xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/PseudoProbe.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <string>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "basicblock-utils"
55 
56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
57     "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
58     cl::desc("Set the maximum path length when checking whether a basic block "
59              "is followed by a block that either has a terminating "
60              "deoptimizing call or is terminated with an unreachable"));
61 
62 void llvm::DetatchDeadBlocks(
63     ArrayRef<BasicBlock *> BBs,
64     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
65     bool KeepOneInputPHIs) {
66   for (auto *BB : BBs) {
67     // Loop through all of our successors and make sure they know that one
68     // of their predecessors is going away.
69     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
70     for (BasicBlock *Succ : successors(BB)) {
71       Succ->removePredecessor(BB, KeepOneInputPHIs);
72       if (Updates && UniqueSuccessors.insert(Succ).second)
73         Updates->push_back({DominatorTree::Delete, BB, Succ});
74     }
75 
76     // Zap all the instructions in the block.
77     while (!BB->empty()) {
78       Instruction &I = BB->back();
79       // If this instruction is used, replace uses with an arbitrary value.
80       // Because control flow can't get here, we don't care what we replace the
81       // value with.  Note that since this block is unreachable, and all values
82       // contained within it must dominate their uses, that all uses will
83       // eventually be removed (they are themselves dead).
84       if (!I.use_empty())
85         I.replaceAllUsesWith(UndefValue::get(I.getType()));
86       BB->getInstList().pop_back();
87     }
88     new UnreachableInst(BB->getContext(), BB);
89     assert(BB->getInstList().size() == 1 &&
90            isa<UnreachableInst>(BB->getTerminator()) &&
91            "The successor list of BB isn't empty before "
92            "applying corresponding DTU updates.");
93   }
94 }
95 
96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
97                            bool KeepOneInputPHIs) {
98   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
99 }
100 
101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
102                             bool KeepOneInputPHIs) {
103 #ifndef NDEBUG
104   // Make sure that all predecessors of each dead block is also dead.
105   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
106   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
107   for (auto *BB : Dead)
108     for (BasicBlock *Pred : predecessors(BB))
109       assert(Dead.count(Pred) && "All predecessors must be dead!");
110 #endif
111 
112   SmallVector<DominatorTree::UpdateType, 4> Updates;
113   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
114 
115   if (DTU)
116     DTU->applyUpdates(Updates);
117 
118   for (BasicBlock *BB : BBs)
119     if (DTU)
120       DTU->deleteBB(BB);
121     else
122       BB->eraseFromParent();
123 }
124 
125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
126                                       bool KeepOneInputPHIs) {
127   df_iterator_default_set<BasicBlock*> Reachable;
128 
129   // Mark all reachable blocks.
130   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
131     (void)BB/* Mark all reachable blocks */;
132 
133   // Collect all dead blocks.
134   std::vector<BasicBlock*> DeadBlocks;
135   for (BasicBlock &BB : F)
136     if (!Reachable.count(&BB))
137       DeadBlocks.push_back(&BB);
138 
139   // Delete the dead blocks.
140   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
141 
142   return !DeadBlocks.empty();
143 }
144 
145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
146                                    MemoryDependenceResults *MemDep) {
147   if (!isa<PHINode>(BB->begin()))
148     return false;
149 
150   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
151     if (PN->getIncomingValue(0) != PN)
152       PN->replaceAllUsesWith(PN->getIncomingValue(0));
153     else
154       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
155 
156     if (MemDep)
157       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
158 
159     PN->eraseFromParent();
160   }
161   return true;
162 }
163 
164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
165                           MemorySSAUpdater *MSSAU) {
166   // Recursively deleting a PHI may cause multiple PHIs to be deleted
167   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
168   SmallVector<WeakTrackingVH, 8> PHIs;
169   for (PHINode &PN : BB->phis())
170     PHIs.push_back(&PN);
171 
172   bool Changed = false;
173   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
174     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
175       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
176 
177   return Changed;
178 }
179 
180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
181                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
182                                      MemoryDependenceResults *MemDep,
183                                      bool PredecessorWithTwoSuccessors) {
184   if (BB->hasAddressTaken())
185     return false;
186 
187   // Can't merge if there are multiple predecessors, or no predecessors.
188   BasicBlock *PredBB = BB->getUniquePredecessor();
189   if (!PredBB) return false;
190 
191   // Don't break self-loops.
192   if (PredBB == BB) return false;
193   // Don't break unwinding instructions.
194   if (PredBB->getTerminator()->isExceptionalTerminator())
195     return false;
196 
197   // Can't merge if there are multiple distinct successors.
198   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
199     return false;
200 
201   // Currently only allow PredBB to have two predecessors, one being BB.
202   // Update BI to branch to BB's only successor instead of BB.
203   BranchInst *PredBB_BI;
204   BasicBlock *NewSucc = nullptr;
205   unsigned FallThruPath;
206   if (PredecessorWithTwoSuccessors) {
207     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
208       return false;
209     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
210     if (!BB_JmpI || !BB_JmpI->isUnconditional())
211       return false;
212     NewSucc = BB_JmpI->getSuccessor(0);
213     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
214   }
215 
216   // Can't merge if there is PHI loop.
217   for (PHINode &PN : BB->phis())
218     if (llvm::is_contained(PN.incoming_values(), &PN))
219       return false;
220 
221   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
222                     << PredBB->getName() << "\n");
223 
224   // Begin by getting rid of unneeded PHIs.
225   SmallVector<AssertingVH<Value>, 4> IncomingValues;
226   if (isa<PHINode>(BB->front())) {
227     for (PHINode &PN : BB->phis())
228       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
229           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
230         IncomingValues.push_back(PN.getIncomingValue(0));
231     FoldSingleEntryPHINodes(BB, MemDep);
232   }
233 
234   // DTU update: Collect all the edges that exit BB.
235   // These dominator edges will be redirected from Pred.
236   std::vector<DominatorTree::UpdateType> Updates;
237   if (DTU) {
238     // To avoid processing the same predecessor more than once.
239     SmallPtrSet<BasicBlock *, 8> SeenSuccs;
240     SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
241                                                succ_end(PredBB));
242     Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
243     // Add insert edges first. Experimentally, for the particular case of two
244     // blocks that can be merged, with a single successor and single predecessor
245     // respectively, it is beneficial to have all insert updates first. Deleting
246     // edges first may lead to unreachable blocks, followed by inserting edges
247     // making the blocks reachable again. Such DT updates lead to high compile
248     // times. We add inserts before deletes here to reduce compile time.
249     for (BasicBlock *SuccOfBB : successors(BB))
250       // This successor of BB may already be a PredBB's successor.
251       if (!SuccsOfPredBB.contains(SuccOfBB))
252         if (SeenSuccs.insert(SuccOfBB).second)
253           Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
254     SeenSuccs.clear();
255     for (BasicBlock *SuccOfBB : successors(BB))
256       if (SeenSuccs.insert(SuccOfBB).second)
257         Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
258     Updates.push_back({DominatorTree::Delete, PredBB, BB});
259   }
260 
261   Instruction *PTI = PredBB->getTerminator();
262   Instruction *STI = BB->getTerminator();
263   Instruction *Start = &*BB->begin();
264   // If there's nothing to move, mark the starting instruction as the last
265   // instruction in the block. Terminator instruction is handled separately.
266   if (Start == STI)
267     Start = PTI;
268 
269   // Move all definitions in the successor to the predecessor...
270   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
271                                BB->begin(), STI->getIterator());
272 
273   if (MSSAU)
274     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
275 
276   // Make all PHI nodes that referred to BB now refer to Pred as their
277   // source...
