xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <string>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "basicblock-utils"
55 
56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
57     "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
58     cl::desc("Set the maximum path length when checking whether a basic block "
59              "is followed by a block that either has a terminating "
60              "deoptimizing call or is terminated with an unreachable"));
61 
62 void llvm::detachDeadBlocks(
63     ArrayRef<BasicBlock *> BBs,
64     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
65     bool KeepOneInputPHIs) {
66   for (auto *BB : BBs) {
67     // Loop through all of our successors and make sure they know that one
68     // of their predecessors is going away.
69     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
70     for (BasicBlock *Succ : successors(BB)) {
71       Succ->removePredecessor(BB, KeepOneInputPHIs);
72       if (Updates && UniqueSuccessors.insert(Succ).second)
73         Updates->push_back({DominatorTree::Delete, BB, Succ});
74     }
75 
76     // Zap all the instructions in the block.
77     while (!BB->empty()) {
78       Instruction &I = BB->back();
79       // If this instruction is used, replace uses with an arbitrary value.
80       // Because control flow can't get here, we don't care what we replace the
81       // value with.  Note that since this block is unreachable, and all values
82       // contained within it must dominate their uses, that all uses will
83       // eventually be removed (they are themselves dead).
84       if (!I.use_empty())
85         I.replaceAllUsesWith(PoisonValue::get(I.getType()));
86       BB->back().eraseFromParent();
87     }
88     new UnreachableInst(BB->getContext(), BB);
89     assert(BB->size() == 1 &&
90            isa<UnreachableInst>(BB->getTerminator()) &&
91            "The successor list of BB isn't empty before "
92            "applying corresponding DTU updates.");
93   }
94 }
95 
96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
97                            bool KeepOneInputPHIs) {
98   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
99 }
100 
101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
102                             bool KeepOneInputPHIs) {
103 #ifndef NDEBUG
104   // Make sure that all predecessors of each dead block is also dead.
105   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
106   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
107   for (auto *BB : Dead)
108     for (BasicBlock *Pred : predecessors(BB))
109       assert(Dead.count(Pred) && "All predecessors must be dead!");
110 #endif
111 
112   SmallVector<DominatorTree::UpdateType, 4> Updates;
113   detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
114 
115   if (DTU)
116     DTU->applyUpdates(Updates);
117 
118   for (BasicBlock *BB : BBs)
119     if (DTU)
120       DTU->deleteBB(BB);
121     else
122       BB->eraseFromParent();
123 }
124 
125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
126                                       bool KeepOneInputPHIs) {
127   df_iterator_default_set<BasicBlock*> Reachable;
128 
129   // Mark all reachable blocks.
130   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
131     (void)BB/* Mark all reachable blocks */;
132 
133   // Collect all dead blocks.
134   std::vector<BasicBlock*> DeadBlocks;
135   for (BasicBlock &BB : F)
136     if (!Reachable.count(&BB))
137       DeadBlocks.push_back(&BB);
138 
139   // Delete the dead blocks.
140   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
141 
142   return !DeadBlocks.empty();
143 }
144 
145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
146                                    MemoryDependenceResults *MemDep) {
147   if (!isa<PHINode>(BB->begin()))
148     return false;
149 
150   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
151     if (PN->getIncomingValue(0) != PN)
152       PN->replaceAllUsesWith(PN->getIncomingValue(0));
153     else
154       PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
155 
156     if (MemDep)
157       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
158 
159     PN->eraseFromParent();
160   }
161   return true;
162 }
163 
164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
165                           MemorySSAUpdater *MSSAU) {
166   // Recursively deleting a PHI may cause multiple PHIs to be deleted
167   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
168   SmallVector<WeakTrackingVH, 8> PHIs;
169   for (PHINode &PN : BB->phis())
170     PHIs.push_back(&PN);
171 
172   bool Changed = false;
173   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
174     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
175       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
176 
177   return Changed;
178 }
179 
180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
181                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
182                                      MemoryDependenceResults *MemDep,
183                                      bool PredecessorWithTwoSuccessors,
184                                      DominatorTree *DT) {
185   if (BB->hasAddressTaken())
186     return false;
187 
188   // Can't merge if there are multiple predecessors, or no predecessors.
189   BasicBlock *PredBB = BB->getUniquePredecessor();
190   if (!PredBB) return false;
191 
192   // Don't break self-loops.
193   if (PredBB == BB) return false;
194 
195   // Don't break unwinding instructions or terminators with other side-effects.
196   Instruction *PTI = PredBB->getTerminator();
197   if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects())
198     return false;
199 
200   // Can't merge if there are multiple distinct successors.
201   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
202     return false;
203 
204   // Currently only allow PredBB to have two predecessors, one being BB.
205   // Update BI to branch to BB's only successor instead of BB.
206   BranchInst *PredBB_BI;
207   BasicBlock *NewSucc = nullptr;
208   unsigned FallThruPath;
209   if (PredecessorWithTwoSuccessors) {
210     if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
211       return false;
212     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
213     if (!BB_JmpI || !BB_JmpI->isUnconditional())
214       return false;
215     NewSucc = BB_JmpI->getSuccessor(0);
216     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
217   }
218 
219   // Can't merge if there is PHI loop.
220   for (PHINode &PN : BB->phis())
221     if (llvm::is_contained(PN.incoming_values(), &PN))
222       return false;
223 
224   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
225                     << PredBB->getName() << "\n");
226 
227   // Begin by getting rid of unneeded PHIs.
228   SmallVector<AssertingVH<Value>, 4> IncomingValues;
229   if (isa<PHINode>(BB->front())) {
230     for (PHINode &PN : BB->phis())
231       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
232           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
233         IncomingValues.push_back(PN.getIncomingValue(0));
234     FoldSingleEntryPHINodes(BB, MemDep);
235   }
236 
237   if (DT) {
238     assert(!DTU && "cannot use both DT and DTU for updates");
239     DomTreeNode *PredNode = DT->getNode(PredBB);
240     DomTreeNode *BBNode = DT->getNode(BB);
241     if (PredNode) {
242       assert(BBNode && "PredNode unreachable but BBNode reachable?");
243       for (DomTreeNode *C : to_vector(BBNode->children()))
244         C->setIDom(PredNode);
245     }
246   }
247   // DTU update: Collect all the edges that exit BB.
248   // These dominator edges will be redirected from Pred.
249   std::vector<DominatorTree::UpdateType> Updates;
250   if (DTU) {
251     assert(!DT && "cannot use both DT and DTU for updates");
252     // To avoid processing the same predecessor more than once.
253     SmallPtrSet<BasicBlock *, 8> SeenSuccs;
254     SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
255                                                succ_end(PredBB));
256     Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
257     // Add insert edges first. Experimentally, for the particular case of two
258     // blocks that can be merged, with a single successor and single predecessor
259     // respectively, it is beneficial to have all insert updates first. Deleting
260     // edges first may lead to unreachable blocks, followed by inserting edges
261     // making the blocks reachable again. Such DT updates lead to high compile
262     // times. We add inserts before deletes here to reduce compile time.
263     for (BasicBlock *SuccOfBB : successors(BB))
264       // This successor of BB may already be a PredBB's successor.
265       if (!SuccsOfPredBB.contains(SuccOfBB))
266         if (SeenSuccs.insert(SuccOfBB).second)
267           Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
268     SeenSuccs.clear();
269     for (BasicBlock *SuccOfBB : successors(BB))
270       if (SeenSuccs.insert(SuccOfBB).second)
271         Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
272     Updates.push_back({DominatorTree::Delete, PredBB, BB});
273   }
274 
275   Instruction *STI = BB->getTerminator();
276   Instruction *Start = &*BB->begin();
277   // If there's nothing to move, mark the starting instruction as the last
278   // instruction in the block. Terminator instruction is handled separately.
279   if (Start == STI)
280     Start = PTI;
281 
282   // Move all definitions in the successor to the predecessor...
283   PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
284 
285   if (MSSAU)
286     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
287 
288   // Make all PHI nodes that referred to BB now refer to Pred as their
289   // source...
290   BB->replaceAllUsesWith(PredBB);
291 
292   if (PredecessorWithTwoSuccessors) {
293     // Delete the unconditional branch from BB.
294     BB->back().eraseFromParent();
295 
296     // Update branch in the predecessor.
297     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
298   } else {
299     // Delete the unconditional branch from the predecessor.
300     PredBB->back().eraseFromParent();
301 
302     // Move terminator instruction.
303     BB->back().moveBeforePreserving(*PredBB, PredBB->end());
304 
305     // Terminator may be a memory accessing instruction too.
306     if (MSSAU)
307       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
308               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
309         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
310   }
311   // Add unreachable to now empty BB.
312   new UnreachableInst(BB->getContext(), BB);
313 
314   // Inherit predecessors name if it exists.
315   if (!PredBB->hasName())
316     PredBB->takeName(BB);
317 
318   if (LI)
319     LI->removeBlock(BB);
320 
321   if (MemDep)
322     MemDep->invalidateCachedPredecessors();
323 
324   if (DTU)
325     DTU->applyUpdates(Updates);
326 
327   if (DT) {
328     assert(succ_empty(BB) &&
329            "successors should have been transferred to PredBB");
330     DT->eraseNode(BB);
331   }
332 
333   // Finally, erase the old block and update dominator info.
