1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include <cassert> 47 #include <cstdint> 48 #include <string> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "basicblock-utils" 55 56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( 57 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, 58 cl::desc("Set the maximum path length when checking whether a basic block " 59 "is followed by a block that either has a terminating " 60 "deoptimizing call or is terminated with an unreachable")); 61 62 void llvm::detachDeadBlocks( 63 ArrayRef<BasicBlock *> BBs, 64 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 65 bool KeepOneInputPHIs) { 66 for (auto *BB : BBs) { 67 // Loop through all of our successors and make sure they know that one 68 // of their predecessors is going away. 69 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 70 for (BasicBlock *Succ : successors(BB)) { 71 Succ->removePredecessor(BB, KeepOneInputPHIs); 72 if (Updates && UniqueSuccessors.insert(Succ).second) 73 Updates->push_back({DominatorTree::Delete, BB, Succ}); 74 } 75 76 // Zap all the instructions in the block. 77 while (!BB->empty()) { 78 Instruction &I = BB->back(); 79 // If this instruction is used, replace uses with an arbitrary value. 80 // Because control flow can't get here, we don't care what we replace the 81 // value with. Note that since this block is unreachable, and all values 82 // contained within it must dominate their uses, that all uses will 83 // eventually be removed (they are themselves dead). 84 if (!I.use_empty()) 85 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 86 BB->back().eraseFromParent(); 87 } 88 new UnreachableInst(BB->getContext(), BB); 89 assert(BB->size() == 1 && 90 isa<UnreachableInst>(BB->getTerminator()) && 91 "The successor list of BB isn't empty before " 92 "applying corresponding DTU updates."); 93 } 94 } 95 96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 97 bool KeepOneInputPHIs) { 98 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 99 } 100 101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 102 bool KeepOneInputPHIs) { 103 #ifndef NDEBUG 104 // Make sure that all predecessors of each dead block is also dead. 105 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 106 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 107 for (auto *BB : Dead) 108 for (BasicBlock *Pred : predecessors(BB)) 109 assert(Dead.count(Pred) && "All predecessors must be dead!"); 110 #endif 111 112 SmallVector<DominatorTree::UpdateType, 4> Updates; 113 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 114 115 if (DTU) 116 DTU->applyUpdates(Updates); 117 118 for (BasicBlock *BB : BBs) 119 if (DTU) 120 DTU->deleteBB(BB); 121 else 122 BB->eraseFromParent(); 123 } 124 125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 126 bool KeepOneInputPHIs) { 127 df_iterator_default_set<BasicBlock*> Reachable; 128 129 // Mark all reachable blocks. 130 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 131 (void)BB/* Mark all reachable blocks */; 132 133 // Collect all dead blocks. 134 std::vector<BasicBlock*> DeadBlocks; 135 for (BasicBlock &BB : F) 136 if (!Reachable.count(&BB)) 137 DeadBlocks.push_back(&BB); 138 139 // Delete the dead blocks. 140 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 141 142 return !DeadBlocks.empty(); 143 } 144 145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 146 MemoryDependenceResults *MemDep) { 147 if (!isa<PHINode>(BB->begin())) 148 return false; 149 150 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 151 if (PN->getIncomingValue(0) != PN) 152 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 153 else 154 PN->replaceAllUsesWith(PoisonValue::get(PN->getType())); 155 156 if (MemDep) 157 MemDep->removeInstruction(PN); // Memdep updates AA itself. 158 159 PN->eraseFromParent(); 160 } 161 return true; 162 } 163 164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 165 MemorySSAUpdater *MSSAU) { 166 // Recursively deleting a PHI may cause multiple PHIs to be deleted 167 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 168 SmallVector<WeakTrackingVH, 8> PHIs; 169 for (PHINode &PN : BB->phis()) 170 PHIs.push_back(&PN); 171 172 bool Changed = false; 173 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 174 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 175 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 176 177 return Changed; 178 } 179 180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 181 LoopInfo *LI, MemorySSAUpdater *MSSAU, 182 MemoryDependenceResults *MemDep, 183 bool PredecessorWithTwoSuccessors, 184 DominatorTree *DT) { 185 if (BB->hasAddressTaken()) 186 return false; 187 188 // Can't merge if there are multiple predecessors, or no predecessors. 189 BasicBlock *PredBB = BB->getUniquePredecessor(); 190 if (!PredBB) return false; 191 192 // Don't break self-loops. 193 if (PredBB == BB) return false; 194 195 // Don't break unwinding instructions or terminators with other side-effects. 196 Instruction *PTI = PredBB->getTerminator(); 197 if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects()) 198 return false; 199 200 // Can't merge if there are multiple distinct successors. 201 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 202 return false; 203 204 // Currently only allow PredBB to have two predecessors, one being BB. 205 // Update BI to branch to BB's only successor instead of BB. 206 BranchInst *PredBB_BI; 207 BasicBlock *NewSucc = nullptr; 208 unsigned FallThruPath; 209 if (PredecessorWithTwoSuccessors) { 210 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI))) 211 return false; 212 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 214 return false; 215 NewSucc = BB_JmpI->getSuccessor(0); 216 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 217 } 218 219 // Can't merge if there is PHI loop. 220 for (PHINode &PN : BB->phis()) 221 if (llvm::is_contained(PN.incoming_values(), &PN)) 222 return false; 223 224 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 225 << PredBB->getName() << "\n"); 226 227 // Begin by getting rid of unneeded PHIs. 228 SmallVector<AssertingVH<Value>, 4> IncomingValues; 229 if (isa<PHINode>(BB->front())) { 230 for (PHINode &PN : BB->phis()) 231 if (!isa<PHINode>(PN.getIncomingValue(0)) || 232 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 233 IncomingValues.push_back(PN.getIncomingValue(0)); 234 FoldSingleEntryPHINodes(BB, MemDep); 235 } 236 237 if (DT) { 238 assert(!DTU && "cannot use both DT and DTU for updates"); 239 DomTreeNode *PredNode = DT->getNode(PredBB); 240 DomTreeNode *BBNode = DT->getNode(BB); 241 if (PredNode) { 242 assert(BBNode && "PredNode unreachable but BBNode reachable?"); 243 for (DomTreeNode *C : to_vector(BBNode->children())) 244 C->setIDom(PredNode); 245 } 246 } 247 // DTU update: Collect all the edges that exit BB. 248 // These dominator edges will be redirected from Pred. 249 std::vector<DominatorTree::UpdateType> Updates; 250 if (DTU) { 251 assert(!DT && "cannot use both DT and DTU for updates"); 252 // To avoid processing the same predecessor more than once. 253 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 254 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 255 succ_end(PredBB)); 256 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1); 257 // Add insert edges first. Experimentally, for the particular case of two 258 // blocks that can be merged, with a single successor and single predecessor 259 // respectively, it is beneficial to have all insert updates first. Deleting 260 // edges first may lead to unreachable blocks, followed by inserting edges 261 // making the blocks reachable again. Such DT updates lead to high compile 262 // times. We add inserts before deletes here to reduce compile time. 263 for (BasicBlock *SuccOfBB : successors(BB)) 264 // This successor of BB may already be a PredBB's successor. 265 if (!SuccsOfPredBB.contains(SuccOfBB)) 266 if (SeenSuccs.insert(SuccOfBB).second) 267 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 268 SeenSuccs.clear(); 269 for (BasicBlock *SuccOfBB : successors(BB)) 270 if (SeenSuccs.insert(SuccOfBB).second) 271 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 272 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 273 } 274 275 Instruction *STI = BB->getTerminator(); 276 Instruction *Start = &*BB->begin(); 277 // If there's nothing to move, mark the starting instruction as the last 278 // instruction in the block. Terminator instruction is handled separately. 279 if (Start == STI) 280 Start = PTI; 281 282 // Move all definitions in the successor to the predecessor... 283 PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator()); 284 285 if (MSSAU) 286 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 287 288 // Make all PHI nodes that referred to BB now refer to Pred as their 289 // source... 290 BB->replaceAllUsesWith(PredBB); 291 292 if (PredecessorWithTwoSuccessors) { 293 // Delete the unconditional branch from BB. 294 BB->back().eraseFromParent(); 295 296 // Update branch in the predecessor. 297 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 298 } else { 299 // Delete the unconditional branch from the predecessor. 300 PredBB->back().eraseFromParent(); 301 302 // Move terminator instruction. 303 BB->back().moveBeforePreserving(*PredBB, PredBB->end()); 304 305 // Terminator may be a memory accessing instruction too. 306 if (MSSAU) 307 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 308 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 309 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 310 } 311 // Add unreachable to now empty BB. 312 new UnreachableInst(BB->getContext(), BB); 313 314 // Inherit predecessors name if it exists. 