1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include <cassert> 47 #include <cstdint> 48 #include <string> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "basicblock-utils" 55 56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( 57 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, 58 cl::desc("Set the maximum path length when checking whether a basic block " 59 "is followed by a block that either has a terminating " 60 "deoptimizing call or is terminated with an unreachable")); 61 62 void llvm::detachDeadBlocks( 63 ArrayRef<BasicBlock *> BBs, 64 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 65 bool KeepOneInputPHIs) { 66 for (auto *BB : BBs) { 67 // Loop through all of our successors and make sure they know that one 68 // of their predecessors is going away. 69 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 70 for (BasicBlock *Succ : successors(BB)) { 71 Succ->removePredecessor(BB, KeepOneInputPHIs); 72 if (Updates && UniqueSuccessors.insert(Succ).second) 73 Updates->push_back({DominatorTree::Delete, BB, Succ}); 74 } 75 76 // Zap all the instructions in the block. 77 while (!BB->empty()) { 78 Instruction &I = BB->back(); 79 // If this instruction is used, replace uses with an arbitrary value. 80 // Because control flow can't get here, we don't care what we replace the 81 // value with. Note that since this block is unreachable, and all values 82 // contained within it must dominate their uses, that all uses will 83 // eventually be removed (they are themselves dead). 84 if (!I.use_empty()) 85 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 86 BB->back().eraseFromParent(); 87 } 88 new UnreachableInst(BB->getContext(), BB); 89 assert(BB->size() == 1 && 90 isa<UnreachableInst>(BB->getTerminator()) && 91 "The successor list of BB isn't empty before " 92 "applying corresponding DTU updates."); 93 } 94 } 95 96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 97 bool KeepOneInputPHIs) { 98 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 99 } 100 101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 102 bool KeepOneInputPHIs) { 103 #ifndef NDEBUG 104 // Make sure that all predecessors of each dead block is also dead. 105 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 106 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 107 for (auto *BB : Dead) 108 for (BasicBlock *Pred : predecessors(BB)) 109 assert(Dead.count(Pred) && "All predecessors must be dead!"); 110 #endif 111 112 SmallVector<DominatorTree::UpdateType, 4> Updates; 113 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 114 115 if (DTU) 116 DTU->applyUpdates(Updates); 117 118 for (BasicBlock *BB : BBs) 119 if (DTU) 120 DTU->deleteBB(BB); 121 else 122 BB->eraseFromParent(); 123 } 124 125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 126 bool KeepOneInputPHIs) { 127 df_iterator_default_set<BasicBlock*> Reachable; 128 129 // Mark all reachable blocks. 130 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 131 (void)BB/* Mark all reachable blocks */; 132 133 // Collect all dead blocks. 134 std::vector<BasicBlock*> DeadBlocks; 135 for (BasicBlock &BB : F) 136 if (!Reachable.count(&BB)) 137 DeadBlocks.push_back(&BB); 138 139 // Delete the dead blocks. 140 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 141 142 return !DeadBlocks.empty(); 143 } 144 145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 146 MemoryDependenceResults *MemDep) { 147 if (!isa<PHINode>(BB->begin())) 148 return false; 149 150 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 151 if (PN->getIncomingValue(0) != PN) 152 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 153 else 154 PN->replaceAllUsesWith(PoisonValue::get(PN->getType())); 155 156 if (MemDep) 157 MemDep->removeInstruction(PN); // Memdep updates AA itself. 158 159 PN->eraseFromParent(); 160 } 161 return true; 162 } 163 164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 165 MemorySSAUpdater *MSSAU) { 166 // Recursively deleting a PHI may cause multiple PHIs to be deleted 167 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 168 SmallVector<WeakTrackingVH, 8> PHIs; 169 for (PHINode &PN : BB->phis()) 170 PHIs.push_back(&PN); 171 172 bool Changed = false; 173 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 174 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 175 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 176 177 return Changed; 178 } 179 180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 181 LoopInfo *LI, MemorySSAUpdater *MSSAU, 182 MemoryDependenceResults *MemDep, 183 bool PredecessorWithTwoSuccessors, 184 DominatorTree *DT) { 185 if (BB->hasAddressTaken()) 186 return false; 187 188 // Can't merge if there are multiple predecessors, or no predecessors. 189 BasicBlock *PredBB = BB->getUniquePredecessor(); 190 if (!PredBB) return false; 191 192 // Don't break self-loops. 193 if (PredBB == BB) return false; 194 195 // Don't break unwinding instructions or terminators with other side-effects. 196 Instruction *PTI = PredBB->getTerminator(); 197 if (PTI->isExceptionalTerminator() || PTI->mayHaveSideEffects()) 198 return false; 199 200 // Can't merge if there are multiple distinct successors. 201 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 202 return false; 203 204 // Currently only allow PredBB to have two predecessors, one being BB. 205 // Update BI to branch to BB's only successor instead of BB. 206 BranchInst *PredBB_BI; 207 BasicBlock *NewSucc = nullptr; 208 unsigned FallThruPath; 209 if (PredecessorWithTwoSuccessors) { 210 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI))) 211 return false; 212 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 214 return false; 215 NewSucc = BB_JmpI->getSuccessor(0); 216 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 217 } 218 219 // Can't merge if there is PHI loop. 220 for (PHINode &PN : BB->phis()) 221 if (llvm::is_contained(PN.incoming_values(), &PN)) 222 return false; 223 224 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 225 << PredBB->getName() << "\n"); 226 227 // Begin by getting rid of unneeded PHIs. 228 SmallVector<AssertingVH<Value>, 4> IncomingValues; 229 if (isa<PHINode>(BB->front())) { 230 for (PHINode &PN : BB->phis()) 231 if (!isa<PHINode>(PN.getIncomingValue(0)) || 232 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 233 IncomingValues.push_back(PN.getIncomingValue(0)); 234 FoldSingleEntryPHINodes(BB, MemDep); 235 } 236 237 if (DT) { 238 assert(!DTU && "cannot use both DT and DTU for updates"); 239 DomTreeNode *PredNode = DT->getNode(PredBB); 240 DomTreeNode *BBNode = DT->getNode(BB); 241 if (PredNode) { 242 assert(BBNode && "PredNode unreachable but BBNode reachable?"); 243 for (DomTreeNode *C : to_vector(BBNode->children())) 244 C->setIDom(PredNode); 245 } 246 } 247 // DTU update: Collect all the edges that exit BB. 248 // These dominator edges will be redirected from Pred. 249 std::vector<DominatorTree::UpdateType> Updates; 250 if (DTU) { 251 assert(!DT && "cannot use both DT and DTU for updates"); 252 // To avoid processing the same predecessor more than once. 253 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 254 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 255 succ_end(PredBB)); 256 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1); 257 // Add insert edges first. Experimentally, for the particular case of two 258 // blocks that can be merged, with a single successor and single predecessor 259 // respectively, it is beneficial to have all insert updates first. Deleting 260 // edges first may lead to unreachable blocks, followed by inserting edges 261 // making the blocks reachable again. Such DT updates lead to high compile 262 // times. We add inserts before deletes here to reduce compile time. 263 for (BasicBlock *SuccOfBB : successors(BB)) 264 // This successor of BB may already be a PredBB's successor. 265 if (!SuccsOfPredBB.contains(SuccOfBB)) 266 if (SeenSuccs.insert(SuccOfBB).second) 267 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 268 SeenSuccs.clear(); 269 for (BasicBlock *SuccOfBB : successors(BB)) 270 if (SeenSuccs.insert(SuccOfBB).second) 271 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 272 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 273 } 274 275 Instruction *STI = BB->getTerminator(); 276 Instruction *Start = &*BB->begin(); 277 // If there's nothing to move, mark the starting instruction as the last 278 // instruction in the block. Terminator instruction is handled separately. 279 if (Start == STI) 280 Start = PTI; 281 282 // Move all definitions in the successor to the predecessor... 283 PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator()); 284 285 if (MSSAU) 286 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 287 288 // Make all PHI nodes that referred to BB now refer to Pred as their 289 // source... 290 BB->replaceAllUsesWith(PredBB); 291 292 if (PredecessorWithTwoSuccessors) { 293 // Delete the unconditional branch from BB. 294 BB->back().eraseFromParent(); 295 296 // Update branch in the predecessor. 297 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 298 } else { 299 // Delete the unconditional branch from the predecessor. 300 PredBB->back().eraseFromParent(); 301 302 // Move terminator instruction. 303 PredBB->splice(PredBB->end(), BB); 304 305 // Terminator may be a memory accessing instruction too. 306 if (MSSAU) 307 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 308 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 309 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 310 } 311 // Add unreachable to now empty BB. 312 new UnreachableInst(BB->getContext(), BB); 313 314 // Inherit predecessors name if it exists. 