValue(Idx); 749 750 // If the input is a PHI which already satisfies LCSSA, don't create 751 // a new one. 752 if (const PHINode *VP = dyn_cast<PHINode>(V)) 753 if (VP->getParent() == SplitBB) 754 continue; 755 756 // Otherwise a new PHI is needed. Create one and populate it. 757 PHINode *NewPN = PHINode::Create( 758 PN.getType(), Preds.size(), "split", 759 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 760 for (BasicBlock *BB : Preds) 761 NewPN->addIncoming(V, BB); 762 763 // Update the original PHI. 764 PN.setIncomingValue(Idx, NewPN); 765 } 766 } 767 768 unsigned 769 llvm::SplitAllCriticalEdges(Function &F, 770 const CriticalEdgeSplittingOptions &Options) { 771 unsigned NumBroken = 0; 772 for (BasicBlock &BB : F) { 773 Instruction *TI = BB.getTerminator(); 774 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) && 775 !isa<CallBrInst>(TI)) 776 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 777 if (SplitCriticalEdge(TI, i, Options)) 778 ++NumBroken; 779 } 780 return NumBroken; 781 } 782 783 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt, 784 DomTreeUpdater *DTU, DominatorTree *DT, 785 LoopInfo *LI, MemorySSAUpdater *MSSAU, 786 const Twine &BBName, bool Before) { 787 if (Before) { 788 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 789 return splitBlockBefore(Old, SplitPt, 790 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 791 BBName); 792 } 793 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 794 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 795 ++SplitIt; 796 assert(SplitIt != SplitPt->getParent()->end()); 797 } 798 std::string Name = BBName.str(); 799 BasicBlock *New = Old->splitBasicBlock( 800 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 801 802 // The new block lives in whichever loop the old one did. This preserves 803 // LCSSA as well, because we force the split point to be after any PHI nodes. 804 if (LI) 805 if (Loop *L = LI->getLoopFor(Old)) 806 L->addBasicBlockToLoop(New, *LI); 807 808 if (DTU) { 809 SmallVector<DominatorTree::UpdateType, 8> Updates; 810 // Old dominates New. New node dominates all other nodes dominated by Old. 811 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; 812 Updates.push_back({DominatorTree::Insert, Old, New}); 813 Updates.reserve(Updates.size() + 2 * succ_size(New)); 814 for (BasicBlock *SuccessorOfOld : successors(New)) 815 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) { 816 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld}); 817 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld}); 818 } 819 820 DTU->applyUpdates(Updates); 821 } else if (DT) 822 // Old dominates New. New node dominates all other nodes dominated by Old. 823 if (DomTreeNode *OldNode = DT->getNode(Old)) { 824 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 825 826 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 827 for (DomTreeNode *I : Children) 828 DT->changeImmediateDominator(I, NewNode); 829 } 830 831 // Move MemoryAccesses still tracked in Old, but part of New now. 832 // Update accesses in successor blocks accordingly. 833 if (MSSAU) 834 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 835 836 return New; 837 } 838 839 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 840 DominatorTree *DT, LoopInfo *LI, 841 MemorySSAUpdater *MSSAU, const Twine &BBName, 842 bool Before) { 843 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 844 Before); 845 } 846 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 847 DomTreeUpdater *DTU, LoopInfo *LI, 848 MemorySSAUpdater *MSSAU, const Twine &BBName, 849 bool Before) { 850 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 851 Before); 852 } 853 854 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt, 855 DomTreeUpdater *DTU, LoopInfo *LI, 856 MemorySSAUpdater *MSSAU, 857 const Twine &BBName) { 858 859 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 860 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 861 ++SplitIt; 862 std::string Name = BBName.str(); 863 BasicBlock *New = Old->splitBasicBlock( 864 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 865 /* Before=*/true); 866 867 // The new block lives in whichever loop the old one did. This preserves 868 // LCSSA as well, because we force the split point to be after any PHI nodes. 869 if (LI) 870 if (Loop *L = LI->getLoopFor(Old)) 871 L->addBasicBlockToLoop(New, *LI); 872 873 if (DTU) { 874 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 875 // New dominates Old. The predecessor nodes of the Old node dominate 876 // New node. 877 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; 878 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 879 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New)); 880 for (BasicBlock *PredecessorOfOld : predecessors(New)) 881 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) { 882 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New}); 883 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old}); 884 } 885 886 DTU->applyUpdates(DTUpdates); 887 888 // Move MemoryAccesses still tracked in Old, but part of New now. 889 // Update accesses in successor blocks accordingly. 