xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 37f1f2684f2670b204080ef2d6c303becd28545f)
1  //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This family of functions perform manipulations on basic blocks, and
10  // instructions contained within basic blocks.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15  #include "llvm/ADT/ArrayRef.h"
16  #include "llvm/ADT/SmallPtrSet.h"
17  #include "llvm/ADT/SmallVector.h"
18  #include "llvm/ADT/Twine.h"
19  #include "llvm/Analysis/CFG.h"
20  #include "llvm/Analysis/DomTreeUpdater.h"
21  #include "llvm/Analysis/LoopInfo.h"
22  #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23  #include "llvm/Analysis/MemorySSAUpdater.h"
24  #include "llvm/Analysis/PostDominators.h"
25  #include "llvm/IR/BasicBlock.h"
26  #include "llvm/IR/CFG.h"
27  #include "llvm/IR/Constants.h"
28  #include "llvm/IR/DebugInfoMetadata.h"
29  #include "llvm/IR/Dominators.h"
30  #include "llvm/IR/Function.h"
31  #include "llvm/IR/InstrTypes.h"
32  #include "llvm/IR/Instruction.h"
33  #include "llvm/IR/Instructions.h"
34  #include "llvm/IR/IntrinsicInst.h"
35  #include "llvm/IR/LLVMContext.h"
36  #include "llvm/IR/Type.h"
37  #include "llvm/IR/User.h"
38  #include "llvm/IR/Value.h"
39  #include "llvm/IR/ValueHandle.h"
40  #include "llvm/Support/Casting.h"
41  #include "llvm/Support/Debug.h"
42  #include "llvm/Support/raw_ostream.h"
43  #include "llvm/Transforms/Utils/Local.h"
44  #include <cassert>
45  #include <cstdint>
46  #include <string>
47  #include <utility>
48  #include <vector>
49  
50  using namespace llvm;
51  
52  #define DEBUG_TYPE "basicblock-utils"
53  
54  void llvm::DetatchDeadBlocks(
55      ArrayRef<BasicBlock *> BBs,
56      SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57      bool KeepOneInputPHIs) {
58    for (auto *BB : BBs) {
59      // Loop through all of our successors and make sure they know that one
60      // of their predecessors is going away.
61      SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62      for (BasicBlock *Succ : successors(BB)) {
63        Succ->removePredecessor(BB, KeepOneInputPHIs);
64        if (Updates && UniqueSuccessors.insert(Succ).second)
65          Updates->push_back({DominatorTree::Delete, BB, Succ});
66      }
67  
68      // Zap all the instructions in the block.
69      while (!BB->empty()) {
70        Instruction &I = BB->back();
71        // If this instruction is used, replace uses with an arbitrary value.
72        // Because control flow can't get here, we don't care what we replace the
73        // value with.  Note that since this block is unreachable, and all values
74        // contained within it must dominate their uses, that all uses will
75        // eventually be removed (they are themselves dead).
76        if (!I.use_empty())
77          I.replaceAllUsesWith(UndefValue::get(I.getType()));
78        BB->getInstList().pop_back();
79      }
80      new UnreachableInst(BB->getContext(), BB);
81      assert(BB->getInstList().size() == 1 &&
82             isa<UnreachableInst>(BB->getTerminator()) &&
83             "The successor list of BB isn't empty before "
84             "applying corresponding DTU updates.");
85    }
86  }
87  
88  void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                             bool KeepOneInputPHIs) {
90    DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91  }
92  
93  void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                              bool KeepOneInputPHIs) {
95  #ifndef NDEBUG
96    // Make sure that all predecessors of each dead block is also dead.
97    SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98    assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99    for (auto *BB : Dead)
100      for (BasicBlock *Pred : predecessors(BB))
101        assert(Dead.count(Pred) && "All predecessors must be dead!");
102  #endif
103  
104    SmallVector<DominatorTree::UpdateType, 4> Updates;
105    DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106  
107    if (DTU)
108      DTU->applyUpdatesPermissive(Updates);
109  
110    for (BasicBlock *BB : BBs)
111      if (DTU)
112        DTU->deleteBB(BB);
113      else
114        BB->eraseFromParent();
115  }
116  
117  bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                        bool KeepOneInputPHIs) {
119    df_iterator_default_set<BasicBlock*> Reachable;
120  
121    // Mark all reachable blocks.
122    for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123      (void)BB/* Mark all reachable blocks */;
124  
125    // Collect all dead blocks.
126    std::vector<BasicBlock*> DeadBlocks;
127    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128      if (!Reachable.count(&*I)) {
129        BasicBlock *BB = &*I;
130        DeadBlocks.push_back(BB);
131      }
132  
133    // Delete the dead blocks.