315 if (!PredBB->hasName()) 316 PredBB->takeName(BB); 317 318 if (LI) 319 LI->removeBlock(BB); 320 321 if (MemDep) 322 MemDep->invalidateCachedPredecessors(); 323 324 if (DTU) 325 DTU->applyUpdates(Updates); 326 327 if (DT) { 328 assert(succ_empty(BB) && 329 "successors should have been transferred to PredBB"); 330 DT->eraseNode(BB); 331 } 332 333 // Finally, erase the old block and update dominator info. 334 DeleteDeadBlock(BB, DTU); 335 336 return true; 337 } 338 339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 340 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 341 LoopInfo *LI) { 342 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 343 344 bool BlocksHaveBeenMerged = false; 345 while (!MergeBlocks.empty()) { 346 BasicBlock *BB = *MergeBlocks.begin(); 347 BasicBlock *Dest = BB->getSingleSuccessor(); 348 if (Dest && (!L || L->contains(Dest))) { 349 BasicBlock *Fold = Dest->getUniquePredecessor(); 350 (void)Fold; 351 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 352 assert(Fold == BB && 353 "Expecting BB to be unique predecessor of the Dest block"); 354 MergeBlocks.erase(Dest); 355 BlocksHaveBeenMerged = true; 356 } else 357 MergeBlocks.erase(BB); 358 } else 359 MergeBlocks.erase(BB); 360 } 361 return BlocksHaveBeenMerged; 362 } 363 364 /// Remove redundant instructions within sequences of consecutive dbg.value 365 /// instructions. This is done using a backward scan to keep the last dbg.value 366 /// describing a specific variable/fragment. 367 /// 368 /// BackwardScan strategy: 369 /// ---------------------- 370 /// Given a sequence of consecutive DbgValueInst like this 371 /// 372 /// dbg.value ..., "x", FragmentX1 (*) 373 /// dbg.value ..., "y", FragmentY1 374 /// dbg.value ..., "x", FragmentX2 375 /// dbg.value ..., "x", FragmentX1 (**) 376 /// 377 /// then the instruction marked with (*) can be removed (it is guaranteed to be 378 /// obsoleted by the instruction marked with (**) as the latter instruction is 379 /// describing the same variable using the same fragment info). 380 /// 381 /// Possible improvements: 382 /// - Check fully overlapping fragments and not only identical fragments. 383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being 384 /// part of the sequence of consecutive instructions. 385 static bool DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 386 SmallVector<DPValue *, 8> ToBeRemoved; 387 SmallDenseSet<DebugVariable> VariableSet; 388 for (auto &I : reverse(*BB)) { 389 for (DPValue &DPV : reverse(I.getDbgValueRange())) { 390 // Skip declare-type records, as the debug intrinsic method only works 391 // on dbg.value intrinsics. 392 if (DPV.getType() == DPValue::LocationType::Declare) { 393 // The debug intrinsic method treats dbg.declares are "non-debug" 394 // instructions (i.e., a break in a consecutive range of debug 395 // intrinsics). Emulate that to create identical outputs. See 396 // "Possible improvements" above. 397 // FIXME: Delete the line below. 398 VariableSet.clear(); 399 continue; 400 } 401 402 DebugVariable Key(DPV.getVariable(), DPV.getExpression(), 403 DPV.getDebugLoc()->getInlinedAt()); 404 auto R = VariableSet.insert(Key); 405 // If the same variable fragment is described more than once it is enough 406 // to keep the last one (i.e. the first found since we for reverse 407 // iteration). 408 if (R.second) 409 continue; 410 411 if (DPV.isDbgAssign()) { 412 // Don't delete dbg.assign intrinsics that are linked to instructions. 413 if (!at::getAssignmentInsts(&DPV).empty()) 414 continue; 415 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 416 } 417 418 ToBeRemoved.push_back(&DPV); 419 continue; 420 } 421 // Sequence with consecutive dbg.value instrs ended. Clear the map to 422 // restart identifying redundant instructions if case we find another 423 // dbg.value sequence. 424 VariableSet.clear(); 425 } 426 427 for (auto &DPV : ToBeRemoved) 428 DPV->eraseFromParent(); 429 430 return !ToBeRemoved.empty(); 431 } 432 433 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 434 if (BB->IsNewDbgInfoFormat) 435 return DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BB); 436 437 SmallVector<DbgValueInst *, 8> ToBeRemoved; 438 SmallDenseSet<DebugVariable> VariableSet; 439 for (auto &I : reverse(*BB)) { 440 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 441 DebugVariable Key(DVI->getVariable(), 442 DVI->getExpression(), 443 DVI->getDebugLoc()->getInlinedAt()); 444 auto R = VariableSet.insert(Key); 445 // If the variable fragment hasn't been seen before then we don't want 446 // to remove this dbg intrinsic. 447 if (R.second) 448 continue; 449 450 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) { 451 // Don't delete dbg.assign intrinsics that are linked to instructions. 452 if (!at::getAssignmentInsts(DAI).empty()) 453 continue; 454 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 455 } 456 457 // If the same variable fragment is described more than once it is enough 458 // to keep the last one (i.e. the first found since we for reverse 459 // iteration). 460 ToBeRemoved.push_back(DVI); 461 continue; 462 } 463 // Sequence with consecutive dbg.value instrs ended. Clear the map to 464 // restart identifying redundant instructions if case we find another 465 // dbg.value sequence. 466 VariableSet.clear(); 467 } 468 469 for (auto &Instr : ToBeRemoved) 470 Instr->eraseFromParent(); 471 472 return !ToBeRemoved.empty(); 473 } 474 475 /// Remove redundant dbg.value instructions using a forward scan. This can 476 /// remove a dbg.value instruction that is redundant due to indicating that a 477 /// variable has the same value as already being indicated by an earlier 478 /// dbg.value. 479 /// 480 /// ForwardScan strategy: 481 /// --------------------- 482 /// Given two identical dbg.value instructions, separated by a block of 483 /// instructions that isn't describing the same variable, like this 484 /// 485 /// dbg.value X1, "x", FragmentX1 (**) 486 /// <block of instructions, none being "dbg.value ..., "x", ..."> 487 /// dbg.value X1, "x", FragmentX1 (*) 488 /// 489 /// then the instruction marked with (*) can be removed. Variable "x" is already 490 /// described as being mapped to the SSA value X1. 491 /// 492 /// Possible improvements: 493 /// - Keep track of non-overlapping fragments. 494 static bool DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 495 SmallVector<DPValue *, 8> ToBeRemoved; 496 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 497 VariableMap; 498 for (auto &I : *BB) { 499 for (DPValue &DPV : I.getDbgValueRange()) { 500 if (DPV.getType() == DPValue::LocationType::Declare) 501 continue; 502 DebugVariable Key(DPV.getVariable(), std::nullopt, 503 DPV.getDebugLoc()->getInlinedAt()); 504 auto VMI = VariableMap.find(Key); 505 // A dbg.assign with no linked instructions can be treated like a 506 // dbg.value (i.e. can be deleted). 507 bool IsDbgValueKind = 508 (!DPV.isDbgAssign() || at::getAssignmentInsts(&DPV).empty()); 509 510 // Update the map if we found a new value/expression describing the 511 // variable, or if the variable wasn't mapped already. 512 SmallVector<Value *, 4> Values(DPV.location_ops()); 513 if (VMI == VariableMap.end() || VMI->second.first != Values || 514 VMI->second.second != DPV.getExpression()) { 515 if (IsDbgValueKind) 516 VariableMap[Key] = {Values, DPV.getExpression()}; 517 else 518 VariableMap[Key] = {Values, nullptr}; 519 continue; 520 } 521 // Don't delete dbg.assign intrinsics that are linked to instructions. 522 if (!IsDbgValueKind) 523 continue; 524 // Found an identical mapping. Remember the instruction for later removal. 525 ToBeRemoved.push_back(&DPV); 526 } 527 } 528 529 for (auto *DPV : ToBeRemoved) 530 DPV->eraseFromParent(); 531 532 return !ToBeRemoved.empty(); 533 } 534 535 static bool DPValuesRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 536 assert(BB->isEntryBlock() && "expected entry block"); 537 SmallVector<DPValue *, 8> ToBeRemoved; 538 DenseSet<DebugVariable> SeenDefForAggregate; 539 // Returns the DebugVariable for DVI with no fragment info. 540 auto GetAggregateVariable = [](const DPValue &DPV) { 541 return DebugVariable(DPV.getVariable(), std::nullopt, 542 DPV.getDebugLoc().getInlinedAt()); 543 }; 544 545 // Remove undef dbg.assign intrinsics that are encountered before 546 // any non-undef intrinsics from the entry block. 547 for (auto &I : *BB) { 548 for (DPValue &DPV : I.getDbgValueRange()) { 549 if (!DPV.isDbgValue() && !DPV.isDbgAssign()) 550 continue; 551 bool IsDbgValueKind = 552 (DPV.isDbgValue() || at::getAssignmentInsts(&DPV).empty()); 553 DebugVariable Aggregate = GetAggregateVariable(DPV); 554 if (!SeenDefForAggregate.contains(Aggregate)) { 555 bool IsKill = DPV.isKillLocation() && IsDbgValueKind; 556 if (!IsKill) { 557 SeenDefForAggregate.insert(Aggregate); 558 } else if (DPV.isDbgAssign()) { 559 ToBeRemoved.push_back(&DPV); 560 } 561 } 562 } 563 } 564 565 for (DPValue *DPV : ToBeRemoved) 566 DPV->eraseFromParent(); 567 568 return !ToBeRemoved.empty(); 569 } 570 571 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 572 if (BB->IsNewDbgInfoFormat) 573 return DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BB); 574 575 SmallVector<DbgValueInst *, 8> ToBeRemoved; 576 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 577 VariableMap; 578 for (auto &I : *BB) { 579 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 580 DebugVariable Key(DVI->getVariable(), std::nullopt, 581 DVI->getDebugLoc()->getInlinedAt()); 582 auto VMI = VariableMap.find(Key); 583 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 584 // A dbg.assign with no linked instructions can be treated like a 585 // dbg.value (i.e. can be deleted). 586 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 587 588 // Update the map if we found a new value/expression describing the 589 // variable, or if the variable wasn't mapped already. 590 SmallVector<Value *, 4> Values(DVI->getValues()); 591 if (VMI == VariableMap.end() || VMI->second.first != Values || 592 VMI->second.second != DVI->getExpression()) { 593 // Use a sentinel value (nullptr) for the DIExpression when we see a 594 // linked dbg.assign so that the next debug intrinsic will never match 595 // it (i.e. always treat linked dbg.assigns as if they're unique). 596 if (IsDbgValueKind) 597 VariableMap[Key] = {Values, DVI->getExpression()}; 598 else 599 VariableMap[Key] = {Values, nullptr}; 600 continue; 601 } 602 603 // Don't delete dbg.assign intrinsics that are linked to instructions. 