315 if (!PredBB->hasName()) 316 PredBB->takeName(BB); 317 318 if (LI) 319 LI->removeBlock(BB); 320 321 if (MemDep) 322 MemDep->invalidateCachedPredecessors(); 323 324 if (DTU) 325 DTU->applyUpdates(Updates); 326 327 if (DT) { 328 assert(succ_empty(BB) && 329 "successors should have been transferred to PredBB"); 330 DT->eraseNode(BB); 331 } 332 333 // Finally, erase the old block and update dominator info. 334 DeleteDeadBlock(BB, DTU); 335 336 return true; 337 } 338 339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 340 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 341 LoopInfo *LI) { 342 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 343 344 bool BlocksHaveBeenMerged = false; 345 while (!MergeBlocks.empty()) { 346 BasicBlock *BB = *MergeBlocks.begin(); 347 BasicBlock *Dest = BB->getSingleSuccessor(); 348 if (Dest && (!L || L->contains(Dest))) { 349 BasicBlock *Fold = Dest->getUniquePredecessor(); 350 (void)Fold; 351 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 352 assert(Fold == BB && 353 "Expecting BB to be unique predecessor of the Dest block"); 354 MergeBlocks.erase(Dest); 355 BlocksHaveBeenMerged = true; 356 } else 357 MergeBlocks.erase(BB); 358 } else 359 MergeBlocks.erase(BB); 360 } 361 return BlocksHaveBeenMerged; 362 } 363 364 /// Remove redundant instructions within sequences of consecutive dbg.value 365 /// instructions. This is done using a backward scan to keep the last dbg.value 366 /// describing a specific variable/fragment. 367 /// 368 /// BackwardScan strategy: 369 /// ---------------------- 370 /// Given a sequence of consecutive DbgValueInst like this 371 /// 372 /// dbg.value ..., "x", FragmentX1 (*) 373 /// dbg.value ..., "y", FragmentY1 374 /// dbg.value ..., "x", FragmentX2 375 /// dbg.value ..., "x", FragmentX1 (**) 376 /// 377 /// then the instruction marked with (*) can be removed (it is guaranteed to be 378 /// obsoleted by the instruction marked with (**) as the latter instruction is 379 /// describing the same variable using the same fragment info). 380 /// 381 /// Possible improvements: 382 /// - Check fully overlapping fragments and not only identical fragments. 383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being 384 /// part of the sequence of consecutive instructions. 385 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 386 SmallVector<DbgValueInst *, 8> ToBeRemoved; 387 SmallDenseSet<DebugVariable> VariableSet; 388 for (auto &I : reverse(*BB)) { 389 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 390 DebugVariable Key(DVI->getVariable(), 391 DVI->getExpression(), 392 DVI->getDebugLoc()->getInlinedAt()); 393 auto R = VariableSet.insert(Key); 394 // If the variable fragment hasn't been seen before then we don't want 395 // to remove this dbg intrinsic. 396 if (R.second) 397 continue; 398 399 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) { 400 // Don't delete dbg.assign intrinsics that are linked to instructions. 401 if (!at::getAssignmentInsts(DAI).empty()) 402 continue; 403 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 404 } 405 406 // If the same variable fragment is described more than once it is enough 407 // to keep the last one (i.e. the first found since we for reverse 408 // iteration). 409 ToBeRemoved.push_back(DVI); 410 continue; 411 } 412 // Sequence with consecutive dbg.value instrs ended. Clear the map to 413 // restart identifying redundant instructions if case we find another 414 // dbg.value sequence. 415 VariableSet.clear(); 416 } 417 418 for (auto &Instr : ToBeRemoved) 419 Instr->eraseFromParent(); 420 421 return !ToBeRemoved.empty(); 422 } 423 424 /// Remove redundant dbg.value instructions using a forward scan. This can 425 /// remove a dbg.value instruction that is redundant due to indicating that a 426 /// variable has the same value as already being indicated by an earlier 427 /// dbg.value. 428 /// 429 /// ForwardScan strategy: 430 /// --------------------- 431 /// Given two identical dbg.value instructions, separated by a block of 432 /// instructions that isn't describing the same variable, like this 433 /// 434 /// dbg.value X1, "x", FragmentX1 (**) 435 /// <block of instructions, none being "dbg.value ..., "x", ..."> 436 /// dbg.value X1, "x", FragmentX1 (*) 437 /// 438 /// then the instruction marked with (*) can be removed. Variable "x" is already 439 /// described as being mapped to the SSA value X1. 440 /// 441 /// Possible improvements: 442 /// - Keep track of non-overlapping fragments. 443 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 444 SmallVector<DbgValueInst *, 8> ToBeRemoved; 445 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 446 VariableMap; 447 for (auto &I : *BB) { 448 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 449 DebugVariable Key(DVI->getVariable(), std::nullopt, 450 DVI->getDebugLoc()->getInlinedAt()); 451 auto VMI = VariableMap.find(Key); 452 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 453 // A dbg.assign with no linked instructions can be treated like a 454 // dbg.value (i.e. can be deleted). 455 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 456 457 // Update the map if we found a new value/expression describing the 458 // variable, or if the variable wasn't mapped already. 459 SmallVector<Value *, 4> Values(DVI->getValues()); 460 if (VMI == VariableMap.end() || VMI->second.first != Values || 461 VMI->second.second != DVI->getExpression()) { 462 // Use a sentinal value (nullptr) for the DIExpression when we see a 463 // linked dbg.assign so that the next debug intrinsic will never match 464 // it (i.e. always treat linked dbg.assigns as if they're unique). 465 if (IsDbgValueKind) 466 VariableMap[Key] = {Values, DVI->getExpression()}; 467 else 468 VariableMap[Key] = {Values, nullptr}; 469 continue; 470 } 471 472 // Don't delete dbg.assign intrinsics that are linked to instructions. 473 if (!IsDbgValueKind) 474 continue; 475 ToBeRemoved.push_back(DVI); 476 } 477 } 478 479 for (auto &Instr : ToBeRemoved) 480 Instr->eraseFromParent(); 481 482 return !ToBeRemoved.empty(); 483 } 484 485 /// Remove redundant undef dbg.assign intrinsic from an entry block using a 486 /// forward scan. 487 /// Strategy: 488 /// --------------------- 489 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not 490 /// linked to an intrinsic, and don't share an aggregate variable with a debug 491 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns 492 /// that come before non-undef debug intrinsics for the variable are 493 /// deleted. Given: 494 /// 495 /// dbg.assign undef, "x", FragmentX1 (*) 496 /// <block of instructions, none being "dbg.value ..., "x", ..."> 497 /// dbg.value %V, "x", FragmentX2 498 /// <block of instructions, none being "dbg.value ..., "x", ..."> 499 /// dbg.assign undef, "x", FragmentX1 500 /// 501 /// then (only) the instruction marked with (*) can be removed. 502 /// Possible improvements: 503 /// - Keep track of non-overlapping fragments. 504 static bool remomveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 505 assert(BB->isEntryBlock() && "expected entry block"); 506 SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved; 507 DenseSet<DebugVariable> SeenDefForAggregate; 508 // Returns the DebugVariable for DVI with no fragment info. 509 auto GetAggregateVariable = [](DbgValueInst *DVI) { 510 return DebugVariable(DVI->getVariable(), std::nullopt, 511 DVI->getDebugLoc()->getInlinedAt()); 512 }; 513 514 // Remove undef dbg.assign intrinsics that are encountered before 515 // any non-undef intrinsics from the entry block. 516 for (auto &I : *BB) { 517 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I); 518 if (!DVI) 519 continue; 520 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 521 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 522 DebugVariable Aggregate = GetAggregateVariable(DVI); 523 if (!SeenDefForAggregate.contains(Aggregate)) { 524 bool IsKill = DVI->isKillLocation() && IsDbgValueKind; 525 if (!IsKill) { 526 SeenDefForAggregate.insert(Aggregate); 527 } else if (DAI) { 528 ToBeRemoved.push_back(DAI); 529 } 530 } 531 } 532 533 for (DbgAssignIntrinsic *DAI : ToBeRemoved) 534 DAI->eraseFromParent(); 535 536 return !ToBeRemoved.empty(); 537 } 538 539 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 540 bool MadeChanges = false; 541 // By using the "backward scan" strategy before the "forward scan" strategy we 542 // can remove both dbg.value (2) and (3) in a situation like this: 543 // 544 // (1) dbg.value V1, "x", DIExpression() 545 // ... 546 // (2) dbg.value V2, "x", DIExpression() 547 // (3) dbg.value V1, "x", DIExpression() 548 // 549 // The backward scan will remove (2), it is made obsolete by (3). After 550 // getting (2) out of the way, the foward scan will remove (3) since "x" 551 // already is described as having the value V1 at (1). 552 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 553 if (BB->isEntryBlock() && 554 isAssignmentTrackingEnabled(*BB->getParent()->getParent())) 555 MadeChanges |= remomveUndefDbgAssignsFromEntryBlock(BB); 556 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 557 558 if (MadeChanges) 559 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 560 << BB->getName() << "\n"); 561 return MadeChanges; 562 } 563 564 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) { 565 Instruction &I = *BI; 566 // Replaces all of the uses of the instruction with uses of the value 567 I.replaceAllUsesWith(V); 568 569 // Make sure to propagate a name if there is one already. 