xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <string>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "basicblock-utils"
55 
56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
57     "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
58     cl::desc("Set the maximum path length when checking whether a basic block "
59              "is followed by a block that either has a terminating "
60              "deoptimizing call or is terminated with an unreachable"));
61 
62 void llvm::detachDeadBlocks(
63     ArrayRef<BasicBlock *> BBs,
64     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
65     bool KeepOneInputPHIs) {
66   for (auto *BB : BBs) {
67     // Loop through all of our successors and make sure they know that one
68     // of their predecessors is going away.
69     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
70     for (BasicBlock *Succ : successors(BB)) {
71       Succ->removePredecessor(BB, KeepOneInputPHIs);
72       if (Updates && UniqueSuccessors.insert(Succ).second)
73         Updates->push_back({DominatorTree::Delete, BB, Succ});
74     }
75 
76     // Zap all the instructions in the block.
77     while (!BB->empty()) {
78       Instruction &I = BB->back();
79       // If this instruction is used, replace uses with an arbitrary value.
80       // Because control flow can't get here, we don't care what we replace the
81       // value with.  Note that since this block is unreachable, and all values
82       // contained within it must dominate their uses, that all uses will
83       // eventually be removed (they are themselves dead).
84       if (!I.use_empty())
85         I.replaceAllUsesWith(PoisonValue::get(I.getType()));
86       BB->back().eraseFromParent();
87     }
88     new UnreachableInst(BB->getContext(), BB);
89     assert(BB->size() == 1 &&
90            isa<UnreachableInst>(BB->getTerminator()) &&
91            "The successor list of BB isn't empty before "
92            "applying corresponding DTU updates.");
93   }
94 }
95 
96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
97                            bool KeepOneInputPHIs) {
98   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
99 }
100 
101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
102                             bool KeepOneInputPHIs) {
103 #ifndef NDEBUG
104   // Make sure that all predecessors of each dead block is also dead.
105   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
106   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
107   for (auto *BB : Dead)
108     for (BasicBlock *Pred : predecessors(BB))
109       assert(Dead.count(Pred) && "All predecessors must be dead!");
110 #endif
111 
112   SmallVector<DominatorTree::UpdateType, 4> Updates;
113   detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
114 
115   if (DTU)
116     DTU->applyUpdates(Updates);
117 
118   for (BasicBlock *BB : BBs)
119     if (DTU)
120       DTU->deleteBB(BB);
121     else
122       BB->eraseFromParent();
123 }
124 
125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
126                                       bool KeepOneInputPHIs) {
127   df_iterator_default_set<BasicBlock*> Reachable;
128 
129   // Mark all reachable blocks.
130   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
131     (void)BB/* Mark all reachable blocks */;
132 
133   // Collect all dead blocks.
134   std::vector<BasicBlock*> DeadBlocks;
135   for (BasicBlock &BB : F)
136     if (!Reachable.count(&BB))
137       DeadBlocks.push_back(&BB);
138 
139   // Delete the dead blocks.
140   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
141 
142   return !DeadBlocks.empty();
143 }
144 
145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
146                                    MemoryDependenceResults *MemDep) {
147   if (!isa<PHINode>(BB->begin()))
148     return false;
149 
150   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
151     if (PN->getIncomingValue(0) != PN)
152       PN->replaceAllUsesWith(PN->getIncomingValue(0));
153     else
154       PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
155 
156     if (MemDep)
157       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
158 
159     PN->eraseFromParent();
160   }
161   return true;
162 }
163 
164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
165                           MemorySSAUpdater *MSSAU) {
166   // Recursively deleting a PHI may cause multiple PHIs to be deleted
167   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
168   SmallVector<WeakTrackingVH, 8> PHIs;
169   for (PHINode &PN : BB->phis())
170     PHIs.push_back(&PN);
171 
172   bool Changed = false;
173   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
174     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
175       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
176 
177   return Changed;
178 }
179 
180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
181                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
182                                      MemoryDependenceResults *MemDep,
183                                      bool PredecessorWithTwoSuccessors,
184                                      DominatorTree *DT) {
185   if (BB->hasAddressTaken())
186     return false;
187 
188   // Can't merge if there are multiple predecessors, or no predecessors.
189   BasicBlock *PredBB = BB->getUniquePredecessor();
190   if (!PredBB) return false;
191 
192   // Don't break self-loops.
193   if (PredBB == BB) return false;
194 
195   // Don't break unwinding instructions or terminators with other side-effects.
196   Instruction *PTI = PredBB->getTerminator();
197   if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects())
198     return false;
199 
200   // Can't merge if there are multiple distinct successors.
201   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
202     return false;
203 
204   // Currently only allow PredBB to have two predecessors, one being BB.
205   // Update BI to branch to BB's only successor instead of BB.
206   BranchInst *PredBB_BI;
207   BasicBlock *NewSucc = nullptr;
208   unsigned FallThruPath;
209   if (PredecessorWithTwoSuccessors) {
210     if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
211       return false;
212     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
213     if (!BB_JmpI || !BB_JmpI->isUnconditional())
214       return false;
215     NewSucc = BB_JmpI->getSuccessor(0);
216     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
217   }
218 
219   // Can't merge if there is PHI loop.
220   for (PHINode &PN : BB->phis())
221     if (llvm::is_contained(PN.incoming_values(), &PN))
222       return false;
223 
224   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
225                     << PredBB->getName() << "\n");
226 
227   // Begin by getting rid of unneeded PHIs.
228   SmallVector<AssertingVH<Value>, 4> IncomingValues;
229   if (isa<PHINode>(BB->front())) {
230     for (PHINode &PN : BB->phis())
231       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
232           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
233         IncomingValues.push_back(PN.getIncomingValue(0));
234     FoldSingleEntryPHINodes(BB, MemDep);
235   }
236 
237   if (DT) {
238     assert(!DTU && "cannot use both DT and DTU for updates");
239     DomTreeNode *PredNode = DT->getNode(PredBB);
240     DomTreeNode *BBNode = DT->getNode(BB);
241     if (PredNode) {
242       assert(BBNode && "PredNode unreachable but BBNode reachable?");
243       for (DomTreeNode *C : to_vector(BBNode->children()))
244         C->setIDom(PredNode);
245     }
246   }
247   // DTU update: Collect all the edges that exit BB.
248   // These dominator edges will be redirected from Pred.
249   std::vector<DominatorTree::UpdateType> Updates;
250   if (DTU) {
251     assert(!DT && "cannot use both DT and DTU for updates");
252     // To avoid processing the same predecessor more than once.
253     SmallPtrSet<BasicBlock *, 8> SeenSuccs;
254     SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
255                                                succ_end(PredBB));
256     Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
257     // Add insert edges first. Experimentally, for the particular case of two
258     // blocks that can be merged, with a single successor and single predecessor
259     // respectively, it is beneficial to have all insert updates first. Deleting
260     // edges first may lead to unreachable blocks, followed by inserting edges
261     // making the blocks reachable again. Such DT updates lead to high compile
262     // times. We add inserts before deletes here to reduce compile time.
263     for (BasicBlock *SuccOfBB : successors(BB))
264       // This successor of BB may already be a PredBB's successor.
265       if (!SuccsOfPredBB.contains(SuccOfBB))
266         if (SeenSuccs.insert(SuccOfBB).second)
267           Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
268     SeenSuccs.clear();
269     for (BasicBlock *SuccOfBB : successors(BB))
270       if (SeenSuccs.insert(SuccOfBB).second)
271         Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
272     Updates.push_back({DominatorTree::Delete, PredBB, BB});
273   }
274 
275   Instruction *STI = BB->getTerminator();
276   Instruction *Start = &*BB->begin();
277   // If there's nothing to move, mark the starting instruction as the last
278   // instruction in the block. Terminator instruction is handled separately.
279   if (Start == STI)
280     Start = PTI;
281 
282   // Move all definitions in the successor to the predecessor...
283   PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
284 
285   if (MSSAU)
286     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
287 
288   // Make all PHI nodes that referred to BB now refer to Pred as their
289   // source...
290   BB->replaceAllUsesWith(PredBB);
291 
292   if (PredecessorWithTwoSuccessors) {
293     // Delete the unconditional branch from BB.
294     BB->back().eraseFromParent();
295 
296     // Update branch in the predecessor.
297     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
298   } else {
299     // Delete the unconditional branch from the predecessor.
300     PredBB->back().eraseFromParent();
301 
302     // Move terminator instruction.
303     BB->back().moveBeforePreserving(*PredBB, PredBB->end());
304 
305     // Terminator may be a memory accessing instruction too.
306     if (MSSAU)
307       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
308               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
309         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
310   }
311   // Add unreachable to now empty BB.
312   new UnreachableInst(BB->getContext(), BB);
313 
314   // Inherit predecessors name if it exists.
315   if (!PredBB->hasName())
316     PredBB->takeName(BB);
317 
318   if (LI)
319     LI->removeBlock(BB);
320 
321   if (MemDep)
322     MemDep->invalidateCachedPredecessors();
323 
324   if (DTU)
325     DTU->applyUpdates(Updates);
326 
327   if (DT) {
328     assert(succ_empty(BB) &&
329            "successors should have been transferred to PredBB");
330     DT->eraseNode(BB);
331   }
332 
333   // Finally, erase the old block and update dominator info.