278   BB->replaceAllUsesWith(PredBB);
279 
280   if (PredecessorWithTwoSuccessors) {
281     // Delete the unconditional branch from BB.
282     BB->getInstList().pop_back();
283 
284     // Update branch in the predecessor.
285     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
286   } else {
287     // Delete the unconditional branch from the predecessor.
288     PredBB->getInstList().pop_back();
289 
290     // Move terminator instruction.
291     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
292 
293     // Terminator may be a memory accessing instruction too.
294     if (MSSAU)
295       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
296               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
297         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
298   }
299   // Add unreachable to now empty BB.
300   new UnreachableInst(BB->getContext(), BB);
301 
302   // Inherit predecessors name if it exists.
303   if (!PredBB->hasName())
304     PredBB->takeName(BB);
305 
306   if (LI)
307     LI->removeBlock(BB);
308 
309   if (MemDep)
310     MemDep->invalidateCachedPredecessors();
311 
312   if (DTU)
313     DTU->applyUpdates(Updates);
314 
315   // Finally, erase the old block and update dominator info.
316   DeleteDeadBlock(BB, DTU);
317 
318   return true;
319 }
320 
321 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
322     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
323     LoopInfo *LI) {
324   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
325 
326   bool BlocksHaveBeenMerged = false;
327   while (!MergeBlocks.empty()) {
328     BasicBlock *BB = *MergeBlocks.begin();
329     BasicBlock *Dest = BB->getSingleSuccessor();
330     if (Dest && (!L || L->contains(Dest))) {
331       BasicBlock *Fold = Dest->getUniquePredecessor();
332       (void)Fold;
333       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
334         assert(Fold == BB &&
335                "Expecting BB to be unique predecessor of the Dest block");
336         MergeBlocks.erase(Dest);
337         BlocksHaveBeenMerged = true;
338       } else
339         MergeBlocks.erase(BB);
340     } else
341       MergeBlocks.erase(BB);
342   }
343   return BlocksHaveBeenMerged;
344 }
345 
346 /// Remove redundant instructions within sequences of consecutive dbg.value
347 /// instructions. This is done using a backward scan to keep the last dbg.value
348 /// describing a specific variable/fragment.
349 ///
350 /// BackwardScan strategy:
351 /// ----------------------
352 /// Given a sequence of consecutive DbgValueInst like this
353 ///
354 ///   dbg.value ..., "x", FragmentX1  (*)
355 ///   dbg.value ..., "y", FragmentY1
356 ///   dbg.value ..., "x", FragmentX2
357 ///   dbg.value ..., "x", FragmentX1  (**)
358 ///
359 /// then the instruction marked with (*) can be removed (it is guaranteed to be
360 /// obsoleted by the instruction marked with (**) as the latter instruction is
361 /// describing the same variable using the same fragment info).
362 ///
363 /// Possible improvements:
364 /// - Check fully overlapping fragments and not only identical fragments.
365 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
366 ///   instructions being part of the sequence of consecutive instructions.
367 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
368   SmallVector<DbgValueInst *, 8> ToBeRemoved;
369   SmallDenseSet<DebugVariable> VariableSet;
370   for (auto &I : reverse(*BB)) {
371     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
372       DebugVariable Key(DVI->getVariable(),
373                         DVI->getExpression(),
374                         DVI->getDebugLoc()->getInlinedAt());
375       auto R = VariableSet.insert(Key);
376       // If the same variable fragment is described more than once it is enough
377       // to keep the last one (i.e. the first found since we for reverse
378       // iteration).
379       if (!R.second)
380         ToBeRemoved.push_back(DVI);
381       continue;
382     }
383     // Sequence with consecutive dbg.value instrs ended. Clear the map to
384     // restart identifying redundant instructions if case we find another
385     // dbg.value sequence.
386     VariableSet.clear();
387   }
388 
389   for (auto &Instr : ToBeRemoved)
390     Instr->eraseFromParent();
391 
392   return !ToBeRemoved.empty();
393 }
394 
395 /// Remove redundant dbg.value instructions using a forward scan. This can
396 /// remove a dbg.value instruction that is redundant due to indicating that a
397 /// variable has the same value as already being indicated by an earlier
398 /// dbg.value.
399 ///
400 /// ForwardScan strategy:
401 /// ---------------------
402 /// Given two identical dbg.value instructions, separated by a block of
403 /// instructions that isn't describing the same variable, like this
404 ///
405 ///   dbg.value X1, "x", FragmentX1  (**)
406 ///   <block of instructions, none being "dbg.value ..., "x", ...">
407 ///   dbg.value X1, "x", FragmentX1  (*)
408 ///
409 /// then the instruction marked with (*) can be removed. Variable "x" is already
410 /// described as being mapped to the SSA value X1.
411 ///
412 /// Possible improvements:
413 /// - Keep track of non-overlapping fragments.
414 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
415   SmallVector<DbgValueInst *, 8> ToBeRemoved;
416   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
417       VariableMap;
418   for (auto &I : *BB) {
419     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
420       DebugVariable Key(DVI->getVariable(),
421                         NoneType(),
422                         DVI->getDebugLoc()->getInlinedAt());
423       auto VMI = VariableMap.find(Key);
424       // Update the map if we found a new value/expression describing the
425       // variable, or if the variable wasn't mapped already.
426       SmallVector<Value *, 4> Values(DVI->getValues());
427       if (VMI == VariableMap.end() || VMI->second.first != Values ||
428           VMI->second.second != DVI->getExpression()) {
429         VariableMap[Key] = {Values, DVI->getExpression()};
430         continue;
431       }
432       // Found an identical mapping. Remember the instruction for later removal.
433       ToBeRemoved.push_back(DVI);
434     }
435   }
436 
437   for (auto &Instr : ToBeRemoved)
438     Instr->eraseFromParent();
439 
440   return !ToBeRemoved.empty();
441 }
442 
443 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
444   bool MadeChanges = false;
445   // By using the "backward scan" strategy before the "forward scan" strategy we
446   // can remove both dbg.value (2) and (3) in a situation like this:
447   //
448   //   (1) dbg.value V1, "x", DIExpression()
449   //       ...
450   //   (2) dbg.value V2, "x", DIExpression()
451   //   (3) dbg.value V1, "x", DIExpression()
452   //
453   // The backward scan will remove (2), it is made obsolete by (3). After
454   // getting (2) out of the way, the foward scan will remove (3) since "x"
455   // already is described as having the value V1 at (1).
456   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
457   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
458 
459   if (MadeChanges)
460     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
461                       << BB->getName() << "\n");
462   return MadeChanges;
463 }
464 
465 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
466                                 BasicBlock::iterator &BI, Value *V) {
467   Instruction &I = *BI;
468   // Replaces all of the uses of the instruction with uses of the value
469   I.replaceAllUsesWith(V);
470 
471   // Make sure to propagate a name if there is one already.
472   if (I.hasName() && !V->hasName())
473     V->takeName(&I);
474 
475   // Delete the unnecessary instruction now...
476   BI = BIL.erase(BI);
477 }
478 
479 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
480                                BasicBlock::iterator &BI, Instruction *I) {
481   assert(I->getParent() == nullptr &&
482          "ReplaceInstWithInst: Instruction already inserted into basic block!");
483 
484   // Copy debug location to newly added instruction, if it wasn't already set
485   // by the caller.
486   if (!I->getDebugLoc())
487     I->setDebugLoc(BI->getDebugLoc());
488 
489   // Insert the new instruction into the basic block...
490   BasicBlock::iterator New = BIL.insert(BI, I);
491 
492   // Replace all uses of the old instruction, and delete it.