570 if (I.hasName() && !V->hasName()) 571 V->takeName(&I); 572 573 // Delete the unnecessary instruction now... 574 BI = BI->eraseFromParent(); 575 } 576 577 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, 578 Instruction *I) { 579 assert(I->getParent() == nullptr && 580 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 581 582 // Copy debug location to newly added instruction, if it wasn't already set 583 // by the caller. 584 if (!I->getDebugLoc()) 585 I->setDebugLoc(BI->getDebugLoc()); 586 587 // Insert the new instruction into the basic block... 588 BasicBlock::iterator New = I->insertInto(BB, BI); 589 590 // Replace all uses of the old instruction, and delete it. 591 ReplaceInstWithValue(BI, I); 592 593 // Move BI back to point to the newly inserted instruction 594 BI = New; 595 } 596 597 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { 598 // Remember visited blocks to avoid infinite loop 599 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 600 unsigned Depth = 0; 601 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && 602 VisitedBlocks.insert(BB).second) { 603 if (isa<UnreachableInst>(BB->getTerminator()) || 604 BB->getTerminatingDeoptimizeCall()) 605 return true; 606 BB = BB->getUniqueSuccessor(); 607 } 608 return false; 609 } 610 611 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 612 BasicBlock::iterator BI(From); 613 ReplaceInstWithInst(From->getParent(), BI, To); 614 } 615 616 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 617 LoopInfo *LI, MemorySSAUpdater *MSSAU, 618 const Twine &BBName) { 619 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 620 621 Instruction *LatchTerm = BB->getTerminator(); 622 623 CriticalEdgeSplittingOptions Options = 624 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 625 626 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 627 // If it is a critical edge, and the succesor is an exception block, handle 628 // the split edge logic in this specific function 629 if (Succ->isEHPad()) 630 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 631 632 // If this is a critical edge, let SplitKnownCriticalEdge do it. 633 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 634 } 635 636 // If the edge isn't critical, then BB has a single successor or Succ has a 637 // single pred. Split the block. 638 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 639 // If the successor only has a single pred, split the top of the successor 640 // block. 641 assert(SP == BB && "CFG broken"); 642 SP = nullptr; 643 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 644 /*Before=*/true); 645 } 646 647 // Otherwise, if BB has a single successor, split it at the bottom of the 648 // block. 649 assert(BB->getTerminator()->getNumSuccessors() == 1 && 650 "Should have a single succ!"); 651 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 652 } 653 654 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 655 if (auto *II = dyn_cast<InvokeInst>(TI)) 656 II->setUnwindDest(Succ); 657 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 658 CS->setUnwindDest(Succ); 659 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 660 CR->setUnwindDest(Succ); 661 else 662 llvm_unreachable("unexpected terminator instruction"); 663 } 664 665 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 666 BasicBlock *NewPred, PHINode *Until) { 667 int BBIdx = 0; 668 for (PHINode &PN : DestBB->phis()) { 669 // We manually update the LandingPadReplacement PHINode and it is the last 670 // PHI Node. So, if we find it, we are done. 671 if (Until == &PN) 672 break; 673 674 // Reuse the previous value of BBIdx if it lines up. In cases where we 675 // have multiple phi nodes with *lots* of predecessors, this is a speed 676 // win because we don't have to scan the PHI looking for TIBB. This 677 // happens because the BB list of PHI nodes are usually in the same 678 // order. 679 if (PN.getIncomingBlock(BBIdx) != OldPred) 680 BBIdx = PN.getBasicBlockIndex(OldPred); 681 682 assert(BBIdx != -1 && "Invalid PHI Index!"); 683 PN.setIncomingBlock(BBIdx, NewPred); 684 } 685 } 686 687 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 688 LandingPadInst *OriginalPad, 689 PHINode *LandingPadReplacement, 690 const CriticalEdgeSplittingOptions &Options, 691 const Twine &BBName) { 692 693 auto *PadInst = Succ->getFirstNonPHI(); 694 if (!LandingPadReplacement && !PadInst->isEHPad()) 695 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 696 697 auto *LI = Options.LI; 698 SmallVector<BasicBlock *, 4> LoopPreds; 699 // Check if extra modifications will be required to preserve loop-simplify 700 // form after splitting. If it would require splitting blocks with IndirectBr 701 // terminators, bail out if preserving loop-simplify form is requested. 702 if (Options.PreserveLoopSimplify && LI) { 703 if (Loop *BBLoop = LI->getLoopFor(BB)) { 704 705 // The only way that we can break LoopSimplify form by splitting a 706 // critical edge is when there exists some edge from BBLoop to Succ *and* 707 // the only edge into Succ from outside of BBLoop is that of NewBB after 708 // the split. If the first isn't true, then LoopSimplify still holds, 709 // NewBB is the new exit block and it has no non-loop predecessors. If the 710 // second isn't true, then Succ was not in LoopSimplify form prior to 711 // the split as it had a non-loop predecessor. In both of these cases, 712 // the predecessor must be directly in BBLoop, not in a subloop, or again 713 // LoopSimplify doesn't hold. 714 for (BasicBlock *P : predecessors(Succ)) { 715 if (P == BB) 716 continue; // The new block is known. 717 if (LI->getLoopFor(P) != BBLoop) { 718 // Loop is not in LoopSimplify form, no need to re simplify after 719 // splitting edge. 720 LoopPreds.clear(); 721 break; 722 } 723 LoopPreds.push_back(P); 724 } 725 // Loop-simplify form can be preserved, if we can split all in-loop 726 // predecessors. 727 if (any_of(LoopPreds, [](BasicBlock *Pred) { 728 return isa<IndirectBrInst>(Pred->getTerminator()); 729 })) { 730 return nullptr; 731 } 732 } 733 } 734 735 auto *NewBB = 736 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 737 setUnwindEdgeTo(BB->getTerminator(), NewBB); 738 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 739 740 if (LandingPadReplacement) { 741 auto *NewLP = OriginalPad->clone(); 742 auto *Terminator = BranchInst::Create(Succ, NewBB); 743 NewLP->insertBefore(Terminator); 744 LandingPadReplacement->addIncoming(NewLP, NewBB); 745 } else { 746 Value *ParentPad = nullptr; 747 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 748 ParentPad = FuncletPad->getParentPad(); 749 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 750 ParentPad = CatchSwitch->getParentPad(); 751 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 752 ParentPad = CleanupPad->getParentPad(); 753 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 754 ParentPad = LandingPad->getParent(); 755 else 756 llvm_unreachable("handling for other EHPads not implemented yet"); 757 758 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 759 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 760 } 761 762 auto *DT = Options.DT; 763 auto *MSSAU = Options.MSSAU; 764 if (!DT && !LI) 765 return NewBB; 766 767 if (DT) { 768 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 769 SmallVector<DominatorTree::UpdateType, 3> Updates; 770 771 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 772 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 773 Updates.push_back({DominatorTree::Delete, BB, Succ}); 774 775 DTU.applyUpdates(Updates); 776 DTU.flush(); 777 778 if (MSSAU) { 779 MSSAU->applyUpdates(Updates, *DT); 780 if (VerifyMemorySSA) 781 MSSAU->getMemorySSA()->verifyMemorySSA(); 782 } 783 } 784 785 if (LI) { 786 if (Loop *BBLoop = LI->getLoopFor(BB)) { 787 // If one or the other blocks were not in a loop, the new block is not 788 // either, and thus LI doesn't need to be updated. 789 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 790 if (BBLoop == SuccLoop) { 791 // Both in the same loop, the NewBB joins loop. 792 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 793 } else if (BBLoop->contains(SuccLoop)) { 794 // Edge from an outer loop to an inner loop. Add to the outer loop. 795 BBLoop->addBasicBlockToLoop(NewBB, *LI); 796 } else if (SuccLoop->contains(BBLoop)) { 797 // Edge from an inner loop to an outer loop. Add to the outer loop. 798 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 799 } else { 800 // Edge from two loops with no containment relation. Because these 801 // are natural loops, we know that the destination block must be the 802 // header of its loop (adding a branch into a loop elsewhere would 803 // create an irreducible loop). 804 assert(SuccLoop->getHeader() == Succ && 805 "Should not create irreducible loops!"); 806 if (Loop *P = SuccLoop->getParentLoop()) 807 P->addBasicBlockToLoop(NewBB, *LI); 808 } 809 } 810 811 // If BB is in a loop and Succ is outside of that loop, we may need to 812 // update LoopSimplify form and LCSSA form. 813 if (!BBLoop->contains(Succ)) { 814 assert(!BBLoop->contains(NewBB) && 815 "Split point for loop exit is contained in loop!"); 816 817 // Update LCSSA form in the newly created exit block. 