334   DeleteDeadBlock(BB, DTU);
335 
336   return true;
337 }
338 
339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
340     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
341     LoopInfo *LI) {
342   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
343 
344   bool BlocksHaveBeenMerged = false;
345   while (!MergeBlocks.empty()) {
346     BasicBlock *BB = *MergeBlocks.begin();
347     BasicBlock *Dest = BB->getSingleSuccessor();
348     if (Dest && (!L || L->contains(Dest))) {
349       BasicBlock *Fold = Dest->getUniquePredecessor();
350       (void)Fold;
351       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
352         assert(Fold == BB &&
353                "Expecting BB to be unique predecessor of the Dest block");
354         MergeBlocks.erase(Dest);
355         BlocksHaveBeenMerged = true;
356       } else
357         MergeBlocks.erase(BB);
358     } else
359       MergeBlocks.erase(BB);
360   }
361   return BlocksHaveBeenMerged;
362 }
363 
364 /// Remove redundant instructions within sequences of consecutive dbg.value
365 /// instructions. This is done using a backward scan to keep the last dbg.value
366 /// describing a specific variable/fragment.
367 ///
368 /// BackwardScan strategy:
369 /// ----------------------
370 /// Given a sequence of consecutive DbgValueInst like this
371 ///
372 ///   dbg.value ..., "x", FragmentX1  (*)
373 ///   dbg.value ..., "y", FragmentY1
374 ///   dbg.value ..., "x", FragmentX2
375 ///   dbg.value ..., "x", FragmentX1  (**)
376 ///
377 /// then the instruction marked with (*) can be removed (it is guaranteed to be
378 /// obsoleted by the instruction marked with (**) as the latter instruction is
379 /// describing the same variable using the same fragment info).
380 ///
381 /// Possible improvements:
382 /// - Check fully overlapping fragments and not only identical fragments.
383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being
384 ///   part of the sequence of consecutive instructions.
385 static bool DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
386   SmallVector<DPValue *, 8> ToBeRemoved;
387   SmallDenseSet<DebugVariable> VariableSet;
388   for (auto &I : reverse(*BB)) {
389     for (DPValue &DPV : reverse(I.getDbgValueRange())) {
390       // Skip declare-type records, as the debug intrinsic method only works
391       // on dbg.value intrinsics.
392       if (DPV.getType() == DPValue::LocationType::Declare) {
393         // The debug intrinsic method treats dbg.declares are "non-debug"
394         // instructions (i.e., a break in a consecutive range of debug
395         // intrinsics). Emulate that to create identical outputs. See
396         // "Possible improvements" above.
397         // FIXME: Delete the line below.
398         VariableSet.clear();
399         continue;
400       }
401 
402       DebugVariable Key(DPV.getVariable(), DPV.getExpression(),
403                         DPV.getDebugLoc()->getInlinedAt());
404       auto R = VariableSet.insert(Key);
405       // If the same variable fragment is described more than once it is enough
406       // to keep the last one (i.e. the first found since we for reverse
407       // iteration).
408       if (R.second)
409         continue;
410 
411       if (DPV.isDbgAssign()) {
412         // Don't delete dbg.assign intrinsics that are linked to instructions.
413         if (!at::getAssignmentInsts(&DPV).empty())
414           continue;
415         // Unlinked dbg.assign intrinsics can be treated like dbg.values.
416       }
417 
418       ToBeRemoved.push_back(&DPV);
419       continue;
420     }
421     // Sequence with consecutive dbg.value instrs ended. Clear the map to
422     // restart identifying redundant instructions if case we find another
423     // dbg.value sequence.
424     VariableSet.clear();
425   }
426 
427   for (auto &DPV : ToBeRemoved)
428     DPV->eraseFromParent();
429 
430   return !ToBeRemoved.empty();
431 }
432 
433 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
434   if (BB->IsNewDbgInfoFormat)
435     return DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BB);
436 
437   SmallVector<DbgValueInst *, 8> ToBeRemoved;
438   SmallDenseSet<DebugVariable> VariableSet;
439   for (auto &I : reverse(*BB)) {
440     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
441       DebugVariable Key(DVI->getVariable(),
442                         DVI->getExpression(),
443                         DVI->getDebugLoc()->getInlinedAt());
444       auto R = VariableSet.insert(Key);
445       // If the variable fragment hasn't been seen before then we don't want
446       // to remove this dbg intrinsic.
447       if (R.second)
448         continue;
449 
450       if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
451         // Don't delete dbg.assign intrinsics that are linked to instructions.
452         if (!at::getAssignmentInsts(DAI).empty())
453           continue;
454         // Unlinked dbg.assign intrinsics can be treated like dbg.values.
455       }
456 
457       // If the same variable fragment is described more than once it is enough
458       // to keep the last one (i.e. the first found since we for reverse
459       // iteration).
460       ToBeRemoved.push_back(DVI);
461       continue;
462     }
463     // Sequence with consecutive dbg.value instrs ended. Clear the map to
464     // restart identifying redundant instructions if case we find another
465     // dbg.value sequence.
466     VariableSet.clear();
467   }
468 
469   for (auto &Instr : ToBeRemoved)
470     Instr->eraseFromParent();
471 
472   return !ToBeRemoved.empty();
473 }
474 
475 /// Remove redundant dbg.value instructions using a forward scan. This can
476 /// remove a dbg.value instruction that is redundant due to indicating that a
477 /// variable has the same value as already being indicated by an earlier
478 /// dbg.value.
479 ///
480 /// ForwardScan strategy:
481 /// ---------------------
482 /// Given two identical dbg.value instructions, separated by a block of
483 /// instructions that isn't describing the same variable, like this
484 ///
485 ///   dbg.value X1, "x", FragmentX1  (**)
486 ///   <block of instructions, none being "dbg.value ..., "x", ...">
487 ///   dbg.value X1, "x", FragmentX1  (*)
488 ///
489 /// then the instruction marked with (*) can be removed. Variable "x" is already
490 /// described as being mapped to the SSA value X1.
491 ///
492 /// Possible improvements:
493 /// - Keep track of non-overlapping fragments.
494 static bool DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
495   SmallVector<DPValue *, 8> ToBeRemoved;
496   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
497       VariableMap;
498   for (auto &I : *BB) {
499     for (DPValue &DPV : I.getDbgValueRange()) {
500       if (DPV.getType() == DPValue::LocationType::Declare)
501         continue;
502       DebugVariable Key(DPV.getVariable(), std::nullopt,
503                         DPV.getDebugLoc()->getInlinedAt());
504       auto VMI = VariableMap.find(Key);
505       // A dbg.assign with no linked instructions can be treated like a
506       // dbg.value (i.e. can be deleted).
507       bool IsDbgValueKind =
508           (!DPV.isDbgAssign() || at::getAssignmentInsts(&DPV).empty());
509 
510       // Update the map if we found a new value/expression describing the
511       // variable, or if the variable wasn't mapped already.
512       SmallVector<Value *, 4> Values(DPV.location_ops());
513       if (VMI == VariableMap.end() || VMI->second.first != Values ||
514           VMI->second.second != DPV.getExpression()) {
515         if (IsDbgValueKind)
516           VariableMap[Key] = {Values, DPV.getExpression()};
517         else
518           VariableMap[Key] = {Values, nullptr};
519         continue;
520       }
521       // Don't delete dbg.assign intrinsics that are linked to instructions.
522       if (!IsDbgValueKind)
523         continue;
524       // Found an identical mapping. Remember the instruction for later removal.
525       ToBeRemoved.push_back(&DPV);
526     }
527   }
528 
529   for (auto *DPV : ToBeRemoved)
530     DPV->eraseFromParent();
531 
532   return !ToBeRemoved.empty();
533 }
534 
535 static bool DPValuesRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
536   assert(BB->isEntryBlock() && "expected entry block");
537   SmallVector<DPValue *, 8> ToBeRemoved;
538   DenseSet<DebugVariable> SeenDefForAggregate;
539   // Returns the DebugVariable for DVI with no fragment info.
540   auto GetAggregateVariable = [](const DPValue &DPV) {
541     return DebugVariable(DPV.getVariable(), std::nullopt,
542                          DPV.getDebugLoc().getInlinedAt());
543   };
544 
545   // Remove undef dbg.assign intrinsics that are encountered before
546   // any non-undef intrinsics from the entry block.
547   for (auto &I : *BB) {
548     for (DPValue &DPV : I.getDbgValueRange()) {
549       if (!DPV.isDbgValue() && !DPV.isDbgAssign())
550         continue;
551       bool IsDbgValueKind =
552           (DPV.isDbgValue() || at::getAssignmentInsts(&DPV).empty());
553       DebugVariable Aggregate = GetAggregateVariable(DPV);
554       if (!SeenDefForAggregate.contains(Aggregate)) {
555         bool IsKill = DPV.isKillLocation() && IsDbgValueKind;
556         if (!IsKill) {
557           SeenDefForAggregate.insert(Aggregate);
558         } else if (DPV.isDbgAssign()) {
559           ToBeRemoved.push_back(&DPV);
560         }
561       }
562     }
563   }
564 
565   for (DPValue *DPV : ToBeRemoved)
566     DPV->eraseFromParent();
567 
568   return !ToBeRemoved.empty();
569 }
570 
571 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
572   if (BB->IsNewDbgInfoFormat)
573     return DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BB);
574 
575   SmallVector<DbgValueInst *, 8> ToBeRemoved;
576   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
577       VariableMap;
578   for (auto &I : *BB) {
579     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
580       DebugVariable Key(DVI->getVariable(), std::nullopt,
581                         DVI->getDebugLoc()->getInlinedAt());
582       auto VMI = VariableMap.find(Key);
583       auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
584       // A dbg.assign with no linked instructions can be treated like a
585       // dbg.value (i.e. can be deleted).
586       bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
587 
588       // Update the map if we found a new value/expression describing the
589       // variable, or if the variable wasn't mapped already.
590       SmallVector<Value *, 4> Values(DVI->getValues());
591       if (VMI == VariableMap.end() || VMI->second.first != Values ||
592           VMI->second.second != DVI->getExpression()) {
593         // Use a sentinel value (nullptr) for the DIExpression when we see a
594         // linked dbg.assign so that the next debug intrinsic will never match
595         // it (i.e. always treat linked dbg.assigns as if they're unique).