493   ReplaceInstWithValue(BIL, BI, I);
494 
495   // Move BI back to point to the newly inserted instruction
496   BI = New;
497 }
498 
499 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
500   // Remember visited blocks to avoid infinite loop
501   SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
502   unsigned Depth = 0;
503   while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
504          VisitedBlocks.insert(BB).second) {
505     if (BB->getTerminatingDeoptimizeCall() ||
506         isa<UnreachableInst>(BB->getTerminator()))
507       return true;
508     BB = BB->getUniqueSuccessor();
509   }
510   return false;
511 }
512 
513 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
514   BasicBlock::iterator BI(From);
515   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
516 }
517 
518 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
519                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
520                             const Twine &BBName) {
521   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
522 
523   Instruction *LatchTerm = BB->getTerminator();
524 
525   CriticalEdgeSplittingOptions Options =
526       CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
527 
528   if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
529     // If it is a critical edge, and the succesor is an exception block, handle
530     // the split edge logic in this specific function
531     if (Succ->isEHPad())
532       return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
533 
534     // If this is a critical edge, let SplitKnownCriticalEdge do it.
535     return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
536   }
537 
538   // If the edge isn't critical, then BB has a single successor or Succ has a
539   // single pred.  Split the block.
540   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
541     // If the successor only has a single pred, split the top of the successor
542     // block.
543     assert(SP == BB && "CFG broken");
544     SP = nullptr;
545     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
546                       /*Before=*/true);
547   }
548 
549   // Otherwise, if BB has a single successor, split it at the bottom of the
550   // block.
551   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
552          "Should have a single succ!");
553   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
554 }
555 
556 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
557   if (auto *II = dyn_cast<InvokeInst>(TI))
558     II->setUnwindDest(Succ);
559   else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
560     CS->setUnwindDest(Succ);
561   else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
562     CR->setUnwindDest(Succ);
563   else
564     llvm_unreachable("unexpected terminator instruction");
565 }
566 
567 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
568                           BasicBlock *NewPred, PHINode *Until) {
569   int BBIdx = 0;
570   for (PHINode &PN : DestBB->phis()) {
571     // We manually update the LandingPadReplacement PHINode and it is the last
572     // PHI Node. So, if we find it, we are done.
573     if (Until == &PN)
574       break;
575 
576     // Reuse the previous value of BBIdx if it lines up.  In cases where we
577     // have multiple phi nodes with *lots* of predecessors, this is a speed
578     // win because we don't have to scan the PHI looking for TIBB.  This
579     // happens because the BB list of PHI nodes are usually in the same
580     // order.
581     if (PN.getIncomingBlock(BBIdx) != OldPred)
582       BBIdx = PN.getBasicBlockIndex(OldPred);
583 
584     assert(BBIdx != -1 && "Invalid PHI Index!");
585     PN.setIncomingBlock(BBIdx, NewPred);
586   }
587 }
588 
589 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
590                                    LandingPadInst *OriginalPad,
591                                    PHINode *LandingPadReplacement,
592                                    const CriticalEdgeSplittingOptions &Options,
593                                    const Twine &BBName) {
594 
595   auto *PadInst = Succ->getFirstNonPHI();
596   if (!LandingPadReplacement && !PadInst->isEHPad())
597     return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
598 
599   auto *LI = Options.LI;
600   SmallVector<BasicBlock *, 4> LoopPreds;
601   // Check if extra modifications will be required to preserve loop-simplify
602   // form after splitting. If it would require splitting blocks with IndirectBr
603   // terminators, bail out if preserving loop-simplify form is requested.
604   if (Options.PreserveLoopSimplify && LI) {
605     if (Loop *BBLoop = LI->getLoopFor(BB)) {
606 
607       // The only way that we can break LoopSimplify form by splitting a
608       // critical edge is when there exists some edge from BBLoop to Succ *and*
609       // the only edge into Succ from outside of BBLoop is that of NewBB after
610       // the split. If the first isn't true, then LoopSimplify still holds,
611       // NewBB is the new exit block and it has no non-loop predecessors. If the
612       // second isn't true, then Succ was not in LoopSimplify form prior to
613       // the split as it had a non-loop predecessor. In both of these cases,
614       // the predecessor must be directly in BBLoop, not in a subloop, or again
615       // LoopSimplify doesn't hold.
616       for (BasicBlock *P : predecessors(Succ)) {
617         if (P == BB)
618           continue; // The new block is known.
619         if (LI->getLoopFor(P) != BBLoop) {
620           // Loop is not in LoopSimplify form, no need to re simplify after
621           // splitting edge.
622           LoopPreds.clear();
623           break;
624         }
625         LoopPreds.push_back(P);
626       }
627       // Loop-simplify form can be preserved, if we can split all in-loop
628       // predecessors.
629       if (any_of(LoopPreds, [](BasicBlock *Pred) {
630             return isa<IndirectBrInst>(Pred->getTerminator());
631           })) {
632         return nullptr;
633       }
634     }
635   }
636 
637   auto *NewBB =
638       BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
639   setUnwindEdgeTo(BB->getTerminator(), NewBB);
640   updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
641 
642   if (LandingPadReplacement) {
643     auto *NewLP = OriginalPad->clone();
644     auto *Terminator = BranchInst::Create(Succ, NewBB);
645     NewLP->insertBefore(Terminator);
646     LandingPadReplacement->addIncoming(NewLP, NewBB);
647   } else {
648     Value *ParentPad = nullptr;
649     if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
650       ParentPad = FuncletPad->getParentPad();
651     else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
652       ParentPad = CatchSwitch->getParentPad();
653     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
654       ParentPad = CleanupPad->getParentPad();
655     else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
656       ParentPad = LandingPad->getParent();
657     else
658       llvm_unreachable("handling for other EHPads not implemented yet");
659 
660     auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
661     CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
662   }
663 
664   auto *DT = Options.DT;
665   auto *MSSAU = Options.MSSAU;
666   if (!DT && !LI)
667     return NewBB;
668 
669   if (DT) {
670     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
671     SmallVector<DominatorTree::UpdateType, 3> Updates;
672 
673     Updates.push_back({DominatorTree::Insert, BB, NewBB});
674     Updates.push_back({DominatorTree::Insert, NewBB, Succ});
675     Updates.push_back({DominatorTree::Delete, BB, Succ});
676 
677     DTU.applyUpdates(Updates);
678     DTU.flush();
679 
680     if (MSSAU) {
681       MSSAU->applyUpdates(Updates, *DT);
682       if (VerifyMemorySSA)
683         MSSAU->getMemorySSA()->verifyMemorySSA();
684     }
685   }
686 
687   if (LI) {
688     if (Loop *BBLoop = LI->getLoopFor(BB)) {
689       // If one or the other blocks were not in a loop, the new block is not
690       // either, and thus LI doesn't need to be updated.
691       if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
692         if (BBLoop == SuccLoop) {
693           // Both in the same loop, the NewBB joins loop.
694           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
695         } else if (BBLoop->contains(SuccLoop)) {
696           // Edge from an outer loop to an inner loop.  Add to the outer loop.
697           BBLoop->addBasicBlockToLoop(NewBB, *LI);
698         } else if (SuccLoop->contains(BBLoop)) {
699           // Edge from an inner loop to an outer loop.  Add to the outer loop.
700           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
701         } else {
702           // Edge from two loops with no containment relation.  Because these
703           // are natural loops, we know that the destination block must be the
704           // header of its loop (adding a branch into a loop elsewhere would
705           // create an irreducible loop).