818 if (Options.PreserveLCSSA) { 819 createPHIsForSplitLoopExit(BB, NewBB, Succ); 820 } 821 822 if (!LoopPreds.empty()) { 823 BasicBlock *NewExitBB = SplitBlockPredecessors( 824 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 825 if (Options.PreserveLCSSA) 826 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 827 } 828 } 829 } 830 } 831 832 return NewBB; 833 } 834 835 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 836 BasicBlock *SplitBB, BasicBlock *DestBB) { 837 // SplitBB shouldn't have anything non-trivial in it yet. 838 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 839 SplitBB->isLandingPad()) && 840 "SplitBB has non-PHI nodes!"); 841 842 // For each PHI in the destination block. 843 for (PHINode &PN : DestBB->phis()) { 844 int Idx = PN.getBasicBlockIndex(SplitBB); 845 assert(Idx >= 0 && "Invalid Block Index"); 846 Value *V = PN.getIncomingValue(Idx); 847 848 // If the input is a PHI which already satisfies LCSSA, don't create 849 // a new one. 850 if (const PHINode *VP = dyn_cast<PHINode>(V)) 851 if (VP->getParent() == SplitBB) 852 continue; 853 854 // Otherwise a new PHI is needed. Create one and populate it. 855 PHINode *NewPN = PHINode::Create( 856 PN.getType(), Preds.size(), "split", 857 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 858 for (BasicBlock *BB : Preds) 859 NewPN->addIncoming(V, BB); 860 861 // Update the original PHI. 862 PN.setIncomingValue(Idx, NewPN); 863 } 864 } 865 866 unsigned 867 llvm::SplitAllCriticalEdges(Function &F, 868 const CriticalEdgeSplittingOptions &Options) { 869 unsigned NumBroken = 0; 870 for (BasicBlock &BB : F) { 871 Instruction *TI = BB.getTerminator(); 872 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 873 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 874 if (SplitCriticalEdge(TI, i, Options)) 875 ++NumBroken; 876 } 877 return NumBroken; 878 } 879 880 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt, 881 DomTreeUpdater *DTU, DominatorTree *DT, 882 LoopInfo *LI, MemorySSAUpdater *MSSAU, 883 const Twine &BBName, bool Before) { 884 if (Before) { 885 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 886 return splitBlockBefore(Old, SplitPt, 887 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 888 BBName); 889 } 890 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 891 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 892 ++SplitIt; 893 assert(SplitIt != SplitPt->getParent()->end()); 894 } 895 std::string Name = BBName.str(); 896 BasicBlock *New = Old->splitBasicBlock( 897 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 898 899 // The new block lives in whichever loop the old one did. This preserves 900 // LCSSA as well, because we force the split point to be after any PHI nodes. 901 if (LI) 902 if (Loop *L = LI->getLoopFor(Old)) 903 L->addBasicBlockToLoop(New, *LI); 904 905 if (DTU) { 906 SmallVector<DominatorTree::UpdateType, 8> Updates; 907 // Old dominates New. New node dominates all other nodes dominated by Old. 908 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; 909 Updates.push_back({DominatorTree::Insert, Old, New}); 910 Updates.reserve(Updates.size() + 2 * succ_size(New)); 911 for (BasicBlock *SuccessorOfOld : successors(New)) 912 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) { 913 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld}); 914 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld}); 915 } 916 917 DTU->applyUpdates(Updates); 918 } else if (DT) 919 // Old dominates New. New node dominates all other nodes dominated by Old. 920 if (DomTreeNode *OldNode = DT->getNode(Old)) { 921 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 922 923 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 924 for (DomTreeNode *I : Children) 925 DT->changeImmediateDominator(I, NewNode); 926 } 927 928 // Move MemoryAccesses still tracked in Old, but part of New now. 929 // Update accesses in successor blocks accordingly. 930 if (MSSAU) 931 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 932 933 return New; 934 } 935 936 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 937 DominatorTree *DT, LoopInfo *LI, 938 MemorySSAUpdater *MSSAU, const Twine &BBName, 939 bool Before) { 940 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 941 Before); 942 } 943 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 944 DomTreeUpdater *DTU, LoopInfo *LI, 945 MemorySSAUpdater *MSSAU, const Twine &BBName, 946 bool Before) { 947 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 948 Before); 949 } 950 951 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt, 952 DomTreeUpdater *DTU, LoopInfo *LI, 953 MemorySSAUpdater *MSSAU, 954 const Twine &BBName) { 955 956 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 957 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 958 ++SplitIt; 959 std::string Name = BBName.str(); 960 BasicBlock *New = Old->splitBasicBlock( 961 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 962 /* Before=*/true); 963 964 // The new block lives in whichever loop the old one did. This preserves 965 // LCSSA as well, because we force the split point to be after any PHI nodes. 966 if (LI) 967 if (Loop *L = LI->getLoopFor(Old)) 968 L->addBasicBlockToLoop(New, *LI); 969 970 if (DTU) { 971 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 972 // New dominates Old. The predecessor nodes of the Old node dominate 973 // New node. 974 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; 975 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 976 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New)); 977 for (BasicBlock *PredecessorOfOld : predecessors(New)) 978 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) { 979 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New}); 980 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old}); 981 } 982 983 DTU->applyUpdates(DTUpdates); 984 985 // Move MemoryAccesses still tracked in Old, but part of New now. 986 // Update accesses in successor blocks accordingly. 987 if (MSSAU) { 988 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 989 if (VerifyMemorySSA) 990 MSSAU->getMemorySSA()->verifyMemorySSA(); 991 } 992 } 993 return New; 994 } 995 996 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 997 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 998 ArrayRef<BasicBlock *> Preds, 999 DomTreeUpdater *DTU, DominatorTree *DT, 1000 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1001 bool PreserveLCSSA, bool &HasLoopExit) { 1002 // Update dominator tree if available. 1003 if (DTU) { 1004 // Recalculation of DomTree is needed when updating a forward DomTree and 1005 // the Entry BB is replaced. 1006 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 1007 // The entry block was removed and there is no external interface for 1008 // the dominator tree to be notified of this change. In this corner-case 1009 // we recalculate the entire tree. 1010 DTU->recalculate(*NewBB->getParent()); 1011 } else { 1012 // Split block expects NewBB to have a non-empty set of predecessors. 1013 SmallVector<DominatorTree::UpdateType, 8> Updates; 1014 SmallPtrSet<BasicBlock *, 8> UniquePreds; 1015 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 1016 Updates.reserve(Updates.size() + 2 * Preds.size()); 1017 for (auto *Pred : Preds) 1018 if (UniquePreds.insert(Pred).second) { 1019 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 1020 Updates.push_back({DominatorTree::Delete, Pred, OldBB}); 1021 } 1022 DTU->applyUpdates(Updates); 1023 } 1024 } else if (DT) { 1025 if (OldBB == DT->getRootNode()->getBlock()) { 1026 assert(NewBB->isEntryBlock()); 1027 DT->setNewRoot(NewBB); 1028 } else { 1029 // Split block expects NewBB to have a non-empty set of predecessors. 1030 DT->splitBlock(NewBB); 1031 } 1032 } 1033 1034 // Update MemoryPhis after split if MemorySSA is available 1035 if (MSSAU) 1036 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 1037 1038 // The rest of the logic is only relevant for updating the loop structures. 1039 if (!LI) 1040 return; 1041 1042 if (DTU && DTU->hasDomTree()) 1043 DT = &DTU->getDomTree(); 1044 assert(DT && "DT should be available to update LoopInfo!"); 1045 Loop *L = LI->getLoopFor(OldBB); 1046 1047 // If we need to preserve loop analyses, collect some information about how 1048 // this split will affect loops. 1049 bool IsLoopEntry = !!L; 1050 bool SplitMakesNewLoopHeader = false; 1051 for (BasicBlock *Pred : Preds) { 1052 // Preds that are not reachable from entry should not be used to identify if 1053 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 1054 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 1055 // as true and make the NewBB the header of some loop. This breaks LI. 1056 if (!DT->isReachableFromEntry(Pred)) 1057 continue; 1058 // If we need to preserve LCSSA, determine if any of the preds is a loop 1059 // exit. 1060 if (PreserveLCSSA) 1061 if (Loop *PL = LI->getLoopFor(Pred)) 1062 if (!PL->contains(OldBB)) 1063 HasLoopExit = true; 1064 1065 // If we need to preserve LoopInfo, note whether any of the preds crosses 1066 // an interesting loop boundary. 1067 if (!L) 1068 continue; 1069 if (L->contains(Pred)) 1070 IsLoopEntry = false; 1071 else 1072 SplitMakesNewLoopHeader = true; 1073 } 1074 1075 // Unless we have a loop for OldBB, nothing else to do here. 1076 if (!L) 1077 return; 1078 1079 if (IsLoopEntry) { 1080 // Add the new block to the nearest enclosing loop (and not an adjacent 1081 // loop). To find this, examine each of the predecessors and determine which 1082 // loops enclose them, and select the most-nested loop which contains the 1083 // loop containing the block being split. 