596         if (IsDbgValueKind)
597           VariableMap[Key] = {Values, DVI->getExpression()};
598         else
599           VariableMap[Key] = {Values, nullptr};
600         continue;
601       }
602 
603       // Don't delete dbg.assign intrinsics that are linked to instructions.
604       if (!IsDbgValueKind)
605         continue;
606       ToBeRemoved.push_back(DVI);
607     }
608   }
609 
610   for (auto &Instr : ToBeRemoved)
611     Instr->eraseFromParent();
612 
613   return !ToBeRemoved.empty();
614 }
615 
616 /// Remove redundant undef dbg.assign intrinsic from an entry block using a
617 /// forward scan.
618 /// Strategy:
619 /// ---------------------
620 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
621 /// linked to an intrinsic, and don't share an aggregate variable with a debug
622 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
623 /// that come before non-undef debug intrinsics for the variable are
624 /// deleted. Given:
625 ///
626 ///   dbg.assign undef, "x", FragmentX1 (*)
627 ///   <block of instructions, none being "dbg.value ..., "x", ...">
628 ///   dbg.value %V, "x", FragmentX2
629 ///   <block of instructions, none being "dbg.value ..., "x", ...">
630 ///   dbg.assign undef, "x", FragmentX1
631 ///
632 /// then (only) the instruction marked with (*) can be removed.
633 /// Possible improvements:
634 /// - Keep track of non-overlapping fragments.
635 static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
636   if (BB->IsNewDbgInfoFormat)
637     return DPValuesRemoveUndefDbgAssignsFromEntryBlock(BB);
638 
639   assert(BB->isEntryBlock() && "expected entry block");
640   SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved;
641   DenseSet<DebugVariable> SeenDefForAggregate;
642   // Returns the DebugVariable for DVI with no fragment info.
643   auto GetAggregateVariable = [](DbgValueInst *DVI) {
644     return DebugVariable(DVI->getVariable(), std::nullopt,
645                          DVI->getDebugLoc()->getInlinedAt());
646   };
647 
648   // Remove undef dbg.assign intrinsics that are encountered before
649   // any non-undef intrinsics from the entry block.
650   for (auto &I : *BB) {
651     DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I);
652     if (!DVI)
653       continue;
654     auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
655     bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
656     DebugVariable Aggregate = GetAggregateVariable(DVI);
657     if (!SeenDefForAggregate.contains(Aggregate)) {
658       bool IsKill = DVI->isKillLocation() && IsDbgValueKind;
659       if (!IsKill) {
660         SeenDefForAggregate.insert(Aggregate);
661       } else if (DAI) {
662         ToBeRemoved.push_back(DAI);
663       }
664     }
665   }
666 
667   for (DbgAssignIntrinsic *DAI : ToBeRemoved)
668     DAI->eraseFromParent();
669 
670   return !ToBeRemoved.empty();
671 }
672 
673 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
674   bool MadeChanges = false;
675   // By using the "backward scan" strategy before the "forward scan" strategy we
676   // can remove both dbg.value (2) and (3) in a situation like this:
677   //
678   //   (1) dbg.value V1, "x", DIExpression()
679   //       ...
680   //   (2) dbg.value V2, "x", DIExpression()
681   //   (3) dbg.value V1, "x", DIExpression()
682   //
683   // The backward scan will remove (2), it is made obsolete by (3). After
684   // getting (2) out of the way, the foward scan will remove (3) since "x"
685   // already is described as having the value V1 at (1).
686   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
687   if (BB->isEntryBlock() &&
688       isAssignmentTrackingEnabled(*BB->getParent()->getParent()))
689     MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB);
690   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
691 
692   if (MadeChanges)
693     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
694                       << BB->getName() << "\n");
695   return MadeChanges;
696 }
697 
698 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) {
699   Instruction &I = *BI;
700   // Replaces all of the uses of the instruction with uses of the value
701   I.replaceAllUsesWith(V);
702 
703   // Make sure to propagate a name if there is one already.
704   if (I.hasName() && !V->hasName())
705     V->takeName(&I);
706 
707   // Delete the unnecessary instruction now...
708   BI = BI->eraseFromParent();
709 }
710 
711 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI,
712                                Instruction *I) {
713   assert(I->getParent() == nullptr &&
714          "ReplaceInstWithInst: Instruction already inserted into basic block!");
715 
716   // Copy debug location to newly added instruction, if it wasn't already set
717   // by the caller.
718   if (!I->getDebugLoc())
719     I->setDebugLoc(BI->getDebugLoc());
720 
721   // Insert the new instruction into the basic block...
722   BasicBlock::iterator New = I->insertInto(BB, BI);
723 
724   // Replace all uses of the old instruction, and delete it.
725   ReplaceInstWithValue(BI, I);
726 
727   // Move BI back to point to the newly inserted instruction
728   BI = New;
729 }
730 
731 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
732   // Remember visited blocks to avoid infinite loop
733   SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
734   unsigned Depth = 0;
735   while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
736          VisitedBlocks.insert(BB).second) {
737     if (isa<UnreachableInst>(BB->getTerminator()) ||
738         BB->getTerminatingDeoptimizeCall())
739       return true;
740     BB = BB->getUniqueSuccessor();
741   }
742   return false;
743 }
744 
745 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
746   BasicBlock::iterator BI(From);
747   ReplaceInstWithInst(From->getParent(), BI, To);
748 }
749 
750 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
751                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
752                             const Twine &BBName) {
753   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
754 
755   Instruction *LatchTerm = BB->getTerminator();
756 
757   CriticalEdgeSplittingOptions Options =
758       CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
759 
760   if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
761     // If it is a critical edge, and the succesor is an exception block, handle
762     // the split edge logic in this specific function
763     if (Succ->isEHPad())
764       return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
765 
766     // If this is a critical edge, let SplitKnownCriticalEdge do it.
767     return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
768   }
769 
770   // If the edge isn't critical, then BB has a single successor or Succ has a
771   // single pred.  Split the block.
772   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
773     // If the successor only has a single pred, split the top of the successor
774     // block.
775     assert(SP == BB && "CFG broken");
776     SP = nullptr;
777     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
778                       /*Before=*/true);
779   }
780 
781   // Otherwise, if BB has a single successor, split it at the bottom of the
782   // block.
783   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
784          "Should have a single succ!");
785   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
786 }
787 
788 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
789   if (auto *II = dyn_cast<InvokeInst>(TI))
790     II->setUnwindDest(Succ);
791   else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
792     CS->setUnwindDest(Succ);
793   else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
794     CR->setUnwindDest(Succ);
795   else
796     llvm_unreachable("unexpected terminator instruction");
797 }
798 
799 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
800                           BasicBlock *NewPred, PHINode *Until) {
801   int BBIdx = 0;
802   for (PHINode &PN : DestBB->phis()) {
803     // We manually update the LandingPadReplacement PHINode and it is the last
804     // PHI Node. So, if we find it, we are done.
805     if (Until == &PN)
806       break;
807 
808     // Reuse the previous value of BBIdx if it lines up.  In cases where we
809     // have multiple phi nodes with *lots* of predecessors, this is a speed
810     // win because we don't have to scan the PHI looking for TIBB.  This
811     // happens because the BB list of PHI nodes are usually in the same
812     // order.
813     if (PN.getIncomingBlock(BBIdx) != OldPred)
814       BBIdx = PN.getBasicBlockIndex(OldPred);
815 
816     assert(BBIdx != -1 && "Invalid PHI Index!");
817     PN.setIncomingBlock(BBIdx, NewPred);
818   }
819 }
820 
821 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
822                                    LandingPadInst *OriginalPad,
823                                    PHINode *LandingPadReplacement,
824                                    const CriticalEdgeSplittingOptions &Options,
825                                    const Twine &BBName) {
826 
827   auto *PadInst = Succ->getFirstNonPHI();
828   if (!LandingPadReplacement && !PadInst->isEHPad())
829     return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
830 
831   auto *LI = Options.LI;
832   SmallVector<BasicBlock *, 4> LoopPreds;
833   // Check if extra modifications will be required to preserve loop-simplify
834   // form after splitting. If it would require splitting blocks with IndirectBr
835   // terminators, bail out if preserving loop-simplify form is requested.
836   if (Options.PreserveLoopSimplify && LI) {
837     if (Loop *BBLoop = LI->getLoopFor(BB)) {
838 
839       // The only way that we can break LoopSimplify form by splitting a
840       // critical edge is when there exists some edge from BBLoop to Succ *and*
841       // the only edge into Succ from outside of BBLoop is that of NewBB after
842       // the split. If the first isn't true, then LoopSimplify still holds,
843       // NewBB is the new exit block and it has no non-loop predecessors. If the
844       // second isn't true, then Succ was not in LoopSimplify form prior to
845       // the split as it had a non-loop predecessor. In both of these cases,
846       // the predecessor must be directly in BBLoop, not in a subloop, or again
847       // LoopSimplify doesn't hold.
848       for (BasicBlock *P : predecessors(Succ)) {
849         if (P == BB)
850           continue; // The new block is known.
851         if (LI->getLoopFor(P) != BBLoop) {
852           // Loop is not in LoopSimplify form, no need to re simplify after
853           // splitting edge.
854           LoopPreds.clear();
855           break;
856         }
857         LoopPreds.push_back(P);
858       }
859       // Loop-simplify form can be preserved, if we can split all in-loop
860       // predecessors.