334   DeleteDeadBlock(BB, DTU);
335 
336   return true;
337 }
338 
339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
340     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
341     LoopInfo *LI) {
342   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
343 
344   bool BlocksHaveBeenMerged = false;
345   while (!MergeBlocks.empty()) {
346     BasicBlock *BB = *MergeBlocks.begin();
347     BasicBlock *Dest = BB->getSingleSuccessor();
348     if (Dest && (!L || L->contains(Dest))) {
349       BasicBlock *Fold = Dest->getUniquePredecessor();
350       (void)Fold;
351       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
352         assert(Fold == BB &&
353                "Expecting BB to be unique predecessor of the Dest block");
354         MergeBlocks.erase(Dest);
355         BlocksHaveBeenMerged = true;
356       } else
357         MergeBlocks.erase(BB);
358     } else
359       MergeBlocks.erase(BB);
360   }
361   return BlocksHaveBeenMerged;
362 }
363 
364 /// Remove redundant instructions within sequences of consecutive dbg.value
365 /// instructions. This is done using a backward scan to keep the last dbg.value
366 /// describing a specific variable/fragment.
367 ///
368 /// BackwardScan strategy:
369 /// ----------------------
370 /// Given a sequence of consecutive DbgValueInst like this
371 ///
372 ///   dbg.value ..., "x", FragmentX1  (*)
373 ///   dbg.value ..., "y", FragmentY1
374 ///   dbg.value ..., "x", FragmentX2
375 ///   dbg.value ..., "x", FragmentX1  (**)
376 ///
377 /// then the instruction marked with (*) can be removed (it is guaranteed to be
378 /// obsoleted by the instruction marked with (**) as the latter instruction is
379 /// describing the same variable using the same fragment info).
380 ///
381 /// Possible improvements:
382 /// - Check fully overlapping fragments and not only identical fragments.
383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being
384 ///   part of the sequence of consecutive instructions.
385 static bool
386 DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
387   SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
388   SmallDenseSet<DebugVariable> VariableSet;
389   for (auto &I : reverse(*BB)) {
390     for (DbgRecord &DR : reverse(I.getDbgRecordRange())) {
391       if (isa<DbgLabelRecord>(DR)) {
392         // Emulate existing behaviour (see comment below for dbg.declares).
393         // FIXME: Don't do this.
394         VariableSet.clear();
395         continue;
396       }
397 
398       DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
399       // Skip declare-type records, as the debug intrinsic method only works
400       // on dbg.value intrinsics.
401       if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
402         // The debug intrinsic method treats dbg.declares are "non-debug"
403         // instructions (i.e., a break in a consecutive range of debug
404         // intrinsics). Emulate that to create identical outputs. See
405         // "Possible improvements" above.
406         // FIXME: Delete the line below.
407         VariableSet.clear();
408         continue;
409       }
410 
411       DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
412                         DVR.getDebugLoc()->getInlinedAt());
413       auto R = VariableSet.insert(Key);
414       // If the same variable fragment is described more than once it is enough
415       // to keep the last one (i.e. the first found since we for reverse
416       // iteration).
417       if (R.second)
418         continue;
419 
420       if (DVR.isDbgAssign()) {
421         // Don't delete dbg.assign intrinsics that are linked to instructions.
422         if (!at::getAssignmentInsts(&DVR).empty())
423           continue;
424         // Unlinked dbg.assign intrinsics can be treated like dbg.values.
425       }
426 
427       ToBeRemoved.push_back(&DVR);
428       continue;
429     }
430     // Sequence with consecutive dbg.value instrs ended. Clear the map to
431     // restart identifying redundant instructions if case we find another
432     // dbg.value sequence.
433     VariableSet.clear();
434   }
435 
436   for (auto &DVR : ToBeRemoved)
437     DVR->eraseFromParent();
438 
439   return !ToBeRemoved.empty();
440 }
441 
442 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
443   if (BB->IsNewDbgInfoFormat)
444     return DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BB);
445 
446   SmallVector<DbgValueInst *, 8> ToBeRemoved;
447   SmallDenseSet<DebugVariable> VariableSet;
448   for (auto &I : reverse(*BB)) {
449     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
450       DebugVariable Key(DVI->getVariable(),
451                         DVI->getExpression(),
452                         DVI->getDebugLoc()->getInlinedAt());
453       auto R = VariableSet.insert(Key);
454       // If the variable fragment hasn't been seen before then we don't want
455       // to remove this dbg intrinsic.
456       if (R.second)
457         continue;
458 
459       if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
460         // Don't delete dbg.assign intrinsics that are linked to instructions.
461         if (!at::getAssignmentInsts(DAI).empty())
462           continue;
463         // Unlinked dbg.assign intrinsics can be treated like dbg.values.
464       }
465 
466       // If the same variable fragment is described more than once it is enough
467       // to keep the last one (i.e. the first found since we for reverse
468       // iteration).
469       ToBeRemoved.push_back(DVI);
470       continue;
471     }
472     // Sequence with consecutive dbg.value instrs ended. Clear the map to
473     // restart identifying redundant instructions if case we find another
474     // dbg.value sequence.
475     VariableSet.clear();
476   }
477 
478   for (auto &Instr : ToBeRemoved)
479     Instr->eraseFromParent();
480 
481   return !ToBeRemoved.empty();
482 }
483 
484 /// Remove redundant dbg.value instructions using a forward scan. This can
485 /// remove a dbg.value instruction that is redundant due to indicating that a
486 /// variable has the same value as already being indicated by an earlier
487 /// dbg.value.
488 ///
489 /// ForwardScan strategy:
490 /// ---------------------
491 /// Given two identical dbg.value instructions, separated by a block of
492 /// instructions that isn't describing the same variable, like this
493 ///
494 ///   dbg.value X1, "x", FragmentX1  (**)
495 ///   <block of instructions, none being "dbg.value ..., "x", ...">
496 ///   dbg.value X1, "x", FragmentX1  (*)
497 ///
498 /// then the instruction marked with (*) can be removed. Variable "x" is already
499 /// described as being mapped to the SSA value X1.
500 ///
501 /// Possible improvements:
502 /// - Keep track of non-overlapping fragments.
503 static bool
504 DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
505   SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
506   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
507       VariableMap;
508   for (auto &I : *BB) {
509     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
510       if (DVR.getType() == DbgVariableRecord::LocationType::Declare)
511         continue;
512       DebugVariable Key(DVR.getVariable(), std::nullopt,
513                         DVR.getDebugLoc()->getInlinedAt());
514       auto VMI = VariableMap.find(Key);
515       // A dbg.assign with no linked instructions can be treated like a
516       // dbg.value (i.e. can be deleted).
517       bool IsDbgValueKind =
518           (!DVR.isDbgAssign() || at::getAssignmentInsts(&DVR).empty());
519 
520       // Update the map if we found a new value/expression describing the
521       // variable, or if the variable wasn't mapped already.
522       SmallVector<Value *, 4> Values(DVR.location_ops());
523       if (VMI == VariableMap.end() || VMI->second.first != Values ||
524           VMI->second.second != DVR.getExpression()) {
525         if (IsDbgValueKind)
526           VariableMap[Key] = {Values, DVR.getExpression()};
527         else
528           VariableMap[Key] = {Values, nullptr};
529         continue;
530       }
531       // Don't delete dbg.assign intrinsics that are linked to instructions.
532       if (!IsDbgValueKind)
533         continue;
534       // Found an identical mapping. Remember the instruction for later removal.
535       ToBeRemoved.push_back(&DVR);
536     }
537   }
538 
539   for (auto *DVR : ToBeRemoved)
540     DVR->eraseFromParent();
541 
542   return !ToBeRemoved.empty();
543 }
544 
545 static bool
546 DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
547   assert(BB->isEntryBlock() && "expected entry block");
548   SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
549   DenseSet<DebugVariable> SeenDefForAggregate;
550   // Returns the DebugVariable for DVI with no fragment info.
551   auto GetAggregateVariable = [](const DbgVariableRecord &DVR) {
552     return DebugVariable(DVR.getVariable(), std::nullopt,
553                          DVR.getDebugLoc().getInlinedAt());
554   };
555 
556   // Remove undef dbg.assign intrinsics that are encountered before
557   // any non-undef intrinsics from the entry block.
558   for (auto &I : *BB) {
559     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
560       if (!DVR.isDbgValue() && !DVR.isDbgAssign())
561         continue;
562       bool IsDbgValueKind =
563           (DVR.isDbgValue() || at::getAssignmentInsts(&DVR).empty());
564       DebugVariable Aggregate = GetAggregateVariable(DVR);
565       if (!SeenDefForAggregate.contains(Aggregate)) {
566         bool IsKill = DVR.isKillLocation() && IsDbgValueKind;
567         if (!IsKill) {
568           SeenDefForAggregate.insert(Aggregate);
569         } else if (DVR.isDbgAssign()) {
570           ToBeRemoved.push_back(&DVR);
571         }
572       }
573     }
574   }
575 
576   for (DbgVariableRecord *DVR : ToBeRemoved)
577     DVR->eraseFromParent();
578 
579   return !ToBeRemoved.empty();
580 }
581 
582 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
583   if (BB->IsNewDbgInfoFormat)
584     return DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BB);
585 
586   SmallVector<DbgValueInst *, 8> ToBeRemoved;
587   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
588       VariableMap;
589   for (auto &I : *BB) {
590     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
591       DebugVariable Key(DVI->getVariable(), std::nullopt,
592                         DVI->getDebugLoc()->getInlinedAt());
593       auto VMI = VariableMap.find(Key);
594       auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
595       // A dbg.assign with no linked instructions can be treated like a
596       // dbg.value (i.e. can be deleted).
597       bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
598 
599       // Update the map if we found a new value/expression describing the
600       // variable, or if the variable wasn't mapped already.
601       SmallVector<Value *, 4> Values(DVI->getValues());
602       if (VMI == VariableMap.end() || VMI->second.first != Values ||
603           VMI->second.second != DVI->getExpression()) {
604         // Use a sentinel value (nullptr) for the DIExpression when we see a
605         // linked dbg.assign so that the next debug intrinsic will never match
606         // it (i.e. always treat linked dbg.assigns as if they're unique).