1084 Loop *InnermostPredLoop = nullptr; 1085 for (BasicBlock *Pred : Preds) { 1086 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 1087 // Seek a loop which actually contains the block being split (to avoid 1088 // adjacent loops). 1089 while (PredLoop && !PredLoop->contains(OldBB)) 1090 PredLoop = PredLoop->getParentLoop(); 1091 1092 // Select the most-nested of these loops which contains the block. 1093 if (PredLoop && PredLoop->contains(OldBB) && 1094 (!InnermostPredLoop || 1095 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 1096 InnermostPredLoop = PredLoop; 1097 } 1098 } 1099 1100 if (InnermostPredLoop) 1101 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 1102 } else { 1103 L->addBasicBlockToLoop(NewBB, *LI); 1104 if (SplitMakesNewLoopHeader) 1105 L->moveToHeader(NewBB); 1106 } 1107 } 1108 1109 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 1110 /// This also updates AliasAnalysis, if available. 1111 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 1112 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 1113 bool HasLoopExit) { 1114 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 1115 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 1116 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1117 PHINode *PN = cast<PHINode>(I++); 1118 1119 // Check to see if all of the values coming in are the same. If so, we 1120 // don't need to create a new PHI node, unless it's needed for LCSSA. 1121 Value *InVal = nullptr; 1122 if (!HasLoopExit) { 1123 InVal = PN->getIncomingValueForBlock(Preds[0]); 1124 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1125 if (!PredSet.count(PN->getIncomingBlock(i))) 1126 continue; 1127 if (!InVal) 1128 InVal = PN->getIncomingValue(i); 1129 else if (InVal != PN->getIncomingValue(i)) { 1130 InVal = nullptr; 1131 break; 1132 } 1133 } 1134 } 1135 1136 if (InVal) { 1137 // If all incoming values for the new PHI would be the same, just don't 1138 // make a new PHI. Instead, just remove the incoming values from the old 1139 // PHI. 1140 1141 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1142 // the cost of removal if we end up removing a large number of values, and 1143 // second off, this ensures that the indices for the incoming values 1144 // aren't invalidated when we remove one. 1145 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 1146 if (PredSet.count(PN->getIncomingBlock(i))) 1147 PN->removeIncomingValue(i, false); 1148 1149 // Add an incoming value to the PHI node in the loop for the preheader 1150 // edge. 1151 PN->addIncoming(InVal, NewBB); 1152 continue; 1153 } 1154 1155 // If the values coming into the block are not the same, we need a new 1156 // PHI. 1157 // Create the new PHI node, insert it into NewBB at the end of the block 1158 PHINode *NewPHI = 1159 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 1160 1161 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1162 // the cost of removal if we end up removing a large number of values, and 1163 // second off, this ensures that the indices for the incoming values aren't 1164 // invalidated when we remove one. 1165 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1166 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1167 if (PredSet.count(IncomingBB)) { 1168 Value *V = PN->removeIncomingValue(i, false); 1169 NewPHI->addIncoming(V, IncomingBB); 1170 } 1171 } 1172 1173 PN->addIncoming(NewPHI, NewBB); 1174 } 1175 } 1176 1177 static void SplitLandingPadPredecessorsImpl( 1178 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1179 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1180 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1181 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1182 1183 static BasicBlock * 1184 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1185 const char *Suffix, DomTreeUpdater *DTU, 1186 DominatorTree *DT, LoopInfo *LI, 1187 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1188 // Do not attempt to split that which cannot be split. 1189 if (!BB->canSplitPredecessors()) 1190 return nullptr; 1191 1192 // For the landingpads we need to act a bit differently. 1193 // Delegate this work to the SplitLandingPadPredecessors. 1194 if (BB->isLandingPad()) { 1195 SmallVector<BasicBlock*, 2> NewBBs; 1196 std::string NewName = std::string(Suffix) + ".split-lp"; 1197 1198 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1199 DTU, DT, LI, MSSAU, PreserveLCSSA); 1200 return NewBBs[0]; 1201 } 1202 1203 // Create new basic block, insert right before the original block. 1204 BasicBlock *NewBB = BasicBlock::Create( 1205 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1206 1207 // The new block unconditionally branches to the old block. 1208 BranchInst *BI = BranchInst::Create(BB, NewBB); 1209 1210 Loop *L = nullptr; 1211 BasicBlock *OldLatch = nullptr; 1212 // Splitting the predecessors of a loop header creates a preheader block. 1213 if (LI && LI->isLoopHeader(BB)) { 1214 L = LI->getLoopFor(BB); 1215 // Using the loop start line number prevents debuggers stepping into the 1216 // loop body for this instruction. 1217 BI->setDebugLoc(L->getStartLoc()); 1218 1219 // If BB is the header of the Loop, it is possible that the loop is 1220 // modified, such that the current latch does not remain the latch of the 1221 // loop. If that is the case, the loop metadata from the current latch needs 1222 // to be applied to the new latch. 1223 OldLatch = L->getLoopLatch(); 1224 } else 1225 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1226 1227 // Move the edges from Preds to point to NewBB instead of BB. 1228 for (BasicBlock *Pred : Preds) { 1229 // This is slightly more strict than necessary; the minimum requirement 1230 // is that there be no more than one indirectbr branching to BB. And 1231 // all BlockAddress uses would need to be updated. 1232 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1233 "Cannot split an edge from an IndirectBrInst"); 1234 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB); 1235 } 1236 1237 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1238 // node becomes an incoming value for BB's phi node. However, if the Preds 1239 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1240 // account for the newly created predecessor. 1241 if (Preds.empty()) { 1242 // Insert dummy values as the incoming value. 1243 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1244 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB); 1245 } 1246 1247 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1248 bool HasLoopExit = false; 1249 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1250 HasLoopExit); 1251 1252 if (!Preds.empty()) { 1253 // Update the PHI nodes in BB with the values coming from NewBB. 1254 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1255 } 1256 1257 if (OldLatch) { 1258 BasicBlock *NewLatch = L->getLoopLatch(); 1259 if (NewLatch != OldLatch) { 1260 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 1261 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 1262 // It's still possible that OldLatch is the latch of another inner loop, 1263 // in which case we do not remove the metadata. 1264 Loop *IL = LI->getLoopFor(OldLatch); 1265 if (IL && IL->getLoopLatch() != OldLatch) 1266 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 1267 } 1268 } 1269 1270 return NewBB; 1271 } 1272 1273 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1274 ArrayRef<BasicBlock *> Preds, 1275 const char *Suffix, DominatorTree *DT, 1276 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1277 bool PreserveLCSSA) { 1278 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1279 MSSAU, PreserveLCSSA); 1280 } 1281 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1282 ArrayRef<BasicBlock *> Preds, 1283 const char *Suffix, 1284 DomTreeUpdater *DTU, LoopInfo *LI, 1285 MemorySSAUpdater *MSSAU, 1286 bool PreserveLCSSA) { 1287 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1288 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1289 } 1290 1291 static void SplitLandingPadPredecessorsImpl( 1292 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1293 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1294 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1295 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1296 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1297 1298 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1299 // it right before the original block. 1300 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1301 OrigBB->getName() + Suffix1, 1302 OrigBB->getParent(), OrigBB); 1303 NewBBs.push_back(NewBB1); 1304 1305 // The new block unconditionally branches to the old block. 1306 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1307 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1308 1309 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1310 for (BasicBlock *Pred : Preds) { 1311 // This is slightly more strict than necessary; the minimum requirement 1312 // is that there be no more than one indirectbr branching to BB. And 1313 // all BlockAddress uses would need to be updated. 