861       if (any_of(LoopPreds, [](BasicBlock *Pred) {
862             return isa<IndirectBrInst>(Pred->getTerminator());
863           })) {
864         return nullptr;
865       }
866     }
867   }
868 
869   auto *NewBB =
870       BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
871   setUnwindEdgeTo(BB->getTerminator(), NewBB);
872   updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
873 
874   if (LandingPadReplacement) {
875     auto *NewLP = OriginalPad->clone();
876     auto *Terminator = BranchInst::Create(Succ, NewBB);
877     NewLP->insertBefore(Terminator);
878     LandingPadReplacement->addIncoming(NewLP, NewBB);
879   } else {
880     Value *ParentPad = nullptr;
881     if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
882       ParentPad = FuncletPad->getParentPad();
883     else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
884       ParentPad = CatchSwitch->getParentPad();
885     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
886       ParentPad = CleanupPad->getParentPad();
887     else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
888       ParentPad = LandingPad->getParent();
889     else
890       llvm_unreachable("handling for other EHPads not implemented yet");
891 
892     auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
893     CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
894   }
895 
896   auto *DT = Options.DT;
897   auto *MSSAU = Options.MSSAU;
898   if (!DT && !LI)
899     return NewBB;
900 
901   if (DT) {
902     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
903     SmallVector<DominatorTree::UpdateType, 3> Updates;
904 
905     Updates.push_back({DominatorTree::Insert, BB, NewBB});
906     Updates.push_back({DominatorTree::Insert, NewBB, Succ});
907     Updates.push_back({DominatorTree::Delete, BB, Succ});
908 
909     DTU.applyUpdates(Updates);
910     DTU.flush();
911 
912     if (MSSAU) {
913       MSSAU->applyUpdates(Updates, *DT);
914       if (VerifyMemorySSA)
915         MSSAU->getMemorySSA()->verifyMemorySSA();
916     }
917   }
918 
919   if (LI) {
920     if (Loop *BBLoop = LI->getLoopFor(BB)) {
921       // If one or the other blocks were not in a loop, the new block is not
922       // either, and thus LI doesn't need to be updated.
923       if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
924         if (BBLoop == SuccLoop) {
925           // Both in the same loop, the NewBB joins loop.
926           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
927         } else if (BBLoop->contains(SuccLoop)) {
928           // Edge from an outer loop to an inner loop.  Add to the outer loop.
929           BBLoop->addBasicBlockToLoop(NewBB, *LI);
930         } else if (SuccLoop->contains(BBLoop)) {
931           // Edge from an inner loop to an outer loop.  Add to the outer loop.
932           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
933         } else {
934           // Edge from two loops with no containment relation.  Because these
935           // are natural loops, we know that the destination block must be the
936           // header of its loop (adding a branch into a loop elsewhere would
937           // create an irreducible loop).
938           assert(SuccLoop->getHeader() == Succ &&
939                  "Should not create irreducible loops!");
940           if (Loop *P = SuccLoop->getParentLoop())
941             P->addBasicBlockToLoop(NewBB, *LI);
942         }
943       }
944 
945       // If BB is in a loop and Succ is outside of that loop, we may need to
946       // update LoopSimplify form and LCSSA form.
947       if (!BBLoop->contains(Succ)) {
948         assert(!BBLoop->contains(NewBB) &&
949                "Split point for loop exit is contained in loop!");
950 
951         // Update LCSSA form in the newly created exit block.
952         if (Options.PreserveLCSSA) {
953           createPHIsForSplitLoopExit(BB, NewBB, Succ);
954         }
955 
956         if (!LoopPreds.empty()) {
957           BasicBlock *NewExitBB = SplitBlockPredecessors(
958               Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
959           if (Options.PreserveLCSSA)
960             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
961         }
962       }
963     }
964   }
965 
966   return NewBB;
967 }
968 
969 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
970                                       BasicBlock *SplitBB, BasicBlock *DestBB) {
971   // SplitBB shouldn't have anything non-trivial in it yet.
972   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
973           SplitBB->isLandingPad()) &&
974          "SplitBB has non-PHI nodes!");
975 
976   // For each PHI in the destination block.
977   for (PHINode &PN : DestBB->phis()) {
978     int Idx = PN.getBasicBlockIndex(SplitBB);
979     assert(Idx >= 0 && "Invalid Block Index");
980     Value *V = PN.getIncomingValue(Idx);
981 
982     // If the input is a PHI which already satisfies LCSSA, don't create
983     // a new one.
984     if (const PHINode *VP = dyn_cast<PHINode>(V))
985       if (VP->getParent() == SplitBB)
986         continue;
987 
988     // Otherwise a new PHI is needed. Create one and populate it.
989     PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split");
990     BasicBlock::iterator InsertPos =
991         SplitBB->isLandingPad() ? SplitBB->begin()
992                                 : SplitBB->getTerminator()->getIterator();
993     NewPN->insertBefore(InsertPos);
994     for (BasicBlock *BB : Preds)
995       NewPN->addIncoming(V, BB);
996 
997     // Update the original PHI.
998     PN.setIncomingValue(Idx, NewPN);
999   }
1000 }
1001 
1002 unsigned
1003 llvm::SplitAllCriticalEdges(Function &F,
1004                             const CriticalEdgeSplittingOptions &Options) {
1005   unsigned NumBroken = 0;
1006   for (BasicBlock &BB : F) {
1007     Instruction *TI = BB.getTerminator();
1008     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
1009       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1010         if (SplitCriticalEdge(TI, i, Options))
1011           ++NumBroken;
1012   }
1013   return NumBroken;
1014 }
1015 
1016 static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt,
1017                                   DomTreeUpdater *DTU, DominatorTree *DT,
1018                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
1019                                   const Twine &BBName, bool Before) {
1020   if (Before) {
1021     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1022     return splitBlockBefore(Old, SplitPt,
1023                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
1024                             BBName);
1025   }
1026   BasicBlock::iterator SplitIt = SplitPt;
1027   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
1028     ++SplitIt;
1029     assert(SplitIt != SplitPt->getParent()->end());
1030   }
1031   std::string Name = BBName.str();
1032   BasicBlock *New = Old->splitBasicBlock(
1033       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
1034 
1035   // The new block lives in whichever loop the old one did. This preserves
1036   // LCSSA as well, because we force the split point to be after any PHI nodes.
1037   if (LI)
1038     if (Loop *L = LI->getLoopFor(Old))
1039       L->addBasicBlockToLoop(New, *LI);
1040 
1041   if (DTU) {
1042     SmallVector<DominatorTree::UpdateType, 8> Updates;
1043     // Old dominates New. New node dominates all other nodes dominated by Old.
1044     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
1045     Updates.push_back({DominatorTree::Insert, Old, New});
1046     Updates.reserve(Updates.size() + 2 * succ_size(New));
1047     for (BasicBlock *SuccessorOfOld : successors(New))
1048       if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
1049         Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
1050         Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
1051       }
1052 
1053     DTU->applyUpdates(Updates);
1054   } else if (DT)
1055     // Old dominates New. New node dominates all other nodes dominated by Old.
1056     if (DomTreeNode *OldNode = DT->getNode(Old)) {
1057       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1058 
1059       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
1060       for (DomTreeNode *I : Children)
1061         DT->changeImmediateDominator(I, NewNode);
1062     }
1063 
1064   // Move MemoryAccesses still tracked in Old, but part of New now.
1065   // Update accesses in successor blocks accordingly.
1066   if (MSSAU)
1067     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
1068 
1069   return New;
1070 }
1071 
1072 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1073                              DominatorTree *DT, LoopInfo *LI,
1074                              MemorySSAUpdater *MSSAU, const Twine &BBName,
1075                              bool Before) {
1076   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
1077                         Before);
1078 }
1079 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1080                              DomTreeUpdater *DTU, LoopInfo *LI,
1081                              MemorySSAUpdater *MSSAU, const Twine &BBName,
1082                              bool Before) {
1083   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
1084                         Before);
1085 }
1086 
1087 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt,
1088                                    DomTreeUpdater *DTU, LoopInfo *LI,
1089                                    MemorySSAUpdater *MSSAU,
1090                                    const Twine &BBName) {
1091 
1092   BasicBlock::iterator SplitIt = SplitPt;
1093   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
1094     ++SplitIt;
1095   std::string Name = BBName.str();
1096   BasicBlock *New = Old->splitBasicBlock(
1097       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
1098       /* Before=*/true);
1099 
1100   // The new block lives in whichever loop the old one did. This preserves
1101   // LCSSA as well, because we force the split point to be after any PHI nodes.
1102   if (LI)
1103     if (Loop *L = LI->getLoopFor(Old))
1104       L->addBasicBlockToLoop(New, *LI);
1105 
1106   if (DTU) {
1107     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
1108     // New dominates Old. The predecessor nodes of the Old node dominate
1109     // New node.
1110     SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
1111     DTUpdates.push_back({DominatorTree::Insert, New, Old});
1112     DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
1113     for (BasicBlock *PredecessorOfOld : predecessors(New))
1114       if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
1115         DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
1116         DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
1117       }
1118 
1119     DTU->applyUpdates(DTUpdates);
1120 
1121     // Move MemoryAccesses still tracked in Old, but part of New now.
1122     // Update accesses in successor blocks accordingly.
1123     if (MSSAU) {
1124       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
1125       if (VerifyMemorySSA)
1126         MSSAU->getMemorySSA()->verifyMemorySSA();
1127     }
1128   }
1129   return New;
1130 }
1131 
1132 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
1133 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
1134                                       ArrayRef<BasicBlock *> Preds,
1135                                       DomTreeUpdater *DTU, DominatorTree *DT,
1136                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
1137                                       bool PreserveLCSSA, bool &HasLoopExit) {
1138   // Update dominator tree if available.
1139   if (DTU) {
1140     // Recalculation of DomTree is needed when updating a forward DomTree and
1141     // the Entry BB is replaced.