604 if (!IsDbgValueKind) 605 continue; 606 ToBeRemoved.push_back(DVI); 607 } 608 } 609 610 for (auto &Instr : ToBeRemoved) 611 Instr->eraseFromParent(); 612 613 return !ToBeRemoved.empty(); 614 } 615 616 /// Remove redundant undef dbg.assign intrinsic from an entry block using a 617 /// forward scan. 618 /// Strategy: 619 /// --------------------- 620 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not 621 /// linked to an intrinsic, and don't share an aggregate variable with a debug 622 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns 623 /// that come before non-undef debug intrinsics for the variable are 624 /// deleted. Given: 625 /// 626 /// dbg.assign undef, "x", FragmentX1 (*) 627 /// <block of instructions, none being "dbg.value ..., "x", ..."> 628 /// dbg.value %V, "x", FragmentX2 629 /// <block of instructions, none being "dbg.value ..., "x", ..."> 630 /// dbg.assign undef, "x", FragmentX1 631 /// 632 /// then (only) the instruction marked with (*) can be removed. 633 /// Possible improvements: 634 /// - Keep track of non-overlapping fragments. 635 static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 636 if (BB->IsNewDbgInfoFormat) 637 return DPValuesRemoveUndefDbgAssignsFromEntryBlock(BB); 638 639 assert(BB->isEntryBlock() && "expected entry block"); 640 SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved; 641 DenseSet<DebugVariable> SeenDefForAggregate; 642 // Returns the DebugVariable for DVI with no fragment info. 643 auto GetAggregateVariable = [](DbgValueInst *DVI) { 644 return DebugVariable(DVI->getVariable(), std::nullopt, 645 DVI->getDebugLoc()->getInlinedAt()); 646 }; 647 648 // Remove undef dbg.assign intrinsics that are encountered before 649 // any non-undef intrinsics from the entry block. 650 for (auto &I : *BB) { 651 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I); 652 if (!DVI) 653 continue; 654 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 655 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 656 DebugVariable Aggregate = GetAggregateVariable(DVI); 657 if (!SeenDefForAggregate.contains(Aggregate)) { 658 bool IsKill = DVI->isKillLocation() && IsDbgValueKind; 659 if (!IsKill) { 660 SeenDefForAggregate.insert(Aggregate); 661 } else if (DAI) { 662 ToBeRemoved.push_back(DAI); 663 } 664 } 665 } 666 667 for (DbgAssignIntrinsic *DAI : ToBeRemoved) 668 DAI->eraseFromParent(); 669 670 return !ToBeRemoved.empty(); 671 } 672 673 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 674 bool MadeChanges = false; 675 // By using the "backward scan" strategy before the "forward scan" strategy we 676 // can remove both dbg.value (2) and (3) in a situation like this: 677 // 678 // (1) dbg.value V1, "x", DIExpression() 679 // ... 680 // (2) dbg.value V2, "x", DIExpression() 681 // (3) dbg.value V1, "x", DIExpression() 682 // 683 // The backward scan will remove (2), it is made obsolete by (3). After 684 // getting (2) out of the way, the foward scan will remove (3) since "x" 685 // already is described as having the value V1 at (1). 686 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 687 if (BB->isEntryBlock() && 688 isAssignmentTrackingEnabled(*BB->getParent()->getParent())) 689 MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB); 690 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 691 692 if (MadeChanges) 693 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 694 << BB->getName() << "\n"); 695 return MadeChanges; 696 } 697 698 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) { 699 Instruction &I = *BI; 700 // Replaces all of the uses of the instruction with uses of the value 701 I.replaceAllUsesWith(V); 702 703 // Make sure to propagate a name if there is one already. 704 if (I.hasName() && !V->hasName()) 705 V->takeName(&I); 706 707 // Delete the unnecessary instruction now... 708 BI = BI->eraseFromParent(); 709 } 710 711 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, 712 Instruction *I) { 713 assert(I->getParent() == nullptr && 714 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 715 716 // Copy debug location to newly added instruction, if it wasn't already set 717 // by the caller. 718 if (!I->getDebugLoc()) 719 I->setDebugLoc(BI->getDebugLoc()); 720 721 // Insert the new instruction into the basic block... 722 BasicBlock::iterator New = I->insertInto(BB, BI); 723 724 // Replace all uses of the old instruction, and delete it. 725 ReplaceInstWithValue(BI, I); 726 727 // Move BI back to point to the newly inserted instruction 728 BI = New; 729 } 730 731 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { 732 // Remember visited blocks to avoid infinite loop 733 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 734 unsigned Depth = 0; 735 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && 736 VisitedBlocks.insert(BB).second) { 737 if (isa<UnreachableInst>(BB->getTerminator()) || 738 BB->getTerminatingDeoptimizeCall()) 739 return true; 740 BB = BB->getUniqueSuccessor(); 741 } 742 return false; 743 } 744 745 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 746 BasicBlock::iterator BI(From); 747 ReplaceInstWithInst(From->getParent(), BI, To); 748 } 749 750 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 751 LoopInfo *LI, MemorySSAUpdater *MSSAU, 752 const Twine &BBName) { 753 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 754 755 Instruction *LatchTerm = BB->getTerminator(); 756 757 CriticalEdgeSplittingOptions Options = 758 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 759 760 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 761 // If it is a critical edge, and the succesor is an exception block, handle 762 // the split edge logic in this specific function 763 if (Succ->isEHPad()) 764 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 765 766 // If this is a critical edge, let SplitKnownCriticalEdge do it. 767 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 768 } 769 770 // If the edge isn't critical, then BB has a single successor or Succ has a 771 // single pred. Split the block. 772 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 773 // If the successor only has a single pred, split the top of the successor 774 // block. 775 assert(SP == BB && "CFG broken"); 776 SP = nullptr; 777 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 778 /*Before=*/true); 779 } 780 781 // Otherwise, if BB has a single successor, split it at the bottom of the 782 // block. 783 assert(BB->getTerminator()->getNumSuccessors() == 1 && 784 "Should have a single succ!"); 785 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 786 } 787 788 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 789 if (auto *II = dyn_cast<InvokeInst>(TI)) 790 II->setUnwindDest(Succ); 791 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 792 CS->setUnwindDest(Succ); 793 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 794 CR->setUnwindDest(Succ); 795 else 796 llvm_unreachable("unexpected terminator instruction"); 797 } 798 799 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 800 BasicBlock *NewPred, PHINode *Until) { 801 int BBIdx = 0; 802 for (PHINode &PN : DestBB->phis()) { 803 // We manually update the LandingPadReplacement PHINode and it is the last 804 // PHI Node. So, if we find it, we are done. 805 if (Until == &PN) 806 break; 807 808 // Reuse the previous value of BBIdx if it lines up. In cases where we 809 // have multiple phi nodes with *lots* of predecessors, this is a speed 810 // win because we don't have to scan the PHI looking for TIBB. This 811 // happens because the BB list of PHI nodes are usually in the same 812 // order. 813 if (PN.getIncomingBlock(BBIdx) != OldPred) 814 BBIdx = PN.getBasicBlockIndex(OldPred); 815 816 assert(BBIdx != -1 && "Invalid PHI Index!"); 817 PN.setIncomingBlock(BBIdx, NewPred); 818 } 819 } 820 821 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 822 LandingPadInst *OriginalPad, 823 PHINode *LandingPadReplacement, 824 const CriticalEdgeSplittingOptions &Options, 825 const Twine &BBName) { 826 827 auto *PadInst = Succ->getFirstNonPHI(); 828 if (!LandingPadReplacement && !PadInst->isEHPad()) 829 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 830 831 auto *LI = Options.LI; 832 SmallVector<BasicBlock *, 4> LoopPreds; 833 // Check if extra modifications will be required to preserve loop-simplify 834 // form after splitting. If it would require splitting blocks with IndirectBr 835 // terminators, bail out if preserving loop-simplify form is requested. 836 if (Options.PreserveLoopSimplify && LI) { 837 if (Loop *BBLoop = LI->getLoopFor(BB)) { 838 839 // The only way that we can break LoopSimplify form by splitting a 840 // critical edge is when there exists some edge from BBLoop to Succ *and* 841 // the only edge into Succ from outside of BBLoop is that of NewBB after 842 // the split. If the first isn't true, then LoopSimplify still holds, 843 // NewBB is the new exit block and it has no non-loop predecessors. If the 844 // second isn't true, then Succ was not in LoopSimplify form prior to 845 // the split as it had a non-loop predecessor. In both of these cases, 846 // the predecessor must be directly in BBLoop, not in a subloop, or again 847 // LoopSimplify doesn't hold. 848 for (BasicBlock *P : predecessors(Succ)) { 849 if (P == BB) 850 continue; // The new block is known. 851 if (LI->getLoopFor(P) != BBLoop) { 852 // Loop is not in LoopSimplify form, no need to re simplify after 853 // splitting edge. 854 LoopPreds.clear(); 855 break; 856 } 857 LoopPreds.push_back(P); 858 } 859 // Loop-simplify form can be preserved, if we can split all in-loop 860 // predecessors. 