607         if (IsDbgValueKind)
608           VariableMap[Key] = {Values, DVI->getExpression()};
609         else
610           VariableMap[Key] = {Values, nullptr};
611         continue;
612       }
613 
614       // Don't delete dbg.assign intrinsics that are linked to instructions.
615       if (!IsDbgValueKind)
616         continue;
617       ToBeRemoved.push_back(DVI);
618     }
619   }
620 
621   for (auto &Instr : ToBeRemoved)
622     Instr->eraseFromParent();
623 
624   return !ToBeRemoved.empty();
625 }
626 
627 /// Remove redundant undef dbg.assign intrinsic from an entry block using a
628 /// forward scan.
629 /// Strategy:
630 /// ---------------------
631 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
632 /// linked to an intrinsic, and don't share an aggregate variable with a debug
633 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
634 /// that come before non-undef debug intrinsics for the variable are
635 /// deleted. Given:
636 ///
637 ///   dbg.assign undef, "x", FragmentX1 (*)
638 ///   <block of instructions, none being "dbg.value ..., "x", ...">
639 ///   dbg.value %V, "x", FragmentX2
640 ///   <block of instructions, none being "dbg.value ..., "x", ...">
641 ///   dbg.assign undef, "x", FragmentX1
642 ///
643 /// then (only) the instruction marked with (*) can be removed.
644 /// Possible improvements:
645 /// - Keep track of non-overlapping fragments.
646 static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
647   if (BB->IsNewDbgInfoFormat)
648     return DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BB);
649 
650   assert(BB->isEntryBlock() && "expected entry block");
651   SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved;
652   DenseSet<DebugVariable> SeenDefForAggregate;
653   // Returns the DebugVariable for DVI with no fragment info.
654   auto GetAggregateVariable = [](DbgValueInst *DVI) {
655     return DebugVariable(DVI->getVariable(), std::nullopt,
656                          DVI->getDebugLoc()->getInlinedAt());
657   };
658 
659   // Remove undef dbg.assign intrinsics that are encountered before
660   // any non-undef intrinsics from the entry block.
661   for (auto &I : *BB) {
662     DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I);
663     if (!DVI)
664       continue;
665     auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
666     bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
667     DebugVariable Aggregate = GetAggregateVariable(DVI);
668     if (!SeenDefForAggregate.contains(Aggregate)) {
669       bool IsKill = DVI->isKillLocation() && IsDbgValueKind;
670       if (!IsKill) {
671         SeenDefForAggregate.insert(Aggregate);
672       } else if (DAI) {
673         ToBeRemoved.push_back(DAI);
674       }
675     }
676   }
677 
678   for (DbgAssignIntrinsic *DAI : ToBeRemoved)
679     DAI->eraseFromParent();
680 
681   return !ToBeRemoved.empty();
682 }
683 
684 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
685   bool MadeChanges = false;
686   // By using the "backward scan" strategy before the "forward scan" strategy we
687   // can remove both dbg.value (2) and (3) in a situation like this:
688   //
689   //   (1) dbg.value V1, "x", DIExpression()
690   //       ...
691   //   (2) dbg.value V2, "x", DIExpression()
692   //   (3) dbg.value V1, "x", DIExpression()
693   //
694   // The backward scan will remove (2), it is made obsolete by (3). After
695   // getting (2) out of the way, the foward scan will remove (3) since "x"
696   // already is described as having the value V1 at (1).
697   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
698   if (BB->isEntryBlock() &&
699       isAssignmentTrackingEnabled(*BB->getParent()->getParent()))
700     MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB);
701   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
702 
703   if (MadeChanges)
704     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
705                       << BB->getName() << "\n");
706   return MadeChanges;
707 }
708 
709 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) {
710   Instruction &I = *BI;
711   // Replaces all of the uses of the instruction with uses of the value
712   I.replaceAllUsesWith(V);
713 
714   // Make sure to propagate a name if there is one already.
715   if (I.hasName() && !V->hasName())
716     V->takeName(&I);
717 
718   // Delete the unnecessary instruction now...
719   BI = BI->eraseFromParent();
720 }
721 
722 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI,
723                                Instruction *I) {
724   assert(I->getParent() == nullptr &&
725          "ReplaceInstWithInst: Instruction already inserted into basic block!");
726 
727   // Copy debug location to newly added instruction, if it wasn't already set
728   // by the caller.
729   if (!I->getDebugLoc())
730     I->setDebugLoc(BI->getDebugLoc());
731 
732   // Insert the new instruction into the basic block...
733   BasicBlock::iterator New = I->insertInto(BB, BI);
734 
735   // Replace all uses of the old instruction, and delete it.
736   ReplaceInstWithValue(BI, I);
737 
738   // Move BI back to point to the newly inserted instruction
739   BI = New;
740 }
741 
742 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
743   // Remember visited blocks to avoid infinite loop
744   SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
745   unsigned Depth = 0;
746   while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
747          VisitedBlocks.insert(BB).second) {
748     if (isa<UnreachableInst>(BB->getTerminator()) ||
749         BB->getTerminatingDeoptimizeCall())
750       return true;
751     BB = BB->getUniqueSuccessor();
752   }
753   return false;
754 }
755 
756 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
757   BasicBlock::iterator BI(From);
758   ReplaceInstWithInst(From->getParent(), BI, To);
759 }
760 
761 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
762                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
763                             const Twine &BBName) {
764   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
765 
766   Instruction *LatchTerm = BB->getTerminator();
767 
768   CriticalEdgeSplittingOptions Options =
769       CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
770 
771   if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
772     // If it is a critical edge, and the succesor is an exception block, handle
773     // the split edge logic in this specific function
774     if (Succ->isEHPad())
775       return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
776 
777     // If this is a critical edge, let SplitKnownCriticalEdge do it.
778     return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
779   }
780 
781   // If the edge isn't critical, then BB has a single successor or Succ has a
782   // single pred.  Split the block.
783   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
784     // If the successor only has a single pred, split the top of the successor
785     // block.
786     assert(SP == BB && "CFG broken");
787     (void)SP;
788     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
789                       /*Before=*/true);
790   }
791 
792   // Otherwise, if BB has a single successor, split it at the bottom of the
793   // block.
794   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
795          "Should have a single succ!");
796   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
797 }
798 
799 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
800   if (auto *II = dyn_cast<InvokeInst>(TI))
801     II->setUnwindDest(Succ);
802   else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
803     CS->setUnwindDest(Succ);
804   else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
805     CR->setUnwindDest(Succ);
806   else
807     llvm_unreachable("unexpected terminator instruction");
808 }
809 
810 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
811                           BasicBlock *NewPred, PHINode *Until) {
812   int BBIdx = 0;
813   for (PHINode &PN : DestBB->phis()) {
814     // We manually update the LandingPadReplacement PHINode and it is the last
815     // PHI Node. So, if we find it, we are done.
816     if (Until == &PN)
817       break;
818 
819     // Reuse the previous value of BBIdx if it lines up.  In cases where we
820     // have multiple phi nodes with *lots* of predecessors, this is a speed
821     // win because we don't have to scan the PHI looking for TIBB.  This
822     // happens because the BB list of PHI nodes are usually in the same
823     // order.
824     if (PN.getIncomingBlock(BBIdx) != OldPred)
825       BBIdx = PN.getBasicBlockIndex(OldPred);
826 
827     assert(BBIdx != -1 && "Invalid PHI Index!");
828     PN.setIncomingBlock(BBIdx, NewPred);
829   }
830 }
831 
832 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
833                                    LandingPadInst *OriginalPad,
834                                    PHINode *LandingPadReplacement,
835                                    const CriticalEdgeSplittingOptions &Options,
836                                    const Twine &BBName) {
837 
838   auto *PadInst = Succ->getFirstNonPHI();
839   if (!LandingPadReplacement && !PadInst->isEHPad())
840     return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
841 
842   auto *LI = Options.LI;
843   SmallVector<BasicBlock *, 4> LoopPreds;
844   // Check if extra modifications will be required to preserve loop-simplify
845   // form after splitting. If it would require splitting blocks with IndirectBr
846   // terminators, bail out if preserving loop-simplify form is requested.
847   if (Options.PreserveLoopSimplify && LI) {
848     if (Loop *BBLoop = LI->getLoopFor(BB)) {
849 
850       // The only way that we can break LoopSimplify form by splitting a
851       // critical edge is when there exists some edge from BBLoop to Succ *and*
852       // the only edge into Succ from outside of BBLoop is that of NewBB after
853       // the split. If the first isn't true, then LoopSimplify still holds,
854       // NewBB is the new exit block and it has no non-loop predecessors. If the
855       // second isn't true, then Succ was not in LoopSimplify form prior to
856       // the split as it had a non-loop predecessor. In both of these cases,
857       // the predecessor must be directly in BBLoop, not in a subloop, or again
858       // LoopSimplify doesn't hold.
859       for (BasicBlock *P : predecessors(Succ)) {
860         if (P == BB)
861           continue; // The new block is known.
862         if (LI->getLoopFor(P) != BBLoop) {
863           // Loop is not in LoopSimplify form, no need to re simplify after
864           // splitting edge.
865           LoopPreds.clear();
866           break;
867         }
868         LoopPreds.push_back(P);
869       }
870       // Loop-simplify form can be preserved, if we can split all in-loop
871       // predecessors.