890 if (MSSAU) { 891 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 892 if (VerifyMemorySSA) 893 MSSAU->getMemorySSA()->verifyMemorySSA(); 894 } 895 } 896 return New; 897 } 898 899 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 900 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 901 ArrayRef<BasicBlock *> Preds, 902 DomTreeUpdater *DTU, DominatorTree *DT, 903 LoopInfo *LI, MemorySSAUpdater *MSSAU, 904 bool PreserveLCSSA, bool &HasLoopExit) { 905 // Update dominator tree if available. 906 if (DTU) { 907 // Recalculation of DomTree is needed when updating a forward DomTree and 908 // the Entry BB is replaced. 909 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 910 // The entry block was removed and there is no external interface for 911 // the dominator tree to be notified of this change. In this corner-case 912 // we recalculate the entire tree. 913 DTU->recalculate(*NewBB->getParent()); 914 } else { 915 // Split block expects NewBB to have a non-empty set of predecessors. 916 SmallVector<DominatorTree::UpdateType, 8> Updates; 917 SmallPtrSet<BasicBlock *, 8> UniquePreds; 918 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 919 Updates.reserve(Updates.size() + 2 * Preds.size()); 920 for (auto *Pred : Preds) 921 if (UniquePreds.insert(Pred).second) { 922 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 923 Updates.push_back({DominatorTree::Delete, Pred, OldBB}); 924 } 925 DTU->applyUpdates(Updates); 926 } 927 } else if (DT) { 928 if (OldBB == DT->getRootNode()->getBlock()) { 929 assert(NewBB->isEntryBlock()); 930 DT->setNewRoot(NewBB); 931 } else { 932 // Split block expects NewBB to have a non-empty set of predecessors. 933 DT->splitBlock(NewBB); 934 } 935 } 936 937 // Update MemoryPhis after split if MemorySSA is available 938 if (MSSAU) 939 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 940 941 // The rest of the logic is only relevant for updating the loop structures. 942 if (!LI) 943 return; 944 945 if (DTU && DTU->hasDomTree()) 946 DT = &DTU->getDomTree(); 947 assert(DT && "DT should be available to update LoopInfo!"); 948 Loop *L = LI->getLoopFor(OldBB); 949 950 // If we need to preserve loop analyses, collect some information about how 951 // this split will affect loops. 952 bool IsLoopEntry = !!L; 953 bool SplitMakesNewLoopHeader = false; 954 for (BasicBlock *Pred : Preds) { 955 // Preds that are not reachable from entry should not be used to identify if 956 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 957 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 958 // as true and make the NewBB the header of some loop. This breaks LI. 959 if (!DT->isReachableFromEntry(Pred)) 960 continue; 961 // If we need to preserve LCSSA, determine if any of the preds is a loop 962 // exit. 963 if (PreserveLCSSA) 964 if (Loop *PL = LI->getLoopFor(Pred)) 965 if (!PL->contains(OldBB)) 966 HasLoopExit = true; 967 968 // If we need to preserve LoopInfo, note whether any of the preds crosses 969 // an interesting loop boundary. 970 if (!L) 971 continue; 972 if (L->contains(Pred)) 973 IsLoopEntry = false; 974 else 975 SplitMakesNewLoopHeader = true; 976 } 977 978 // Unless we have a loop for OldBB, nothing else to do here. 979 if (!L) 980 return; 981 982 if (IsLoopEntry) { 983 // Add the new block to the nearest enclosing loop (and not an adjacent 984 // loop). To find this, examine each of the predecessors and determine which 985 // loops enclose them, and select the most-nested loop which contains the 986 // loop containing the block being split. 987 Loop *InnermostPredLoop = nullptr; 988 for (BasicBlock *Pred : Preds) { 989 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 990 // Seek a loop which actually contains the block being split (to avoid 991 // adjacent loops). 992 while (PredLoop && !PredLoop->contains(OldBB)) 993 PredLoop = PredLoop->getParentLoop(); 994 995 // Select the most-nested of these loops which contains the block. 996 if (PredLoop && PredLoop->contains(OldBB) && 997 (!InnermostPredLoop || 998 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 999 InnermostPredLoop = PredLoop; 1000 } 1001 } 1002 1003 if (InnermostPredLoop) 1004 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 1005 } else { 1006 L->addBasicBlockToLoop(NewBB, *LI); 1007 if (SplitMakesNewLoopHeader) 1008 L->moveToHeader(NewBB); 1009 } 1010 } 1011 1012 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 1013 /// This also updates AliasAnalysis, if available. 1014 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 1015 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 1016 bool HasLoopExit) { 1017 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 1018 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 1019 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1020 PHINode *PN = cast<PHINode>(I++); 1021 1022 // Check to see if all of the values coming in are the same. If so, we 1023 // don't need to create a new PHI node, unless it's needed for LCSSA. 