134    DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135  
136    return !DeadBlocks.empty();
137  }
138  
139  void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                     MemoryDependenceResults *MemDep) {
141    if (!isa<PHINode>(BB->begin())) return;
142  
143    while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144      if (PN->getIncomingValue(0) != PN)
145        PN->replaceAllUsesWith(PN->getIncomingValue(0));
146      else
147        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148  
149      if (MemDep)
150        MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151  
152      PN->eraseFromParent();
153    }
154  }
155  
156  bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
157    // Recursively deleting a PHI may cause multiple PHIs to be deleted
158    // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
159    SmallVector<WeakTrackingVH, 8> PHIs;
160    for (PHINode &PN : BB->phis())
161      PHIs.push_back(&PN);
162  
163    bool Changed = false;
164    for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
165      if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
166        Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
167  
168    return Changed;
169  }
170  
171  bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
172                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
173                                       MemoryDependenceResults *MemDep,
174                                       bool PredecessorWithTwoSuccessors) {
175    if (BB->hasAddressTaken())
176      return false;
177  
178    // Can't merge if there are multiple predecessors, or no predecessors.
179    BasicBlock *PredBB = BB->getUniquePredecessor();
180    if (!PredBB) return false;
181  
182    // Don't break self-loops.
183    if (PredBB == BB) return false;
184    // Don't break unwinding instructions.
185    if (PredBB->getTerminator()->isExceptionalTerminator())
186      return false;
187  
188    // Can't merge if there are multiple distinct successors.
189    if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
190      return false;
191  
192    // Currently only allow PredBB to have two predecessors, one being BB.
193    // Update BI to branch to BB's only successor instead of BB.
194    BranchInst *PredBB_BI;
195    BasicBlock *NewSucc = nullptr;
196    unsigned FallThruPath;
197    if (PredecessorWithTwoSuccessors) {
198      if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
199        return false;
200      BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
201      if (!BB_JmpI || !BB_JmpI->isUnconditional())
202        return false;
203      NewSucc = BB_JmpI->getSuccessor(0);
204      FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
205    }
206  
207    // Can't merge if there is PHI loop.
208    for (PHINode &PN : BB->phis())
209      for (Value *IncValue : PN.incoming_values())
210        if (IncValue == &PN)
211          return false;
212  
213    LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
214                      << PredBB->getName() << "\n");
215  
216    // Begin by getting rid of unneeded PHIs.
217    SmallVector<AssertingVH<Value>, 4> IncomingValues;
218    if (isa<PHINode>(BB->front())) {
219      for (PHINode &PN : BB->phis())
220        if (!isa<PHINode>(PN.getIncomingValue(0)) ||
221            cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
222          IncomingValues.push_back(PN.getIncomingValue(0));
223      FoldSingleEntryPHINodes(BB, MemDep);
224    }
225  
226    // DTU update: Collect all the edges that exit BB.
227    // These dominator edges will be redirected from Pred.
228    std::vector<DominatorTree::UpdateType> Updates;
229    if (DTU) {
230      Updates.reserve(1 + (2 * succ_size(BB)));
231      // Add insert edges first. Experimentally, for the particular case of two
232      // blocks that can be merged, with a single successor and single predecessor
233      // respectively, it is beneficial to have all insert updates first. Deleting
234      // edges first may lead to unreachable blocks, followed by inserting edges
235      // making the blocks reachable again. Such DT updates lead to high compile
236      // times. We add inserts before deletes here to reduce compile time.
237      for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
238        // This successor of BB may already have PredBB as a predecessor.
239        if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
240          Updates.push_back({DominatorTree::Insert, PredBB, *I});
241      for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
242        Updates.push_back({DominatorTree::Delete, BB, *I});
243      Updates.push_back({DominatorTree::Delete, PredBB, BB});
244    }
245  
246    Instruction *PTI = PredBB->getTerminator();
247    Instruction *STI = BB->getTerminator();
248    Instruction *Start = &*BB->begin();
249    // If there's nothing to move, mark the starting instruction as the last
250    // instruction in the block. Terminator instruction is handled separately.
251    if (Start == STI)
252      Start = PTI;
253  
254    // Move all definitions in the successor to the predecessor...
255    PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
256                                 BB->begin(), STI->getIterator());
257  
258    if (MSSAU)
259      MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
260  
261    // Make all PHI nodes that referred to BB now refer to Pred as their
262    // source...
263    BB->replaceAllUsesWith(PredBB);
264  
265    if (PredecessorWithTwoSuccessors) {
266      // Delete the unconditional branch from BB.
267      BB->getInstList().pop_back();
268  
269      // Update branch in the predecessor.
270      PredBB_BI->setSuccessor(FallThruPath, NewSucc);
271    } else {
272      // Delete the unconditional branch from the predecessor.
273      PredBB->getInstList().pop_back();
274  
275      // Move terminator instruction.
276      PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
277  
278      // Terminator may be a memory accessing instruction too.