706           assert(SuccLoop->getHeader() == Succ &&
707                  "Should not create irreducible loops!");
708           if (Loop *P = SuccLoop->getParentLoop())
709             P->addBasicBlockToLoop(NewBB, *LI);
710         }
711       }
712 
713       // If BB is in a loop and Succ is outside of that loop, we may need to
714       // update LoopSimplify form and LCSSA form.
715       if (!BBLoop->contains(Succ)) {
716         assert(!BBLoop->contains(NewBB) &&
717                "Split point for loop exit is contained in loop!");
718 
719         // Update LCSSA form in the newly created exit block.
720         if (Options.PreserveLCSSA) {
721           createPHIsForSplitLoopExit(BB, NewBB, Succ);
722         }
723 
724         if (!LoopPreds.empty()) {
725           BasicBlock *NewExitBB = SplitBlockPredecessors(
726               Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
727           if (Options.PreserveLCSSA)
728             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
729         }
730       }
731     }
732   }
733 
734   return NewBB;
735 }
736 
737 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
738                                       BasicBlock *SplitBB, BasicBlock *DestBB) {
739   // SplitBB shouldn't have anything non-trivial in it yet.
740   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
741           SplitBB->isLandingPad()) &&
742          "SplitBB has non-PHI nodes!");
743 
744   // For each PHI in the destination block.
745   for (PHINode &PN : DestBB->phis()) {
746     int Idx = PN.getBasicBlockIndex(SplitBB);
747     assert(Idx >= 0 && "Invalid Block Index");
748     Value *V = PN.getIncomingValue(Idx);
749 
750     // If the input is a PHI which already satisfies LCSSA, don't create
751     // a new one.
752     if (const PHINode *VP = dyn_cast<PHINode>(V))
753       if (VP->getParent() == SplitBB)
754         continue;
755 
756     // Otherwise a new PHI is needed. Create one and populate it.
757     PHINode *NewPN = PHINode::Create(
758         PN.getType(), Preds.size(), "split",
759         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
760     for (BasicBlock *BB : Preds)
761       NewPN->addIncoming(V, BB);
762 
763     // Update the original PHI.
764     PN.setIncomingValue(Idx, NewPN);
765   }
766 }
767 
768 unsigned
769 llvm::SplitAllCriticalEdges(Function &F,
770                             const CriticalEdgeSplittingOptions &Options) {
771   unsigned NumBroken = 0;
772   for (BasicBlock &BB : F) {
773     Instruction *TI = BB.getTerminator();
774     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
775         !isa<CallBrInst>(TI))
776       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
777         if (SplitCriticalEdge(TI, i, Options))
778           ++NumBroken;
779   }
780   return NumBroken;
781 }
782 
783 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
784                                   DomTreeUpdater *DTU, DominatorTree *DT,
785                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
786                                   const Twine &BBName, bool Before) {
787   if (Before) {
788     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
789     return splitBlockBefore(Old, SplitPt,
790                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
791                             BBName);
792   }
793   BasicBlock::iterator SplitIt = SplitPt->getIterator();
794   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
795     ++SplitIt;
796     assert(SplitIt != SplitPt->getParent()->end());
797   }
798   std::string Name = BBName.str();
799   BasicBlock *New = Old->splitBasicBlock(
800       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
801 
802   // The new block lives in whichever loop the old one did. This preserves
803   // LCSSA as well, because we force the split point to be after any PHI nodes.
804   if (LI)
805     if (Loop *L = LI->getLoopFor(Old))
806       L->addBasicBlockToLoop(New, *LI);
807 
808   if (DTU) {
809     SmallVector<DominatorTree::UpdateType, 8> Updates;
810     // Old dominates New. New node dominates all other nodes dominated by Old.
811     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
812     Updates.push_back({DominatorTree::Insert, Old, New});
813     Updates.reserve(Updates.size() + 2 * succ_size(New));
814     for (BasicBlock *SuccessorOfOld : successors(New))
815       if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
816         Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
817         Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
818       }
819 
820     DTU->applyUpdates(Updates);
821   } else if (DT)
822     // Old dominates New. New node dominates all other nodes dominated by Old.
823     if (DomTreeNode *OldNode = DT->getNode(Old)) {
824       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
825 
826       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
827       for (DomTreeNode *I : Children)
828         DT->changeImmediateDominator(I, NewNode);
829     }
830 
831   // Move MemoryAccesses still tracked in Old, but part of New now.
832   // Update accesses in successor blocks accordingly.
833   if (MSSAU)
834     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
835 
836   return New;
837 }
838 
839 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
840                              DominatorTree *DT, LoopInfo *LI,
841                              MemorySSAUpdater *MSSAU, const Twine &BBName,
842                              bool Before) {
843   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
844                         Before);
845 }
846 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
847                              DomTreeUpdater *DTU, LoopInfo *LI,
848                              MemorySSAUpdater *MSSAU, const Twine &BBName,
849                              bool Before) {
850   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
851                         Before);
852 }
853 
854 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
855                                    DomTreeUpdater *DTU, LoopInfo *LI,
856                                    MemorySSAUpdater *MSSAU,
857                                    const Twine &BBName) {
858 
859   BasicBlock::iterator SplitIt = SplitPt->getIterator();
860   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
861     ++SplitIt;
862   std::string Name = BBName.str();
863   BasicBlock *New = Old->splitBasicBlock(
864       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
865       /* Before=*/true);
866 
867   // The new block lives in whichever loop the old one did. This preserves
868   // LCSSA as well, because we force the split point to be after any PHI nodes.
869   if (LI)
870     if (Loop *L = LI->getLoopFor(Old))
871       L->addBasicBlockToLoop(New, *LI);
872 
873   if (DTU) {
874     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
875     // New dominates Old. The predecessor nodes of the Old node dominate
876     // New node.
877     SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
878     DTUpdates.push_back({DominatorTree::Insert, New, Old});
879     DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
880     for (BasicBlock *PredecessorOfOld : predecessors(New))
881       if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
882         DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
883         DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
884       }
885 
886     DTU->applyUpdates(DTUpdates);
887 
888     // Move MemoryAccesses still tracked in Old, but part of New now.
889     // Update accesses in successor blocks accordingly.
890     if (MSSAU) {
891       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
892       if (VerifyMemorySSA)
893         MSSAU->getMemorySSA()->verifyMemorySSA();
894     }
895   }
896   return New;
897 }
898 
899 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
900 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
901                                       ArrayRef<BasicBlock *> Preds,
902                                       DomTreeUpdater *DTU, DominatorTree *DT,
903                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
904                                       bool PreserveLCSSA, bool &HasLoopExit) {
905   // Update dominator tree if available.
906   if (DTU) {
907     // Recalculation of DomTree is needed when updating a forward DomTree and
908     // the Entry BB is replaced.
909     if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
910       // The entry block was removed and there is no external interface for
911       // the dominator tree to be notified of this change. In this corner-case
912       // we recalculate the entire tree.
913       DTU->recalculate(*NewBB->getParent());
914     } else {
915       // Split block expects NewBB to have a non-empty set of predecessors.
916       SmallVector<DominatorTree::UpdateType, 8> Updates;
917       SmallPtrSet<BasicBlock *, 8> UniquePreds;
918       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
919       Updates.reserve(Updates.size() + 2 * Preds.size());
920       for (auto *Pred : Preds)
921         if (UniquePreds.insert(Pred).second) {
922           Updates.push_back({DominatorTree::Insert, Pred, NewBB});
923           Updates.push_back({DominatorTree::Delete, Pred, OldBB});
924         }
925       DTU->applyUpdates(Updates);
926     }
927   } else if (DT) {
928     if (OldBB == DT->getRootNode()->getBlock()) {
929       assert(NewBB->isEntryBlock());
930       DT->setNewRoot(NewBB);
931     } else {
932       // Split block expects NewBB to have a non-empty set of predecessors.