1024 Value *InVal = nullptr; 1025 if (!HasLoopExit) { 1026 InVal = PN->getIncomingValueForBlock(Preds[0]); 1027 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1028 if (!PredSet.count(PN->getIncomingBlock(i))) 1029 continue; 1030 if (!InVal) 1031 InVal = PN->getIncomingValue(i); 1032 else if (InVal != PN->getIncomingValue(i)) { 1033 InVal = nullptr; 1034 break; 1035 } 1036 } 1037 } 1038 1039 if (InVal) { 1040 // If all incoming values for the new PHI would be the same, just don't 1041 // make a new PHI. Instead, just remove the incoming values from the old 1042 // PHI. 1043 1044 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1045 // the cost of removal if we end up removing a large number of values, and 1046 // second off, this ensures that the indices for the incoming values 1047 // aren't invalidated when we remove one. 1048 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 1049 if (PredSet.count(PN->getIncomingBlock(i))) 1050 PN->removeIncomingValue(i, false); 1051 1052 // Add an incoming value to the PHI node in the loop for the preheader 1053 // edge. 1054 PN->addIncoming(InVal, NewBB); 1055 continue; 1056 } 1057 1058 // If the values coming into the block are not the same, we need a new 1059 // PHI. 1060 // Create the new PHI node, insert it into NewBB at the end of the block 1061 PHINode *NewPHI = 1062 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 1063 1064 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1065 // the cost of removal if we end up removing a large number of values, and 1066 // second off, this ensures that the indices for the incoming values aren't 1067 // invalidated when we remove one. 1068 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1069 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1070 if (PredSet.count(IncomingBB)) { 1071 Value *V = PN->removeIncomingValue(i, false); 1072 NewPHI->addIncoming(V, IncomingBB); 1073 } 1074 } 1075 1076 PN->addIncoming(NewPHI, NewBB); 1077 } 1078 } 1079 1080 static void SplitLandingPadPredecessorsImpl( 1081 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1082 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1083 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1084 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1085 1086 static BasicBlock * 1087 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1088 const char *Suffix, DomTreeUpdater *DTU, 1089 DominatorTree *DT, LoopInfo *LI, 1090 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1091 // Do not attempt to split that which cannot be split. 1092 if (!BB->canSplitPredecessors()) 1093 return nullptr; 1094 1095 // For the landingpads we need to act a bit differently. 1096 // Delegate this work to the SplitLandingPadPredecessors. 1097 if (BB->isLandingPad()) { 1098 SmallVector<BasicBlock*, 2> NewBBs; 1099 std::string NewName = std::string(Suffix) + ".split-lp"; 1100 1101 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1102 DTU, DT, LI, MSSAU, PreserveLCSSA); 1103 return NewBBs[0]; 1104 } 1105 1106 // Create new basic block, insert right before the original block. 1107 BasicBlock *NewBB = BasicBlock::Create( 1108 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1109 1110 // The new block unconditionally branches to the old block. 1111 BranchInst *BI = BranchInst::Create(BB, NewBB); 1112 1113 Loop *L = nullptr; 1114 BasicBlock *OldLatch = nullptr; 1115 // Splitting the predecessors of a loop header creates a preheader block. 1116 if (LI && LI->isLoopHeader(BB)) { 1117 L = LI->getLoopFor(BB); 1118 // Using the loop start line number prevents debuggers stepping into the 1119 // loop body for this instruction. 1120 BI->setDebugLoc(L->getStartLoc()); 1121 1122 // If BB is the header of the Loop, it is possible that the loop is 1123 // modified, such that the current latch does not remain the latch of the 1124 // loop. If that is the case, the loop metadata from the current latch needs 1125 // to be applied to the new latch. 1126 OldLatch = L->getLoopLatch(); 1127 } else 1128 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1129 1130 // Move the edges from Preds to point to NewBB instead of BB. 1131 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 1132 // This is slightly more strict than necessary; the minimum requirement 1133 // is that there be no more than one indirectbr branching to BB. And 1134 // all BlockAddress uses would need to be updated. 1135 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 1136 "Cannot split an edge from an IndirectBrInst"); 1137 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 1138 "Cannot split an edge from a CallBrInst"); 1139 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 1140 } 1141 1142 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1143 // node becomes an incoming value for BB's phi node. However, if the Preds 1144 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1145 // account for the newly created predecessor. 1146 if (Preds.empty()) { 1147 // Insert dummy values as the incoming value. 