279      if (MSSAU)
280        if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
281                MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
282          MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
283    }
284    // Add unreachable to now empty BB.
285    new UnreachableInst(BB->getContext(), BB);
286  
287    // Eliminate duplicate/redundant dbg.values. This seems to be a good place to
288    // do that since we might end up with redundant dbg.values describing the
289    // entry PHI node post-splice.
290    RemoveRedundantDbgInstrs(PredBB);
291  
292    // Inherit predecessors name if it exists.
293    if (!PredBB->hasName())
294      PredBB->takeName(BB);
295  
296    if (LI)
297      LI->removeBlock(BB);
298  
299    if (MemDep)
300      MemDep->invalidateCachedPredecessors();
301  
302    // Finally, erase the old block and update dominator info.
303    if (DTU) {
304      assert(BB->getInstList().size() == 1 &&
305             isa<UnreachableInst>(BB->getTerminator()) &&
306             "The successor list of BB isn't empty before "
307             "applying corresponding DTU updates.");
308      DTU->applyUpdatesPermissive(Updates);
309      DTU->deleteBB(BB);
310    } else {
311      BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
312    }
313  
314    return true;
315  }
316  
317  /// Remove redundant instructions within sequences of consecutive dbg.value
318  /// instructions. This is done using a backward scan to keep the last dbg.value
319  /// describing a specific variable/fragment.
320  ///
321  /// BackwardScan strategy:
322  /// ----------------------
323  /// Given a sequence of consecutive DbgValueInst like this
324  ///
325  ///   dbg.value ..., "x", FragmentX1  (*)
326  ///   dbg.value ..., "y", FragmentY1
327  ///   dbg.value ..., "x", FragmentX2
328  ///   dbg.value ..., "x", FragmentX1  (**)
329  ///
330  /// then the instruction marked with (*) can be removed (it is guaranteed to be
331  /// obsoleted by the instruction marked with (**) as the latter instruction is
332  /// describing the same variable using the same fragment info).
333  ///
334  /// Possible improvements:
335  /// - Check fully overlapping fragments and not only identical fragments.
336  /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
337  ///   instructions being part of the sequence of consecutive instructions.
338  static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
339    SmallVector<DbgValueInst *, 8> ToBeRemoved;
340    SmallDenseSet<DebugVariable> VariableSet;
341    for (auto &I : reverse(*BB)) {
342      if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
343        DebugVariable Key(DVI->getVariable(),
344                          DVI->getExpression(),
345                          DVI->getDebugLoc()->getInlinedAt());
346        auto R = VariableSet.insert(Key);
347        // If the same variable fragment is described more than once it is enough
348        // to keep the last one (i.e. the first found since we for reverse
349        // iteration).
350        if (!R.second)
351          ToBeRemoved.push_back(DVI);
352        continue;
353      }
354      // Sequence with consecutive dbg.value instrs ended. Clear the map to
355      // restart identifying redundant instructions if case we find another
356      // dbg.value sequence.
357      VariableSet.clear();
358    }
359  
360    for (auto &Instr : ToBeRemoved)
361      Instr->eraseFromParent();
362  
363    return !ToBeRemoved.empty();
364  }
365  
366  /// Remove redundant dbg.value instructions using a forward scan. This can
367  /// remove a dbg.value instruction that is redundant due to indicating that a
368  /// variable has the same value as already being indicated by an earlier
369  /// dbg.value.
370  ///
371  /// ForwardScan strategy:
372  /// ---------------------
373  /// Given two identical dbg.value instructions, separated by a block of
374  /// instructions that isn't describing the same variable, like this
375  ///
376  ///   dbg.value X1, "x", FragmentX1  (**)
377  ///   <block of instructions, none being "dbg.value ..., "x", ...">
378  ///   dbg.value X1, "x", FragmentX1  (*)
379  ///
380  /// then the instruction marked with (*) can be removed. Variable "x" is already
381  /// described as being mapped to the SSA value X1.
382  ///
383  /// Possible improvements:
384  /// - Keep track of non-overlapping fragments.
385  static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
386    SmallVector<DbgValueInst *, 8> ToBeRemoved;
387    DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
388    for (auto &I : *BB) {
389      if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
390        DebugVariable Key(DVI->getVariable(),
391                          NoneType(),
392                          DVI->getDebugLoc()->getInlinedAt());
393        auto VMI = VariableMap.find(Key);
394        // Update the map if we found a new value/expression describing the
395        // variable, or if the variable wasn't mapped already.
396        if (VMI == VariableMap.end() ||
397            VMI->second.first != DVI->getValue() ||
398            VMI->second.second != DVI->getExpression()) {
399          VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
400          continue;
401        }
402        // Found an identical mapping. Remember the instruction for later removal.