1314 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1315 "Cannot split an edge from an IndirectBrInst"); 1316 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1317 } 1318 1319 bool HasLoopExit = false; 1320 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1321 PreserveLCSSA, HasLoopExit); 1322 1323 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1324 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1325 1326 // Move the remaining edges from OrigBB to point to NewBB2. 1327 SmallVector<BasicBlock*, 8> NewBB2Preds; 1328 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1329 i != e; ) { 1330 BasicBlock *Pred = *i++; 1331 if (Pred == NewBB1) continue; 1332 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1333 "Cannot split an edge from an IndirectBrInst"); 1334 NewBB2Preds.push_back(Pred); 1335 e = pred_end(OrigBB); 1336 } 1337 1338 BasicBlock *NewBB2 = nullptr; 1339 if (!NewBB2Preds.empty()) { 1340 // Create another basic block for the rest of OrigBB's predecessors. 1341 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1342 OrigBB->getName() + Suffix2, 1343 OrigBB->getParent(), OrigBB); 1344 NewBBs.push_back(NewBB2); 1345 1346 // The new block unconditionally branches to the old block. 1347 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1348 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1349 1350 // Move the remaining edges from OrigBB to point to NewBB2. 1351 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1352 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1353 1354 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1355 HasLoopExit = false; 1356 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1357 PreserveLCSSA, HasLoopExit); 1358 1359 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1360 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1361 } 1362 1363 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1364 Instruction *Clone1 = LPad->clone(); 1365 Clone1->setName(Twine("lpad") + Suffix1); 1366 Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt()); 1367 1368 if (NewBB2) { 1369 Instruction *Clone2 = LPad->clone(); 1370 Clone2->setName(Twine("lpad") + Suffix2); 1371 Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt()); 1372 1373 // Create a PHI node for the two cloned landingpad instructions only 1374 // if the original landingpad instruction has some uses. 1375 if (!LPad->use_empty()) { 1376 assert(!LPad->getType()->isTokenTy() && 1377 "Split cannot be applied if LPad is token type. Otherwise an " 1378 "invalid PHINode of token type would be created."); 1379 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 1380 PN->addIncoming(Clone1, NewBB1); 1381 PN->addIncoming(Clone2, NewBB2); 1382 LPad->replaceAllUsesWith(PN); 1383 } 1384 LPad->eraseFromParent(); 1385 } else { 1386 // There is no second clone. Just replace the landing pad with the first 1387 // clone. 1388 LPad->replaceAllUsesWith(Clone1); 1389 LPad->eraseFromParent(); 1390 } 1391 } 1392 1393 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1394 ArrayRef<BasicBlock *> Preds, 1395 const char *Suffix1, const char *Suffix2, 1396 SmallVectorImpl<BasicBlock *> &NewBBs, 1397 DominatorTree *DT, LoopInfo *LI, 1398 MemorySSAUpdater *MSSAU, 1399 bool PreserveLCSSA) { 1400 return SplitLandingPadPredecessorsImpl( 1401 OrigBB, Preds, Suffix1, Suffix2, NewBBs, 1402 /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA); 1403 } 1404 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1405 ArrayRef<BasicBlock *> Preds, 1406 const char *Suffix1, const char *Suffix2, 1407 SmallVectorImpl<BasicBlock *> &NewBBs, 1408 DomTreeUpdater *DTU, LoopInfo *LI, 1409 MemorySSAUpdater *MSSAU, 1410 bool PreserveLCSSA) { 1411 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1412 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1413 PreserveLCSSA); 1414 } 1415 1416 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1417 BasicBlock *Pred, 1418 DomTreeUpdater *DTU) { 1419 Instruction *UncondBranch = Pred->getTerminator(); 1420 // Clone the return and add it to the end of the predecessor. 1421 Instruction *NewRet = RI->clone(); 1422 NewRet->insertInto(Pred, Pred->end()); 1423 1424 // If the return instruction returns a value, and if the value was a 1425 // PHI node in "BB", propagate the right value into the return. 1426 for (Use &Op : NewRet->operands()) { 1427 Value *V = Op; 1428 Instruction *NewBC = nullptr; 1429 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1430 // Return value might be bitcasted. Clone and insert it before the 1431 // return instruction. 1432 V = BCI->getOperand(0); 1433 NewBC = BCI->clone(); 1434 NewBC->insertInto(Pred, NewRet->getIterator()); 1435 Op = NewBC; 1436 } 1437 1438 Instruction *NewEV = nullptr; 1439 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1440 V = EVI->getOperand(0); 1441 NewEV = EVI->clone(); 1442 if (NewBC) { 1443 NewBC->setOperand(0, NewEV); 1444 NewEV->insertInto(Pred, NewBC->getIterator()); 1445 } else { 1446 NewEV->insertInto(Pred, NewRet->getIterator()); 1447 Op = NewEV; 1448 } 1449 } 1450 1451 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1452 if (PN->getParent() == BB) { 1453 if (NewEV) { 1454 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1455 } else if (NewBC) 1456 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1457 else 1458 Op = PN->getIncomingValueForBlock(Pred); 1459 } 1460 } 1461 } 1462 1463 // Update any PHI nodes in the returning block to realize that we no 1464 // longer branch to them. 1465 BB->removePredecessor(Pred); 1466 UncondBranch->eraseFromParent(); 1467 1468 if (DTU) 1469 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1470 1471 return cast<ReturnInst>(NewRet); 1472 } 1473 1474 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1475 Instruction *SplitBefore, 1476 bool Unreachable, 1477 MDNode *BranchWeights, 1478 DomTreeUpdater *DTU, LoopInfo *LI, 1479 BasicBlock *ThenBlock) { 1480 SplitBlockAndInsertIfThenElse( 1481 Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr, 1482 /* UnreachableThen */ Unreachable, 1483 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1484 return ThenBlock->getTerminator(); 1485 } 1486 1487 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond, 1488 Instruction *SplitBefore, 1489 bool Unreachable, 1490 MDNode *BranchWeights, 1491 DomTreeUpdater *DTU, LoopInfo *LI, 1492 BasicBlock *ElseBlock) { 1493 SplitBlockAndInsertIfThenElse( 1494 Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock, 1495 /* UnreachableThen */ false, 1496 /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI); 1497 return ElseBlock->getTerminator(); 1498 } 1499 1500 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 1501 Instruction **ThenTerm, 1502 Instruction **ElseTerm, 1503 MDNode *BranchWeights, 1504 DomTreeUpdater *DTU, LoopInfo *LI) { 1505 BasicBlock *ThenBlock = nullptr; 1506 BasicBlock *ElseBlock = nullptr; 1507 SplitBlockAndInsertIfThenElse( 1508 Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false, 1509 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1510 1511 *ThenTerm = ThenBlock->getTerminator(); 1512 *ElseTerm = ElseBlock->getTerminator(); 1513 } 1514 1515 void llvm::SplitBlockAndInsertIfThenElse( 1516 Value *Cond, Instruction *SplitBefore, BasicBlock **ThenBlock, 1517 BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse, 1518 MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) { 1519 assert((ThenBlock || ElseBlock) && 1520 "At least one branch block must be created"); 1521 assert((!UnreachableThen || !UnreachableElse) && 1522 "Split block tail must be reachable"); 1523 1524 SmallVector<DominatorTree::UpdateType, 8> Updates; 1525 SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors; 1526 BasicBlock *Head = SplitBefore->getParent(); 1527 if (DTU) { 1528 UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head)); 1529 Updates.reserve(4 + 2 * UniqueOrigSuccessors.size()); 1530 } 1531 1532 LLVMContext &C = Head->getContext(); 1533 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1534 BasicBlock *TrueBlock = Tail; 1535 BasicBlock *FalseBlock = Tail; 1536 bool ThenToTailEdge = false; 1537 bool ElseToTailEdge = false; 1538 1539 // Encapsulate the logic around creation/insertion/etc of a new block. 1540 auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB, 1541 bool &ToTailEdge) { 1542 if (PBB == nullptr) 1543 return; // Do not create/insert a block. 1544 1545 if (*PBB) 1546 BB = *PBB; // Caller supplied block, use it. 1547 else { 1548 // Create a new block. 1549 BB = BasicBlock::Create(C, "", Head->getParent(), Tail); 1550 if (Unreachable) 1551 (void)new UnreachableInst(C, BB); 1552 else { 1553 (void)BranchInst::Create(Tail, BB); 1554 ToTailEdge = true; 1555 } 1556 BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc()); 1557 // Pass the new block back to the caller. 