861 if (any_of(LoopPreds, [](BasicBlock *Pred) { 862 return isa<IndirectBrInst>(Pred->getTerminator()); 863 })) { 864 return nullptr; 865 } 866 } 867 } 868 869 auto *NewBB = 870 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 871 setUnwindEdgeTo(BB->getTerminator(), NewBB); 872 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 873 874 if (LandingPadReplacement) { 875 auto *NewLP = OriginalPad->clone(); 876 auto *Terminator = BranchInst::Create(Succ, NewBB); 877 NewLP->insertBefore(Terminator); 878 LandingPadReplacement->addIncoming(NewLP, NewBB); 879 } else { 880 Value *ParentPad = nullptr; 881 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 882 ParentPad = FuncletPad->getParentPad(); 883 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 884 ParentPad = CatchSwitch->getParentPad(); 885 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 886 ParentPad = CleanupPad->getParentPad(); 887 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 888 ParentPad = LandingPad->getParent(); 889 else 890 llvm_unreachable("handling for other EHPads not implemented yet"); 891 892 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 893 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 894 } 895 896 auto *DT = Options.DT; 897 auto *MSSAU = Options.MSSAU; 898 if (!DT && !LI) 899 return NewBB; 900 901 if (DT) { 902 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 903 SmallVector<DominatorTree::UpdateType, 3> Updates; 904 905 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 906 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 907 Updates.push_back({DominatorTree::Delete, BB, Succ}); 908 909 DTU.applyUpdates(Updates); 910 DTU.flush(); 911 912 if (MSSAU) { 913 MSSAU->applyUpdates(Updates, *DT); 914 if (VerifyMemorySSA) 915 MSSAU->getMemorySSA()->verifyMemorySSA(); 916 } 917 } 918 919 if (LI) { 920 if (Loop *BBLoop = LI->getLoopFor(BB)) { 921 // If one or the other blocks were not in a loop, the new block is not 922 // either, and thus LI doesn't need to be updated. 923 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 924 if (BBLoop == SuccLoop) { 925 // Both in the same loop, the NewBB joins loop. 926 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 927 } else if (BBLoop->contains(SuccLoop)) { 928 // Edge from an outer loop to an inner loop. Add to the outer loop. 929 BBLoop->addBasicBlockToLoop(NewBB, *LI); 930 } else if (SuccLoop->contains(BBLoop)) { 931 // Edge from an inner loop to an outer loop. Add to the outer loop. 932 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 933 } else { 934 // Edge from two loops with no containment relation. Because these 935 // are natural loops, we know that the destination block must be the 936 // header of its loop (adding a branch into a loop elsewhere would 937 // create an irreducible loop). 938 assert(SuccLoop->getHeader() == Succ && 939 "Should not create irreducible loops!"); 940 if (Loop *P = SuccLoop->getParentLoop()) 941 P->addBasicBlockToLoop(NewBB, *LI); 942 } 943 } 944 945 // If BB is in a loop and Succ is outside of that loop, we may need to 946 // update LoopSimplify form and LCSSA form. 947 if (!BBLoop->contains(Succ)) { 948 assert(!BBLoop->contains(NewBB) && 949 "Split point for loop exit is contained in loop!"); 950 951 // Update LCSSA form in the newly created exit block. 952 if (Options.PreserveLCSSA) { 953 createPHIsForSplitLoopExit(BB, NewBB, Succ); 954 } 955 956 if (!LoopPreds.empty()) { 957 BasicBlock *NewExitBB = SplitBlockPredecessors( 958 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 959 if (Options.PreserveLCSSA) 960 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 961 } 962 } 963 } 964 } 965 966 return NewBB; 967 } 968 969 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 970 BasicBlock *SplitBB, BasicBlock *DestBB) { 971 // SplitBB shouldn't have anything non-trivial in it yet. 972 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 973 SplitBB->isLandingPad()) && 974 "SplitBB has non-PHI nodes!"); 975 976 // For each PHI in the destination block. 977 for (PHINode &PN : DestBB->phis()) { 978 int Idx = PN.getBasicBlockIndex(SplitBB); 979 assert(Idx >= 0 && "Invalid Block Index"); 980 Value *V = PN.getIncomingValue(Idx); 981 982 // If the input is a PHI which already satisfies LCSSA, don't create 983 // a new one. 984 if (const PHINode *VP = dyn_cast<PHINode>(V)) 985 if (VP->getParent() == SplitBB) 986 continue; 987 988 // Otherwise a new PHI is needed. Create one and populate it. 989 PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split"); 990 BasicBlock::iterator InsertPos = 991 SplitBB->isLandingPad() ? SplitBB->begin() 992 : SplitBB->getTerminator()->getIterator(); 993 NewPN->insertBefore(InsertPos); 994 for (BasicBlock *BB : Preds) 995 NewPN->addIncoming(V, BB); 996 997 // Update the original PHI. 998 PN.setIncomingValue(Idx, NewPN); 999 } 1000 } 1001 1002 unsigned 1003 llvm::SplitAllCriticalEdges(Function &F, 1004 const CriticalEdgeSplittingOptions &Options) { 1005 unsigned NumBroken = 0; 1006 for (BasicBlock &BB : F) { 1007 Instruction *TI = BB.getTerminator(); 1008 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 1009 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1010 if (SplitCriticalEdge(TI, i, Options)) 1011 ++NumBroken; 1012 } 1013 return NumBroken; 1014 } 1015 1016 static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, 1017 DomTreeUpdater *DTU, DominatorTree *DT, 1018 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1019 const Twine &BBName, bool Before) { 1020 if (Before) { 1021 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 1022 return splitBlockBefore(Old, SplitPt, 1023 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 1024 BBName); 1025 } 1026 BasicBlock::iterator SplitIt = SplitPt; 1027 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 1028 ++SplitIt; 1029 assert(SplitIt != SplitPt->getParent()->end()); 1030 } 1031 std::string Name = BBName.str(); 1032 BasicBlock *New = Old->splitBasicBlock( 1033 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 1034 1035 // The new block lives in whichever loop the old one did. This preserves 1036 // LCSSA as well, because we force the split point to be after any PHI nodes. 1037 if (LI) 1038 if (Loop *L = LI->getLoopFor(Old)) 1039 L->addBasicBlockToLoop(New, *LI); 1040 1041 if (DTU) { 1042 SmallVector<DominatorTree::UpdateType, 8> Updates; 1043 // Old dominates New. New node dominates all other nodes dominated by Old. 1044 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; 1045 Updates.push_back({DominatorTree::Insert, Old, New}); 1046 Updates.reserve(Updates.size() + 2 * succ_size(New)); 1047 for (BasicBlock *SuccessorOfOld : successors(New)) 1048 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) { 1049 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld}); 1050 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld}); 1051 } 1052 1053 DTU->applyUpdates(Updates); 1054 } else if (DT) 1055 // Old dominates New. New node dominates all other nodes dominated by Old. 1056 if (DomTreeNode *OldNode = DT->getNode(Old)) { 1057 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1058 1059 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 1060 for (DomTreeNode *I : Children) 1061 DT->changeImmediateDominator(I, NewNode); 1062 } 1063 1064 // Move MemoryAccesses still tracked in Old, but part of New now. 1065 // Update accesses in successor blocks accordingly. 1066 if (MSSAU) 1067 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 1068 1069 return New; 1070 } 1071 1072 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1073 DominatorTree *DT, LoopInfo *LI, 1074 MemorySSAUpdater *MSSAU, const Twine &BBName, 1075 bool Before) { 1076 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 1077 Before); 1078 } 1079 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1080 DomTreeUpdater *DTU, LoopInfo *LI, 1081 MemorySSAUpdater *MSSAU, const Twine &BBName, 1082 bool Before) { 1083 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 1084 Before); 1085 } 1086 1087 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, 1088 DomTreeUpdater *DTU, LoopInfo *LI, 1089 MemorySSAUpdater *MSSAU, 1090 const Twine &BBName) { 1091 1092 BasicBlock::iterator SplitIt = SplitPt; 1093 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 1094 ++SplitIt; 1095 std::string Name = BBName.str(); 1096 BasicBlock *New = Old->splitBasicBlock( 1097 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 1098 /* Before=*/true); 1099 1100 // The new block lives in whichever loop the old one did. This preserves 1101 // LCSSA as well, because we force the split point to be after any PHI nodes. 1102 if (LI) 1103 if (Loop *L = LI->getLoopFor(Old)) 1104 L->addBasicBlockToLoop(New, *LI); 1105 1106 if (DTU) { 1107 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 1108 // New dominates Old. The predecessor nodes of the Old node dominate 1109 // New node. 1110 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; 1111 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 1112 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New)); 1113 for (BasicBlock *PredecessorOfOld : predecessors(New)) 1114 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) { 1115 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New}); 1116 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old}); 1117 } 1118 1119 DTU->applyUpdates(DTUpdates); 1120 1121 // Move MemoryAccesses still tracked in Old, but part of New now. 1122 // Update accesses in successor blocks accordingly. 1123 if (MSSAU) { 1124 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 1125 if (VerifyMemorySSA) 1126 MSSAU->getMemorySSA()->verifyMemorySSA(); 1127 } 1128 } 1129 return New; 1130 } 1131 1132 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 1133 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 1134 ArrayRef<BasicBlock *> Preds, 1135 DomTreeUpdater *DTU, DominatorTree *DT, 1136 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1137 bool PreserveLCSSA, bool &HasLoopExit) { 1138 // Update dominator tree if available. 1139 if (DTU) { 1140 // Recalculation of DomTree is needed when updating a forward DomTree and 1141 // the Entry BB is replaced. 1142 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 1143 // The entry block was removed and there is no external interface for 1144 // the dominator tree to be notified of this change. In this corner-case 1145 // we recalculate the entire tree. 1146 DTU->recalculate(*NewBB->getParent()); 1147 } else { 1148 // Split block expects NewBB to have a non-empty set of predecessors. 