933       DT->splitBlock(NewBB);
934     }
935   }
936 
937   // Update MemoryPhis after split if MemorySSA is available
938   if (MSSAU)
939     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
940 
941   // The rest of the logic is only relevant for updating the loop structures.
942   if (!LI)
943     return;
944 
945   if (DTU && DTU->hasDomTree())
946     DT = &DTU->getDomTree();
947   assert(DT && "DT should be available to update LoopInfo!");
948   Loop *L = LI->getLoopFor(OldBB);
949 
950   // If we need to preserve loop analyses, collect some information about how
951   // this split will affect loops.
952   bool IsLoopEntry = !!L;
953   bool SplitMakesNewLoopHeader = false;
954   for (BasicBlock *Pred : Preds) {
955     // Preds that are not reachable from entry should not be used to identify if
956     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
957     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
958     // as true and make the NewBB the header of some loop. This breaks LI.
959     if (!DT->isReachableFromEntry(Pred))
960       continue;
961     // If we need to preserve LCSSA, determine if any of the preds is a loop
962     // exit.
963     if (PreserveLCSSA)
964       if (Loop *PL = LI->getLoopFor(Pred))
965         if (!PL->contains(OldBB))
966           HasLoopExit = true;
967 
968     // If we need to preserve LoopInfo, note whether any of the preds crosses
969     // an interesting loop boundary.
970     if (!L)
971       continue;
972     if (L->contains(Pred))
973       IsLoopEntry = false;
974     else
975       SplitMakesNewLoopHeader = true;
976   }
977 
978   // Unless we have a loop for OldBB, nothing else to do here.
979   if (!L)
980     return;
981 
982   if (IsLoopEntry) {
983     // Add the new block to the nearest enclosing loop (and not an adjacent
984     // loop). To find this, examine each of the predecessors and determine which
985     // loops enclose them, and select the most-nested loop which contains the
986     // loop containing the block being split.
987     Loop *InnermostPredLoop = nullptr;
988     for (BasicBlock *Pred : Preds) {
989       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
990         // Seek a loop which actually contains the block being split (to avoid
991         // adjacent loops).
992         while (PredLoop && !PredLoop->contains(OldBB))
993           PredLoop = PredLoop->getParentLoop();
994 
995         // Select the most-nested of these loops which contains the block.
996         if (PredLoop && PredLoop->contains(OldBB) &&
997             (!InnermostPredLoop ||
998              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
999           InnermostPredLoop = PredLoop;
1000       }
1001     }
1002 
1003     if (InnermostPredLoop)
1004       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1005   } else {
1006     L->addBasicBlockToLoop(NewBB, *LI);
1007     if (SplitMakesNewLoopHeader)
1008       L->moveToHeader(NewBB);
1009   }
1010 }
1011 
1012 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1013 /// This also updates AliasAnalysis, if available.
1014 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1015                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1016                            bool HasLoopExit) {
1017   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1018   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1019   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1020     PHINode *PN = cast<PHINode>(I++);
1021 
1022     // Check to see if all of the values coming in are the same.  If so, we
1023     // don't need to create a new PHI node, unless it's needed for LCSSA.
1024     Value *InVal = nullptr;
1025     if (!HasLoopExit) {
1026       InVal = PN->getIncomingValueForBlock(Preds[0]);
1027       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1028         if (!PredSet.count(PN->getIncomingBlock(i)))
1029           continue;
1030         if (!InVal)
1031           InVal = PN->getIncomingValue(i);
1032         else if (InVal != PN->getIncomingValue(i)) {
1033           InVal = nullptr;
1034           break;
1035         }
1036       }
1037     }
1038 
1039     if (InVal) {
1040       // If all incoming values for the new PHI would be the same, just don't
1041       // make a new PHI.  Instead, just remove the incoming values from the old
1042       // PHI.
1043 
1044       // NOTE! This loop walks backwards for a reason! First off, this minimizes
1045       // the cost of removal if we end up removing a large number of values, and
1046       // second off, this ensures that the indices for the incoming values
1047       // aren't invalidated when we remove one.
1048       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
1049         if (PredSet.count(PN->getIncomingBlock(i)))
1050           PN->removeIncomingValue(i, false);
1051 
1052       // Add an incoming value to the PHI node in the loop for the preheader
1053       // edge.
1054       PN->addIncoming(InVal, NewBB);
1055       continue;
1056     }
1057 
1058     // If the values coming into the block are not the same, we need a new
1059     // PHI.
1060     // Create the new PHI node, insert it into NewBB at the end of the block
1061     PHINode *NewPHI =
1062         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1063 
1064     // NOTE! This loop walks backwards for a reason! First off, this minimizes
1065     // the cost of removal if we end up removing a large number of values, and
1066     // second off, this ensures that the indices for the incoming values aren't
1067     // invalidated when we remove one.
1068     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1069       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1070       if (PredSet.count(IncomingBB)) {
1071         Value *V = PN->removeIncomingValue(i, false);
1072         NewPHI->addIncoming(V, IncomingBB);
1073       }
1074     }
1075 
1076     PN->addIncoming(NewPHI, NewBB);
1077   }
1078 }
1079 
1080 static void SplitLandingPadPredecessorsImpl(
1081     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1082     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1083     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1084     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1085 
1086 static BasicBlock *
1087 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1088                            const char *Suffix, DomTreeUpdater *DTU,
1089                            DominatorTree *DT, LoopInfo *LI,
1090                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1091   // Do not attempt to split that which cannot be split.
1092   if (!BB->canSplitPredecessors())
1093     return nullptr;
1094 
1095   // For the landingpads we need to act a bit differently.
1096   // Delegate this work to the SplitLandingPadPredecessors.
1097   if (BB->isLandingPad()) {
1098     SmallVector<BasicBlock*, 2> NewBBs;
1099     std::string NewName = std::string(Suffix) + ".split-lp";
1100 
1101     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1102                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
1103     return NewBBs[0];
1104   }
1105 
1106   // Create new basic block, insert right before the original block.
1107   BasicBlock *NewBB = BasicBlock::Create(
1108       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1109 
1110   // The new block unconditionally branches to the old block.
1111   BranchInst *BI = BranchInst::Create(BB, NewBB);
1112 
1113   Loop *L = nullptr;
1114   BasicBlock *OldLatch = nullptr;
1115   // Splitting the predecessors of a loop header creates a preheader block.
1116   if (LI && LI->isLoopHeader(BB)) {
1117     L = LI->getLoopFor(BB);
1118     // Using the loop start line number prevents debuggers stepping into the
1119     // loop body for this instruction.
1120     BI->setDebugLoc(L->getStartLoc());
1121 
1122     // If BB is the header of the Loop, it is possible that the loop is
1123     // modified, such that the current latch does not remain the latch of the
1124     // loop. If that is the case, the loop metadata from the current latch needs
1125     // to be applied to the new latch.
1126     OldLatch = L->getLoopLatch();
1127   } else
1128     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1129 
1130   // Move the edges from Preds to point to NewBB instead of BB.
1131   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1132     // This is slightly more strict than necessary; the minimum requirement
1133     // is that there be no more than one indirectbr branching to BB. And
1134     // all BlockAddress uses would need to be updated.
1135     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1136            "Cannot split an edge from an IndirectBrInst");
1137     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
1138            "Cannot split an edge from a CallBrInst");
1139     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
1140   }
1141 
1142   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1143   // node becomes an incoming value for BB's phi node.  However, if the Preds
1144   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1145   // account for the newly created predecessor.