1148 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1149 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 1150 } 1151 1152 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1153 bool HasLoopExit = false; 1154 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1155 HasLoopExit); 1156 1157 if (!Preds.empty()) { 1158 // Update the PHI nodes in BB with the values coming from NewBB. 1159 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1160 } 1161 1162 if (OldLatch) { 1163 BasicBlock *NewLatch = L->getLoopLatch(); 1164 if (NewLatch != OldLatch) { 1165 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 1166 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 1167 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 1168 } 1169 } 1170 1171 return NewBB; 1172 } 1173 1174 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1175 ArrayRef<BasicBlock *> Preds, 1176 const char *Suffix, DominatorTree *DT, 1177 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1178 bool PreserveLCSSA) { 1179 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1180 MSSAU, PreserveLCSSA); 1181 } 1182 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1183 ArrayRef<BasicBlock *> Preds, 1184 const char *Suffix, 1185 DomTreeUpdater *DTU, LoopInfo *LI, 1186 MemorySSAUpdater *MSSAU, 1187 bool PreserveLCSSA) { 1188 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1189 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1190 } 1191 1192 static void SplitLandingPadPredecessorsImpl( 1193 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1194 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1195 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1196 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1197 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1198 1199 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1200 // it right before the original block. 1201 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1202 OrigBB->getName() + Suffix1, 1203 OrigBB->getParent(), OrigBB); 1204 NewBBs.push_back(NewBB1); 1205 1206 // The new block unconditionally branches to the old block. 1207 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1208 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1209 1210 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1211 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 1212 // This is slightly more strict than necessary; the minimum requirement 1213 // is that there be no more than one indirectbr branching to BB. And 1214 // all BlockAddress uses would need to be updated. 1215 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 1216 "Cannot split an edge from an IndirectBrInst"); 1217 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1218 } 1219 1220 bool HasLoopExit = false; 1221 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1222 PreserveLCSSA, HasLoopExit); 1223 1224 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1225 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1226 1227 // Move the remaining edges from OrigBB to point to NewBB2. 1228 SmallVector<BasicBlock*, 8> NewBB2Preds; 1229 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1230 i != e; ) { 1231 BasicBlock *Pred = *i++; 1232 if (Pred == NewBB1) continue; 1233 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1234 "Cannot split an edge from an IndirectBrInst"); 1235 NewBB2Preds.push_back(Pred); 1236 e = pred_end(OrigBB); 1237 } 1238 1239 BasicBlock *NewBB2 = nullptr; 1240 if (!NewBB2Preds.empty()) { 1241 // Create another basic block for the rest of OrigBB's predecessors. 1242 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1243 OrigBB->getName() + Suffix2, 1244 OrigBB->getParent(), OrigBB); 1245 NewBBs.push_back(NewBB2); 1246 1247 // The new block unconditionally branches to the old block. 1248 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1249 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1250 1251 // Move the remaining edges from OrigBB to point to NewBB2. 1252 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1253 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1254 1255 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1256 HasLoopExit = false; 1257 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1258 PreserveLCSSA, HasLoopExit); 1259 1260 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1261 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1262 } 1263 1264 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1265 Instruction *Clone1 = LPad->clone(); 1266 Clone1->setName(Twine("lpad") + Suffix1); 1267 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 1268 1269 if (NewBB2) { 1270 Instruction *Clone2 = LPad->clone(); 1271 Clone2->setName(Twine("lpad") + Suffix2); 1272 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 1273 1274 // Create a PHI node for the two cloned landingpad instructions only 1275 // if the original landingpad instruction has some uses. 1276 if (!LPad->use_empty()) { 1277 assert(!LPad->getType()->isTokenTy() && 1278 "Split cannot be applied if LPad is token type. Otherwise an " 1279 "invalid PHINode of token type would be created."); 1280 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 1281 PN->addIncoming(Clone1, NewBB1); 1282 PN->addIncoming(Clone2, NewBB2); 1283 LPad->replaceAllUsesWith(PN); 1284 } 1285 LPad->eraseFromParent(); 1286 } else { 1287 // There is no second clone. Just replace the landing pad with the first 1288 // clone. 