1149 SmallVector<DominatorTree::UpdateType, 8> Updates; 1150 SmallPtrSet<BasicBlock *, 8> UniquePreds; 1151 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 1152 Updates.reserve(Updates.size() + 2 * Preds.size()); 1153 for (auto *Pred : Preds) 1154 if (UniquePreds.insert(Pred).second) { 1155 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 1156 Updates.push_back({DominatorTree::Delete, Pred, OldBB}); 1157 } 1158 DTU->applyUpdates(Updates); 1159 } 1160 } else if (DT) { 1161 if (OldBB == DT->getRootNode()->getBlock()) { 1162 assert(NewBB->isEntryBlock()); 1163 DT->setNewRoot(NewBB); 1164 } else { 1165 // Split block expects NewBB to have a non-empty set of predecessors. 1166 DT->splitBlock(NewBB); 1167 } 1168 } 1169 1170 // Update MemoryPhis after split if MemorySSA is available 1171 if (MSSAU) 1172 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 1173 1174 // The rest of the logic is only relevant for updating the loop structures. 1175 if (!LI) 1176 return; 1177 1178 if (DTU && DTU->hasDomTree()) 1179 DT = &DTU->getDomTree(); 1180 assert(DT && "DT should be available to update LoopInfo!"); 1181 Loop *L = LI->getLoopFor(OldBB); 1182 1183 // If we need to preserve loop analyses, collect some information about how 1184 // this split will affect loops. 1185 bool IsLoopEntry = !!L; 1186 bool SplitMakesNewLoopHeader = false; 1187 for (BasicBlock *Pred : Preds) { 1188 // Preds that are not reachable from entry should not be used to identify if 1189 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 1190 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 1191 // as true and make the NewBB the header of some loop. This breaks LI. 1192 if (!DT->isReachableFromEntry(Pred)) 1193 continue; 1194 // If we need to preserve LCSSA, determine if any of the preds is a loop 1195 // exit. 1196 if (PreserveLCSSA) 1197 if (Loop *PL = LI->getLoopFor(Pred)) 1198 if (!PL->contains(OldBB)) 1199 HasLoopExit = true; 1200 1201 // If we need to preserve LoopInfo, note whether any of the preds crosses 1202 // an interesting loop boundary. 1203 if (!L) 1204 continue; 1205 if (L->contains(Pred)) 1206 IsLoopEntry = false; 1207 else 1208 SplitMakesNewLoopHeader = true; 1209 } 1210 1211 // Unless we have a loop for OldBB, nothing else to do here. 1212 if (!L) 1213 return; 1214 1215 if (IsLoopEntry) { 1216 // Add the new block to the nearest enclosing loop (and not an adjacent 1217 // loop). To find this, examine each of the predecessors and determine which 1218 // loops enclose them, and select the most-nested loop which contains the 1219 // loop containing the block being split. 1220 Loop *InnermostPredLoop = nullptr; 1221 for (BasicBlock *Pred : Preds) { 1222 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 1223 // Seek a loop which actually contains the block being split (to avoid 1224 // adjacent loops). 1225 while (PredLoop && !PredLoop->contains(OldBB)) 1226 PredLoop = PredLoop->getParentLoop(); 1227 1228 // Select the most-nested of these loops which contains the block. 1229 if (PredLoop && PredLoop->contains(OldBB) && 1230 (!InnermostPredLoop || 1231 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 1232 InnermostPredLoop = PredLoop; 1233 } 1234 } 1235 1236 if (InnermostPredLoop) 1237 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 1238 } else { 1239 L->addBasicBlockToLoop(NewBB, *LI); 1240 if (SplitMakesNewLoopHeader) 1241 L->moveToHeader(NewBB); 1242 } 1243 } 1244 1245 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 1246 /// This also updates AliasAnalysis, if available. 1247 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 1248 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 1249 bool HasLoopExit) { 1250 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 1251 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 1252 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1253 PHINode *PN = cast<PHINode>(I++); 1254 1255 // Check to see if all of the values coming in are the same. If so, we 1256 // don't need to create a new PHI node, unless it's needed for LCSSA. 1257 Value *InVal = nullptr; 1258 if (!HasLoopExit) { 1259 InVal = PN->getIncomingValueForBlock(Preds[0]); 1260 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1261 if (!PredSet.count(PN->getIncomingBlock(i))) 1262 continue; 1263 if (!InVal) 1264 InVal = PN->getIncomingValue(i); 1265 else if (InVal != PN->getIncomingValue(i)) { 1266 InVal = nullptr; 1267 break; 1268 } 1269 } 1270 } 1271 1272 if (InVal) { 1273 // If all incoming values for the new PHI would be the same, just don't 1274 // make a new PHI. Instead, just remove the incoming values from the old 1275 // PHI. 1276 PN->removeIncomingValueIf( 1277 [&](unsigned Idx) { 1278 return PredSet.contains(PN->getIncomingBlock(Idx)); 1279 }, 1280 /* DeletePHIIfEmpty */ false); 1281 1282 // Add an incoming value to the PHI node in the loop for the preheader 1283 // edge. 1284 PN->addIncoming(InVal, NewBB); 1285 continue; 1286 } 1287 1288 // If the values coming into the block are not the same, we need a new 1289 // PHI. 1290 // Create the new PHI node, insert it into NewBB at the end of the block 1291 PHINode *NewPHI = 1292 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 1293 1294 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1295 // the cost of removal if we end up removing a large number of values, and 1296 // second off, this ensures that the indices for the incoming values aren't 1297 // invalidated when we remove one. 1298 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1299 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1300 if (PredSet.count(IncomingBB)) { 1301 Value *V = PN->removeIncomingValue(i, false); 1302 NewPHI->addIncoming(V, IncomingBB); 1303 } 1304 } 1305 1306 PN->addIncoming(NewPHI, NewBB); 1307 } 1308 } 1309 1310 static void SplitLandingPadPredecessorsImpl( 1311 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1312 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1313 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1314 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1315 1316 static BasicBlock * 1317 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1318 const char *Suffix, DomTreeUpdater *DTU, 1319 DominatorTree *DT, LoopInfo *LI, 1320 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1321 // Do not attempt to split that which cannot be split. 1322 if (!BB->canSplitPredecessors()) 1323 return nullptr; 1324 1325 // For the landingpads we need to act a bit differently. 1326 // Delegate this work to the SplitLandingPadPredecessors. 1327 if (BB->isLandingPad()) { 1328 SmallVector<BasicBlock*, 2> NewBBs; 1329 std::string NewName = std::string(Suffix) + ".split-lp"; 1330 1331 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1332 DTU, DT, LI, MSSAU, PreserveLCSSA); 1333 return NewBBs[0]; 1334 } 1335 1336 // Create new basic block, insert right before the original block. 1337 BasicBlock *NewBB = BasicBlock::Create( 1338 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1339 1340 // The new block unconditionally branches to the old block. 1341 BranchInst *BI = BranchInst::Create(BB, NewBB); 1342 1343 Loop *L = nullptr; 1344 BasicBlock *OldLatch = nullptr; 1345 // Splitting the predecessors of a loop header creates a preheader block. 1346 if (LI && LI->isLoopHeader(BB)) { 1347 L = LI->getLoopFor(BB); 1348 // Using the loop start line number prevents debuggers stepping into the 1349 // loop body for this instruction. 1350 BI->setDebugLoc(L->getStartLoc()); 1351 1352 // If BB is the header of the Loop, it is possible that the loop is 1353 // modified, such that the current latch does not remain the latch of the 1354 // loop. If that is the case, the loop metadata from the current latch needs 1355 // to be applied to the new latch. 1356 OldLatch = L->getLoopLatch(); 1357 } else 1358 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1359 1360 // Move the edges from Preds to point to NewBB instead of BB. 1361 for (BasicBlock *Pred : Preds) { 1362 // This is slightly more strict than necessary; the minimum requirement 1363 // is that there be no more than one indirectbr branching to BB. And 1364 // all BlockAddress uses would need to be updated. 1365 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1366 "Cannot split an edge from an IndirectBrInst"); 1367 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB); 1368 } 1369 1370 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1371 // node becomes an incoming value for BB's phi node. However, if the Preds 1372 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1373 // account for the newly created predecessor. 1374 if (Preds.empty()) { 1375 // Insert dummy values as the incoming value. 1376 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1377 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB); 1378 } 1379 1380 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1381 bool HasLoopExit = false; 1382 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1383 HasLoopExit); 1384 1385 if (!Preds.empty()) { 1386 // Update the PHI nodes in BB with the values coming from NewBB. 1387 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1388 } 1389 1390 if (OldLatch) { 1391 BasicBlock *NewLatch = L->getLoopLatch(); 1392 if (NewLatch != OldLatch) { 1393 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 1394 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 1395 // It's still possible that OldLatch is the latch of another inner loop, 1396 // in which case we do not remove the metadata. 