1146   if (Preds.empty()) {
1147     // Insert dummy values as the incoming value.
1148     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1149       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
1150   }
1151 
1152   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1153   bool HasLoopExit = false;
1154   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1155                             HasLoopExit);
1156 
1157   if (!Preds.empty()) {
1158     // Update the PHI nodes in BB with the values coming from NewBB.
1159     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1160   }
1161 
1162   if (OldLatch) {
1163     BasicBlock *NewLatch = L->getLoopLatch();
1164     if (NewLatch != OldLatch) {
1165       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1166       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1167       OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1168     }
1169   }
1170 
1171   return NewBB;
1172 }
1173 
1174 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1175                                          ArrayRef<BasicBlock *> Preds,
1176                                          const char *Suffix, DominatorTree *DT,
1177                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
1178                                          bool PreserveLCSSA) {
1179   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1180                                     MSSAU, PreserveLCSSA);
1181 }
1182 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1183                                          ArrayRef<BasicBlock *> Preds,
1184                                          const char *Suffix,
1185                                          DomTreeUpdater *DTU, LoopInfo *LI,
1186                                          MemorySSAUpdater *MSSAU,
1187                                          bool PreserveLCSSA) {
1188   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1189                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1190 }
1191 
1192 static void SplitLandingPadPredecessorsImpl(
1193     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1194     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1195     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1196     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1197   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1198 
1199   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1200   // it right before the original block.
1201   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1202                                           OrigBB->getName() + Suffix1,
1203                                           OrigBB->getParent(), OrigBB);
1204   NewBBs.push_back(NewBB1);
1205 
1206   // The new block unconditionally branches to the old block.
1207   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1208   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1209 
1210   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1211   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1212     // This is slightly more strict than necessary; the minimum requirement
1213     // is that there be no more than one indirectbr branching to BB. And
1214     // all BlockAddress uses would need to be updated.
1215     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1216            "Cannot split an edge from an IndirectBrInst");
1217     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1218   }
1219 
1220   bool HasLoopExit = false;
1221   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1222                             PreserveLCSSA, HasLoopExit);
1223 
1224   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1225   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1226 
1227   // Move the remaining edges from OrigBB to point to NewBB2.
1228   SmallVector<BasicBlock*, 8> NewBB2Preds;
1229   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1230        i != e; ) {
1231     BasicBlock *Pred = *i++;
1232     if (Pred == NewBB1) continue;
1233     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1234            "Cannot split an edge from an IndirectBrInst");
1235     NewBB2Preds.push_back(Pred);
1236     e = pred_end(OrigBB);
1237   }
1238 
1239   BasicBlock *NewBB2 = nullptr;
1240   if (!NewBB2Preds.empty()) {
1241     // Create another basic block for the rest of OrigBB's predecessors.
1242     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1243                                 OrigBB->getName() + Suffix2,
1244                                 OrigBB->getParent(), OrigBB);
1245     NewBBs.push_back(NewBB2);
1246 
1247     // The new block unconditionally branches to the old block.
1248     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1249     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1250 
1251     // Move the remaining edges from OrigBB to point to NewBB2.
1252     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1253       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1254 
1255     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1256     HasLoopExit = false;
1257     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1258                               PreserveLCSSA, HasLoopExit);
1259 
1260     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1261     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1262   }
1263 
1264   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1265   Instruction *Clone1 = LPad->clone();
1266   Clone1->setName(Twine("lpad") + Suffix1);
1267   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1268 
1269   if (NewBB2) {
1270     Instruction *Clone2 = LPad->clone();
1271     Clone2->setName(Twine("lpad") + Suffix2);
1272     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1273 
1274     // Create a PHI node for the two cloned landingpad instructions only
1275     // if the original landingpad instruction has some uses.
1276     if (!LPad->use_empty()) {
1277       assert(!LPad->getType()->isTokenTy() &&
1278              "Split cannot be applied if LPad is token type. Otherwise an "
1279              "invalid PHINode of token type would be created.");
1280       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1281       PN->addIncoming(Clone1, NewBB1);
1282       PN->addIncoming(Clone2, NewBB2);
1283       LPad->replaceAllUsesWith(PN);
1284     }
1285     LPad->eraseFromParent();
1286   } else {
1287     // There is no second clone. Just replace the landing pad with the first
1288     // clone.
1289     LPad->replaceAllUsesWith(Clone1);
1290     LPad->eraseFromParent();
1291   }
1292 }
1293 
1294 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1295                                        ArrayRef<BasicBlock *> Preds,
1296                                        const char *Suffix1, const char *Suffix2,
1297                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1298                                        DominatorTree *DT, LoopInfo *LI,
1299                                        MemorySSAUpdater *MSSAU,
1300                                        bool PreserveLCSSA) {
1301   return SplitLandingPadPredecessorsImpl(
1302       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1303       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1304 }
1305 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1306                                        ArrayRef<BasicBlock *> Preds,
1307                                        const char *Suffix1, const char *Suffix2,
1308                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1309                                        DomTreeUpdater *DTU, LoopInfo *LI,
1310                                        MemorySSAUpdater *MSSAU,
1311                                        bool PreserveLCSSA) {
1312   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1313                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1314                                          PreserveLCSSA);
1315 }
1316 
1317 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1318                                              BasicBlock *Pred,
1319                                              DomTreeUpdater *DTU) {
1320   Instruction *UncondBranch = Pred->getTerminator();
1321   // Clone the return and add it to the end of the predecessor.
1322   Instruction *NewRet = RI->clone();
1323   Pred->getInstList().push_back(NewRet);
1324 
1325   // If the return instruction returns a value, and if the value was a
1326   // PHI node in "BB", propagate the right value into the return.
1327   for (Use &Op : NewRet->operands()) {
1328     Value *V = Op;
1329     Instruction *NewBC = nullptr;
1330     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1331       // Return value might be bitcasted. Clone and insert it before the
1332       // return instruction.
1333       V = BCI->getOperand(0);
1334       NewBC = BCI->clone();
1335       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1336       Op = NewBC;
1337     }
1338 
1339     Instruction *NewEV = nullptr;
1340     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1341       V = EVI->getOperand(0);
1342       NewEV = EVI->clone();
1343       if (NewBC) {
1344         NewBC->setOperand(0, NewEV);
1345         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1346       } else {
1347         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1348         Op = NewEV;
1349       }
1350     }
1351 
1352     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1353       if (PN->getParent() == BB) {
1354         if (NewEV) {
1355           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1356         } else if (NewBC)
1357           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1358         else
1359           Op = PN->getIncomingValueForBlock(Pred);
1360       }
1361     }
1362   }
1363 
1364   // Update any PHI nodes in the returning block to realize that we no
1365   // longer branch to them.