1289 LPad->replaceAllUsesWith(Clone1); 1290 LPad->eraseFromParent(); 1291 } 1292 } 1293 1294 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1295 ArrayRef<BasicBlock *> Preds, 1296 const char *Suffix1, const char *Suffix2, 1297 SmallVectorImpl<BasicBlock *> &NewBBs, 1298 DominatorTree *DT, LoopInfo *LI, 1299 MemorySSAUpdater *MSSAU, 1300 bool PreserveLCSSA) { 1301 return SplitLandingPadPredecessorsImpl( 1302 OrigBB, Preds, Suffix1, Suffix2, NewBBs, 1303 /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA); 1304 } 1305 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1306 ArrayRef<BasicBlock *> Preds, 1307 const char *Suffix1, const char *Suffix2, 1308 SmallVectorImpl<BasicBlock *> &NewBBs, 1309 DomTreeUpdater *DTU, LoopInfo *LI, 1310 MemorySSAUpdater *MSSAU, 1311 bool PreserveLCSSA) { 1312 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1313 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1314 PreserveLCSSA); 1315 } 1316 1317 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1318 BasicBlock *Pred, 1319 DomTreeUpdater *DTU) { 1320 Instruction *UncondBranch = Pred->getTerminator(); 1321 // Clone the return and add it to the end of the predecessor. 1322 Instruction *NewRet = RI->clone(); 1323 Pred->getInstList().push_back(NewRet); 1324 1325 // If the return instruction returns a value, and if the value was a 1326 // PHI node in "BB", propagate the right value into the return. 1327 for (Use &Op : NewRet->operands()) { 1328 Value *V = Op; 1329 Instruction *NewBC = nullptr; 1330 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1331 // Return value might be bitcasted. Clone and insert it before the 1332 // return instruction. 1333 V = BCI->getOperand(0); 1334 NewBC = BCI->clone(); 1335 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 1336 Op = NewBC; 1337 } 1338 1339 Instruction *NewEV = nullptr; 1340 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1341 V = EVI->getOperand(0); 1342 NewEV = EVI->clone(); 1343 if (NewBC) { 1344 NewBC->setOperand(0, NewEV); 1345 Pred->getInstList().insert(NewBC->getIterator(), NewEV); 1346 } else { 1347 Pred->getInstList().insert(NewRet->getIterator(), NewEV); 1348 Op = NewEV; 1349 } 1350 } 1351 1352 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1353 if (PN->getParent() == BB) { 1354 if (NewEV) { 1355 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1356 } else if (NewBC) 1357 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1358 else 1359 Op = PN->getIncomingValueForBlock(Pred); 1360 } 1361 } 1362 } 1363 1364 // Update any PHI nodes in the returning block to realize that we no 1365 // longer branch to them. 1366 BB->removePredecessor(Pred); 1367 UncondBranch->eraseFromParent(); 1368 1369 if (DTU) 1370 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1371 1372 return cast<ReturnInst>(NewRet); 1373 } 1374 1375 static Instruction * 1376 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore, 1377 bool Unreachable, MDNode *BranchWeights, 1378 DomTreeUpdater *DTU, DominatorTree *DT, 1379 LoopInfo *LI, BasicBlock *ThenBlock) { 1380 SmallVector<DominatorTree::UpdateType, 8> Updates; 1381 BasicBlock *Head = SplitBefore->getParent(); 1382 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1383 if (DTU) { 1384 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead; 1385 Updates.push_back({DominatorTree::Insert, Head, Tail}); 1386 Updates.reserve(Updates.size() + 2 * succ_size(Tail)); 1387 for (BasicBlock *SuccessorOfHead : successors(Tail)) 1388 if (UniqueSuccessorsOfHead.insert(SuccessorOfHead).second) { 1389 Updates.push_back({DominatorTree::Insert, Tail, SuccessorOfHead}); 1390 Updates.push_back({DominatorTree::Delete, Head, SuccessorOfHead}); 1391 } 1392 } 1393 Instruction *HeadOldTerm = Head->getTerminator(); 1394 LLVMContext &C = Head->getContext(); 1395 Instruction *CheckTerm; 1396 bool CreateThenBlock = (ThenBlock == nullptr); 1397 if (CreateThenBlock) { 1398 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1399 if (Unreachable) 1400 CheckTerm = new UnreachableInst(C, ThenBlock); 1401 else { 1402 CheckTerm = BranchInst::Create(Tail, ThenBlock); 1403 if (DTU) 1404 Updates.push_back({DominatorTree::Insert, ThenBlock, Tail}); 1405 } 1406 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 1407 } else 1408 CheckTerm = ThenBlock->getTerminator(); 1409 BranchInst *HeadNewTerm = 1410 BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond); 1411 if (DTU) 1412 Updates.push_back({DominatorTree::Insert, Head, ThenBlock}); 1413 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1414 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1415 1416 if (DTU) 1417 DTU->applyUpdates(Updates); 1418 else if (DT) { 1419 if (DomTreeNode *OldNode = DT->getNode(Head)) { 1420 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1421 1422 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 1423 for (DomTreeNode *Child : Children) 1424 DT->changeImmediateDominator(Child, NewNode); 1425 1426 // Head dominates ThenBlock. 