1142     if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
1143       // The entry block was removed and there is no external interface for
1144       // the dominator tree to be notified of this change. In this corner-case
1145       // we recalculate the entire tree.
1146       DTU->recalculate(*NewBB->getParent());
1147     } else {
1148       // Split block expects NewBB to have a non-empty set of predecessors.
1149       SmallVector<DominatorTree::UpdateType, 8> Updates;
1150       SmallPtrSet<BasicBlock *, 8> UniquePreds;
1151       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
1152       Updates.reserve(Updates.size() + 2 * Preds.size());
1153       for (auto *Pred : Preds)
1154         if (UniquePreds.insert(Pred).second) {
1155           Updates.push_back({DominatorTree::Insert, Pred, NewBB});
1156           Updates.push_back({DominatorTree::Delete, Pred, OldBB});
1157         }
1158       DTU->applyUpdates(Updates);
1159     }
1160   } else if (DT) {
1161     if (OldBB == DT->getRootNode()->getBlock()) {
1162       assert(NewBB->isEntryBlock());
1163       DT->setNewRoot(NewBB);
1164     } else {
1165       // Split block expects NewBB to have a non-empty set of predecessors.
1166       DT->splitBlock(NewBB);
1167     }
1168   }
1169 
1170   // Update MemoryPhis after split if MemorySSA is available
1171   if (MSSAU)
1172     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
1173 
1174   // The rest of the logic is only relevant for updating the loop structures.
1175   if (!LI)
1176     return;
1177 
1178   if (DTU && DTU->hasDomTree())
1179     DT = &DTU->getDomTree();
1180   assert(DT && "DT should be available to update LoopInfo!");
1181   Loop *L = LI->getLoopFor(OldBB);
1182 
1183   // If we need to preserve loop analyses, collect some information about how
1184   // this split will affect loops.
1185   bool IsLoopEntry = !!L;
1186   bool SplitMakesNewLoopHeader = false;
1187   for (BasicBlock *Pred : Preds) {
1188     // Preds that are not reachable from entry should not be used to identify if
1189     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
1190     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
1191     // as true and make the NewBB the header of some loop. This breaks LI.
1192     if (!DT->isReachableFromEntry(Pred))
1193       continue;
1194     // If we need to preserve LCSSA, determine if any of the preds is a loop
1195     // exit.
1196     if (PreserveLCSSA)
1197       if (Loop *PL = LI->getLoopFor(Pred))
1198         if (!PL->contains(OldBB))
1199           HasLoopExit = true;
1200 
1201     // If we need to preserve LoopInfo, note whether any of the preds crosses
1202     // an interesting loop boundary.
1203     if (!L)
1204       continue;
1205     if (L->contains(Pred))
1206       IsLoopEntry = false;
1207     else
1208       SplitMakesNewLoopHeader = true;
1209   }
1210 
1211   // Unless we have a loop for OldBB, nothing else to do here.
1212   if (!L)
1213     return;
1214 
1215   if (IsLoopEntry) {
1216     // Add the new block to the nearest enclosing loop (and not an adjacent
1217     // loop). To find this, examine each of the predecessors and determine which
1218     // loops enclose them, and select the most-nested loop which contains the
1219     // loop containing the block being split.
1220     Loop *InnermostPredLoop = nullptr;
1221     for (BasicBlock *Pred : Preds) {
1222       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
1223         // Seek a loop which actually contains the block being split (to avoid
1224         // adjacent loops).
1225         while (PredLoop && !PredLoop->contains(OldBB))
1226           PredLoop = PredLoop->getParentLoop();
1227 
1228         // Select the most-nested of these loops which contains the block.
1229         if (PredLoop && PredLoop->contains(OldBB) &&
1230             (!InnermostPredLoop ||
1231              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
1232           InnermostPredLoop = PredLoop;
1233       }
1234     }
1235 
1236     if (InnermostPredLoop)
1237       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1238   } else {
1239     L->addBasicBlockToLoop(NewBB, *LI);
1240     if (SplitMakesNewLoopHeader)
1241       L->moveToHeader(NewBB);
1242   }
1243 }
1244 
1245 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1246 /// This also updates AliasAnalysis, if available.
1247 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1248                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1249                            bool HasLoopExit) {
1250   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1251   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1252   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1253     PHINode *PN = cast<PHINode>(I++);
1254 
1255     // Check to see if all of the values coming in are the same.  If so, we
1256     // don't need to create a new PHI node, unless it's needed for LCSSA.
1257     Value *InVal = nullptr;
1258     if (!HasLoopExit) {
1259       InVal = PN->getIncomingValueForBlock(Preds[0]);
1260       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1261         if (!PredSet.count(PN->getIncomingBlock(i)))
1262           continue;
1263         if (!InVal)
1264           InVal = PN->getIncomingValue(i);
1265         else if (InVal != PN->getIncomingValue(i)) {
1266           InVal = nullptr;
1267           break;
1268         }
1269       }
1270     }
1271 
1272     if (InVal) {
1273       // If all incoming values for the new PHI would be the same, just don't
1274       // make a new PHI.  Instead, just remove the incoming values from the old
1275       // PHI.
1276       PN->removeIncomingValueIf(
1277           [&](unsigned Idx) {
1278             return PredSet.contains(PN->getIncomingBlock(Idx));
1279           },
1280           /* DeletePHIIfEmpty */ false);
1281 
1282       // Add an incoming value to the PHI node in the loop for the preheader
1283       // edge.
1284       PN->addIncoming(InVal, NewBB);
1285       continue;
1286     }
1287 
1288     // If the values coming into the block are not the same, we need a new
1289     // PHI.
1290     // Create the new PHI node, insert it into NewBB at the end of the block
1291     PHINode *NewPHI =
1292         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1293 
1294     // NOTE! This loop walks backwards for a reason! First off, this minimizes
1295     // the cost of removal if we end up removing a large number of values, and
1296     // second off, this ensures that the indices for the incoming values aren't
1297     // invalidated when we remove one.
1298     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1299       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1300       if (PredSet.count(IncomingBB)) {
1301         Value *V = PN->removeIncomingValue(i, false);
1302         NewPHI->addIncoming(V, IncomingBB);
1303       }
1304     }
1305 
1306     PN->addIncoming(NewPHI, NewBB);
1307   }
1308 }
1309 
1310 static void SplitLandingPadPredecessorsImpl(
1311     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1312     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1313     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1314     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1315 
1316 static BasicBlock *
1317 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1318                            const char *Suffix, DomTreeUpdater *DTU,
1319                            DominatorTree *DT, LoopInfo *LI,
1320                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1321   // Do not attempt to split that which cannot be split.
1322   if (!BB->canSplitPredecessors())
1323     return nullptr;
1324 
1325   // For the landingpads we need to act a bit differently.
1326   // Delegate this work to the SplitLandingPadPredecessors.
1327   if (BB->isLandingPad()) {
1328     SmallVector<BasicBlock*, 2> NewBBs;
1329     std::string NewName = std::string(Suffix) + ".split-lp";
1330 
1331     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1332                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
1333     return NewBBs[0];
1334   }
1335 
1336   // Create new basic block, insert right before the original block.
1337   BasicBlock *NewBB = BasicBlock::Create(
1338       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1339 
1340   // The new block unconditionally branches to the old block.
1341   BranchInst *BI = BranchInst::Create(BB, NewBB);
1342 
1343   Loop *L = nullptr;
1344   BasicBlock *OldLatch = nullptr;
1345   // Splitting the predecessors of a loop header creates a preheader block.
1346   if (LI && LI->isLoopHeader(BB)) {
1347     L = LI->getLoopFor(BB);
1348     // Using the loop start line number prevents debuggers stepping into the
1349     // loop body for this instruction.
1350     BI->setDebugLoc(L->getStartLoc());
1351 
1352     // If BB is the header of the Loop, it is possible that the loop is
1353     // modified, such that the current latch does not remain the latch of the
1354     // loop. If that is the case, the loop metadata from the current latch needs
1355     // to be applied to the new latch.
1356     OldLatch = L->getLoopLatch();
1357   } else
1358     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1359 
1360   // Move the edges from Preds to point to NewBB instead of BB.
1361   for (BasicBlock *Pred : Preds) {
1362     // This is slightly more strict than necessary; the minimum requirement
1363     // is that there be no more than one indirectbr branching to BB. And
1364     // all BlockAddress uses would need to be updated.
1365     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1366            "Cannot split an edge from an IndirectBrInst");
1367     Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
1368   }
1369 
1370   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1371   // node becomes an incoming value for BB's phi node.  However, if the Preds
1372   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1373   // account for the newly created predecessor.
1374   if (Preds.empty()) {
1375     // Insert dummy values as the incoming value.
1376     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1377       cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
1378   }
1379 
1380   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1381   bool HasLoopExit = false;
1382   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1383                             HasLoopExit);
1384 
1385   if (!Preds.empty()) {
1386     // Update the PHI nodes in BB with the values coming from NewBB.
1387     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1388   }
1389 
1390   if (OldLatch) {
1391     BasicBlock *NewLatch = L->getLoopLatch();
1392     if (NewLatch != OldLatch) {
1393       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1394       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1395       // It's still possible that OldLatch is the latch of another inner loop,
1396       // in which case we do not remove the metadata.