1366   BB->removePredecessor(Pred);
1367   UncondBranch->eraseFromParent();
1368 
1369   if (DTU)
1370     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1371 
1372   return cast<ReturnInst>(NewRet);
1373 }
1374 
1375 static Instruction *
1376 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1377                               bool Unreachable, MDNode *BranchWeights,
1378                               DomTreeUpdater *DTU, DominatorTree *DT,
1379                               LoopInfo *LI, BasicBlock *ThenBlock) {
1380   SmallVector<DominatorTree::UpdateType, 8> Updates;
1381   BasicBlock *Head = SplitBefore->getParent();
1382   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1383   if (DTU) {
1384     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead;
1385     Updates.push_back({DominatorTree::Insert, Head, Tail});
1386     Updates.reserve(Updates.size() + 2 * succ_size(Tail));
1387     for (BasicBlock *SuccessorOfHead : successors(Tail))
1388       if (UniqueSuccessorsOfHead.insert(SuccessorOfHead).second) {
1389         Updates.push_back({DominatorTree::Insert, Tail, SuccessorOfHead});
1390         Updates.push_back({DominatorTree::Delete, Head, SuccessorOfHead});
1391       }
1392   }
1393   Instruction *HeadOldTerm = Head->getTerminator();
1394   LLVMContext &C = Head->getContext();
1395   Instruction *CheckTerm;
1396   bool CreateThenBlock = (ThenBlock == nullptr);
1397   if (CreateThenBlock) {
1398     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1399     if (Unreachable)
1400       CheckTerm = new UnreachableInst(C, ThenBlock);
1401     else {
1402       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1403       if (DTU)
1404         Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1405     }
1406     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1407   } else
1408     CheckTerm = ThenBlock->getTerminator();
1409   BranchInst *HeadNewTerm =
1410       BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1411   if (DTU)
1412     Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1413   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1414   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1415 
1416   if (DTU)
1417     DTU->applyUpdates(Updates);
1418   else if (DT) {
1419     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1420       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1421 
1422       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1423       for (DomTreeNode *Child : Children)
1424         DT->changeImmediateDominator(Child, NewNode);
1425 
1426       // Head dominates ThenBlock.
1427       if (CreateThenBlock)
1428         DT->addNewBlock(ThenBlock, Head);
1429       else
1430         DT->changeImmediateDominator(ThenBlock, Head);
1431     }
1432   }
1433 
1434   if (LI) {
1435     if (Loop *L = LI->getLoopFor(Head)) {
1436       L->addBasicBlockToLoop(ThenBlock, *LI);
1437       L->addBasicBlockToLoop(Tail, *LI);
1438     }
1439   }
1440 
1441   return CheckTerm;
1442 }
1443 
1444 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1445                                              Instruction *SplitBefore,
1446                                              bool Unreachable,
1447                                              MDNode *BranchWeights,
1448                                              DominatorTree *DT, LoopInfo *LI,
1449                                              BasicBlock *ThenBlock) {
1450   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1451                                        BranchWeights,
1452                                        /*DTU=*/nullptr, DT, LI, ThenBlock);
1453 }
1454 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1455                                              Instruction *SplitBefore,
1456                                              bool Unreachable,
1457                                              MDNode *BranchWeights,
1458                                              DomTreeUpdater *DTU, LoopInfo *LI,
1459                                              BasicBlock *ThenBlock) {
1460   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1461                                        BranchWeights, DTU, /*DT=*/nullptr, LI,
1462                                        ThenBlock);
1463 }
1464 
1465 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1466                                          Instruction **ThenTerm,
1467                                          Instruction **ElseTerm,
1468                                          MDNode *BranchWeights) {
1469   BasicBlock *Head = SplitBefore->getParent();
1470   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1471   Instruction *HeadOldTerm = Head->getTerminator();
1472   LLVMContext &C = Head->getContext();
1473   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1474   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1475   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1476   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1477   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1478   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1479   BranchInst *HeadNewTerm =
1480     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1481   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1482   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1483 }
1484 
1485 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1486                                  BasicBlock *&IfFalse) {
1487   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1488   BasicBlock *Pred1 = nullptr;
1489   BasicBlock *Pred2 = nullptr;
1490 
1491   if (SomePHI) {
1492     if (SomePHI->getNumIncomingValues() != 2)
1493       return nullptr;
1494     Pred1 = SomePHI->getIncomingBlock(0);
1495     Pred2 = SomePHI->getIncomingBlock(1);
1496   } else {
1497     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1498     if (PI == PE) // No predecessor
1499       return nullptr;
1500     Pred1 = *PI++;
1501     if (PI == PE) // Only one predecessor
1502       return nullptr;
1503     Pred2 = *PI++;
1504     if (PI != PE) // More than two predecessors
1505       return nullptr;
1506   }
1507 
1508   // We can only handle branches.  Other control flow will be lowered to
1509   // branches if possible anyway.
1510   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1511   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1512   if (!Pred1Br || !Pred2Br)
1513     return nullptr;
1514 
1515   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1516   // either are.
1517   if (Pred2Br->isConditional()) {
1518     // If both branches are conditional, we don't have an "if statement".  In
1519     // reality, we could transform this case, but since the condition will be
1520     // required anyway, we stand no chance of eliminating it, so the xform is
1521     // probably not profitable.
1522     if (Pred1Br->isConditional())
1523       return nullptr;
1524 
1525     std::swap(Pred1, Pred2);
1526     std::swap(Pred1Br, Pred2Br);
1527   }
1528 
1529   if (Pred1Br->isConditional()) {
1530     // The only thing we have to watch out for here is to make sure that Pred2
1531     // doesn't have incoming edges from other blocks.  If it does, the condition
1532     // doesn't dominate BB.
1533     if (!Pred2->getSinglePredecessor())
1534       return nullptr;
1535 
1536     // If we found a conditional branch predecessor, make sure that it branches
1537     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1538     if (Pred1Br->getSuccessor(0) == BB &&
1539         Pred1Br->getSuccessor(1) == Pred2) {
1540       IfTrue = Pred1;
1541       IfFalse = Pred2;
1542     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1543                Pred1Br->getSuccessor(1) == BB) {
1544       IfTrue = Pred2;
1545       IfFalse = Pred1;
1546     } else {
1547       // We know that one arm of the conditional goes to BB, so the other must
1548       // go somewhere unrelated, and this must not be an "if statement".
1549       return nullptr;
1550     }
1551 
1552     return Pred1Br;
1553   }
1554 
1555   // Ok, if we got here, both predecessors end with an unconditional branch to
1556   // BB.  Don't panic!  If both blocks only have a single (identical)
1557   // predecessor, and THAT is a conditional branch, then we're all ok!
1558   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1559   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1560     return nullptr;
1561 
1562   // Otherwise, if this is a conditional branch, then we can use it!
1563   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1564   if (!BI) return nullptr;
1565 
1566   assert(BI->isConditional() && "Two successors but not conditional?");
1567   if (BI->getSuccessor(0) == Pred1) {
1568     IfTrue = Pred1;
1569     IfFalse = Pred2;
1570   } else {
1571     IfTrue = Pred2;
1572     IfFalse = Pred1;
1573   }
1574   return BI;
1575 }
1576 
1577 // After creating a control flow hub, the operands of PHINodes in an outgoing
1578 // block Out no longer match the predecessors of that block. Predecessors of Out
1579 // that are incoming blocks to the hub are now replaced by just one edge from
1580 // the hub. To match this new control flow, the corresponding values from each
1581 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1582 //
1583 // This operation cannot be performed with SSAUpdater, because it involves one
1584 // new use: If the block Out is in the list of Incoming blocks, then the newly
1585 // created PHI in the Hub will use itself along that edge from Out to Hub.