403        ToBeRemoved.push_back(DVI);
404      }
405    }
406  
407    for (auto &Instr : ToBeRemoved)
408      Instr->eraseFromParent();
409  
410    return !ToBeRemoved.empty();
411  }
412  
413  bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
414    bool MadeChanges = false;
415    // By using the "backward scan" strategy before the "forward scan" strategy we
416    // can remove both dbg.value (2) and (3) in a situation like this:
417    //
418    //   (1) dbg.value V1, "x", DIExpression()
419    //       ...
420    //   (2) dbg.value V2, "x", DIExpression()
421    //   (3) dbg.value V1, "x", DIExpression()
422    //
423    // The backward scan will remove (2), it is made obsolete by (3). After
424    // getting (2) out of the way, the foward scan will remove (3) since "x"
425    // already is described as having the value V1 at (1).
426    MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
427    MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
428  
429    if (MadeChanges)
430      LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
431                        << BB->getName() << "\n");
432    return MadeChanges;
433  }
434  
435  void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
436                                  BasicBlock::iterator &BI, Value *V) {
437    Instruction &I = *BI;
438    // Replaces all of the uses of the instruction with uses of the value
439    I.replaceAllUsesWith(V);
440  
441    // Make sure to propagate a name if there is one already.
442    if (I.hasName() && !V->hasName())
443      V->takeName(&I);
444  
445    // Delete the unnecessary instruction now...
446    BI = BIL.erase(BI);
447  }
448  
449  void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
450                                 BasicBlock::iterator &BI, Instruction *I) {
451    assert(I->getParent() == nullptr &&
452           "ReplaceInstWithInst: Instruction already inserted into basic block!");
453  
454    // Copy debug location to newly added instruction, if it wasn't already set
455    // by the caller.
456    if (!I->getDebugLoc())
457      I->setDebugLoc(BI->getDebugLoc());
458  
459    // Insert the new instruction into the basic block...
460    BasicBlock::iterator New = BIL.insert(BI, I);
461  
462    // Replace all uses of the old instruction, and delete it.
463    ReplaceInstWithValue(BIL, BI, I);
464  
465    // Move BI back to point to the newly inserted instruction
466    BI = New;
467  }
468  
469  void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
470    BasicBlock::iterator BI(From);
471    ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
472  }
473  
474  BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
475                              LoopInfo *LI, MemorySSAUpdater *MSSAU) {
476    unsigned SuccNum = GetSuccessorNumber(BB, Succ);
477  
478    // If this is a critical edge, let SplitCriticalEdge do it.
479    Instruction *LatchTerm = BB->getTerminator();
480    if (SplitCriticalEdge(
481            LatchTerm, SuccNum,
482            CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
483      return LatchTerm->getSuccessor(SuccNum);
484  
485    // If the edge isn't critical, then BB has a single successor or Succ has a
486    // single pred.  Split the block.
487    if (BasicBlock *SP = Succ->getSinglePredecessor()) {
488      // If the successor only has a single pred, split the top of the successor
489      // block.
490      assert(SP == BB && "CFG broken");
491      SP = nullptr;
492      return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
493    }
494  
495    // Otherwise, if BB has a single successor, split it at the bottom of the
496    // block.
497    assert(BB->getTerminator()->getNumSuccessors() == 1 &&
498           "Should have a single succ!");
499    return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
500  }
501  
502  unsigned
503  llvm::SplitAllCriticalEdges(Function &F,
504                              const CriticalEdgeSplittingOptions &Options) {
505    unsigned NumBroken = 0;
506    for (BasicBlock &BB : F) {
507      Instruction *TI = BB.getTerminator();
508      if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
509          !isa<CallBrInst>(TI))
510        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
511          if (SplitCriticalEdge(TI, i, Options))
512            ++NumBroken;
513    }
514    return NumBroken;
515  }
516  
517  BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
518                               DominatorTree *DT, LoopInfo *LI,
519                               MemorySSAUpdater *MSSAU, const Twine &BBName) {
520    BasicBlock::iterator SplitIt = SplitPt->getIterator();
521    while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
522      ++SplitIt;
523    std::string Name = BBName.str();
524    BasicBlock *New = Old->splitBasicBlock(
525        SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
526  
527    // The new block lives in whichever loop the old one did. This preserves
528    // LCSSA as well, because we force the split point to be after any PHI nodes.
529    if (LI)
530      if (Loop *L = LI->getLoopFor(Old))
531        L->addBasicBlockToLoop(New, *LI);
532  
533    if (DT)
534      // Old dominates New. New node dominates all other nodes dominated by Old.
535      if (DomTreeNode *OldNode = DT->getNode(Old)) {
536        std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
537  
538        DomTreeNode *NewNode = DT->addNewBlock(New, Old);
539        for (DomTreeNode *I : Children)
540          DT->changeImmediateDominator(I, NewNode);
541      }
542  
543    // Move MemoryAccesses still tracked in Old, but part of New now.