1397       Loop *IL = LI->getLoopFor(OldLatch);
1398       if (IL && IL->getLoopLatch() != OldLatch)
1399         OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1400     }
1401   }
1402 
1403   return NewBB;
1404 }
1405 
1406 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1407                                          ArrayRef<BasicBlock *> Preds,
1408                                          const char *Suffix, DominatorTree *DT,
1409                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
1410                                          bool PreserveLCSSA) {
1411   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1412                                     MSSAU, PreserveLCSSA);
1413 }
1414 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1415                                          ArrayRef<BasicBlock *> Preds,
1416                                          const char *Suffix,
1417                                          DomTreeUpdater *DTU, LoopInfo *LI,
1418                                          MemorySSAUpdater *MSSAU,
1419                                          bool PreserveLCSSA) {
1420   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1421                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1422 }
1423 
1424 static void SplitLandingPadPredecessorsImpl(
1425     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1426     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1427     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1428     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1429   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1430 
1431   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1432   // it right before the original block.
1433   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1434                                           OrigBB->getName() + Suffix1,
1435                                           OrigBB->getParent(), OrigBB);
1436   NewBBs.push_back(NewBB1);
1437 
1438   // The new block unconditionally branches to the old block.
1439   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1440   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1441 
1442   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1443   for (BasicBlock *Pred : Preds) {
1444     // This is slightly more strict than necessary; the minimum requirement
1445     // is that there be no more than one indirectbr branching to BB. And
1446     // all BlockAddress uses would need to be updated.
1447     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1448            "Cannot split an edge from an IndirectBrInst");
1449     Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1450   }
1451 
1452   bool HasLoopExit = false;
1453   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1454                             PreserveLCSSA, HasLoopExit);
1455 
1456   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1457   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1458 
1459   // Move the remaining edges from OrigBB to point to NewBB2.
1460   SmallVector<BasicBlock*, 8> NewBB2Preds;
1461   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1462        i != e; ) {
1463     BasicBlock *Pred = *i++;
1464     if (Pred == NewBB1) continue;
1465     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1466            "Cannot split an edge from an IndirectBrInst");
1467     NewBB2Preds.push_back(Pred);
1468     e = pred_end(OrigBB);
1469   }
1470 
1471   BasicBlock *NewBB2 = nullptr;
1472   if (!NewBB2Preds.empty()) {
1473     // Create another basic block for the rest of OrigBB's predecessors.
1474     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1475                                 OrigBB->getName() + Suffix2,
1476                                 OrigBB->getParent(), OrigBB);
1477     NewBBs.push_back(NewBB2);
1478 
1479     // The new block unconditionally branches to the old block.
1480     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1481     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1482 
1483     // Move the remaining edges from OrigBB to point to NewBB2.
1484     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1485       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1486 
1487     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1488     HasLoopExit = false;
1489     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1490                               PreserveLCSSA, HasLoopExit);
1491 
1492     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1493     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1494   }
1495 
1496   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1497   Instruction *Clone1 = LPad->clone();
1498   Clone1->setName(Twine("lpad") + Suffix1);
1499   Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
1500 
1501   if (NewBB2) {
1502     Instruction *Clone2 = LPad->clone();
1503     Clone2->setName(Twine("lpad") + Suffix2);
1504     Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
1505 
1506     // Create a PHI node for the two cloned landingpad instructions only
1507     // if the original landingpad instruction has some uses.
1508     if (!LPad->use_empty()) {
1509       assert(!LPad->getType()->isTokenTy() &&
1510              "Split cannot be applied if LPad is token type. Otherwise an "
1511              "invalid PHINode of token type would be created.");
1512       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1513       PN->addIncoming(Clone1, NewBB1);
1514       PN->addIncoming(Clone2, NewBB2);
1515       LPad->replaceAllUsesWith(PN);
1516     }
1517     LPad->eraseFromParent();
1518   } else {
1519     // There is no second clone. Just replace the landing pad with the first
1520     // clone.
1521     LPad->replaceAllUsesWith(Clone1);
1522     LPad->eraseFromParent();
1523   }
1524 }
1525 
1526 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1527                                        ArrayRef<BasicBlock *> Preds,
1528                                        const char *Suffix1, const char *Suffix2,
1529                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1530                                        DomTreeUpdater *DTU, LoopInfo *LI,
1531                                        MemorySSAUpdater *MSSAU,
1532                                        bool PreserveLCSSA) {
1533   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1534                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1535                                          PreserveLCSSA);
1536 }
1537 
1538 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1539                                              BasicBlock *Pred,
1540                                              DomTreeUpdater *DTU) {
1541   Instruction *UncondBranch = Pred->getTerminator();
1542   // Clone the return and add it to the end of the predecessor.
1543   Instruction *NewRet = RI->clone();
1544   NewRet->insertInto(Pred, Pred->end());
1545 
1546   // If the return instruction returns a value, and if the value was a
1547   // PHI node in "BB", propagate the right value into the return.
1548   for (Use &Op : NewRet->operands()) {
1549     Value *V = Op;
1550     Instruction *NewBC = nullptr;
1551     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1552       // Return value might be bitcasted. Clone and insert it before the
1553       // return instruction.
1554       V = BCI->getOperand(0);
1555       NewBC = BCI->clone();
1556       NewBC->insertInto(Pred, NewRet->getIterator());
1557       Op = NewBC;
1558     }
1559 
1560     Instruction *NewEV = nullptr;
1561     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1562       V = EVI->getOperand(0);
1563       NewEV = EVI->clone();
1564       if (NewBC) {
1565         NewBC->setOperand(0, NewEV);
1566         NewEV->insertInto(Pred, NewBC->getIterator());
1567       } else {
1568         NewEV->insertInto(Pred, NewRet->getIterator());
1569         Op = NewEV;
1570       }
1571     }
1572 
1573     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1574       if (PN->getParent() == BB) {
1575         if (NewEV) {
1576           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1577         } else if (NewBC)
1578           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1579         else
1580           Op = PN->getIncomingValueForBlock(Pred);
1581       }
1582     }
1583   }
1584 
1585   // Update any PHI nodes in the returning block to realize that we no
1586   // longer branch to them.
1587   BB->removePredecessor(Pred);
1588   UncondBranch->eraseFromParent();
1589 
1590   if (DTU)
1591     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1592 
1593   return cast<ReturnInst>(NewRet);
1594 }
1595 
1596 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1597                                              BasicBlock::iterator SplitBefore,
1598                                              bool Unreachable,
1599                                              MDNode *BranchWeights,
1600                                              DomTreeUpdater *DTU, LoopInfo *LI,
1601                                              BasicBlock *ThenBlock) {
1602   SplitBlockAndInsertIfThenElse(
1603       Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr,
1604       /* UnreachableThen */ Unreachable,
1605       /* UnreachableElse */ false, BranchWeights, DTU, LI);
1606   return ThenBlock->getTerminator();
1607 }
1608 
1609 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond,
1610                                              BasicBlock::iterator SplitBefore,
1611                                              bool Unreachable,
1612                                              MDNode *BranchWeights,
1613                                              DomTreeUpdater *DTU, LoopInfo *LI,
1614                                              BasicBlock *ElseBlock) {
1615   SplitBlockAndInsertIfThenElse(
1616       Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock,
1617       /* UnreachableThen */ false,
1618       /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI);
1619   return ElseBlock->getTerminator();
1620 }
1621 
1622 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore,
1623                                          Instruction **ThenTerm,
1624                                          Instruction **ElseTerm,
1625                                          MDNode *BranchWeights,
1626                                          DomTreeUpdater *DTU, LoopInfo *LI) {
1627   BasicBlock *ThenBlock = nullptr;
1628   BasicBlock *ElseBlock = nullptr;
1629   SplitBlockAndInsertIfThenElse(
1630       Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false,
1631       /* UnreachableElse */ false, BranchWeights, DTU, LI);
1632 
1633   *ThenTerm = ThenBlock->getTerminator();
1634   *ElseTerm = ElseBlock->getTerminator();
1635 }
1636 
1637 void llvm::SplitBlockAndInsertIfThenElse(
1638     Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock,
1639     BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse,
1640     MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) {
1641   assert((ThenBlock || ElseBlock) &&
1642          "At least one branch block must be created");
1643   assert((!UnreachableThen || !UnreachableElse) &&
1644          "Split block tail must be reachable");
1645 
1646   SmallVector<DominatorTree::UpdateType, 8> Updates;
1647   SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
1648   BasicBlock *Head = SplitBefore->getParent();
1649   if (DTU) {
1650     UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head));
1651     Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
1652   }
1653 
1654   LLVMContext &C = Head->getContext();
1655   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
1656   BasicBlock *TrueBlock = Tail;
1657   BasicBlock *FalseBlock = Tail;
1658   bool ThenToTailEdge = false;
1659   bool ElseToTailEdge = false;
1660 
1661   // Encapsulate the logic around creation/insertion/etc of a new block.
1662   auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB,
1663                          bool &ToTailEdge) {
1664     if (PBB == nullptr)
1665       return; // Do not create/insert a block.
1666 
1667     if (*PBB)
1668       BB = *PBB; // Caller supplied block, use it.
1669     else {
1670       // Create a new block.
1671       BB = BasicBlock::Create(C, "", Head->getParent(), Tail);
1672       if (Unreachable)
1673         (void)new UnreachableInst(C, BB);
1674       else {
1675         (void)BranchInst::Create(Tail, BB);
1676         ToTailEdge = true;
1677       }
1678       BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc());
1679       // Pass the new block back to the caller.