1397 Loop *IL = LI->getLoopFor(OldLatch); 1398 if (IL && IL->getLoopLatch() != OldLatch) 1399 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 1400 } 1401 } 1402 1403 return NewBB; 1404 } 1405 1406 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1407 ArrayRef<BasicBlock *> Preds, 1408 const char *Suffix, DominatorTree *DT, 1409 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1410 bool PreserveLCSSA) { 1411 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1412 MSSAU, PreserveLCSSA); 1413 } 1414 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1415 ArrayRef<BasicBlock *> Preds, 1416 const char *Suffix, 1417 DomTreeUpdater *DTU, LoopInfo *LI, 1418 MemorySSAUpdater *MSSAU, 1419 bool PreserveLCSSA) { 1420 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1421 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1422 } 1423 1424 static void SplitLandingPadPredecessorsImpl( 1425 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1426 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1427 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1428 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1429 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1430 1431 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1432 // it right before the original block. 1433 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1434 OrigBB->getName() + Suffix1, 1435 OrigBB->getParent(), OrigBB); 1436 NewBBs.push_back(NewBB1); 1437 1438 // The new block unconditionally branches to the old block. 1439 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1440 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1441 1442 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1443 for (BasicBlock *Pred : Preds) { 1444 // This is slightly more strict than necessary; the minimum requirement 1445 // is that there be no more than one indirectbr branching to BB. And 1446 // all BlockAddress uses would need to be updated. 1447 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1448 "Cannot split an edge from an IndirectBrInst"); 1449 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1450 } 1451 1452 bool HasLoopExit = false; 1453 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1454 PreserveLCSSA, HasLoopExit); 1455 1456 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1457 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1458 1459 // Move the remaining edges from OrigBB to point to NewBB2. 1460 SmallVector<BasicBlock*, 8> NewBB2Preds; 1461 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1462 i != e; ) { 1463 BasicBlock *Pred = *i++; 1464 if (Pred == NewBB1) continue; 1465 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1466 "Cannot split an edge from an IndirectBrInst"); 1467 NewBB2Preds.push_back(Pred); 1468 e = pred_end(OrigBB); 1469 } 1470 1471 BasicBlock *NewBB2 = nullptr; 1472 if (!NewBB2Preds.empty()) { 1473 // Create another basic block for the rest of OrigBB's predecessors. 1474 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1475 OrigBB->getName() + Suffix2, 1476 OrigBB->getParent(), OrigBB); 1477 NewBBs.push_back(NewBB2); 1478 1479 // The new block unconditionally branches to the old block. 1480 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1481 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1482 1483 // Move the remaining edges from OrigBB to point to NewBB2. 1484 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1485 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1486 1487 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1488 HasLoopExit = false; 1489 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1490 PreserveLCSSA, HasLoopExit); 1491 1492 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1493 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1494 } 1495 1496 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1497 Instruction *Clone1 = LPad->clone(); 1498 Clone1->setName(Twine("lpad") + Suffix1); 1499 Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt()); 1500 1501 if (NewBB2) { 1502 Instruction *Clone2 = LPad->clone(); 1503 Clone2->setName(Twine("lpad") + Suffix2); 1504 Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt()); 1505 1506 // Create a PHI node for the two cloned landingpad instructions only 1507 // if the original landingpad instruction has some uses. 1508 if (!LPad->use_empty()) { 1509 assert(!LPad->getType()->isTokenTy() && 1510 "Split cannot be applied if LPad is token type. Otherwise an " 1511 "invalid PHINode of token type would be created."); 1512 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 1513 PN->addIncoming(Clone1, NewBB1); 1514 PN->addIncoming(Clone2, NewBB2); 1515 LPad->replaceAllUsesWith(PN); 1516 } 1517 LPad->eraseFromParent(); 1518 } else { 1519 // There is no second clone. Just replace the landing pad with the first 1520 // clone. 1521 LPad->replaceAllUsesWith(Clone1); 1522 LPad->eraseFromParent(); 1523 } 1524 } 1525 1526 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1527 ArrayRef<BasicBlock *> Preds, 1528 const char *Suffix1, const char *Suffix2, 1529 SmallVectorImpl<BasicBlock *> &NewBBs, 1530 DomTreeUpdater *DTU, LoopInfo *LI, 1531 MemorySSAUpdater *MSSAU, 1532 bool PreserveLCSSA) { 1533 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1534 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1535 PreserveLCSSA); 1536 } 1537 1538 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1539 BasicBlock *Pred, 1540 DomTreeUpdater *DTU) { 1541 Instruction *UncondBranch = Pred->getTerminator(); 1542 // Clone the return and add it to the end of the predecessor. 1543 Instruction *NewRet = RI->clone(); 1544 NewRet->insertInto(Pred, Pred->end()); 1545 1546 // If the return instruction returns a value, and if the value was a 1547 // PHI node in "BB", propagate the right value into the return. 1548 for (Use &Op : NewRet->operands()) { 1549 Value *V = Op; 1550 Instruction *NewBC = nullptr; 1551 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1552 // Return value might be bitcasted. Clone and insert it before the 1553 // return instruction. 1554 V = BCI->getOperand(0); 1555 NewBC = BCI->clone(); 1556 NewBC->insertInto(Pred, NewRet->getIterator()); 1557 Op = NewBC; 1558 } 1559 1560 Instruction *NewEV = nullptr; 1561 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1562 V = EVI->getOperand(0); 1563 NewEV = EVI->clone(); 1564 if (NewBC) { 1565 NewBC->setOperand(0, NewEV); 1566 NewEV->insertInto(Pred, NewBC->getIterator()); 1567 } else { 1568 NewEV->insertInto(Pred, NewRet->getIterator()); 1569 Op = NewEV; 1570 } 1571 } 1572 1573 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1574 if (PN->getParent() == BB) { 1575 if (NewEV) { 1576 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1577 } else if (NewBC) 1578 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1579 else 1580 Op = PN->getIncomingValueForBlock(Pred); 1581 } 1582 } 1583 } 1584 1585 // Update any PHI nodes in the returning block to realize that we no 1586 // longer branch to them. 1587 BB->removePredecessor(Pred); 1588 UncondBranch->eraseFromParent(); 1589 1590 if (DTU) 1591 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1592 1593 return cast<ReturnInst>(NewRet); 1594 } 1595 1596 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1597 BasicBlock::iterator SplitBefore, 1598 bool Unreachable, 1599 MDNode *BranchWeights, 1600 DomTreeUpdater *DTU, LoopInfo *LI, 1601 BasicBlock *ThenBlock) { 1602 SplitBlockAndInsertIfThenElse( 1603 Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr, 1604 /* UnreachableThen */ Unreachable, 1605 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1606 return ThenBlock->getTerminator(); 1607 } 1608 1609 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond, 1610 BasicBlock::iterator SplitBefore, 1611 bool Unreachable, 1612 MDNode *BranchWeights, 1613 DomTreeUpdater *DTU, LoopInfo *LI, 1614 BasicBlock *ElseBlock) { 1615 SplitBlockAndInsertIfThenElse( 1616 Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock, 1617 /* UnreachableThen */ false, 1618 /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI); 1619 return ElseBlock->getTerminator(); 1620 } 1621 1622 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, 1623 Instruction **ThenTerm, 1624 Instruction **ElseTerm, 1625 MDNode *BranchWeights, 1626 DomTreeUpdater *DTU, LoopInfo *LI) { 1627 BasicBlock *ThenBlock = nullptr; 1628 BasicBlock *ElseBlock = nullptr; 1629 SplitBlockAndInsertIfThenElse( 1630 Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false, 1631 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1632 1633 *ThenTerm = ThenBlock->getTerminator(); 1634 *ElseTerm = ElseBlock->getTerminator(); 1635 } 1636 1637 void llvm::SplitBlockAndInsertIfThenElse( 1638 Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock, 1639 BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse, 1640 MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) { 1641 assert((ThenBlock || ElseBlock) && 1642 "At least one branch block must be created"); 1643 assert((!UnreachableThen || !UnreachableElse) && 1644 "Split block tail must be reachable"); 1645 1646 SmallVector<DominatorTree::UpdateType, 8> Updates; 1647 SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors; 1648 BasicBlock *Head = SplitBefore->getParent(); 1649 if (DTU) { 1650 UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head)); 1651 Updates.reserve(4 + 2 * UniqueOrigSuccessors.size()); 1652 } 1653 1654 LLVMContext &C = Head->getContext(); 1655 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 1656 BasicBlock *TrueBlock = Tail; 1657 BasicBlock *FalseBlock = Tail; 1658 bool ThenToTailEdge = false; 1659 bool ElseToTailEdge = false; 1660 1661 // Encapsulate the logic around creation/insertion/etc of a new block. 1662 auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB, 1663 bool &ToTailEdge) { 1664 if (PBB == nullptr) 1665 return; // Do not create/insert a block. 1666 1667 if (*PBB) 1668 BB = *PBB; // Caller supplied block, use it. 1669 else { 1670 // Create a new block. 1671 BB = BasicBlock::Create(C, "", Head->getParent(), Tail); 1672 if (Unreachable) 1673 (void)new UnreachableInst(C, BB); 1674 else { 1675 (void)BranchInst::Create(Tail, BB); 1676 ToTailEdge = true; 1677 } 1678 BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc()); 1679 // Pass the new block back to the caller. 