872       if (any_of(LoopPreds, [](BasicBlock *Pred) {
873             return isa<IndirectBrInst>(Pred->getTerminator());
874           })) {
875         return nullptr;
876       }
877     }
878   }
879 
880   auto *NewBB =
881       BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
882   setUnwindEdgeTo(BB->getTerminator(), NewBB);
883   updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
884 
885   if (LandingPadReplacement) {
886     auto *NewLP = OriginalPad->clone();
887     auto *Terminator = BranchInst::Create(Succ, NewBB);
888     NewLP->insertBefore(Terminator);
889     LandingPadReplacement->addIncoming(NewLP, NewBB);
890   } else {
891     Value *ParentPad = nullptr;
892     if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
893       ParentPad = FuncletPad->getParentPad();
894     else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
895       ParentPad = CatchSwitch->getParentPad();
896     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
897       ParentPad = CleanupPad->getParentPad();
898     else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
899       ParentPad = LandingPad->getParent();
900     else
901       llvm_unreachable("handling for other EHPads not implemented yet");
902 
903     auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
904     CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
905   }
906 
907   auto *DT = Options.DT;
908   auto *MSSAU = Options.MSSAU;
909   if (!DT && !LI)
910     return NewBB;
911 
912   if (DT) {
913     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
914     SmallVector<DominatorTree::UpdateType, 3> Updates;
915 
916     Updates.push_back({DominatorTree::Insert, BB, NewBB});
917     Updates.push_back({DominatorTree::Insert, NewBB, Succ});
918     Updates.push_back({DominatorTree::Delete, BB, Succ});
919 
920     DTU.applyUpdates(Updates);
921     DTU.flush();
922 
923     if (MSSAU) {
924       MSSAU->applyUpdates(Updates, *DT);
925       if (VerifyMemorySSA)
926         MSSAU->getMemorySSA()->verifyMemorySSA();
927     }
928   }
929 
930   if (LI) {
931     if (Loop *BBLoop = LI->getLoopFor(BB)) {
932       // If one or the other blocks were not in a loop, the new block is not
933       // either, and thus LI doesn't need to be updated.
934       if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
935         if (BBLoop == SuccLoop) {
936           // Both in the same loop, the NewBB joins loop.
937           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
938         } else if (BBLoop->contains(SuccLoop)) {
939           // Edge from an outer loop to an inner loop.  Add to the outer loop.
940           BBLoop->addBasicBlockToLoop(NewBB, *LI);
941         } else if (SuccLoop->contains(BBLoop)) {
942           // Edge from an inner loop to an outer loop.  Add to the outer loop.
943           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
944         } else {
945           // Edge from two loops with no containment relation.  Because these
946           // are natural loops, we know that the destination block must be the
947           // header of its loop (adding a branch into a loop elsewhere would
948           // create an irreducible loop).
949           assert(SuccLoop->getHeader() == Succ &&
950                  "Should not create irreducible loops!");
951           if (Loop *P = SuccLoop->getParentLoop())
952             P->addBasicBlockToLoop(NewBB, *LI);
953         }
954       }
955 
956       // If BB is in a loop and Succ is outside of that loop, we may need to
957       // update LoopSimplify form and LCSSA form.
958       if (!BBLoop->contains(Succ)) {
959         assert(!BBLoop->contains(NewBB) &&
960                "Split point for loop exit is contained in loop!");
961 
962         // Update LCSSA form in the newly created exit block.
963         if (Options.PreserveLCSSA) {
964           createPHIsForSplitLoopExit(BB, NewBB, Succ);
965         }
966 
967         if (!LoopPreds.empty()) {
968           BasicBlock *NewExitBB = SplitBlockPredecessors(
969               Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
970           if (Options.PreserveLCSSA)
971             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
972         }
973       }
974     }
975   }
976 
977   return NewBB;
978 }
979 
980 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
981                                       BasicBlock *SplitBB, BasicBlock *DestBB) {
982   // SplitBB shouldn't have anything non-trivial in it yet.
983   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
984           SplitBB->isLandingPad()) &&
985          "SplitBB has non-PHI nodes!");
986 
987   // For each PHI in the destination block.
988   for (PHINode &PN : DestBB->phis()) {
989     int Idx = PN.getBasicBlockIndex(SplitBB);
990     assert(Idx >= 0 && "Invalid Block Index");
991     Value *V = PN.getIncomingValue(Idx);
992 
993     // If the input is a PHI which already satisfies LCSSA, don't create
994     // a new one.
995     if (const PHINode *VP = dyn_cast<PHINode>(V))
996       if (VP->getParent() == SplitBB)
997         continue;
998 
999     // Otherwise a new PHI is needed. Create one and populate it.
1000     PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split");
1001     BasicBlock::iterator InsertPos =
1002         SplitBB->isLandingPad() ? SplitBB->begin()
1003                                 : SplitBB->getTerminator()->getIterator();
1004     NewPN->insertBefore(InsertPos);
1005     for (BasicBlock *BB : Preds)
1006       NewPN->addIncoming(V, BB);
1007 
1008     // Update the original PHI.
1009     PN.setIncomingValue(Idx, NewPN);
1010   }
1011 }
1012 
1013 unsigned
1014 llvm::SplitAllCriticalEdges(Function &F,
1015                             const CriticalEdgeSplittingOptions &Options) {
1016   unsigned NumBroken = 0;
1017   for (BasicBlock &BB : F) {
1018     Instruction *TI = BB.getTerminator();
1019     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
1020       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1021         if (SplitCriticalEdge(TI, i, Options))
1022           ++NumBroken;
1023   }
1024   return NumBroken;
1025 }
1026 
1027 static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt,
1028                                   DomTreeUpdater *DTU, DominatorTree *DT,
1029                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
1030                                   const Twine &BBName, bool Before) {
1031   if (Before) {
1032     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1033     return splitBlockBefore(Old, SplitPt,
1034                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
1035                             BBName);
1036   }
1037   BasicBlock::iterator SplitIt = SplitPt;
1038   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
1039     ++SplitIt;
1040     assert(SplitIt != SplitPt->getParent()->end());
1041   }
1042   std::string Name = BBName.str();
1043   BasicBlock *New = Old->splitBasicBlock(
1044       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
1045 
1046   // The new block lives in whichever loop the old one did. This preserves
1047   // LCSSA as well, because we force the split point to be after any PHI nodes.
1048   if (LI)
1049     if (Loop *L = LI->getLoopFor(Old))
1050       L->addBasicBlockToLoop(New, *LI);
1051 
1052   if (DTU) {
1053     SmallVector<DominatorTree::UpdateType, 8> Updates;
1054     // Old dominates New. New node dominates all other nodes dominated by Old.
1055     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
1056     Updates.push_back({DominatorTree::Insert, Old, New});
1057     Updates.reserve(Updates.size() + 2 * succ_size(New));
1058     for (BasicBlock *SuccessorOfOld : successors(New))
1059       if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
1060         Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
1061         Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
1062       }
1063 
1064     DTU->applyUpdates(Updates);
1065   } else if (DT)
1066     // Old dominates New. New node dominates all other nodes dominated by Old.
1067     if (DomTreeNode *OldNode = DT->getNode(Old)) {
1068       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1069 
1070       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
1071       for (DomTreeNode *I : Children)
1072         DT->changeImmediateDominator(I, NewNode);
1073     }
1074 
1075   // Move MemoryAccesses still tracked in Old, but part of New now.
1076   // Update accesses in successor blocks accordingly.
1077   if (MSSAU)
1078     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
1079 
1080   return New;
1081 }
1082 
1083 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1084                              DominatorTree *DT, LoopInfo *LI,
1085                              MemorySSAUpdater *MSSAU, const Twine &BBName,
1086                              bool Before) {
1087   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
1088                         Before);
1089 }
1090 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1091                              DomTreeUpdater *DTU, LoopInfo *LI,
1092                              MemorySSAUpdater *MSSAU, const Twine &BBName,
1093                              bool Before) {
1094   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
1095                         Before);
1096 }
1097 
1098 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt,
1099                                    DomTreeUpdater *DTU, LoopInfo *LI,
1100                                    MemorySSAUpdater *MSSAU,
1101                                    const Twine &BBName) {
1102 
1103   BasicBlock::iterator SplitIt = SplitPt;
1104   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
1105     ++SplitIt;
1106   std::string Name = BBName.str();
1107   BasicBlock *New = Old->splitBasicBlock(
1108       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
1109       /* Before=*/true);
1110 
1111   // The new block lives in whichever loop the old one did. This preserves
1112   // LCSSA as well, because we force the split point to be after any PHI nodes.
1113   if (LI)
1114     if (Loop *L = LI->getLoopFor(Old))
1115       L->addBasicBlockToLoop(New, *LI);
1116 
1117   if (DTU) {
1118     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
1119     // New dominates Old. The predecessor nodes of the Old node dominate
1120     // New node.
1121     SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
1122     DTUpdates.push_back({DominatorTree::Insert, New, Old});
1123     DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
1124     for (BasicBlock *PredecessorOfOld : predecessors(New))
1125       if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
1126         DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
1127         DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
1128       }
1129 
1130     DTU->applyUpdates(DTUpdates);
1131 
1132     // Move MemoryAccesses still tracked in Old, but part of New now.
1133     // Update accesses in successor blocks accordingly.
1134     if (MSSAU) {
1135       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
1136       if (VerifyMemorySSA)
1137         MSSAU->getMemorySSA()->verifyMemorySSA();
1138     }
1139   }
1140   return New;
1141 }
1142 
1143 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
1144 /// Invalidates DFS Numbering when DTU or DT is provided.
1145 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
1146                                       ArrayRef<BasicBlock *> Preds,
1147                                       DomTreeUpdater *DTU, DominatorTree *DT,
1148                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
1149                                       bool PreserveLCSSA, bool &HasLoopExit) {
1150   // Update dominator tree if available.
1151   if (DTU) {
1152     // Recalculation of DomTree is needed when updating a forward DomTree and
1153     // the Entry BB is replaced.
1154     if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
1155       // The entry block was removed and there is no external interface for
1156       // the dominator tree to be notified of this change. In this corner-case
1157       // we recalculate the entire tree.