1427 if (CreateThenBlock) 1428 DT->addNewBlock(ThenBlock, Head); 1429 else 1430 DT->changeImmediateDominator(ThenBlock, Head); 1431 } 1432 } 1433 1434 if (LI) { 1435 if (Loop *L = LI->getLoopFor(Head)) { 1436 L->addBasicBlockToLoop(ThenBlock, *LI); 1437 L->addBasicBlockToLoop(Tail, *LI); 1438 } 1439 } 1440 1441 return CheckTerm; 1442 } 1443 1444 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1445 Instruction *SplitBefore, 1446 bool Unreachable, 1447 MDNode *BranchWeights, 1448 DominatorTree *DT, LoopInfo *LI, 1449 BasicBlock *ThenBlock) { 1450 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, 1451 BranchWeights, 1452 /*DTU=*/nullptr, DT, LI, ThenBlock); 1453 } 1454 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1455 Instruction *SplitBefore, 1456 bool Unreachable, 1457 MDNode *BranchWeights, 1458 DomTreeUpdater *DTU, LoopInfo *LI, 1459 BasicBlock *ThenBlock) { 1460 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, 1461 BranchWeights, DTU, /*DT=*/nullptr, LI, 1462 ThenBlock); 1463 } 1464 1465 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 1466 Instruction **ThenTerm, 1467 Instruction **ElseTerm, 1468 MDNode *BranchWeights) { 1469 BasicBlock *Head = SplitBefore->getParent(); 1470 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1471 Instruction *HeadOldTerm = Head->getTerminator(); 1472 LLVMContext &C = Head->getContext(); 1473 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1474 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1475 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 1476 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1477 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 1478 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1479 BranchInst *HeadNewTerm = 1480 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 1481 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1482 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1483 } 1484 1485 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1486 BasicBlock *&IfFalse) { 1487 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1488 BasicBlock *Pred1 = nullptr; 1489 BasicBlock *Pred2 = nullptr; 1490 1491 if (SomePHI) { 1492 if (SomePHI->getNumIncomingValues() != 2) 1493 return nullptr; 1494 Pred1 = SomePHI->getIncomingBlock(0); 1495 Pred2 = SomePHI->getIncomingBlock(1); 1496 } else { 1497 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1498 if (PI == PE) // No predecessor 1499 return nullptr; 1500 Pred1 = *PI++; 1501 if (PI == PE) // Only one predecessor 1502 return nullptr; 1503 Pred2 = *PI++; 1504 if (PI != PE) // More than two predecessors 1505 return nullptr; 1506 } 1507 1508 // We can only handle branches. Other control flow will be lowered to 1509 // branches if possible anyway. 1510 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1511 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1512 if (!Pred1Br || !Pred2Br) 1513 return nullptr; 1514 1515 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1516 // either are. 1517 if (Pred2Br->isConditional()) { 1518 // If both branches are conditional, we don't have an "if statement". In 1519 // reality, we could transform this case, but since the condition will be 1520 // required anyway, we stand no chance of eliminating it, so the xform is 1521 // probably not profitable. 1522 if (Pred1Br->isConditional()) 1523 return nullptr; 1524 1525 std::swap(Pred1, Pred2); 1526 std::swap(Pred1Br, Pred2Br); 1527 } 1528 1529 if (Pred1Br->isConditional()) { 1530 // The only thing we have to watch out for here is to make sure that Pred2 1531 // doesn't have incoming edges from other blocks. If it does, the condition 1532 // doesn't dominate BB. 1533 if (!Pred2->getSinglePredecessor()) 1534 return nullptr; 1535 1536 // If we found a conditional branch predecessor, make sure that it branches 1537 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1538 if (Pred1Br->getSuccessor(0) == BB && 1539 Pred1Br->getSuccessor(1) == Pred2) { 1540 IfTrue = Pred1; 1541 IfFalse = Pred2; 1542 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1543 Pred1Br->getSuccessor(1) == BB) { 1544 IfTrue = Pred2; 1545 IfFalse = Pred1; 1546 } else { 1547 // We know that one arm of the conditional goes to BB, so the other must 1548 // go somewhere unrelated, and this must not be an "if statement". 