1680 *PBB = BB; 1681 } 1682 }; 1683 1684 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge); 1685 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge); 1686 1687 Instruction *HeadOldTerm = Head->getTerminator(); 1688 BranchInst *HeadNewTerm = 1689 BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond); 1690 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1691 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1692 1693 if (DTU) { 1694 Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock); 1695 Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock); 1696 if (ThenToTailEdge) 1697 Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail); 1698 if (ElseToTailEdge) 1699 Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail); 1700 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1701 Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor); 1702 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1703 Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor); 1704 DTU->applyUpdates(Updates); 1705 } 1706 1707 if (LI) { 1708 if (Loop *L = LI->getLoopFor(Head); L) { 1709 if (ThenToTailEdge) 1710 L->addBasicBlockToLoop(TrueBlock, *LI); 1711 if (ElseToTailEdge) 1712 L->addBasicBlockToLoop(FalseBlock, *LI); 1713 L->addBasicBlockToLoop(Tail, *LI); 1714 } 1715 } 1716 } 1717 1718 std::pair<Instruction*, Value*> 1719 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) { 1720 BasicBlock *LoopPred = SplitBefore->getParent(); 1721 BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore); 1722 BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore); 1723 1724 auto *Ty = End->getType(); 1725 auto &DL = SplitBefore->getModule()->getDataLayout(); 1726 const unsigned Bitwidth = DL.getTypeSizeInBits(Ty); 1727 1728 IRBuilder<> Builder(LoopBody->getTerminator()); 1729 auto *IV = Builder.CreatePHI(Ty, 2, "iv"); 1730 auto *IVNext = 1731 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 1732 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 1733 auto *IVCheck = Builder.CreateICmpEQ(IVNext, End, 1734 IV->getName() + ".check"); 1735 Builder.CreateCondBr(IVCheck, LoopExit, LoopBody); 1736 LoopBody->getTerminator()->eraseFromParent(); 1737 1738 // Populate the IV PHI. 1739 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred); 1740 IV->addIncoming(IVNext, LoopBody); 1741 1742 return std::make_pair(LoopBody->getFirstNonPHI(), IV); 1743 } 1744 1745 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC, 1746 Type *IndexTy, Instruction *InsertBefore, 1747 std::function<void(IRBuilderBase&, Value*)> Func) { 1748 1749 IRBuilder<> IRB(InsertBefore); 1750 1751 if (EC.isScalable()) { 1752 Value *NumElements = IRB.CreateElementCount(IndexTy, EC); 1753 1754 auto [BodyIP, Index] = 1755 SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore); 1756 1757 IRB.SetInsertPoint(BodyIP); 1758 Func(IRB, Index); 1759 return; 1760 } 1761 1762 unsigned Num = EC.getFixedValue(); 1763 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1764 IRB.SetInsertPoint(InsertBefore); 1765 Func(IRB, ConstantInt::get(IndexTy, Idx)); 1766 } 1767 } 1768 1769 void llvm::SplitBlockAndInsertForEachLane( 1770 Value *EVL, Instruction *InsertBefore, 1771 std::function<void(IRBuilderBase &, Value *)> Func) { 1772 1773 IRBuilder<> IRB(InsertBefore); 1774 Type *Ty = EVL->getType(); 1775 1776 if (!isa<ConstantInt>(EVL)) { 1777 auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore); 1778 IRB.SetInsertPoint(BodyIP); 1779 Func(IRB, Index); 1780 return; 1781 } 1782 1783 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue(); 1784 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1785 IRB.SetInsertPoint(InsertBefore); 1786 Func(IRB, ConstantInt::get(Ty, Idx)); 1787 } 1788 } 1789 1790 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1791 BasicBlock *&IfFalse) { 1792 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1793 BasicBlock *Pred1 = nullptr; 1794 BasicBlock *Pred2 = nullptr; 1795 1796 if (SomePHI) { 1797 if (SomePHI->getNumIncomingValues() != 2) 1798 return nullptr; 1799 Pred1 = SomePHI->getIncomingBlock(0); 1800 Pred2 = SomePHI->getIncomingBlock(1); 1801 } else { 1802 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1803 if (PI == PE) // No predecessor 1804 return nullptr; 1805 Pred1 = *PI++; 1806 if (PI == PE) // Only one predecessor 1807 return nullptr; 1808 Pred2 = *PI++; 1809 if (PI != PE) // More than two predecessors 1810 return nullptr; 1811 } 1812 1813 // We can only handle branches. Other control flow will be lowered to 1814 // branches if possible anyway. 1815 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1816 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1817 if (!Pred1Br || !Pred2Br) 1818 return nullptr; 1819 1820 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1821 // either are. 1822 if (Pred2Br->isConditional()) { 1823 // If both branches are conditional, we don't have an "if statement". In 1824 // reality, we could transform this case, but since the condition will be 1825 // required anyway, we stand no chance of eliminating it, so the xform is 1826 // probably not profitable. 1827 if (Pred1Br->isConditional()) 1828 return nullptr; 1829 1830 std::swap(Pred1, Pred2); 1831 std::swap(Pred1Br, Pred2Br); 1832 } 1833 1834 if (Pred1Br->isConditional()) { 1835 // The only thing we have to watch out for here is to make sure that Pred2 1836 // doesn't have incoming edges from other blocks. If it does, the condition 1837 // doesn't dominate BB. 1838 if (!Pred2->getSinglePredecessor()) 1839 return nullptr; 1840 1841 // If we found a conditional branch predecessor, make sure that it branches 1842 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1843 if (Pred1Br->getSuccessor(0) == BB && 1844 Pred1Br->getSuccessor(1) == Pred2) { 1845 IfTrue = Pred1; 1846 IfFalse = Pred2; 1847 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1848 Pred1Br->getSuccessor(1) == BB) { 1849 IfTrue = Pred2; 1850 IfFalse = Pred1; 1851 } else { 1852 // We know that one arm of the conditional goes to BB, so the other must 1853 // go somewhere unrelated, and this must not be an "if statement". 1854 return nullptr; 1855 } 1856 1857 return Pred1Br; 1858 } 1859 1860 // Ok, if we got here, both predecessors end with an unconditional branch to 1861 // BB. Don't panic! If both blocks only have a single (identical) 1862 // predecessor, and THAT is a conditional branch, then we're all ok! 1863 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1864 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1865 return nullptr; 1866 1867 // Otherwise, if this is a conditional branch, then we can use it! 1868 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1869 if (!BI) return nullptr; 1870 1871 assert(BI->isConditional() && "Two successors but not conditional?"); 1872 if (BI->getSuccessor(0) == Pred1) { 1873 IfTrue = Pred1; 1874 IfFalse = Pred2; 1875 } else { 1876 IfTrue = Pred2; 1877 IfFalse = Pred1; 1878 } 1879 return BI; 1880 } 1881 1882 // After creating a control flow hub, the operands of PHINodes in an outgoing 1883 // block Out no longer match the predecessors of that block. Predecessors of Out 1884 // that are incoming blocks to the hub are now replaced by just one edge from 1885 // the hub. To match this new control flow, the corresponding values from each 1886 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1887 // 1888 // This operation cannot be performed with SSAUpdater, because it involves one 1889 // new use: If the block Out is in the list of Incoming blocks, then the newly 1890 // created PHI in the Hub will use itself along that edge from Out to Hub. 1891 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1892 const SetVector<BasicBlock *> &Incoming, 1893 BasicBlock *FirstGuardBlock) { 1894 auto I = Out->begin(); 1895 while (I != Out->end() && isa<PHINode>(I)) { 1896 auto Phi = cast<PHINode>(I); 1897 auto NewPhi = 1898 PHINode::Create(Phi->getType(), Incoming.size(), 1899 Phi->getName() + ".moved", &FirstGuardBlock->front()); 1900 for (auto *In : Incoming) { 1901 Value *V = UndefValue::get(Phi->getType()); 1902 if (In == Out) { 1903 V = NewPhi; 1904 } else if (Phi->getBasicBlockIndex(In) != -1) { 1905 V = Phi->removeIncomingValue(In, false); 1906 } 1907 NewPhi->addIncoming(V, In); 1908 } 1909 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1910 if (Phi->getNumOperands() == 0) { 1911 Phi->replaceAllUsesWith(NewPhi); 1912 I = Phi->eraseFromParent(); 1913 continue; 1914 } 1915 Phi->addIncoming(NewPhi, GuardBlock); 1916 ++I; 1917 } 1918 } 1919 1920 using BBPredicates = DenseMap<BasicBlock *, Instruction *>; 1921 using BBSetVector = SetVector<BasicBlock *>; 1922 1923 // Redirects the terminator of the incoming block to the first guard 1924 // block in the hub. The condition of the original terminator (if it 1925 // was conditional) and its original successors are returned as a 1926 // tuple <condition, succ0, succ1>. The function additionally filters 1927 // out successors that are not in the set of outgoing blocks. 1928 // 1929 // - condition is non-null iff the branch is conditional. 1930 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1931 // - Succ2 is non-null iff condition is non-null and the fallthrough 1932 // target is an outgoing block. 1933 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1934 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1935 const BBSetVector &Outgoing) { 1936 assert(isa<BranchInst>(BB->getTerminator()) && 1937 "Only support branch terminator."); 1938 auto Branch = cast<BranchInst>(BB->getTerminator()); 1939 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1940 1941 BasicBlock *Succ0 = Branch->getSuccessor(0); 1942 BasicBlock *Succ1 = nullptr; 1943 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1944 1945 if (Branch->isUnconditional()) { 1946 Branch->setSuccessor(0, FirstGuardBlock); 1947 assert(Succ0); 1948 } else { 1949 Succ1 = Branch->getSuccessor(1); 1950 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1951 assert(Succ0 || Succ1); 1952 if (Succ0 && !Succ1) { 1953 Branch->setSuccessor(0, FirstGuardBlock); 1954 } else if (Succ1 && !Succ0) { 1955 Branch->setSuccessor(1, FirstGuardBlock); 1956 } else { 1957 Branch->eraseFromParent(); 1958 BranchInst::Create(FirstGuardBlock, BB); 1959 } 1960 } 1961 1962 assert(Succ0 || Succ1); 1963 return std::make_tuple(Condition, Succ0, Succ1); 1964 } 1965 // Setup the branch instructions for guard blocks. 