544    // Update accesses in successor blocks accordingly.
545    if (MSSAU)
546      MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
547  
548    return New;
549  }
550  
551  /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
552  static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
553                                        ArrayRef<BasicBlock *> Preds,
554                                        DominatorTree *DT, LoopInfo *LI,
555                                        MemorySSAUpdater *MSSAU,
556                                        bool PreserveLCSSA, bool &HasLoopExit) {
557    // Update dominator tree if available.
558    if (DT) {
559      if (OldBB == DT->getRootNode()->getBlock()) {
560        assert(NewBB == &NewBB->getParent()->getEntryBlock());
561        DT->setNewRoot(NewBB);
562      } else {
563        // Split block expects NewBB to have a non-empty set of predecessors.
564        DT->splitBlock(NewBB);
565      }
566    }
567  
568    // Update MemoryPhis after split if MemorySSA is available
569    if (MSSAU)
570      MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
571  
572    // The rest of the logic is only relevant for updating the loop structures.
573    if (!LI)
574      return;
575  
576    assert(DT && "DT should be available to update LoopInfo!");
577    Loop *L = LI->getLoopFor(OldBB);
578  
579    // If we need to preserve loop analyses, collect some information about how
580    // this split will affect loops.
581    bool IsLoopEntry = !!L;
582    bool SplitMakesNewLoopHeader = false;
583    for (BasicBlock *Pred : Preds) {
584      // Preds that are not reachable from entry should not be used to identify if
585      // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
586      // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
587      // as true and make the NewBB the header of some loop. This breaks LI.
588      if (!DT->isReachableFromEntry(Pred))
589        continue;
590      // If we need to preserve LCSSA, determine if any of the preds is a loop
591      // exit.
592      if (PreserveLCSSA)
593        if (Loop *PL = LI->getLoopFor(Pred))
594          if (!PL->contains(OldBB))
595            HasLoopExit = true;
596  
597      // If we need to preserve LoopInfo, note whether any of the preds crosses
598      // an interesting loop boundary.
599      if (!L)
600        continue;
601      if (L->contains(Pred))
602        IsLoopEntry = false;
603      else
604        SplitMakesNewLoopHeader = true;
605    }
606  
607    // Unless we have a loop for OldBB, nothing else to do here.
608    if (!L)
609      return;
610  
611    if (IsLoopEntry) {
612      // Add the new block to the nearest enclosing loop (and not an adjacent
613      // loop). To find this, examine each of the predecessors and determine which
614      // loops enclose them, and select the most-nested loop which contains the
615      // loop containing the block being split.
616      Loop *InnermostPredLoop = nullptr;
617      for (BasicBlock *Pred : Preds) {
618        if (Loop *PredLoop = LI->getLoopFor(Pred)) {
619          // Seek a loop which actually contains the block being split (to avoid
620          // adjacent loops).
621          while (PredLoop && !PredLoop->contains(OldBB))
622            PredLoop = PredLoop->getParentLoop();
623  
624          // Select the most-nested of these loops which contains the block.
625          if (PredLoop && PredLoop->contains(OldBB) &&
626              (!InnermostPredLoop ||
627               InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
628            InnermostPredLoop = PredLoop;
629        }
630      }
631  
632      if (InnermostPredLoop)
633        InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
634    } else {
635      L->addBasicBlockToLoop(NewBB, *LI);
636      if (SplitMakesNewLoopHeader)
637        L->moveToHeader(NewBB);
638    }
639  }
640  
641  /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
642  /// This also updates AliasAnalysis, if available.
643  static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
644                             ArrayRef<BasicBlock *> Preds, BranchInst *BI,
645                             bool HasLoopExit) {
646    // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
647    SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
648    for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
649      PHINode *PN = cast<PHINode>(I++);
650  
651      // Check to see if all of the values coming in are the same.  If so, we
652      // don't need to create a new PHI node, unless it's needed for LCSSA.
653      Value *InVal = nullptr;
654      if (!HasLoopExit) {
655        InVal = PN->getIncomingValueForBlock(Preds[0]);
656        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
657          if (!PredSet.count(PN->getIncomingBlock(i)))
658            continue;
659          if (!InVal)
660            InVal = PN->getIncomingValue(i);
661          else if (InVal != PN->getIncomingValue(i)) {
662            InVal = nullptr;
663            break;
664          }
665        }
666      }
667  
668      if (InVal) {
669        // If all incoming values for the new PHI would be the same, just don't
670        // make a new PHI.  Instead, just remove the incoming values from the old
671        // PHI.
672  
673        // NOTE! This loop walks backwards for a reason! First off, this minimizes
674        // the cost of removal if we end up removing a large number of values, and
675        // second off, this ensures that the indices for the incoming values
676        // aren't invalidated when we remove one.