1586 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1587                           const SetVector<BasicBlock *> &Incoming,
1588                           BasicBlock *FirstGuardBlock) {
1589   auto I = Out->begin();
1590   while (I != Out->end() && isa<PHINode>(I)) {
1591     auto Phi = cast<PHINode>(I);
1592     auto NewPhi =
1593         PHINode::Create(Phi->getType(), Incoming.size(),
1594                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1595     for (auto In : Incoming) {
1596       Value *V = UndefValue::get(Phi->getType());
1597       if (In == Out) {
1598         V = NewPhi;
1599       } else if (Phi->getBasicBlockIndex(In) != -1) {
1600         V = Phi->removeIncomingValue(In, false);
1601       }
1602       NewPhi->addIncoming(V, In);
1603     }
1604     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1605     if (Phi->getNumOperands() == 0) {
1606       Phi->replaceAllUsesWith(NewPhi);
1607       I = Phi->eraseFromParent();
1608       continue;
1609     }
1610     Phi->addIncoming(NewPhi, GuardBlock);
1611     ++I;
1612   }
1613 }
1614 
1615 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1616 using BBSetVector = SetVector<BasicBlock *>;
1617 
1618 // Redirects the terminator of the incoming block to the first guard
1619 // block in the hub. The condition of the original terminator (if it
1620 // was conditional) and its original successors are returned as a
1621 // tuple <condition, succ0, succ1>. The function additionally filters
1622 // out successors that are not in the set of outgoing blocks.
1623 //
1624 // - condition is non-null iff the branch is conditional.
1625 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1626 // - Succ2 is non-null iff condition is non-null and the fallthrough
1627 //         target is an outgoing block.
1628 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1629 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1630               const BBSetVector &Outgoing) {
1631   auto Branch = cast<BranchInst>(BB->getTerminator());
1632   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1633 
1634   BasicBlock *Succ0 = Branch->getSuccessor(0);
1635   BasicBlock *Succ1 = nullptr;
1636   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1637 
1638   if (Branch->isUnconditional()) {
1639     Branch->setSuccessor(0, FirstGuardBlock);
1640     assert(Succ0);
1641   } else {
1642     Succ1 = Branch->getSuccessor(1);
1643     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1644     assert(Succ0 || Succ1);
1645     if (Succ0 && !Succ1) {
1646       Branch->setSuccessor(0, FirstGuardBlock);
1647     } else if (Succ1 && !Succ0) {
1648       Branch->setSuccessor(1, FirstGuardBlock);
1649     } else {
1650       Branch->eraseFromParent();
1651       BranchInst::Create(FirstGuardBlock, BB);
1652     }
1653   }
1654 
1655   assert(Succ0 || Succ1);
1656   return std::make_tuple(Condition, Succ0, Succ1);
1657 }
1658 
1659 // Capture the existing control flow as guard predicates, and redirect
1660 // control flow from every incoming block to the first guard block in
1661 // the hub.
1662 //
1663 // There is one guard predicate for each outgoing block OutBB. The
1664 // predicate is a PHINode with one input for each InBB which
1665 // represents whether the hub should transfer control flow to OutBB if
1666 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1667 // evaluates them in the same order as the Outgoing set-vector, and
1668 // control branches to the first outgoing block whose predicate
1669 // evaluates to true.
1670 static void convertToGuardPredicates(
1671     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1672     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1673     const BBSetVector &Outgoing) {
1674   auto &Context = Incoming.front()->getContext();
1675   auto BoolTrue = ConstantInt::getTrue(Context);
1676   auto BoolFalse = ConstantInt::getFalse(Context);
1677 
1678   // The predicate for the last outgoing is trivially true, and so we
1679   // process only the first N-1 successors.
1680   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1681     auto Out = Outgoing[i];
1682     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1683     auto Phi =
1684         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1685                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1686     GuardPredicates[Out] = Phi;
1687   }
1688 
1689   for (auto In : Incoming) {
1690     Value *Condition;
1691     BasicBlock *Succ0;
1692     BasicBlock *Succ1;
1693     std::tie(Condition, Succ0, Succ1) =
1694         redirectToHub(In, FirstGuardBlock, Outgoing);
1695 
1696     // Optimization: Consider an incoming block A with both successors
1697     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1698     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1699     // first in the loop below, control will branch to Succ0 using the
1700     // corresponding predicate. But if that branch is not taken, then
1701     // control must reach Succ1, which means that the predicate for
1702     // Succ1 is always true.
1703     bool OneSuccessorDone = false;
1704     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1705       auto Out = Outgoing[i];
1706       auto Phi = GuardPredicates[Out];
1707       if (Out != Succ0 && Out != Succ1) {
1708         Phi->addIncoming(BoolFalse, In);
1709         continue;
1710       }
1711       // Optimization: When only one successor is an outgoing block,
1712       // the predicate is always true.
1713       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1714         Phi->addIncoming(BoolTrue, In);
1715         continue;
1716       }
1717       assert(Succ0 && Succ1);
1718       OneSuccessorDone = true;
1719       if (Out == Succ0) {
1720         Phi->addIncoming(Condition, In);
1721         continue;
1722       }
1723       auto Inverted = invertCondition(Condition);
1724       DeletionCandidates.push_back(Condition);
1725       Phi->addIncoming(Inverted, In);
1726     }
1727   }
1728 }
1729 
1730 // For each outgoing block OutBB, create a guard block in the Hub. The
1731 // first guard block was already created outside, and available as the
1732 // first element in the vector of guard blocks.
1733 //
1734 // Each guard block terminates in a conditional branch that transfers
1735 // control to the corresponding outgoing block or the next guard
1736 // block. The last guard block has two outgoing blocks as successors
1737 // since the condition for the final outgoing block is trivially
1738 // true. So we create one less block (including the first guard block)
1739 // than the number of outgoing blocks.
1740 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1741                               Function *F, const BBSetVector &Outgoing,
1742                               BBPredicates &GuardPredicates, StringRef Prefix) {
1743   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1744     GuardBlocks.push_back(
1745         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1746   }
1747   assert(GuardBlocks.size() == GuardPredicates.size());
1748 
1749   // To help keep the loop simple, temporarily append the last
1750   // outgoing block to the list of guard blocks.
1751   GuardBlocks.push_back(Outgoing.back());
1752 
1753   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1754     auto Out = Outgoing[i];
1755     assert(GuardPredicates.count(Out));
1756     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1757                        GuardBlocks[i]);
1758   }
1759 
1760   // Remove the last block from the guard list.
1761   GuardBlocks.pop_back();
1762 }
1763 
1764 BasicBlock *llvm::CreateControlFlowHub(
1765     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1766     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1767     const StringRef Prefix) {
1768   auto F = Incoming.front()->getParent();
1769   auto FirstGuardBlock =
1770       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1771 
1772   SmallVector<DominatorTree::UpdateType, 16> Updates;
1773   if (DTU) {
1774     for (auto In : Incoming) {
1775       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1776       for (auto Succ : successors(In)) {
1777         if (Outgoing.count(Succ))
1778           Updates.push_back({DominatorTree::Delete, In, Succ});
1779       }
1780     }
1781   }
1782 
1783   BBPredicates GuardPredicates;
1784   SmallVector<WeakVH, 8> DeletionCandidates;
1785   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1786                            Incoming, Outgoing);
1787 
1788   GuardBlocks.push_back(FirstGuardBlock);
1789   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1790 
1791   // Update the PHINodes in each outgoing block to match the new control flow.
1792   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1793     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1794   }
1795   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1796 
1797   if (DTU) {
1798     int NumGuards = GuardBlocks.size();
1799     assert((int)Outgoing.size() == NumGuards + 1);
1800     for (int i = 0; i != NumGuards - 1; ++i) {
1801       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1802       Updates.push_back(
1803           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1804     }
1805     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1806                        Outgoing[NumGuards - 1]});
1807     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1808                        Outgoing[NumGuards]});
1809     DTU->applyUpdates(Updates);
1810   }
1811 
1812   for (auto I : DeletionCandidates) {
1813     if (I->use_empty())
1814       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1815         Inst->eraseFromParent();
1816   }
1817 
1818   return FirstGuardBlock;
1819 }
1820