1558 *PBB = BB; 1559 } 1560 }; 1561 1562 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge); 1563 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge); 1564 1565 Instruction *HeadOldTerm = Head->getTerminator(); 1566 BranchInst *HeadNewTerm = 1567 BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond); 1568 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1569 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1570 1571 if (DTU) { 1572 Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock); 1573 Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock); 1574 if (ThenToTailEdge) 1575 Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail); 1576 if (ElseToTailEdge) 1577 Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail); 1578 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1579 Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor); 1580 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1581 Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor); 1582 DTU->applyUpdates(Updates); 1583 } 1584 1585 if (LI) { 1586 if (Loop *L = LI->getLoopFor(Head); L) { 1587 if (ThenToTailEdge) 1588 L->addBasicBlockToLoop(TrueBlock, *LI); 1589 if (ElseToTailEdge) 1590 L->addBasicBlockToLoop(FalseBlock, *LI); 1591 L->addBasicBlockToLoop(Tail, *LI); 1592 } 1593 } 1594 } 1595 1596 std::pair<Instruction*, Value*> 1597 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) { 1598 BasicBlock *LoopPred = SplitBefore->getParent(); 1599 BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore); 1600 BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore); 1601 1602 auto *Ty = End->getType(); 1603 auto &DL = SplitBefore->getModule()->getDataLayout(); 1604 const unsigned Bitwidth = DL.getTypeSizeInBits(Ty); 1605 1606 IRBuilder<> Builder(LoopBody->getTerminator()); 1607 auto *IV = Builder.CreatePHI(Ty, 2, "iv"); 1608 auto *IVNext = 1609 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 1610 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 1611 auto *IVCheck = Builder.CreateICmpEQ(IVNext, End, 1612 IV->getName() + ".check"); 1613 Builder.CreateCondBr(IVCheck, LoopExit, LoopBody); 1614 LoopBody->getTerminator()->eraseFromParent(); 1615 1616 // Populate the IV PHI. 1617 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred); 1618 IV->addIncoming(IVNext, LoopBody); 1619 1620 return std::make_pair(LoopBody->getFirstNonPHI(), IV); 1621 } 1622 1623 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC, 1624 Type *IndexTy, Instruction *InsertBefore, 1625 std::function<void(IRBuilderBase&, Value*)> Func) { 1626 1627 IRBuilder<> IRB(InsertBefore); 1628 1629 if (EC.isScalable()) { 1630 Value *NumElements = IRB.CreateElementCount(IndexTy, EC); 1631 1632 auto [BodyIP, Index] = 1633 SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore); 1634 1635 IRB.SetInsertPoint(BodyIP); 1636 Func(IRB, Index); 1637 return; 1638 } 1639 1640 unsigned Num = EC.getFixedValue(); 1641 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1642 IRB.SetInsertPoint(InsertBefore); 1643 Func(IRB, ConstantInt::get(IndexTy, Idx)); 1644 } 1645 } 1646 1647 void llvm::SplitBlockAndInsertForEachLane( 1648 Value *EVL, Instruction *InsertBefore, 1649 std::function<void(IRBuilderBase &, Value *)> Func) { 1650 1651 IRBuilder<> IRB(InsertBefore); 1652 Type *Ty = EVL->getType(); 1653 1654 if (!isa<ConstantInt>(EVL)) { 1655 auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore); 1656 IRB.SetInsertPoint(BodyIP); 1657 Func(IRB, Index); 1658 return; 1659 } 1660 1661 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue(); 1662 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1663 IRB.SetInsertPoint(InsertBefore); 1664 Func(IRB, ConstantInt::get(Ty, Idx)); 1665 } 1666 } 1667 1668 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1669 BasicBlock *&IfFalse) { 1670 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1671 BasicBlock *Pred1 = nullptr; 1672 BasicBlock *Pred2 = nullptr; 1673 1674 if (SomePHI) { 1675 if (SomePHI->getNumIncomingValues() != 2) 1676 return nullptr; 1677 Pred1 = SomePHI->getIncomingBlock(0); 1678 Pred2 = SomePHI->getIncomingBlock(1); 1679 } else { 1680 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1681 if (PI == PE) // No predecessor 1682 return nullptr; 1683 Pred1 = *PI++; 1684 if (PI == PE) // Only one predecessor 1685 return nullptr; 1686 Pred2 = *PI++; 1687 if (PI != PE) // More than two predecessors 1688 return nullptr; 1689 } 1690 1691 // We can only handle branches. Other control flow will be lowered to 1692 // branches if possible anyway. 1693 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1694 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1695 if (!Pred1Br || !Pred2Br) 1696 return nullptr; 1697 1698 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1699 // either are. 1700 if (Pred2Br->isConditional()) { 1701 // If both branches are conditional, we don't have an "if statement". In 1702 // reality, we could transform this case, but since the condition will be 1703 // required anyway, we stand no chance of eliminating it, so the xform is 1704 // probably not profitable. 1705 if (Pred1Br->isConditional()) 1706 return nullptr; 1707 1708 std::swap(Pred1, Pred2); 1709 std::swap(Pred1Br, Pred2Br); 1710 } 1711 1712 if (Pred1Br->isConditional()) { 1713 // The only thing we have to watch out for here is to make sure that Pred2 1714 // doesn't have incoming edges from other blocks. If it does, the condition 1715 // doesn't dominate BB. 1716 if (!Pred2->getSinglePredecessor()) 1717 return nullptr; 1718 1719 // If we found a conditional branch predecessor, make sure that it branches 1720 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1721 if (Pred1Br->getSuccessor(0) == BB && 1722 Pred1Br->getSuccessor(1) == Pred2) { 1723 IfTrue = Pred1; 1724 IfFalse = Pred2; 1725 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1726 Pred1Br->getSuccessor(1) == BB) { 1727 IfTrue = Pred2; 1728 IfFalse = Pred1; 1729 } else { 1730 // We know that one arm of the conditional goes to BB, so the other must 1731 // go somewhere unrelated, and this must not be an "if statement". 1732 return nullptr; 1733 } 1734 1735 return Pred1Br; 1736 } 1737 1738 // Ok, if we got here, both predecessors end with an unconditional branch to 1739 // BB. Don't panic! If both blocks only have a single (identical) 1740 // predecessor, and THAT is a conditional branch, then we're all ok! 1741 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1742 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1743 return nullptr; 1744 1745 // Otherwise, if this is a conditional branch, then we can use it! 1746 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1747 if (!BI) return nullptr; 1748 1749 assert(BI->isConditional() && "Two successors but not conditional?"); 1750 if (BI->getSuccessor(0) == Pred1) { 1751 IfTrue = Pred1; 1752 IfFalse = Pred2; 1753 } else { 1754 IfTrue = Pred2; 1755 IfFalse = Pred1; 1756 } 1757 return BI; 1758 } 1759 1760 // After creating a control flow hub, the operands of PHINodes in an outgoing 1761 // block Out no longer match the predecessors of that block. Predecessors of Out 1762 // that are incoming blocks to the hub are now replaced by just one edge from 1763 // the hub. To match this new control flow, the corresponding values from each 1764 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1765 // 1766 // This operation cannot be performed with SSAUpdater, because it involves one 1767 // new use: If the block Out is in the list of Incoming blocks, then the newly 1768 // created PHI in the Hub will use itself along that edge from Out to Hub. 1769 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1770 const SetVector<BasicBlock *> &Incoming, 1771 BasicBlock *FirstGuardBlock) { 1772 auto I = Out->begin(); 1773 while (I != Out->end() && isa<PHINode>(I)) { 1774 auto Phi = cast<PHINode>(I); 1775 auto NewPhi = 1776 PHINode::Create(Phi->getType(), Incoming.size(), 1777 Phi->getName() + ".moved", &FirstGuardBlock->front()); 1778 for (auto *In : Incoming) { 1779 Value *V = UndefValue::get(Phi->getType()); 1780 if (In == Out) { 1781 V = NewPhi; 1782 } else if (Phi->getBasicBlockIndex(In) != -1) { 1783 V = Phi->removeIncomingValue(In, false); 1784 } 1785 NewPhi->addIncoming(V, In); 1786 } 1787 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1788 if (Phi->getNumOperands() == 0) { 1789 Phi->replaceAllUsesWith(NewPhi); 1790 I = Phi->eraseFromParent(); 1791 continue; 1792 } 1793 Phi->addIncoming(NewPhi, GuardBlock); 1794 ++I; 1795 } 1796 } 1797 1798 using BBPredicates = DenseMap<BasicBlock *, Instruction *>; 1799 using BBSetVector = SetVector<BasicBlock *>; 1800 1801 // Redirects the terminator of the incoming block to the first guard 1802 // block in the hub. The condition of the original terminator (if it 1803 // was conditional) and its original successors are returned as a 1804 // tuple <condition, succ0, succ1>. The function additionally filters 1805 // out successors that are not in the set of outgoing blocks. 1806 // 1807 // - condition is non-null iff the branch is conditional. 1808 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1809 // - Succ2 is non-null iff condition is non-null and the fallthrough 1810 // target is an outgoing block. 1811 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1812 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1813 const BBSetVector &Outgoing) { 1814 assert(isa<BranchInst>(BB->getTerminator()) && 1815 "Only support branch terminator."); 1816 auto Branch = cast<BranchInst>(BB->getTerminator()); 1817 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1818 1819 BasicBlock *Succ0 = Branch->getSuccessor(0); 1820 BasicBlock *Succ1 = nullptr; 1821 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1822 1823 if (Branch->isUnconditional()) { 1824 Branch->setSuccessor(0, FirstGuardBlock); 1825 assert(Succ0); 1826 } else { 1827 Succ1 = Branch->getSuccessor(1); 1828 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1829 assert(Succ0 || Succ1); 1830 if (Succ0 && !Succ1) { 1831 Branch->setSuccessor(0, FirstGuardBlock); 1832 } else if (Succ1 && !Succ0) { 1833 Branch->setSuccessor(1, FirstGuardBlock); 1834 } else { 1835 Branch->eraseFromParent(); 1836 BranchInst::Create(FirstGuardBlock, BB); 1837 } 1838 } 1839 1840 assert(Succ0 || Succ1); 1841 return std::make_tuple(Condition, Succ0, Succ1); 1842 } 1843 // Setup the branch instructions for guard blocks. 