677        for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
678          if (PredSet.count(PN->getIncomingBlock(i)))
679            PN->removeIncomingValue(i, false);
680  
681        // Add an incoming value to the PHI node in the loop for the preheader
682        // edge.
683        PN->addIncoming(InVal, NewBB);
684        continue;
685      }
686  
687      // If the values coming into the block are not the same, we need a new
688      // PHI.
689      // Create the new PHI node, insert it into NewBB at the end of the block
690      PHINode *NewPHI =
691          PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
692  
693      // NOTE! This loop walks backwards for a reason! First off, this minimizes
694      // the cost of removal if we end up removing a large number of values, and
695      // second off, this ensures that the indices for the incoming values aren't
696      // invalidated when we remove one.
697      for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
698        BasicBlock *IncomingBB = PN->getIncomingBlock(i);
699        if (PredSet.count(IncomingBB)) {
700          Value *V = PN->removeIncomingValue(i, false);
701          NewPHI->addIncoming(V, IncomingBB);
702        }
703      }
704  
705      PN->addIncoming(NewPHI, NewBB);
706    }
707  }
708  
709  BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
710                                           ArrayRef<BasicBlock *> Preds,
711                                           const char *Suffix, DominatorTree *DT,
712                                           LoopInfo *LI, MemorySSAUpdater *MSSAU,
713                                           bool PreserveLCSSA) {
714    // Do not attempt to split that which cannot be split.
715    if (!BB->canSplitPredecessors())
716      return nullptr;
717  
718    // For the landingpads we need to act a bit differently.
719    // Delegate this work to the SplitLandingPadPredecessors.
720    if (BB->isLandingPad()) {
721      SmallVector<BasicBlock*, 2> NewBBs;
722      std::string NewName = std::string(Suffix) + ".split-lp";
723  
724      SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
725                                  LI, MSSAU, PreserveLCSSA);
726      return NewBBs[0];
727    }
728  
729    // Create new basic block, insert right before the original block.
730    BasicBlock *NewBB = BasicBlock::Create(
731        BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
732  
733    // The new block unconditionally branches to the old block.
734    BranchInst *BI = BranchInst::Create(BB, NewBB);
735    // Splitting the predecessors of a loop header creates a preheader block.
736    if (LI && LI->isLoopHeader(BB))
737      // Using the loop start line number prevents debuggers stepping into the
738      // loop body for this instruction.
739      BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
740    else
741      BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
742  
743    // Move the edges from Preds to point to NewBB instead of BB.
744    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
745      // This is slightly more strict than necessary; the minimum requirement
746      // is that there be no more than one indirectbr branching to BB. And
747      // all BlockAddress uses would need to be updated.
748      assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
749             "Cannot split an edge from an IndirectBrInst");
750      assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
751             "Cannot split an edge from a CallBrInst");
752      Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
753    }
754  
755    // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
756    // node becomes an incoming value for BB's phi node.  However, if the Preds
757    // list is empty, we need to insert dummy entries into the PHI nodes in BB to
758    // account for the newly created predecessor.
759    if (Preds.empty()) {
760      // Insert dummy values as the incoming value.
761      for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
762        cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
763    }
764  
765    // Update DominatorTree, LoopInfo, and LCCSA analysis information.
766    bool HasLoopExit = false;
767    UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
768                              HasLoopExit);
769  
770    if (!Preds.empty()) {
771      // Update the PHI nodes in BB with the values coming from NewBB.
772      UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
773    }
774  
775    return NewBB;
776  }
777  
778  void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
779                                         ArrayRef<BasicBlock *> Preds,
780                                         const char *Suffix1, const char *Suffix2,
781                                         SmallVectorImpl<BasicBlock *> &NewBBs,
782                                         DominatorTree *DT, LoopInfo *LI,
783                                         MemorySSAUpdater *MSSAU,
784                                         bool PreserveLCSSA) {
785    assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
786  
787    // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
788    // it right before the original block.
789    BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
790                                            OrigBB->getName() + Suffix1,
791                                            OrigBB->getParent(), OrigBB);
792    NewBBs.push_back(NewBB1);
793  
794    // The new block unconditionally branches to the old block.
795    BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
796    BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
797  
798    // Move the edges from Preds to point to NewBB1 instead of OrigBB.
799    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
800      // This is slightly more strict than necessary; the minimum requirement
801      // is that there be no more than one indirectbr branching to BB. And
802      // all BlockAddress uses would need to be updated.
803      assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
804             "Cannot split an edge from an IndirectBrInst");
805      Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
806    }
807  
808    bool HasLoopExit = false;
809    UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
810                              HasLoopExit);
811  
812    // Update the PHI nodes in OrigBB with the values coming from NewBB1.
813    UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
814  
815    // Move the remaining edges from OrigBB to point to NewBB2.