1549 return nullptr; 1550 } 1551 1552 return Pred1Br; 1553 } 1554 1555 // Ok, if we got here, both predecessors end with an unconditional branch to 1556 // BB. Don't panic! If both blocks only have a single (identical) 1557 // predecessor, and THAT is a conditional branch, then we're all ok! 1558 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1559 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1560 return nullptr; 1561 1562 // Otherwise, if this is a conditional branch, then we can use it! 1563 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1564 if (!BI) return nullptr; 1565 1566 assert(BI->isConditional() && "Two successors but not conditional?"); 1567 if (BI->getSuccessor(0) == Pred1) { 1568 IfTrue = Pred1; 1569 IfFalse = Pred2; 1570 } else { 1571 IfTrue = Pred2; 1572 IfFalse = Pred1; 1573 } 1574 return BI; 1575 } 1576 1577 // After creating a control flow hub, the operands of PHINodes in an outgoing 1578 // block Out no longer match the predecessors of that block. Predecessors of Out 1579 // that are incoming blocks to the hub are now replaced by just one edge from 1580 // the hub. To match this new control flow, the corresponding values from each 1581 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1582 // 1583 // This operation cannot be performed with SSAUpdater, because it involves one 1584 // new use: If the block Out is in the list of Incoming blocks, then the newly 1585 // created PHI in the Hub will use itself along that edge from Out to Hub. 1586 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1587 const SetVector<BasicBlock *> &Incoming, 1588 BasicBlock *FirstGuardBlock) { 1589 auto I = Out->begin(); 1590 while (I != Out->end() && isa<PHINode>(I)) { 1591 auto Phi = cast<PHINode>(I); 1592 auto NewPhi = 1593 PHINode::Create(Phi->getType(), Incoming.size(), 1594 Phi->getName() + ".moved", &FirstGuardBlock->back()); 1595 for (auto In : Incoming) { 1596 Value *V = UndefValue::get(Phi->getType()); 1597 if (In == Out) { 1598 V = NewPhi; 1599 } else if (Phi->getBasicBlockIndex(In) != -1) { 1600 V = Phi->removeIncomingValue(In, false); 1601 } 1602 NewPhi->addIncoming(V, In); 1603 } 1604 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1605 if (Phi->getNumOperands() == 0) { 1606 Phi->replaceAllUsesWith(NewPhi); 1607 I = Phi->eraseFromParent(); 1608 continue; 1609 } 1610 Phi->addIncoming(NewPhi, GuardBlock); 1611 ++I; 1612 } 1613 } 1614 1615 using BBPredicates = DenseMap<BasicBlock *, PHINode *>; 1616 using BBSetVector = SetVector<BasicBlock *>; 1617 1618 // Redirects the terminator of the incoming block to the first guard 1619 // block in the hub. The condition of the original terminator (if it 1620 // was conditional) and its original successors are returned as a 1621 // tuple <condition, succ0, succ1>. The function additionally filters 1622 // out successors that are not in the set of outgoing blocks. 1623 // 1624 // - condition is non-null iff the branch is conditional. 1625 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1626 // - Succ2 is non-null iff condition is non-null and the fallthrough 1627 // target is an outgoing block. 1628 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1629 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1630 const BBSetVector &Outgoing) { 1631 auto Branch = cast<BranchInst>(BB->getTerminator()); 1632 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1633 1634 BasicBlock *Succ0 = Branch->getSuccessor(0); 1635 BasicBlock *Succ1 = nullptr; 1636 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1637 1638 if (Branch->isUnconditional()) { 1639 Branch->setSuccessor(0, FirstGuardBlock); 1640 assert(Succ0); 1641 } else { 1642 Succ1 = Branch->getSuccessor(1); 1643 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1644 assert(Succ0 || Succ1); 1645 if (Succ0 && !Succ1) { 1646 Branch->setSuccessor(0, FirstGuardBlock); 1647 } else if (Succ1 && !Succ0) { 1648 Branch->setSuccessor(1, FirstGuardBlock); 1649 } else { 1650 Branch->eraseFromParent(); 1651 BranchInst::Create(FirstGuardBlock, BB); 1652 } 1653 } 1654 1655 assert(Succ0 || Succ1); 1656 return std::make_tuple(Condition, Succ0, Succ1); 1657 } 1658 1659 // Capture the existing control flow as guard predicates, and redirect 1660 // control flow from every incoming block to the first guard block in 1661 // the hub. 1662 // 1663 // There is one guard predicate for each outgoing block OutBB. The 1664 // predicate is a PHINode with one input for each InBB which 1665 // represents whether the hub should transfer control flow to OutBB if 1666 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub 1667 // evaluates them in the same order as the Outgoing set-vector, and 1668 // control branches to the first outgoing block whose predicate 1669 // evaluates to true. 1670 static void convertToGuardPredicates( 1671 BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates, 1672 SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming, 1673 const BBSetVector &Outgoing) { 1674 auto &Context = Incoming.front()->getContext(); 1675 auto BoolTrue = ConstantInt::getTrue(Context); 1676 auto BoolFalse = ConstantInt::getFalse(Context); 1677 1678 // The predicate for the last outgoing is trivially true, and so we 1679 // process only the first N-1 successors. 