1966 // 1967 // Each guard block terminates in a conditional branch that transfers 1968 // control to the corresponding outgoing block or the next guard 1969 // block. The last guard block has two outgoing blocks as successors 1970 // since the condition for the final outgoing block is trivially 1971 // true. So we create one less block (including the first guard block) 1972 // than the number of outgoing blocks. 1973 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1974 const BBSetVector &Outgoing, 1975 BBPredicates &GuardPredicates) { 1976 // To help keep the loop simple, temporarily append the last 1977 // outgoing block to the list of guard blocks. 1978 GuardBlocks.push_back(Outgoing.back()); 1979 1980 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1981 auto Out = Outgoing[i]; 1982 assert(GuardPredicates.count(Out)); 1983 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1984 GuardBlocks[i]); 1985 } 1986 1987 // Remove the last block from the guard list. 1988 GuardBlocks.pop_back(); 1989 } 1990 1991 /// We are using one integer to represent the block we are branching to. Then at 1992 /// each guard block, the predicate was calcuated using a simple `icmp eq`. 1993 static void calcPredicateUsingInteger( 1994 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1995 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) { 1996 auto &Context = Incoming.front()->getContext(); 1997 auto FirstGuardBlock = GuardBlocks.front(); 1998 1999 auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(), 2000 "merged.bb.idx", FirstGuardBlock); 2001 2002 for (auto In : Incoming) { 2003 Value *Condition; 2004 BasicBlock *Succ0; 2005 BasicBlock *Succ1; 2006 std::tie(Condition, Succ0, Succ1) = 2007 redirectToHub(In, FirstGuardBlock, Outgoing); 2008 Value *IncomingId = nullptr; 2009 if (Succ0 && Succ1) { 2010 // target_bb_index = Condition ? index_of_succ0 : index_of_succ1. 2011 auto Succ0Iter = find(Outgoing, Succ0); 2012 auto Succ1Iter = find(Outgoing, Succ1); 2013 Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context), 2014 std::distance(Outgoing.begin(), Succ0Iter)); 2015 Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context), 2016 std::distance(Outgoing.begin(), Succ1Iter)); 2017 IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx", 2018 In->getTerminator()); 2019 } else { 2020 // Get the index of the non-null successor. 2021 auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1); 2022 IncomingId = ConstantInt::get(Type::getInt32Ty(Context), 2023 std::distance(Outgoing.begin(), SuccIter)); 2024 } 2025 Phi->addIncoming(IncomingId, In); 2026 } 2027 2028 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2029 auto Out = Outgoing[i]; 2030 auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi, 2031 ConstantInt::get(Type::getInt32Ty(Context), i), 2032 Out->getName() + ".predicate", GuardBlocks[i]); 2033 GuardPredicates[Out] = Cmp; 2034 } 2035 } 2036 2037 /// We record the predicate of each outgoing block using a phi of boolean. 2038 static void calcPredicateUsingBooleans( 2039 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2040 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates, 2041 SmallVectorImpl<WeakVH> &DeletionCandidates) { 2042 auto &Context = Incoming.front()->getContext(); 2043 auto BoolTrue = ConstantInt::getTrue(Context); 2044 auto BoolFalse = ConstantInt::getFalse(Context); 2045 auto FirstGuardBlock = GuardBlocks.front(); 2046 2047 // The predicate for the last outgoing is trivially true, and so we 2048 // process only the first N-1 successors. 2049 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2050 auto Out = Outgoing[i]; 2051 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 2052 2053 auto Phi = 2054 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 2055 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 2056 GuardPredicates[Out] = Phi; 2057 } 2058 2059 for (auto *In : Incoming) { 2060 Value *Condition; 2061 BasicBlock *Succ0; 2062 BasicBlock *Succ1; 2063 std::tie(Condition, Succ0, Succ1) = 2064 redirectToHub(In, FirstGuardBlock, Outgoing); 2065 2066 // Optimization: Consider an incoming block A with both successors 2067 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 2068 // for Succ0 and Succ1 complement each other. If Succ0 is visited 2069 // first in the loop below, control will branch to Succ0 using the 2070 // corresponding predicate. But if that branch is not taken, then 2071 // control must reach Succ1, which means that the incoming value of 2072 // the predicate from `In` is true for Succ1. 2073 bool OneSuccessorDone = false; 2074 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2075 auto Out = Outgoing[i]; 2076 PHINode *Phi = cast<PHINode>(GuardPredicates[Out]); 2077 if (Out != Succ0 && Out != Succ1) { 2078 Phi->addIncoming(BoolFalse, In); 2079 } else if (!Succ0 || !Succ1 || OneSuccessorDone) { 2080 // Optimization: When only one successor is an outgoing block, 2081 // the incoming predicate from `In` is always true. 2082 Phi->addIncoming(BoolTrue, In); 2083 } else { 2084 assert(Succ0 && Succ1); 2085 if (Out == Succ0) { 2086 Phi->addIncoming(Condition, In); 2087 } else { 2088 auto Inverted = invertCondition(Condition); 2089 DeletionCandidates.push_back(Condition); 2090 Phi->addIncoming(Inverted, In); 2091 } 2092 OneSuccessorDone = true; 2093 } 2094 } 2095 } 2096 } 2097 2098 // Capture the existing control flow as guard predicates, and redirect 2099 // control flow from \p Incoming block through the \p GuardBlocks to the 2100 // \p Outgoing blocks. 2101 // 2102 // There is one guard predicate for each outgoing block OutBB. The 2103 // predicate represents whether the hub should transfer control flow 2104 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates 2105 // them in the same order as the Outgoing set-vector, and control 2106 // branches to the first outgoing block whose predicate evaluates to true. 2107 static void 2108 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks, 2109 SmallVectorImpl<WeakVH> &DeletionCandidates, 2110 const BBSetVector &Incoming, 2111 const BBSetVector &Outgoing, const StringRef Prefix, 2112 std::optional<unsigned> MaxControlFlowBooleans) { 2113 BBPredicates GuardPredicates; 2114 auto F = Incoming.front()->getParent(); 2115 2116 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) 2117 GuardBlocks.push_back( 2118 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 2119 2120 // When we are using an integer to record which target block to jump to, we 2121 // are creating less live values, actually we are using one single integer to 2122 // store the index of the target block. When we are using booleans to store 2123 // the branching information, we need (N-1) boolean values, where N is the 2124 // number of outgoing block. 2125 if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans) 2126 calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates, 2127 DeletionCandidates); 2128 else 2129 calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates); 2130 2131 setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates); 2132 } 2133 2134 BasicBlock *llvm::CreateControlFlowHub( 2135 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 2136 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2137 const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) { 2138 if (Outgoing.size() < 2) 2139 return Outgoing.front(); 2140 2141 SmallVector<DominatorTree::UpdateType, 16> Updates; 2142 if (DTU) { 2143 for (auto *In : Incoming) { 2144 for (auto Succ : successors(In)) 2145 if (Outgoing.count(Succ)) 2146 Updates.push_back({DominatorTree::Delete, In, Succ}); 2147 } 2148 } 2149 2150 SmallVector<WeakVH, 8> DeletionCandidates; 2151 convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing, 2152 Prefix, MaxControlFlowBooleans); 2153 auto FirstGuardBlock = GuardBlocks.front(); 2154 2155 // Update the PHINodes in each outgoing block to match the new control flow. 2156 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) 2157 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 2158 2159 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 2160 2161 if (DTU) { 2162 int NumGuards = GuardBlocks.size(); 2163 assert((int)Outgoing.size() == NumGuards + 1); 2164 2165 for (auto In : Incoming) 2166 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 2167 2168 for (int i = 0; i != NumGuards - 1; ++i) { 2169 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 2170 Updates.push_back( 2171 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 2172 } 2173 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2174 Outgoing[NumGuards - 1]}); 2175 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2176 Outgoing[NumGuards]}); 2177 DTU->applyUpdates(Updates); 2178 } 2179 2180 for (auto I : DeletionCandidates) { 2181 if (I->use_empty()) 2182 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 2183 Inst->eraseFromParent(); 2184 } 2185 2186 return FirstGuardBlock; 2187 } 2188 2189 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) { 2190 Value *NewCond = PBI->getCondition(); 2191 // If this is a "cmp" instruction, only used for branching (and nowhere 2192 // else), then we can simply invert the predicate. 2193 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2194 CmpInst *CI = cast<CmpInst>(NewCond); 2195 CI->setPredicate(CI->getInversePredicate()); 2196 } else 2197 NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not"); 2198 2199 PBI->setCondition(NewCond); 2200 PBI->swapSuccessors(); 2201 } 2202 2203 bool llvm::hasOnlySimpleTerminator(const Function &F) { 2204 for (auto &BB : F) { 2205 auto *Term = BB.getTerminator(); 2206 if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) || 2207 isa<BranchInst>(Term))) 2208 return false; 2209 } 2210 return true; 2211 } 2212 2213 bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src, 2214 const BasicBlock &Dest) { 2215 assert(Src.getParent() == Dest.getParent()); 2216 if (!Src.getParent()->isPresplitCoroutine()) 2217 return false; 2218 if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator())) 2219 if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition())) 2220 return Intr->getIntrinsicID() == Intrinsic::coro_suspend && 2221 SW->getDefaultDest() == &Dest; 2222 return false; 2223 } 2224