816    SmallVector<BasicBlock*, 8> NewBB2Preds;
817    for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
818         i != e; ) {
819      BasicBlock *Pred = *i++;
820      if (Pred == NewBB1) continue;
821      assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
822             "Cannot split an edge from an IndirectBrInst");
823      NewBB2Preds.push_back(Pred);
824      e = pred_end(OrigBB);
825    }
826  
827    BasicBlock *NewBB2 = nullptr;
828    if (!NewBB2Preds.empty()) {
829      // Create another basic block for the rest of OrigBB's predecessors.
830      NewBB2 = BasicBlock::Create(OrigBB->getContext(),
831                                  OrigBB->getName() + Suffix2,
832                                  OrigBB->getParent(), OrigBB);
833      NewBBs.push_back(NewBB2);
834  
835      // The new block unconditionally branches to the old block.
836      BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
837      BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
838  
839      // Move the remaining edges from OrigBB to point to NewBB2.
840      for (BasicBlock *NewBB2Pred : NewBB2Preds)
841        NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
842  
843      // Update DominatorTree, LoopInfo, and LCCSA analysis information.
844      HasLoopExit = false;
845      UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
846                                PreserveLCSSA, HasLoopExit);
847  
848      // Update the PHI nodes in OrigBB with the values coming from NewBB2.
849      UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
850    }
851  
852    LandingPadInst *LPad = OrigBB->getLandingPadInst();
853    Instruction *Clone1 = LPad->clone();
854    Clone1->setName(Twine("lpad") + Suffix1);
855    NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
856  
857    if (NewBB2) {
858      Instruction *Clone2 = LPad->clone();
859      Clone2->setName(Twine("lpad") + Suffix2);
860      NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
861  
862      // Create a PHI node for the two cloned landingpad instructions only
863      // if the original landingpad instruction has some uses.
864      if (!LPad->use_empty()) {
865        assert(!LPad->getType()->isTokenTy() &&
866               "Split cannot be applied if LPad is token type. Otherwise an "
867               "invalid PHINode of token type would be created.");
868        PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
869        PN->addIncoming(Clone1, NewBB1);
870        PN->addIncoming(Clone2, NewBB2);
871        LPad->replaceAllUsesWith(PN);
872      }
873      LPad->eraseFromParent();
874    } else {
875      // There is no second clone. Just replace the landing pad with the first
876      // clone.
877      LPad->replaceAllUsesWith(Clone1);
878      LPad->eraseFromParent();
879    }
880  }
881  
882  ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
883                                               BasicBlock *Pred,
884                                               DomTreeUpdater *DTU) {
885    Instruction *UncondBranch = Pred->getTerminator();
886    // Clone the return and add it to the end of the predecessor.
887    Instruction *NewRet = RI->clone();
888    Pred->getInstList().push_back(NewRet);
889  
890    // If the return instruction returns a value, and if the value was a
891    // PHI node in "BB", propagate the right value into the return.
892    for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
893         i != e; ++i) {
894      Value *V = *i;
895      Instruction *NewBC = nullptr;
896      if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
897        // Return value might be bitcasted. Clone and insert it before the
898        // return instruction.
899        V = BCI->getOperand(0);
900        NewBC = BCI->clone();
901        Pred->getInstList().insert(NewRet->getIterator(), NewBC);
902        *i = NewBC;
903      }
904      if (PHINode *PN = dyn_cast<PHINode>(V)) {
905        if (PN->getParent() == BB) {
906          if (NewBC)
907            NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
908          else
909            *i = PN->getIncomingValueForBlock(Pred);
910        }
911      }
912    }
913  
914    // Update any PHI nodes in the returning block to realize that we no
915    // longer branch to them.
916    BB->removePredecessor(Pred);
917    UncondBranch->eraseFromParent();
918  
919    if (DTU)
920      DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
921  
922    return cast<ReturnInst>(NewRet);
923  }
924  
925  Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
926                                               Instruction *SplitBefore,
927                                               bool Unreachable,
928                                               MDNode *BranchWeights,
929                                               DominatorTree *DT, LoopInfo *LI,
930                                               BasicBlock *ThenBlock) {
931    BasicBlock *Head = SplitBefore->getParent();
932    BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
933    Instruction *HeadOldTerm = Head->getTerminator();
934    LLVMContext &C = Head->getContext();
935    Instruction *CheckTerm;
936    bool CreateThenBlock = (ThenBlock == nullptr);
937    if (CreateThenBlock) {
938      ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
939      if (Unreachable)
940        CheckTerm = new UnreachableInst(C, ThenBlock);
941      else
942        CheckTerm = BranchInst::Create(Tail, ThenBlock);
943      CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
944    } else
945      CheckTerm = ThenBlock->getTerminator();
946    BranchInst *HeadNewTerm =
947      BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
948    HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
949    ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
950  
951    if (DT) {
952      if (DomTreeNode *OldNode = DT->getNode(Head)) {
953        std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
954  
955        DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
956        for (DomTreeNode *Child : Children)
957          DT->changeImmediateDominator(Child, NewNode);
958  
959        // Head dominates ThenBlock.