1680 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1681 auto Out = Outgoing[i]; 1682 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 1683 auto Phi = 1684 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 1685 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 1686 GuardPredicates[Out] = Phi; 1687 } 1688 1689 for (auto In : Incoming) { 1690 Value *Condition; 1691 BasicBlock *Succ0; 1692 BasicBlock *Succ1; 1693 std::tie(Condition, Succ0, Succ1) = 1694 redirectToHub(In, FirstGuardBlock, Outgoing); 1695 1696 // Optimization: Consider an incoming block A with both successors 1697 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 1698 // for Succ0 and Succ1 complement each other. If Succ0 is visited 1699 // first in the loop below, control will branch to Succ0 using the 1700 // corresponding predicate. But if that branch is not taken, then 1701 // control must reach Succ1, which means that the predicate for 1702 // Succ1 is always true. 1703 bool OneSuccessorDone = false; 1704 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1705 auto Out = Outgoing[i]; 1706 auto Phi = GuardPredicates[Out]; 1707 if (Out != Succ0 && Out != Succ1) { 1708 Phi->addIncoming(BoolFalse, In); 1709 continue; 1710 } 1711 // Optimization: When only one successor is an outgoing block, 1712 // the predicate is always true. 1713 if (!Succ0 || !Succ1 || OneSuccessorDone) { 1714 Phi->addIncoming(BoolTrue, In); 1715 continue; 1716 } 1717 assert(Succ0 && Succ1); 1718 OneSuccessorDone = true; 1719 if (Out == Succ0) { 1720 Phi->addIncoming(Condition, In); 1721 continue; 1722 } 1723 auto Inverted = invertCondition(Condition); 1724 DeletionCandidates.push_back(Condition); 1725 Phi->addIncoming(Inverted, In); 1726 } 1727 } 1728 } 1729 1730 // For each outgoing block OutBB, create a guard block in the Hub. The 1731 // first guard block was already created outside, and available as the 1732 // first element in the vector of guard blocks. 1733 // 1734 // Each guard block terminates in a conditional branch that transfers 1735 // control to the corresponding outgoing block or the next guard 1736 // block. The last guard block has two outgoing blocks as successors 1737 // since the condition for the final outgoing block is trivially 1738 // true. So we create one less block (including the first guard block) 1739 // than the number of outgoing blocks. 1740 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1741 Function *F, const BBSetVector &Outgoing, 1742 BBPredicates &GuardPredicates, StringRef Prefix) { 1743 for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) { 1744 GuardBlocks.push_back( 1745 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 1746 } 1747 assert(GuardBlocks.size() == GuardPredicates.size()); 1748 1749 // To help keep the loop simple, temporarily append the last 1750 // outgoing block to the list of guard blocks. 1751 GuardBlocks.push_back(Outgoing.back()); 1752 1753 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1754 auto Out = Outgoing[i]; 1755 assert(GuardPredicates.count(Out)); 1756 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1757 GuardBlocks[i]); 1758 } 1759 1760 // Remove the last block from the guard list. 1761 GuardBlocks.pop_back(); 1762 } 1763 1764 BasicBlock *llvm::CreateControlFlowHub( 1765 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 1766 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1767 const StringRef Prefix) { 1768 auto F = Incoming.front()->getParent(); 1769 auto FirstGuardBlock = 1770 BasicBlock::Create(F->getContext(), Prefix + ".guard", F); 1771 1772 SmallVector<DominatorTree::UpdateType, 16> Updates; 1773 if (DTU) { 1774 for (auto In : Incoming) { 1775 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 1776 for (auto Succ : successors(In)) { 1777 if (Outgoing.count(Succ)) 1778 Updates.push_back({DominatorTree::Delete, In, Succ}); 1779 } 1780 } 1781 } 1782 1783 BBPredicates GuardPredicates; 1784 SmallVector<WeakVH, 8> DeletionCandidates; 1785 convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates, 1786 Incoming, Outgoing); 1787 1788 GuardBlocks.push_back(FirstGuardBlock); 1789 createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix); 1790 1791 // Update the PHINodes in each outgoing block to match the new control flow. 1792 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) { 1793 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 1794 } 1795 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 1796 1797 if (DTU) { 1798 int NumGuards = GuardBlocks.size(); 1799 assert((int)Outgoing.size() == NumGuards + 1); 1800 for (int i = 0; i != NumGuards - 1; ++i) { 1801 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 1802 Updates.push_back( 1803 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 1804 } 1805 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1806 Outgoing[NumGuards - 1]}); 1807 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1808 Outgoing[NumGuards]}); 1809 DTU->applyUpdates(Updates); 1810 } 1811 1812 for (auto I : DeletionCandidates) { 1813 if (I->use_empty()) 1814 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 1815 Inst->eraseFromParent(); 1816 } 1817 1818 return FirstGuardBlock; 1819 } 1820