1158       DTU->recalculate(*NewBB->getParent());
1159     } else {
1160       // Split block expects NewBB to have a non-empty set of predecessors.
1161       SmallVector<DominatorTree::UpdateType, 8> Updates;
1162       SmallPtrSet<BasicBlock *, 8> UniquePreds;
1163       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
1164       Updates.reserve(Updates.size() + 2 * Preds.size());
1165       for (auto *Pred : Preds)
1166         if (UniquePreds.insert(Pred).second) {
1167           Updates.push_back({DominatorTree::Insert, Pred, NewBB});
1168           Updates.push_back({DominatorTree::Delete, Pred, OldBB});
1169         }
1170       DTU->applyUpdates(Updates);
1171     }
1172   } else if (DT) {
1173     if (OldBB == DT->getRootNode()->getBlock()) {
1174       assert(NewBB->isEntryBlock());
1175       DT->setNewRoot(NewBB);
1176     } else {
1177       // Split block expects NewBB to have a non-empty set of predecessors.
1178       DT->splitBlock(NewBB);
1179     }
1180   }
1181 
1182   // Update MemoryPhis after split if MemorySSA is available
1183   if (MSSAU)
1184     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
1185 
1186   // The rest of the logic is only relevant for updating the loop structures.
1187   if (!LI)
1188     return;
1189 
1190   if (DTU && DTU->hasDomTree())
1191     DT = &DTU->getDomTree();
1192   assert(DT && "DT should be available to update LoopInfo!");
1193   Loop *L = LI->getLoopFor(OldBB);
1194 
1195   // If we need to preserve loop analyses, collect some information about how
1196   // this split will affect loops.
1197   bool IsLoopEntry = !!L;
1198   bool SplitMakesNewLoopHeader = false;
1199   for (BasicBlock *Pred : Preds) {
1200     // Preds that are not reachable from entry should not be used to identify if
1201     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
1202     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
1203     // as true and make the NewBB the header of some loop. This breaks LI.
1204     if (!DT->isReachableFromEntry(Pred))
1205       continue;
1206     // If we need to preserve LCSSA, determine if any of the preds is a loop
1207     // exit.
1208     if (PreserveLCSSA)
1209       if (Loop *PL = LI->getLoopFor(Pred))
1210         if (!PL->contains(OldBB))
1211           HasLoopExit = true;
1212 
1213     // If we need to preserve LoopInfo, note whether any of the preds crosses
1214     // an interesting loop boundary.
1215     if (!L)
1216       continue;
1217     if (L->contains(Pred))
1218       IsLoopEntry = false;
1219     else
1220       SplitMakesNewLoopHeader = true;
1221   }
1222 
1223   // Unless we have a loop for OldBB, nothing else to do here.
1224   if (!L)
1225     return;
1226 
1227   if (IsLoopEntry) {
1228     // Add the new block to the nearest enclosing loop (and not an adjacent
1229     // loop). To find this, examine each of the predecessors and determine which
1230     // loops enclose them, and select the most-nested loop which contains the
1231     // loop containing the block being split.
1232     Loop *InnermostPredLoop = nullptr;
1233     for (BasicBlock *Pred : Preds) {
1234       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
1235         // Seek a loop which actually contains the block being split (to avoid
1236         // adjacent loops).
1237         while (PredLoop && !PredLoop->contains(OldBB))
1238           PredLoop = PredLoop->getParentLoop();
1239 
1240         // Select the most-nested of these loops which contains the block.
1241         if (PredLoop && PredLoop->contains(OldBB) &&
1242             (!InnermostPredLoop ||
1243              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
1244           InnermostPredLoop = PredLoop;
1245       }
1246     }
1247 
1248     if (InnermostPredLoop)
1249       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1250   } else {
1251     L->addBasicBlockToLoop(NewBB, *LI);
1252     if (SplitMakesNewLoopHeader)
1253       L->moveToHeader(NewBB);
1254   }
1255 }
1256 
1257 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1258 /// This also updates AliasAnalysis, if available.
1259 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1260                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1261                            bool HasLoopExit) {
1262   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1263   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1264   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1265     PHINode *PN = cast<PHINode>(I++);
1266 
1267     // Check to see if all of the values coming in are the same.  If so, we
1268     // don't need to create a new PHI node, unless it's needed for LCSSA.
1269     Value *InVal = nullptr;
1270     if (!HasLoopExit) {
1271       InVal = PN->getIncomingValueForBlock(Preds[0]);
1272       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1273         if (!PredSet.count(PN->getIncomingBlock(i)))
1274           continue;
1275         if (!InVal)
1276           InVal = PN->getIncomingValue(i);
1277         else if (InVal != PN->getIncomingValue(i)) {
1278           InVal = nullptr;
1279           break;
1280         }
1281       }
1282     }
1283 
1284     if (InVal) {
1285       // If all incoming values for the new PHI would be the same, just don't
1286       // make a new PHI.  Instead, just remove the incoming values from the old
1287       // PHI.
1288       PN->removeIncomingValueIf(
1289           [&](unsigned Idx) {
1290             return PredSet.contains(PN->getIncomingBlock(Idx));
1291           },
1292           /* DeletePHIIfEmpty */ false);
1293 
1294       // Add an incoming value to the PHI node in the loop for the preheader
1295       // edge.
1296       PN->addIncoming(InVal, NewBB);
1297       continue;
1298     }
1299 
1300     // If the values coming into the block are not the same, we need a new
1301     // PHI.
1302     // Create the new PHI node, insert it into NewBB at the end of the block
1303     PHINode *NewPHI =
1304         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI->getIterator());
1305 
1306     // NOTE! This loop walks backwards for a reason! First off, this minimizes
1307     // the cost of removal if we end up removing a large number of values, and
1308     // second off, this ensures that the indices for the incoming values aren't
1309     // invalidated when we remove one.
1310     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1311       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1312       if (PredSet.count(IncomingBB)) {
1313         Value *V = PN->removeIncomingValue(i, false);
1314         NewPHI->addIncoming(V, IncomingBB);
1315       }
1316     }
1317 
1318     PN->addIncoming(NewPHI, NewBB);
1319   }
1320 }
1321 
1322 static void SplitLandingPadPredecessorsImpl(
1323     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1324     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1325     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1326     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1327 
1328 static BasicBlock *
1329 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1330                            const char *Suffix, DomTreeUpdater *DTU,
1331                            DominatorTree *DT, LoopInfo *LI,
1332                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1333   // Do not attempt to split that which cannot be split.
1334   if (!BB->canSplitPredecessors())
1335     return nullptr;
1336 
1337   // For the landingpads we need to act a bit differently.
1338   // Delegate this work to the SplitLandingPadPredecessors.
1339   if (BB->isLandingPad()) {
1340     SmallVector<BasicBlock*, 2> NewBBs;
1341     std::string NewName = std::string(Suffix) + ".split-lp";
1342 
1343     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1344                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
1345     return NewBBs[0];
1346   }
1347 
1348   // Create new basic block, insert right before the original block.
1349   BasicBlock *NewBB = BasicBlock::Create(
1350       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1351 
1352   // The new block unconditionally branches to the old block.
1353   BranchInst *BI = BranchInst::Create(BB, NewBB);
1354 
1355   Loop *L = nullptr;
1356   BasicBlock *OldLatch = nullptr;
1357   // Splitting the predecessors of a loop header creates a preheader block.
1358   if (LI && LI->isLoopHeader(BB)) {
1359     L = LI->getLoopFor(BB);
1360     // Using the loop start line number prevents debuggers stepping into the
1361     // loop body for this instruction.
1362     BI->setDebugLoc(L->getStartLoc());
1363 
1364     // If BB is the header of the Loop, it is possible that the loop is
1365     // modified, such that the current latch does not remain the latch of the
1366     // loop. If that is the case, the loop metadata from the current latch needs
1367     // to be applied to the new latch.
1368     OldLatch = L->getLoopLatch();
1369   } else
1370     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1371 
1372   // Move the edges from Preds to point to NewBB instead of BB.
1373   for (BasicBlock *Pred : Preds) {
1374     // This is slightly more strict than necessary; the minimum requirement
1375     // is that there be no more than one indirectbr branching to BB. And
1376     // all BlockAddress uses would need to be updated.
1377     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1378            "Cannot split an edge from an IndirectBrInst");
1379     Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
1380   }
1381 
1382   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1383   // node becomes an incoming value for BB's phi node.  However, if the Preds
1384   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1385   // account for the newly created predecessor.
1386   if (Preds.empty()) {
1387     // Insert dummy values as the incoming value.
1388     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1389       cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
1390   }
1391 
1392   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1393   bool HasLoopExit = false;
1394   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1395                             HasLoopExit);
1396 
1397   if (!Preds.empty()) {
1398     // Update the PHI nodes in BB with the values coming from NewBB.
1399     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1400   }
1401 
1402   if (OldLatch) {
1403     BasicBlock *NewLatch = L->getLoopLatch();
1404     if (NewLatch != OldLatch) {
1405       MDNode *MD = OldLatch->getTerminator()->getMetadata(LLVMContext::MD_loop);
1406       NewLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, MD);
1407       // It's still possible that OldLatch is the latch of another inner loop,
1408       // in which case we do not remove the metadata.