1680       *PBB = BB;
1681     }
1682   };
1683 
1684   handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge);
1685   handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge);
1686 
1687   Instruction *HeadOldTerm = Head->getTerminator();
1688   BranchInst *HeadNewTerm =
1689       BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond);
1690   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1691   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1692 
1693   if (DTU) {
1694     Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock);
1695     Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock);
1696     if (ThenToTailEdge)
1697       Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail);
1698     if (ElseToTailEdge)
1699       Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail);
1700     for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1701       Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor);
1702     for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1703       Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor);
1704     DTU->applyUpdates(Updates);
1705   }
1706 
1707   if (LI) {
1708     if (Loop *L = LI->getLoopFor(Head); L) {
1709       if (ThenToTailEdge)
1710         L->addBasicBlockToLoop(TrueBlock, *LI);
1711       if (ElseToTailEdge)
1712         L->addBasicBlockToLoop(FalseBlock, *LI);
1713       L->addBasicBlockToLoop(Tail, *LI);
1714     }
1715   }
1716 }
1717 
1718 std::pair<Instruction*, Value*>
1719 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) {
1720   BasicBlock *LoopPred = SplitBefore->getParent();
1721   BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore);
1722   BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore);
1723 
1724   auto *Ty = End->getType();
1725   auto &DL = SplitBefore->getModule()->getDataLayout();
1726   const unsigned Bitwidth = DL.getTypeSizeInBits(Ty);
1727 
1728   IRBuilder<> Builder(LoopBody->getTerminator());
1729   auto *IV = Builder.CreatePHI(Ty, 2, "iv");
1730   auto *IVNext =
1731     Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
1732                       /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
1733   auto *IVCheck = Builder.CreateICmpEQ(IVNext, End,
1734                                        IV->getName() + ".check");
1735   Builder.CreateCondBr(IVCheck, LoopExit, LoopBody);
1736   LoopBody->getTerminator()->eraseFromParent();
1737 
1738   // Populate the IV PHI.
1739   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred);
1740   IV->addIncoming(IVNext, LoopBody);
1741 
1742   return std::make_pair(LoopBody->getFirstNonPHI(), IV);
1743 }
1744 
1745 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC,
1746      Type *IndexTy, Instruction *InsertBefore,
1747      std::function<void(IRBuilderBase&, Value*)> Func) {
1748 
1749   IRBuilder<> IRB(InsertBefore);
1750 
1751   if (EC.isScalable()) {
1752     Value *NumElements = IRB.CreateElementCount(IndexTy, EC);
1753 
1754     auto [BodyIP, Index] =
1755       SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore);
1756 
1757     IRB.SetInsertPoint(BodyIP);
1758     Func(IRB, Index);
1759     return;
1760   }
1761 
1762   unsigned Num = EC.getFixedValue();
1763   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1764     IRB.SetInsertPoint(InsertBefore);
1765     Func(IRB, ConstantInt::get(IndexTy, Idx));
1766   }
1767 }
1768 
1769 void llvm::SplitBlockAndInsertForEachLane(
1770     Value *EVL, Instruction *InsertBefore,
1771     std::function<void(IRBuilderBase &, Value *)> Func) {
1772 
1773   IRBuilder<> IRB(InsertBefore);
1774   Type *Ty = EVL->getType();
1775 
1776   if (!isa<ConstantInt>(EVL)) {
1777     auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore);
1778     IRB.SetInsertPoint(BodyIP);
1779     Func(IRB, Index);
1780     return;
1781   }
1782 
1783   unsigned Num = cast<ConstantInt>(EVL)->getZExtValue();
1784   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1785     IRB.SetInsertPoint(InsertBefore);
1786     Func(IRB, ConstantInt::get(Ty, Idx));
1787   }
1788 }
1789 
1790 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1791                                  BasicBlock *&IfFalse) {
1792   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1793   BasicBlock *Pred1 = nullptr;
1794   BasicBlock *Pred2 = nullptr;
1795 
1796   if (SomePHI) {
1797     if (SomePHI->getNumIncomingValues() != 2)
1798       return nullptr;
1799     Pred1 = SomePHI->getIncomingBlock(0);
1800     Pred2 = SomePHI->getIncomingBlock(1);
1801   } else {
1802     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1803     if (PI == PE) // No predecessor
1804       return nullptr;
1805     Pred1 = *PI++;
1806     if (PI == PE) // Only one predecessor
1807       return nullptr;
1808     Pred2 = *PI++;
1809     if (PI != PE) // More than two predecessors
1810       return nullptr;
1811   }
1812 
1813   // We can only handle branches.  Other control flow will be lowered to
1814   // branches if possible anyway.
1815   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1816   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1817   if (!Pred1Br || !Pred2Br)
1818     return nullptr;
1819 
1820   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1821   // either are.
1822   if (Pred2Br->isConditional()) {
1823     // If both branches are conditional, we don't have an "if statement".  In
1824     // reality, we could transform this case, but since the condition will be
1825     // required anyway, we stand no chance of eliminating it, so the xform is
1826     // probably not profitable.
1827     if (Pred1Br->isConditional())
1828       return nullptr;
1829 
1830     std::swap(Pred1, Pred2);
1831     std::swap(Pred1Br, Pred2Br);
1832   }
1833 
1834   if (Pred1Br->isConditional()) {
1835     // The only thing we have to watch out for here is to make sure that Pred2
1836     // doesn't have incoming edges from other blocks.  If it does, the condition
1837     // doesn't dominate BB.
1838     if (!Pred2->getSinglePredecessor())
1839       return nullptr;
1840 
1841     // If we found a conditional branch predecessor, make sure that it branches
1842     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1843     if (Pred1Br->getSuccessor(0) == BB &&
1844         Pred1Br->getSuccessor(1) == Pred2) {
1845       IfTrue = Pred1;
1846       IfFalse = Pred2;
1847     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1848                Pred1Br->getSuccessor(1) == BB) {
1849       IfTrue = Pred2;
1850       IfFalse = Pred1;
1851     } else {
1852       // We know that one arm of the conditional goes to BB, so the other must
1853       // go somewhere unrelated, and this must not be an "if statement".
1854       return nullptr;
1855     }
1856 
1857     return Pred1Br;
1858   }
1859 
1860   // Ok, if we got here, both predecessors end with an unconditional branch to
1861   // BB.  Don't panic!  If both blocks only have a single (identical)
1862   // predecessor, and THAT is a conditional branch, then we're all ok!
1863   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1864   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1865     return nullptr;
1866 
1867   // Otherwise, if this is a conditional branch, then we can use it!
1868   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1869   if (!BI) return nullptr;
1870 
1871   assert(BI->isConditional() && "Two successors but not conditional?");
1872   if (BI->getSuccessor(0) == Pred1) {
1873     IfTrue = Pred1;
1874     IfFalse = Pred2;
1875   } else {
1876     IfTrue = Pred2;
1877     IfFalse = Pred1;
1878   }
1879   return BI;
1880 }
1881 
1882 // After creating a control flow hub, the operands of PHINodes in an outgoing
1883 // block Out no longer match the predecessors of that block. Predecessors of Out
1884 // that are incoming blocks to the hub are now replaced by just one edge from
1885 // the hub. To match this new control flow, the corresponding values from each
1886 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1887 //
1888 // This operation cannot be performed with SSAUpdater, because it involves one
1889 // new use: If the block Out is in the list of Incoming blocks, then the newly
1890 // created PHI in the Hub will use itself along that edge from Out to Hub.
1891 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1892                           const SetVector<BasicBlock *> &Incoming,
1893                           BasicBlock *FirstGuardBlock) {
1894   auto I = Out->begin();
1895   while (I != Out->end() && isa<PHINode>(I)) {
1896     auto Phi = cast<PHINode>(I);
1897     auto NewPhi =
1898         PHINode::Create(Phi->getType(), Incoming.size(),
1899                         Phi->getName() + ".moved", &FirstGuardBlock->front());
1900     for (auto *In : Incoming) {
1901       Value *V = UndefValue::get(Phi->getType());
1902       if (In == Out) {
1903         V = NewPhi;
1904       } else if (Phi->getBasicBlockIndex(In) != -1) {
1905         V = Phi->removeIncomingValue(In, false);
1906       }
1907       NewPhi->addIncoming(V, In);
1908     }
1909     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1910     if (Phi->getNumOperands() == 0) {
1911       Phi->replaceAllUsesWith(NewPhi);
1912       I = Phi->eraseFromParent();
1913       continue;
1914     }
1915     Phi->addIncoming(NewPhi, GuardBlock);
1916     ++I;
1917   }
1918 }
1919 
1920 using BBPredicates = DenseMap<BasicBlock *, Instruction *>;
1921 using BBSetVector = SetVector<BasicBlock *>;
1922 
1923 // Redirects the terminator of the incoming block to the first guard
1924 // block in the hub. The condition of the original terminator (if it
1925 // was conditional) and its original successors are returned as a
1926 // tuple <condition, succ0, succ1>. The function additionally filters
1927 // out successors that are not in the set of outgoing blocks.
1928 //
1929 // - condition is non-null iff the branch is conditional.
1930 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1931 // - Succ2 is non-null iff condition is non-null and the fallthrough
1932 //         target is an outgoing block.
1933 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1934 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1935               const BBSetVector &Outgoing) {
1936   assert(isa<BranchInst>(BB->getTerminator()) &&
1937          "Only support branch terminator.");
1938   auto Branch = cast<BranchInst>(BB->getTerminator());
1939   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1940 
1941   BasicBlock *Succ0 = Branch->getSuccessor(0);
1942   BasicBlock *Succ1 = nullptr;
1943   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1944 
1945   if (Branch->isUnconditional()) {
1946     Branch->setSuccessor(0, FirstGuardBlock);
1947     assert(Succ0);
1948   } else {
1949     Succ1 = Branch->getSuccessor(1);
1950     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1951     assert(Succ0 || Succ1);
1952     if (Succ0 && !Succ1) {
1953       Branch->setSuccessor(0, FirstGuardBlock);
1954     } else if (Succ1 && !Succ0) {
1955       Branch->setSuccessor(1, FirstGuardBlock);
1956     } else {
1957       Branch->eraseFromParent();
1958       BranchInst::Create(FirstGuardBlock, BB);
1959     }
1960   }
1961 
1962   assert(Succ0 || Succ1);
1963   return std::make_tuple(Condition, Succ0, Succ1);
1964 }
1965 // Setup the branch instructions for guard blocks.