1844 // 1845 // Each guard block terminates in a conditional branch that transfers 1846 // control to the corresponding outgoing block or the next guard 1847 // block. The last guard block has two outgoing blocks as successors 1848 // since the condition for the final outgoing block is trivially 1849 // true. So we create one less block (including the first guard block) 1850 // than the number of outgoing blocks. 1851 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1852 const BBSetVector &Outgoing, 1853 BBPredicates &GuardPredicates) { 1854 // To help keep the loop simple, temporarily append the last 1855 // outgoing block to the list of guard blocks. 1856 GuardBlocks.push_back(Outgoing.back()); 1857 1858 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1859 auto Out = Outgoing[i]; 1860 assert(GuardPredicates.count(Out)); 1861 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1862 GuardBlocks[i]); 1863 } 1864 1865 // Remove the last block from the guard list. 1866 GuardBlocks.pop_back(); 1867 } 1868 1869 /// We are using one integer to represent the block we are branching to. Then at 1870 /// each guard block, the predicate was calcuated using a simple `icmp eq`. 1871 static void calcPredicateUsingInteger( 1872 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1873 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) { 1874 auto &Context = Incoming.front()->getContext(); 1875 auto FirstGuardBlock = GuardBlocks.front(); 1876 1877 auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(), 1878 "merged.bb.idx", FirstGuardBlock); 1879 1880 for (auto In : Incoming) { 1881 Value *Condition; 1882 BasicBlock *Succ0; 1883 BasicBlock *Succ1; 1884 std::tie(Condition, Succ0, Succ1) = 1885 redirectToHub(In, FirstGuardBlock, Outgoing); 1886 Value *IncomingId = nullptr; 1887 if (Succ0 && Succ1) { 1888 // target_bb_index = Condition ? index_of_succ0 : index_of_succ1. 1889 auto Succ0Iter = find(Outgoing, Succ0); 1890 auto Succ1Iter = find(Outgoing, Succ1); 1891 Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context), 1892 std::distance(Outgoing.begin(), Succ0Iter)); 1893 Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context), 1894 std::distance(Outgoing.begin(), Succ1Iter)); 1895 IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx", 1896 In->getTerminator()); 1897 } else { 1898 // Get the index of the non-null successor. 1899 auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1); 1900 IncomingId = ConstantInt::get(Type::getInt32Ty(Context), 1901 std::distance(Outgoing.begin(), SuccIter)); 1902 } 1903 Phi->addIncoming(IncomingId, In); 1904 } 1905 1906 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1907 auto Out = Outgoing[i]; 1908 auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi, 1909 ConstantInt::get(Type::getInt32Ty(Context), i), 1910 Out->getName() + ".predicate", GuardBlocks[i]); 1911 GuardPredicates[Out] = Cmp; 1912 } 1913 } 1914 1915 /// We record the predicate of each outgoing block using a phi of boolean. 1916 static void calcPredicateUsingBooleans( 1917 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1918 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates, 1919 SmallVectorImpl<WeakVH> &DeletionCandidates) { 1920 auto &Context = Incoming.front()->getContext(); 1921 auto BoolTrue = ConstantInt::getTrue(Context); 1922 auto BoolFalse = ConstantInt::getFalse(Context); 1923 auto FirstGuardBlock = GuardBlocks.front(); 1924 1925 // The predicate for the last outgoing is trivially true, and so we 1926 // process only the first N-1 successors. 1927 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1928 auto Out = Outgoing[i]; 1929 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 1930 1931 auto Phi = 1932 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 1933 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 1934 GuardPredicates[Out] = Phi; 1935 } 1936 1937 for (auto *In : Incoming) { 1938 Value *Condition; 1939 BasicBlock *Succ0; 1940 BasicBlock *Succ1; 1941 std::tie(Condition, Succ0, Succ1) = 1942 redirectToHub(In, FirstGuardBlock, Outgoing); 1943 1944 // Optimization: Consider an incoming block A with both successors 1945 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 1946 // for Succ0 and Succ1 complement each other. If Succ0 is visited 1947 // first in the loop below, control will branch to Succ0 using the 1948 // corresponding predicate. But if that branch is not taken, then 1949 // control must reach Succ1, which means that the incoming value of 1950 // the predicate from `In` is true for Succ1. 1951 bool OneSuccessorDone = false; 1952 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1953 auto Out = Outgoing[i]; 1954 PHINode *Phi = cast<PHINode>(GuardPredicates[Out]); 1955 if (Out != Succ0 && Out != Succ1) { 1956 Phi->addIncoming(BoolFalse, In); 1957 } else if (!Succ0 || !Succ1 || OneSuccessorDone) { 1958 // Optimization: When only one successor is an outgoing block, 1959 // the incoming predicate from `In` is always true. 1960 Phi->addIncoming(BoolTrue, In); 1961 } else { 1962 assert(Succ0 && Succ1); 1963 if (Out == Succ0) { 1964 Phi->addIncoming(Condition, In); 1965 } else { 1966 auto Inverted = invertCondition(Condition); 1967 DeletionCandidates.push_back(Condition); 1968 Phi->addIncoming(Inverted, In); 1969 } 1970 OneSuccessorDone = true; 1971 } 1972 } 1973 } 1974 } 1975 1976 // Capture the existing control flow as guard predicates, and redirect 1977 // control flow from \p Incoming block through the \p GuardBlocks to the 1978 // \p Outgoing blocks. 1979 // 1980 // There is one guard predicate for each outgoing block OutBB. The 1981 // predicate represents whether the hub should transfer control flow 1982 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates 1983 // them in the same order as the Outgoing set-vector, and control 1984 // branches to the first outgoing block whose predicate evaluates to true. 1985 static void 1986 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1987 SmallVectorImpl<WeakVH> &DeletionCandidates, 1988 const BBSetVector &Incoming, 1989 const BBSetVector &Outgoing, const StringRef Prefix, 1990 std::optional<unsigned> MaxControlFlowBooleans) { 1991 BBPredicates GuardPredicates; 1992 auto F = Incoming.front()->getParent(); 1993 1994 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) 1995 GuardBlocks.push_back( 1996 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 1997 1998 // When we are using an integer to record which target block to jump to, we 1999 // are creating less live values, actually we are using one single integer to 2000 // store the index of the target block. When we are using booleans to store 2001 // the branching information, we need (N-1) boolean values, where N is the 2002 // number of outgoing block. 2003 if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans) 2004 calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates, 2005 DeletionCandidates); 2006 else 2007 calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates); 2008 2009 setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates); 2010 } 2011 2012 BasicBlock *llvm::CreateControlFlowHub( 2013 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 2014 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2015 const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) { 2016 if (Outgoing.size() < 2) 2017 return Outgoing.front(); 2018 2019 SmallVector<DominatorTree::UpdateType, 16> Updates; 2020 if (DTU) { 2021 for (auto *In : Incoming) { 2022 for (auto Succ : successors(In)) 2023 if (Outgoing.count(Succ)) 2024 Updates.push_back({DominatorTree::Delete, In, Succ}); 2025 } 2026 } 2027 2028 SmallVector<WeakVH, 8> DeletionCandidates; 2029 convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing, 2030 Prefix, MaxControlFlowBooleans); 2031 auto FirstGuardBlock = GuardBlocks.front(); 2032 2033 // Update the PHINodes in each outgoing block to match the new control flow. 2034 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) 2035 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 2036 2037 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 2038 2039 if (DTU) { 2040 int NumGuards = GuardBlocks.size(); 2041 assert((int)Outgoing.size() == NumGuards + 1); 2042 2043 for (auto In : Incoming) 2044 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 2045 2046 for (int i = 0; i != NumGuards - 1; ++i) { 2047 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 2048 Updates.push_back( 2049 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 2050 } 2051 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2052 Outgoing[NumGuards - 1]}); 2053 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2054 Outgoing[NumGuards]}); 2055 DTU->applyUpdates(Updates); 2056 } 2057 2058 for (auto I : DeletionCandidates) { 2059 if (I->use_empty()) 2060 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 2061 Inst->eraseFromParent(); 2062 } 2063 2064 return FirstGuardBlock; 2065 } 2066 2067 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) { 2068 Value *NewCond = PBI->getCondition(); 2069 // If this is a "cmp" instruction, only used for branching (and nowhere 2070 // else), then we can simply invert the predicate. 2071 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2072 CmpInst *CI = cast<CmpInst>(NewCond); 2073 CI->setPredicate(CI->getInversePredicate()); 2074 } else 2075 NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not"); 2076 2077 PBI->setCondition(NewCond); 2078 PBI->swapSuccessors(); 2079 } 2080