1409       Loop *IL = LI->getLoopFor(OldLatch);
1410       if (IL && IL->getLoopLatch() != OldLatch)
1411         OldLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, nullptr);
1412     }
1413   }
1414 
1415   return NewBB;
1416 }
1417 
1418 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1419                                          ArrayRef<BasicBlock *> Preds,
1420                                          const char *Suffix, DominatorTree *DT,
1421                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
1422                                          bool PreserveLCSSA) {
1423   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1424                                     MSSAU, PreserveLCSSA);
1425 }
1426 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1427                                          ArrayRef<BasicBlock *> Preds,
1428                                          const char *Suffix,
1429                                          DomTreeUpdater *DTU, LoopInfo *LI,
1430                                          MemorySSAUpdater *MSSAU,
1431                                          bool PreserveLCSSA) {
1432   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1433                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1434 }
1435 
1436 static void SplitLandingPadPredecessorsImpl(
1437     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1438     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1439     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1440     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1441   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1442 
1443   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1444   // it right before the original block.
1445   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1446                                           OrigBB->getName() + Suffix1,
1447                                           OrigBB->getParent(), OrigBB);
1448   NewBBs.push_back(NewBB1);
1449 
1450   // The new block unconditionally branches to the old block.
1451   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1452   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1453 
1454   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1455   for (BasicBlock *Pred : Preds) {
1456     // This is slightly more strict than necessary; the minimum requirement
1457     // is that there be no more than one indirectbr branching to BB. And
1458     // all BlockAddress uses would need to be updated.
1459     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1460            "Cannot split an edge from an IndirectBrInst");
1461     Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1462   }
1463 
1464   bool HasLoopExit = false;
1465   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1466                             PreserveLCSSA, HasLoopExit);
1467 
1468   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1469   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1470 
1471   // Move the remaining edges from OrigBB to point to NewBB2.
1472   SmallVector<BasicBlock*, 8> NewBB2Preds;
1473   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1474        i != e; ) {
1475     BasicBlock *Pred = *i++;
1476     if (Pred == NewBB1) continue;
1477     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1478            "Cannot split an edge from an IndirectBrInst");
1479     NewBB2Preds.push_back(Pred);
1480     e = pred_end(OrigBB);
1481   }
1482 
1483   BasicBlock *NewBB2 = nullptr;
1484   if (!NewBB2Preds.empty()) {
1485     // Create another basic block for the rest of OrigBB's predecessors.
1486     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1487                                 OrigBB->getName() + Suffix2,
1488                                 OrigBB->getParent(), OrigBB);
1489     NewBBs.push_back(NewBB2);
1490 
1491     // The new block unconditionally branches to the old block.
1492     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1493     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1494 
1495     // Move the remaining edges from OrigBB to point to NewBB2.
1496     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1497       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1498 
1499     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1500     HasLoopExit = false;
1501     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1502                               PreserveLCSSA, HasLoopExit);
1503 
1504     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1505     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1506   }
1507 
1508   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1509   Instruction *Clone1 = LPad->clone();
1510   Clone1->setName(Twine("lpad") + Suffix1);
1511   Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
1512 
1513   if (NewBB2) {
1514     Instruction *Clone2 = LPad->clone();
1515     Clone2->setName(Twine("lpad") + Suffix2);
1516     Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
1517 
1518     // Create a PHI node for the two cloned landingpad instructions only
1519     // if the original landingpad instruction has some uses.
1520     if (!LPad->use_empty()) {
1521       assert(!LPad->getType()->isTokenTy() &&
1522              "Split cannot be applied if LPad is token type. Otherwise an "
1523              "invalid PHINode of token type would be created.");
1524       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad->getIterator());
1525       PN->addIncoming(Clone1, NewBB1);
1526       PN->addIncoming(Clone2, NewBB2);
1527       LPad->replaceAllUsesWith(PN);
1528     }
1529     LPad->eraseFromParent();
1530   } else {
1531     // There is no second clone. Just replace the landing pad with the first
1532     // clone.
1533     LPad->replaceAllUsesWith(Clone1);
1534     LPad->eraseFromParent();
1535   }
1536 }
1537 
1538 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1539                                        ArrayRef<BasicBlock *> Preds,
1540                                        const char *Suffix1, const char *Suffix2,
1541                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1542                                        DomTreeUpdater *DTU, LoopInfo *LI,
1543                                        MemorySSAUpdater *MSSAU,
1544                                        bool PreserveLCSSA) {
1545   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1546                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1547                                          PreserveLCSSA);
1548 }
1549 
1550 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1551                                              BasicBlock *Pred,
1552                                              DomTreeUpdater *DTU) {
1553   Instruction *UncondBranch = Pred->getTerminator();
1554   // Clone the return and add it to the end of the predecessor.
1555   Instruction *NewRet = RI->clone();
1556   NewRet->insertInto(Pred, Pred->end());
1557 
1558   // If the return instruction returns a value, and if the value was a
1559   // PHI node in "BB", propagate the right value into the return.
1560   for (Use &Op : NewRet->operands()) {
1561     Value *V = Op;
1562     Instruction *NewBC = nullptr;
1563     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1564       // Return value might be bitcasted. Clone and insert it before the
1565       // return instruction.
1566       V = BCI->getOperand(0);
1567       NewBC = BCI->clone();
1568       NewBC->insertInto(Pred, NewRet->getIterator());
1569       Op = NewBC;
1570     }
1571 
1572     Instruction *NewEV = nullptr;
1573     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1574       V = EVI->getOperand(0);
1575       NewEV = EVI->clone();
1576       if (NewBC) {
1577         NewBC->setOperand(0, NewEV);
1578         NewEV->insertInto(Pred, NewBC->getIterator());
1579       } else {
1580         NewEV->insertInto(Pred, NewRet->getIterator());
1581         Op = NewEV;
1582       }
1583     }
1584 
1585     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1586       if (PN->getParent() == BB) {
1587         if (NewEV) {
1588           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1589         } else if (NewBC)
1590           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1591         else
1592           Op = PN->getIncomingValueForBlock(Pred);
1593       }
1594     }
1595   }
1596 
1597   // Update any PHI nodes in the returning block to realize that we no
1598   // longer branch to them.
1599   BB->removePredecessor(Pred);
1600   UncondBranch->eraseFromParent();
1601 
1602   if (DTU)
1603     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1604 
1605   return cast<ReturnInst>(NewRet);
1606 }
1607 
1608 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1609                                              BasicBlock::iterator SplitBefore,
1610                                              bool Unreachable,
1611                                              MDNode *BranchWeights,
1612                                              DomTreeUpdater *DTU, LoopInfo *LI,
1613                                              BasicBlock *ThenBlock) {
1614   SplitBlockAndInsertIfThenElse(
1615       Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr,
1616       /* UnreachableThen */ Unreachable,
1617       /* UnreachableElse */ false, BranchWeights, DTU, LI);
1618   return ThenBlock->getTerminator();
1619 }
1620 
1621 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond,
1622                                              BasicBlock::iterator SplitBefore,
1623                                              bool Unreachable,
1624                                              MDNode *BranchWeights,
1625                                              DomTreeUpdater *DTU, LoopInfo *LI,
1626                                              BasicBlock *ElseBlock) {
1627   SplitBlockAndInsertIfThenElse(
1628       Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock,
1629       /* UnreachableThen */ false,
1630       /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI);
1631   return ElseBlock->getTerminator();
1632 }
1633 
1634 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore,
1635                                          Instruction **ThenTerm,
1636                                          Instruction **ElseTerm,
1637                                          MDNode *BranchWeights,
1638                                          DomTreeUpdater *DTU, LoopInfo *LI) {
1639   BasicBlock *ThenBlock = nullptr;
1640   BasicBlock *ElseBlock = nullptr;
1641   SplitBlockAndInsertIfThenElse(
1642       Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false,
1643       /* UnreachableElse */ false, BranchWeights, DTU, LI);
1644 
1645   *ThenTerm = ThenBlock->getTerminator();
1646   *ElseTerm = ElseBlock->getTerminator();
1647 }
1648 
1649 void llvm::SplitBlockAndInsertIfThenElse(
1650     Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock,
1651     BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse,
1652     MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) {
1653   assert((ThenBlock || ElseBlock) &&
1654          "At least one branch block must be created");
1655   assert((!UnreachableThen || !UnreachableElse) &&
1656          "Split block tail must be reachable");
1657 
1658   SmallVector<DominatorTree::UpdateType, 8> Updates;
1659   SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
1660   BasicBlock *Head = SplitBefore->getParent();
1661   if (DTU) {
1662     UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head));
1663     Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
1664   }
1665 
1666   LLVMContext &C = Head->getContext();
1667   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
1668   BasicBlock *TrueBlock = Tail;
1669   BasicBlock *FalseBlock = Tail;
1670   bool ThenToTailEdge = false;
1671   bool ElseToTailEdge = false;
1672 
1673   // Encapsulate the logic around creation/insertion/etc of a new block.
1674   auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB,
1675                          bool &ToTailEdge) {
1676     if (PBB == nullptr)
1677       return; // Do not create/insert a block.
1678 
1679     if (*PBB)
1680       BB = *PBB; // Caller supplied block, use it.
1681     else {
1682       // Create a new block.
1683       BB = BasicBlock::Create(C, "", Head->getParent(), Tail);
1684       if (Unreachable)
1685         (void)new UnreachableInst(C, BB);
1686       else {
1687         (void)BranchInst::Create(Tail, BB);
1688         ToTailEdge = true;
1689       }
1690       BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc());
1691       // Pass the new block back to the caller.