1966 //
1967 // Each guard block terminates in a conditional branch that transfers
1968 // control to the corresponding outgoing block or the next guard
1969 // block. The last guard block has two outgoing blocks as successors
1970 // since the condition for the final outgoing block is trivially
1971 // true. So we create one less block (including the first guard block)
1972 // than the number of outgoing blocks.
1973 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1974                                 const BBSetVector &Outgoing,
1975                                 BBPredicates &GuardPredicates) {
1976   // To help keep the loop simple, temporarily append the last
1977   // outgoing block to the list of guard blocks.
1978   GuardBlocks.push_back(Outgoing.back());
1979 
1980   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1981     auto Out = Outgoing[i];
1982     assert(GuardPredicates.count(Out));
1983     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1984                        GuardBlocks[i]);
1985   }
1986 
1987   // Remove the last block from the guard list.
1988   GuardBlocks.pop_back();
1989 }
1990 
1991 /// We are using one integer to represent the block we are branching to. Then at
1992 /// each guard block, the predicate was calcuated using a simple `icmp eq`.
1993 static void calcPredicateUsingInteger(
1994     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1995     SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) {
1996   auto &Context = Incoming.front()->getContext();
1997   auto FirstGuardBlock = GuardBlocks.front();
1998 
1999   auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(),
2000                              "merged.bb.idx", FirstGuardBlock);
2001 
2002   for (auto In : Incoming) {
2003     Value *Condition;
2004     BasicBlock *Succ0;
2005     BasicBlock *Succ1;
2006     std::tie(Condition, Succ0, Succ1) =
2007         redirectToHub(In, FirstGuardBlock, Outgoing);
2008     Value *IncomingId = nullptr;
2009     if (Succ0 && Succ1) {
2010       // target_bb_index = Condition ? index_of_succ0 : index_of_succ1.
2011       auto Succ0Iter = find(Outgoing, Succ0);
2012       auto Succ1Iter = find(Outgoing, Succ1);
2013       Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context),
2014                                     std::distance(Outgoing.begin(), Succ0Iter));
2015       Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context),
2016                                     std::distance(Outgoing.begin(), Succ1Iter));
2017       IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
2018                                       In->getTerminator());
2019     } else {
2020       // Get the index of the non-null successor.
2021       auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
2022       IncomingId = ConstantInt::get(Type::getInt32Ty(Context),
2023                                     std::distance(Outgoing.begin(), SuccIter));
2024     }
2025     Phi->addIncoming(IncomingId, In);
2026   }
2027 
2028   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2029     auto Out = Outgoing[i];
2030     auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
2031                                 ConstantInt::get(Type::getInt32Ty(Context), i),
2032                                 Out->getName() + ".predicate", GuardBlocks[i]);
2033     GuardPredicates[Out] = Cmp;
2034   }
2035 }
2036 
2037 /// We record the predicate of each outgoing block using a phi of boolean.
2038 static void calcPredicateUsingBooleans(
2039     const BBSetVector &Incoming, const BBSetVector &Outgoing,
2040     SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
2041     SmallVectorImpl<WeakVH> &DeletionCandidates) {
2042   auto &Context = Incoming.front()->getContext();
2043   auto BoolTrue = ConstantInt::getTrue(Context);
2044   auto BoolFalse = ConstantInt::getFalse(Context);
2045   auto FirstGuardBlock = GuardBlocks.front();
2046 
2047   // The predicate for the last outgoing is trivially true, and so we
2048   // process only the first N-1 successors.
2049   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2050     auto Out = Outgoing[i];
2051     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
2052 
2053     auto Phi =
2054         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
2055                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
2056     GuardPredicates[Out] = Phi;
2057   }
2058 
2059   for (auto *In : Incoming) {
2060     Value *Condition;
2061     BasicBlock *Succ0;
2062     BasicBlock *Succ1;
2063     std::tie(Condition, Succ0, Succ1) =
2064         redirectToHub(In, FirstGuardBlock, Outgoing);
2065 
2066     // Optimization: Consider an incoming block A with both successors
2067     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
2068     // for Succ0 and Succ1 complement each other. If Succ0 is visited
2069     // first in the loop below, control will branch to Succ0 using the
2070     // corresponding predicate. But if that branch is not taken, then
2071     // control must reach Succ1, which means that the incoming value of
2072     // the predicate from `In` is true for Succ1.
2073     bool OneSuccessorDone = false;
2074     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2075       auto Out = Outgoing[i];
2076       PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
2077       if (Out != Succ0 && Out != Succ1) {
2078         Phi->addIncoming(BoolFalse, In);
2079       } else if (!Succ0 || !Succ1 || OneSuccessorDone) {
2080         // Optimization: When only one successor is an outgoing block,
2081         // the incoming predicate from `In` is always true.
2082         Phi->addIncoming(BoolTrue, In);
2083       } else {
2084         assert(Succ0 && Succ1);
2085         if (Out == Succ0) {
2086           Phi->addIncoming(Condition, In);
2087         } else {
2088           auto Inverted = invertCondition(Condition);
2089           DeletionCandidates.push_back(Condition);
2090           Phi->addIncoming(Inverted, In);
2091         }
2092         OneSuccessorDone = true;
2093       }
2094     }
2095   }
2096 }
2097 
2098 // Capture the existing control flow as guard predicates, and redirect
2099 // control flow from \p Incoming block through the \p GuardBlocks to the
2100 // \p Outgoing blocks.
2101 //
2102 // There is one guard predicate for each outgoing block OutBB. The
2103 // predicate represents whether the hub should transfer control flow
2104 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
2105 // them in the same order as the Outgoing set-vector, and control
2106 // branches to the first outgoing block whose predicate evaluates to true.
2107 static void
2108 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks,
2109                          SmallVectorImpl<WeakVH> &DeletionCandidates,
2110                          const BBSetVector &Incoming,
2111                          const BBSetVector &Outgoing, const StringRef Prefix,
2112                          std::optional<unsigned> MaxControlFlowBooleans) {
2113   BBPredicates GuardPredicates;
2114   auto F = Incoming.front()->getParent();
2115 
2116   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i)
2117     GuardBlocks.push_back(
2118         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
2119 
2120   // When we are using an integer to record which target block to jump to, we
2121   // are creating less live values, actually we are using one single integer to
2122   // store the index of the target block. When we are using booleans to store
2123   // the branching information, we need (N-1) boolean values, where N is the
2124   // number of outgoing block.
2125   if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
2126     calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates,
2127                                DeletionCandidates);
2128   else
2129     calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates);
2130 
2131   setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
2132 }
2133 
2134 BasicBlock *llvm::CreateControlFlowHub(
2135     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
2136     const BBSetVector &Incoming, const BBSetVector &Outgoing,
2137     const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
2138   if (Outgoing.size() < 2)
2139     return Outgoing.front();
2140 
2141   SmallVector<DominatorTree::UpdateType, 16> Updates;
2142   if (DTU) {
2143     for (auto *In : Incoming) {
2144       for (auto Succ : successors(In))
2145         if (Outgoing.count(Succ))
2146           Updates.push_back({DominatorTree::Delete, In, Succ});
2147     }
2148   }
2149 
2150   SmallVector<WeakVH, 8> DeletionCandidates;
2151   convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing,
2152                            Prefix, MaxControlFlowBooleans);
2153   auto FirstGuardBlock = GuardBlocks.front();
2154 
2155   // Update the PHINodes in each outgoing block to match the new control flow.
2156   for (int i = 0, e = GuardBlocks.size(); i != e; ++i)
2157     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
2158 
2159   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
2160 
2161   if (DTU) {
2162     int NumGuards = GuardBlocks.size();
2163     assert((int)Outgoing.size() == NumGuards + 1);
2164 
2165     for (auto In : Incoming)
2166       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
2167 
2168     for (int i = 0; i != NumGuards - 1; ++i) {
2169       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
2170       Updates.push_back(
2171           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
2172     }
2173     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2174                        Outgoing[NumGuards - 1]});
2175     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2176                        Outgoing[NumGuards]});
2177     DTU->applyUpdates(Updates);
2178   }
2179 
2180   for (auto I : DeletionCandidates) {
2181     if (I->use_empty())
2182       if (auto Inst = dyn_cast_or_null<Instruction>(I))
2183         Inst->eraseFromParent();
2184   }
2185 
2186   return FirstGuardBlock;
2187 }
2188 
2189 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) {
2190   Value *NewCond = PBI->getCondition();
2191   // If this is a "cmp" instruction, only used for branching (and nowhere
2192   // else), then we can simply invert the predicate.
2193   if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2194     CmpInst *CI = cast<CmpInst>(NewCond);
2195     CI->setPredicate(CI->getInversePredicate());
2196   } else
2197     NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not");
2198 
2199   PBI->setCondition(NewCond);
2200   PBI->swapSuccessors();
2201 }
2202 
2203 bool llvm::hasOnlySimpleTerminator(const Function &F) {
2204   for (auto &BB : F) {
2205     auto *Term = BB.getTerminator();
2206     if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) ||
2207           isa<BranchInst>(Term)))
2208       return false;
2209   }
2210   return true;
2211 }
2212 
2213 bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src,
2214                                          const BasicBlock &Dest) {
2215   assert(Src.getParent() == Dest.getParent());
2216   if (!Src.getParent()->isPresplitCoroutine())
2217     return false;
2218   if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator()))
2219     if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition()))
2220       return Intr->getIntrinsicID() == Intrinsic::coro_suspend &&
2221              SW->getDefaultDest() == &Dest;
2222   return false;
2223 }
2224