960        if (CreateThenBlock)
961          DT->addNewBlock(ThenBlock, Head);
962        else
963          DT->changeImmediateDominator(ThenBlock, Head);
964      }
965    }
966  
967    if (LI) {
968      if (Loop *L = LI->getLoopFor(Head)) {
969        L->addBasicBlockToLoop(ThenBlock, *LI);
970        L->addBasicBlockToLoop(Tail, *LI);
971      }
972    }
973  
974    return CheckTerm;
975  }
976  
977  void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
978                                           Instruction **ThenTerm,
979                                           Instruction **ElseTerm,
980                                           MDNode *BranchWeights) {
981    BasicBlock *Head = SplitBefore->getParent();
982    BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
983    Instruction *HeadOldTerm = Head->getTerminator();
984    LLVMContext &C = Head->getContext();
985    BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
986    BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
987    *ThenTerm = BranchInst::Create(Tail, ThenBlock);
988    (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
989    *ElseTerm = BranchInst::Create(Tail, ElseBlock);
990    (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
991    BranchInst *HeadNewTerm =
992      BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
993    HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
994    ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
995  }
996  
997  Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
998                               BasicBlock *&IfFalse) {
999    PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1000    BasicBlock *Pred1 = nullptr;
1001    BasicBlock *Pred2 = nullptr;
1002  
1003    if (SomePHI) {
1004      if (SomePHI->getNumIncomingValues() != 2)
1005        return nullptr;
1006      Pred1 = SomePHI->getIncomingBlock(0);
1007      Pred2 = SomePHI->getIncomingBlock(1);
1008    } else {
1009      pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1010      if (PI == PE) // No predecessor
1011        return nullptr;
1012      Pred1 = *PI++;
1013      if (PI == PE) // Only one predecessor
1014        return nullptr;
1015      Pred2 = *PI++;
1016      if (PI != PE) // More than two predecessors
1017        return nullptr;
1018    }
1019  
1020    // We can only handle branches.  Other control flow will be lowered to
1021    // branches if possible anyway.
1022    BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1023    BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1024    if (!Pred1Br || !Pred2Br)
1025      return nullptr;
1026  
1027    // Eliminate code duplication by ensuring that Pred1Br is conditional if
1028    // either are.
1029    if (Pred2Br->isConditional()) {
1030      // If both branches are conditional, we don't have an "if statement".  In
1031      // reality, we could transform this case, but since the condition will be
1032      // required anyway, we stand no chance of eliminating it, so the xform is
1033      // probably not profitable.
1034      if (Pred1Br->isConditional())
1035        return nullptr;
1036  
1037      std::swap(Pred1, Pred2);
1038      std::swap(Pred1Br, Pred2Br);
1039    }
1040  
1041    if (Pred1Br->isConditional()) {
1042      // The only thing we have to watch out for here is to make sure that Pred2
1043      // doesn't have incoming edges from other blocks.  If it does, the condition
1044      // doesn't dominate BB.
1045      if (!Pred2->getSinglePredecessor())
1046        return nullptr;
1047  
1048      // If we found a conditional branch predecessor, make sure that it branches
1049      // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1050      if (Pred1Br->getSuccessor(0) == BB &&
1051          Pred1Br->getSuccessor(1) == Pred2) {
1052        IfTrue = Pred1;
1053        IfFalse = Pred2;
1054      } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1055                 Pred1Br->getSuccessor(1) == BB) {
1056        IfTrue = Pred2;
1057        IfFalse = Pred1;
1058      } else {
1059        // We know that one arm of the conditional goes to BB, so the other must
1060        // go somewhere unrelated, and this must not be an "if statement".
1061        return nullptr;
1062      }
1063  
1064      return Pred1Br->getCondition();
1065    }
1066  
1067    // Ok, if we got here, both predecessors end with an unconditional branch to
1068    // BB.  Don't panic!  If both blocks only have a single (identical)
1069    // predecessor, and THAT is a conditional branch, then we're all ok!
1070    BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1071    if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1072      return nullptr;
1073  
1074    // Otherwise, if this is a conditional branch, then we can use it!
1075    BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1076    if (!BI) return nullptr;
1077  
1078    assert(BI->isConditional() && "Two successors but not conditional?");
1079    if (BI->getSuccessor(0) == Pred1) {
1080      IfTrue = Pred1;
1081      IfFalse = Pred2;
1082    } else {
1083      IfTrue = Pred2;
1084      IfFalse = Pred1;
1085    }
1086    return BI->getCondition();
1087  }
1088