1692       *PBB = BB;
1693     }
1694   };
1695 
1696   handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge);
1697   handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge);
1698 
1699   Instruction *HeadOldTerm = Head->getTerminator();
1700   BranchInst *HeadNewTerm =
1701       BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond);
1702   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1703   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1704 
1705   if (DTU) {
1706     Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock);
1707     Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock);
1708     if (ThenToTailEdge)
1709       Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail);
1710     if (ElseToTailEdge)
1711       Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail);
1712     for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1713       Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor);
1714     for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1715       Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor);
1716     DTU->applyUpdates(Updates);
1717   }
1718 
1719   if (LI) {
1720     if (Loop *L = LI->getLoopFor(Head); L) {
1721       if (ThenToTailEdge)
1722         L->addBasicBlockToLoop(TrueBlock, *LI);
1723       if (ElseToTailEdge)
1724         L->addBasicBlockToLoop(FalseBlock, *LI);
1725       L->addBasicBlockToLoop(Tail, *LI);
1726     }
1727   }
1728 }
1729 
1730 std::pair<Instruction*, Value*>
1731 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) {
1732   BasicBlock *LoopPred = SplitBefore->getParent();
1733   BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore);
1734   BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore);
1735 
1736   auto *Ty = End->getType();
1737   auto &DL = SplitBefore->getDataLayout();
1738   const unsigned Bitwidth = DL.getTypeSizeInBits(Ty);
1739 
1740   IRBuilder<> Builder(LoopBody->getTerminator());
1741   auto *IV = Builder.CreatePHI(Ty, 2, "iv");
1742   auto *IVNext =
1743     Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
1744                       /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
1745   auto *IVCheck = Builder.CreateICmpEQ(IVNext, End,
1746                                        IV->getName() + ".check");
1747   Builder.CreateCondBr(IVCheck, LoopExit, LoopBody);
1748   LoopBody->getTerminator()->eraseFromParent();
1749 
1750   // Populate the IV PHI.
1751   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred);
1752   IV->addIncoming(IVNext, LoopBody);
1753 
1754   return std::make_pair(LoopBody->getFirstNonPHI(), IV);
1755 }
1756 
1757 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC,
1758      Type *IndexTy, Instruction *InsertBefore,
1759      std::function<void(IRBuilderBase&, Value*)> Func) {
1760 
1761   IRBuilder<> IRB(InsertBefore);
1762 
1763   if (EC.isScalable()) {
1764     Value *NumElements = IRB.CreateElementCount(IndexTy, EC);
1765 
1766     auto [BodyIP, Index] =
1767       SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore);
1768 
1769     IRB.SetInsertPoint(BodyIP);
1770     Func(IRB, Index);
1771     return;
1772   }
1773 
1774   unsigned Num = EC.getFixedValue();
1775   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1776     IRB.SetInsertPoint(InsertBefore);
1777     Func(IRB, ConstantInt::get(IndexTy, Idx));
1778   }
1779 }
1780 
1781 void llvm::SplitBlockAndInsertForEachLane(
1782     Value *EVL, Instruction *InsertBefore,
1783     std::function<void(IRBuilderBase &, Value *)> Func) {
1784 
1785   IRBuilder<> IRB(InsertBefore);
1786   Type *Ty = EVL->getType();
1787 
1788   if (!isa<ConstantInt>(EVL)) {
1789     auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore);
1790     IRB.SetInsertPoint(BodyIP);
1791     Func(IRB, Index);
1792     return;
1793   }
1794 
1795   unsigned Num = cast<ConstantInt>(EVL)->getZExtValue();
1796   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1797     IRB.SetInsertPoint(InsertBefore);
1798     Func(IRB, ConstantInt::get(Ty, Idx));
1799   }
1800 }
1801 
1802 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1803                                  BasicBlock *&IfFalse) {
1804   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1805   BasicBlock *Pred1 = nullptr;
1806   BasicBlock *Pred2 = nullptr;
1807 
1808   if (SomePHI) {
1809     if (SomePHI->getNumIncomingValues() != 2)
1810       return nullptr;
1811     Pred1 = SomePHI->getIncomingBlock(0);
1812     Pred2 = SomePHI->getIncomingBlock(1);
1813   } else {
1814     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1815     if (PI == PE) // No predecessor
1816       return nullptr;
1817     Pred1 = *PI++;
1818     if (PI == PE) // Only one predecessor
1819       return nullptr;
1820     Pred2 = *PI++;
1821     if (PI != PE) // More than two predecessors
1822       return nullptr;
1823   }
1824 
1825   // We can only handle branches.  Other control flow will be lowered to
1826   // branches if possible anyway.
1827   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1828   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1829   if (!Pred1Br || !Pred2Br)
1830     return nullptr;
1831 
1832   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1833   // either are.
1834   if (Pred2Br->isConditional()) {
1835     // If both branches are conditional, we don't have an "if statement".  In
1836     // reality, we could transform this case, but since the condition will be
1837     // required anyway, we stand no chance of eliminating it, so the xform is
1838     // probably not profitable.
1839     if (Pred1Br->isConditional())
1840       return nullptr;
1841 
1842     std::swap(Pred1, Pred2);
1843     std::swap(Pred1Br, Pred2Br);
1844   }
1845 
1846   if (Pred1Br->isConditional()) {
1847     // The only thing we have to watch out for here is to make sure that Pred2
1848     // doesn't have incoming edges from other blocks.  If it does, the condition
1849     // doesn't dominate BB.
1850     if (!Pred2->getSinglePredecessor())
1851       return nullptr;
1852 
1853     // If we found a conditional branch predecessor, make sure that it branches
1854     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1855     if (Pred1Br->getSuccessor(0) == BB &&
1856         Pred1Br->getSuccessor(1) == Pred2) {
1857       IfTrue = Pred1;
1858       IfFalse = Pred2;
1859     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1860                Pred1Br->getSuccessor(1) == BB) {
1861       IfTrue = Pred2;
1862       IfFalse = Pred1;
1863     } else {
1864       // We know that one arm of the conditional goes to BB, so the other must
1865       // go somewhere unrelated, and this must not be an "if statement".
1866       return nullptr;
1867     }
1868 
1869     return Pred1Br;
1870   }
1871 
1872   // Ok, if we got here, both predecessors end with an unconditional branch to
1873   // BB.  Don't panic!  If both blocks only have a single (identical)
1874   // predecessor, and THAT is a conditional branch, then we're all ok!
1875   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1876   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1877     return nullptr;
1878 
1879   // Otherwise, if this is a conditional branch, then we can use it!
1880   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1881   if (!BI) return nullptr;
1882 
1883   assert(BI->isConditional() && "Two successors but not conditional?");
1884   if (BI->getSuccessor(0) == Pred1) {
1885     IfTrue = Pred1;
1886     IfFalse = Pred2;
1887   } else {
1888     IfTrue = Pred2;
1889     IfFalse = Pred1;
1890   }
1891   return BI;
1892 }
1893 
1894 // After creating a control flow hub, the operands of PHINodes in an outgoing
1895 // block Out no longer match the predecessors of that block. Predecessors of Out
1896 // that are incoming blocks to the hub are now replaced by just one edge from
1897 // the hub. To match this new control flow, the corresponding values from each
1898 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1899 //
1900 // This operation cannot be performed with SSAUpdater, because it involves one
1901 // new use: If the block Out is in the list of Incoming blocks, then the newly
1902 // created PHI in the Hub will use itself along that edge from Out to Hub.
1903 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1904                           const SetVector<BasicBlock *> &Incoming,
1905                           BasicBlock *FirstGuardBlock) {
1906   auto I = Out->begin();
1907   while (I != Out->end() && isa<PHINode>(I)) {
1908     auto Phi = cast<PHINode>(I);
1909     auto NewPhi =
1910         PHINode::Create(Phi->getType(), Incoming.size(),
1911                         Phi->getName() + ".moved", FirstGuardBlock->begin());
1912     for (auto *In : Incoming) {
1913       Value *V = UndefValue::get(Phi->getType());
1914       if (In == Out) {
1915         V = NewPhi;
1916       } else if (Phi->getBasicBlockIndex(In) != -1) {
1917         V = Phi->removeIncomingValue(In, false);
1918       }
1919       NewPhi->addIncoming(V, In);
1920     }
1921     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1922     if (Phi->getNumOperands() == 0) {
1923       Phi->replaceAllUsesWith(NewPhi);
1924       I = Phi->eraseFromParent();
1925       continue;
1926     }
1927     Phi->addIncoming(NewPhi, GuardBlock);
1928     ++I;
1929   }
1930 }
1931 
1932 using BBPredicates = DenseMap<BasicBlock *, Instruction *>;
1933 using BBSetVector = SetVector<BasicBlock *>;
1934 
1935 // Redirects the terminator of the incoming block to the first guard
1936 // block in the hub. The condition of the original terminator (if it
1937 // was conditional) and its original successors are returned as a
1938 // tuple <condition, succ0, succ1>. The function additionally filters
1939 // out successors that are not in the set of outgoing blocks.
1940 //
1941 // - condition is non-null iff the branch is conditional.
1942 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1943 // - Succ2 is non-null iff condition is non-null and the fallthrough
1944 //         target is an outgoing block.
1945 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1946 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1947               const BBSetVector &Outgoing) {
1948   assert(isa<BranchInst>(BB->getTerminator()) &&
1949          "Only support branch terminator.");
1950   auto Branch = cast<BranchInst>(BB->getTerminator());
1951   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1952 
1953   BasicBlock *Succ0 = Branch->getSuccessor(0);
1954   BasicBlock *Succ1 = nullptr;
1955   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1956 
1957   if (Branch->isUnconditional()) {
1958     Branch->setSuccessor(0, FirstGuardBlock);
1959     assert(Succ0);
1960   } else {
1961     Succ1 = Branch->getSuccessor(1);
1962     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1963     assert(Succ0 || Succ1);
1964     if (Succ0 && !Succ1) {
1965       Branch->setSuccessor(0, FirstGuardBlock);
1966     } else if (Succ1 && !Succ0) {
1967       Branch->setSuccessor(1, FirstGuardBlock);
1968     } else {
1969       Branch->eraseFromParent();
1970       BranchInst::Create(FirstGuardBlock, BB);
1971     }
1972   }
1973 
1974   assert(Succ0 || Succ1);
1975   return std::make_tuple(Condition, Succ0, Succ1);
1976 }
1977 // Setup the branch instructions for guard blocks.
1978 //
1979 // Each guard block terminates in a conditional branch that transfers
1980 // control to the corresponding outgoing block or the next guard
1981 // block. The last guard block has two outgoing blocks as successors
1982 // since the condition for the final outgoing block is trivially
1983 // true. So we create one less block (including the first guard block)
1984 // than the number of outgoing blocks.
1985 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1986                                 const BBSetVector &Outgoing,
1987                                 BBPredicates &GuardPredicates) {
1988   // To help keep the loop simple, temporarily append the last
1989   // outgoing block to the list of guard blocks.
1990   GuardBlocks.push_back(Outgoing.back());
1991 
1992   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1993     auto Out = Outgoing[i];
1994     assert(GuardPredicates.count(Out));
1995     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1996                        GuardBlocks[i]);
1997   }
1998 
1999   // Remove the last block from the guard list.
2000   GuardBlocks.pop_back();
2001 }
2002 
2003 /// We are using one integer to represent the block we are branching to. Then at
2004 /// each guard block, the predicate was calcuated using a simple `icmp eq`.
2005 static void calcPredicateUsingInteger(
2006     const BBSetVector &Incoming, const BBSetVector &Outgoing,
2007     SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) {
2008   auto &Context = Incoming.front()->getContext();
2009   auto FirstGuardBlock = GuardBlocks.front();
2010 
2011   auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(),
2012                              "merged.bb.idx", FirstGuardBlock);
2013 
2014   for (auto In : Incoming) {
2015     Value *Condition;
2016     BasicBlock *Succ0;
2017     BasicBlock *Succ1;
2018     std::tie(Condition, Succ0, Succ1) =
2019         redirectToHub(In, FirstGuardBlock, Outgoing);
2020     Value *IncomingId = nullptr;
2021     if (Succ0 && Succ1) {
2022       // target_bb_index = Condition ? index_of_succ0 : index_of_succ1.
2023       auto Succ0Iter = find(Outgoing, Succ0);
2024       auto Succ1Iter = find(Outgoing, Succ1);
2025       Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context),
2026                                     std::distance(Outgoing.begin(), Succ0Iter));
2027       Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context),
2028                                     std::distance(Outgoing.begin(), Succ1Iter));
2029       IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
2030                                       In->getTerminator()->getIterator());
2031     } else {
2032       // Get the index of the non-null successor.
2033       auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
2034       IncomingId = ConstantInt::get(Type::getInt32Ty(Context),
2035                                     std::distance(Outgoing.begin(), SuccIter));
2036     }
2037     Phi->addIncoming(IncomingId, In);
2038   }
2039 
2040   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2041     auto Out = Outgoing[i];
2042     auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
2043                                 ConstantInt::get(Type::getInt32Ty(Context), i),
2044                                 Out->getName() + ".predicate", GuardBlocks[i]);
2045     GuardPredicates[Out] = Cmp;
2046   }
2047 }
2048 
2049 /// We record the predicate of each outgoing block using a phi of boolean.
2050 static void calcPredicateUsingBooleans(
2051     const BBSetVector &Incoming, const BBSetVector &Outgoing,
2052     SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
2053     SmallVectorImpl<WeakVH> &DeletionCandidates) {
2054   auto &Context = Incoming.front()->getContext();
2055   auto BoolTrue = ConstantInt::getTrue(Context);
2056   auto BoolFalse = ConstantInt::getFalse(Context);
2057   auto FirstGuardBlock = GuardBlocks.front();
2058 
2059   // The predicate for the last outgoing is trivially true, and so we
2060   // process only the first N-1 successors.
2061   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2062     auto Out = Outgoing[i];
2063     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
2064 
2065     auto Phi =
2066         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
2067                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
2068     GuardPredicates[Out] = Phi;
2069   }
2070 
2071   for (auto *In : Incoming) {
2072     Value *Condition;
2073     BasicBlock *Succ0;
2074     BasicBlock *Succ1;
2075     std::tie(Condition, Succ0, Succ1) =
2076         redirectToHub(In, FirstGuardBlock, Outgoing);
2077 
2078     // Optimization: Consider an incoming block A with both successors
2079     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
2080     // for Succ0 and Succ1 complement each other. If Succ0 is visited
2081     // first in the loop below, control will branch to Succ0 using the
2082     // corresponding predicate. But if that branch is not taken, then
2083     // control must reach Succ1, which means that the incoming value of
2084     // the predicate from `In` is true for Succ1.
2085     bool OneSuccessorDone = false;
2086     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2087       auto Out = Outgoing[i];
2088       PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
2089       if (Out != Succ0 && Out != Succ1) {
2090         Phi->addIncoming(BoolFalse, In);
2091       } else if (!Succ0 || !Succ1 || OneSuccessorDone) {
2092         // Optimization: When only one successor is an outgoing block,
2093         // the incoming predicate from `In` is always true.
2094         Phi->addIncoming(BoolTrue, In);
2095       } else {
2096         assert(Succ0 && Succ1);
2097         if (Out == Succ0) {
2098           Phi->addIncoming(Condition, In);
2099         } else {
2100           auto Inverted = invertCondition(Condition);
2101           DeletionCandidates.push_back(Condition);
2102           Phi->addIncoming(Inverted, In);
2103         }
2104         OneSuccessorDone = true;
2105       }
2106     }
2107   }
2108 }
2109 
2110 // Capture the existing control flow as guard predicates, and redirect
2111 // control flow from \p Incoming block through the \p GuardBlocks to the
2112 // \p Outgoing blocks.
2113 //
2114 // There is one guard predicate for each outgoing block OutBB. The
2115 // predicate represents whether the hub should transfer control flow
2116 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
2117 // them in the same order as the Outgoing set-vector, and control
2118 // branches to the first outgoing block whose predicate evaluates to true.
2119 static void
2120 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks,
2121                          SmallVectorImpl<WeakVH> &DeletionCandidates,
2122                          const BBSetVector &Incoming,
2123                          const BBSetVector &Outgoing, const StringRef Prefix,
2124                          std::optional<unsigned> MaxControlFlowBooleans) {
2125   BBPredicates GuardPredicates;
2126   auto F = Incoming.front()->getParent();
2127 
2128   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i)
2129     GuardBlocks.push_back(
2130         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
2131 
2132   // When we are using an integer to record which target block to jump to, we
2133   // are creating less live values, actually we are using one single integer to
2134   // store the index of the target block. When we are using booleans to store
2135   // the branching information, we need (N-1) boolean values, where N is the
2136   // number of outgoing block.
2137   if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
2138     calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates,
2139                                DeletionCandidates);
2140   else
2141     calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates);
2142 
2143   setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
2144 }
2145 
2146 BasicBlock *llvm::CreateControlFlowHub(
2147     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
2148     const BBSetVector &Incoming, const BBSetVector &Outgoing,
2149     const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
2150   if (Outgoing.size() < 2)
2151     return Outgoing.front();
2152 
2153   SmallVector<DominatorTree::UpdateType, 16> Updates;
2154   if (DTU) {
2155     for (auto *In : Incoming) {
2156       for (auto Succ : successors(In))
2157         if (Outgoing.count(Succ))
2158           Updates.push_back({DominatorTree::Delete, In, Succ});
2159     }
2160   }
2161 
2162   SmallVector<WeakVH, 8> DeletionCandidates;
2163   convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing,
2164                            Prefix, MaxControlFlowBooleans);
2165   auto FirstGuardBlock = GuardBlocks.front();
2166 
2167   // Update the PHINodes in each outgoing block to match the new control flow.
2168   for (int i = 0, e = GuardBlocks.size(); i != e; ++i)
2169     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
2170 
2171   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
2172 
2173   if (DTU) {
2174     int NumGuards = GuardBlocks.size();
2175     assert((int)Outgoing.size() == NumGuards + 1);
2176 
2177     for (auto In : Incoming)
2178       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
2179 
2180     for (int i = 0; i != NumGuards - 1; ++i) {
2181       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
2182       Updates.push_back(
2183           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
2184     }
2185     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2186                        Outgoing[NumGuards - 1]});
2187     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2188                        Outgoing[NumGuards]});
2189     DTU->applyUpdates(Updates);
2190   }
2191 
2192   for (auto I : DeletionCandidates) {
2193     if (I->use_empty())
2194       if (auto Inst = dyn_cast_or_null<Instruction>(I))
2195         Inst->eraseFromParent();
2196   }
2197 
2198   return FirstGuardBlock;
2199 }
2200 
2201 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) {
2202   Value *NewCond = PBI->getCondition();
2203   // If this is a "cmp" instruction, only used for branching (and nowhere
2204   // else), then we can simply invert the predicate.
2205   if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2206     CmpInst *CI = cast<CmpInst>(NewCond);
2207     CI->setPredicate(CI->getInversePredicate());
2208   } else
2209     NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not");
2210 
2211   PBI->setCondition(NewCond);
2212   PBI->swapSuccessors();
2213 }
2214 
2215 bool llvm::hasOnlySimpleTerminator(const Function &F) {
2216   for (auto &BB : F) {
2217     auto *Term = BB.getTerminator();
2218     if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) ||
2219           isa<BranchInst>(Term)))
2220       return false;
2221   }
2222   return true;
2223 }
2224 
2225 bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src,
2226                                          const BasicBlock &Dest) {
2227   assert(Src.getParent() == Dest.getParent());
2228   if (!Src.getParent()->isPresplitCoroutine())
2229     return false;
2230   if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator()))
2231     if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition()))
2232       return Intr->getIntrinsicID() == Intrinsic::coro_suspend &&
2233              SW->getDefaultDest() == &Dest;
2234   return false;
2235 }
2236