10b57cec5SDimitry Andric //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This family of functions perform manipulations on basic blocks, and
100b57cec5SDimitry Andric // instructions contained within basic blocks.
110b57cec5SDimitry Andric //
120b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
130b57cec5SDimitry Andric
140b57cec5SDimitry Andric #include "llvm/Transforms/Utils/BasicBlockUtils.h"
150b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h"
160b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
170b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
180b57cec5SDimitry Andric #include "llvm/ADT/Twine.h"
190b57cec5SDimitry Andric #include "llvm/Analysis/CFG.h"
200b57cec5SDimitry Andric #include "llvm/Analysis/DomTreeUpdater.h"
210b57cec5SDimitry Andric #include "llvm/Analysis/LoopInfo.h"
220b57cec5SDimitry Andric #include "llvm/Analysis/MemoryDependenceAnalysis.h"
230b57cec5SDimitry Andric #include "llvm/Analysis/MemorySSAUpdater.h"
240b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
250b57cec5SDimitry Andric #include "llvm/IR/CFG.h"
260b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
27bdd1243dSDimitry Andric #include "llvm/IR/DebugInfo.h"
280b57cec5SDimitry Andric #include "llvm/IR/DebugInfoMetadata.h"
290b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
300b57cec5SDimitry Andric #include "llvm/IR/Function.h"
310b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
320b57cec5SDimitry Andric #include "llvm/IR/Instruction.h"
330b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
340b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
3506c3fb27SDimitry Andric #include "llvm/IR/IRBuilder.h"
360b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h"
370b57cec5SDimitry Andric #include "llvm/IR/Type.h"
380b57cec5SDimitry Andric #include "llvm/IR/User.h"
390b57cec5SDimitry Andric #include "llvm/IR/Value.h"
400b57cec5SDimitry Andric #include "llvm/IR/ValueHandle.h"
410b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
42349cc55cSDimitry Andric #include "llvm/Support/CommandLine.h"
430b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
440b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
450b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
460b57cec5SDimitry Andric #include <cassert>
470b57cec5SDimitry Andric #include <cstdint>
480b57cec5SDimitry Andric #include <string>
490b57cec5SDimitry Andric #include <utility>
500b57cec5SDimitry Andric #include <vector>
510b57cec5SDimitry Andric
520b57cec5SDimitry Andric using namespace llvm;
530b57cec5SDimitry Andric
540b57cec5SDimitry Andric #define DEBUG_TYPE "basicblock-utils"
550b57cec5SDimitry Andric
56349cc55cSDimitry Andric static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
57349cc55cSDimitry Andric "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
58349cc55cSDimitry Andric cl::desc("Set the maximum path length when checking whether a basic block "
59349cc55cSDimitry Andric "is followed by a block that either has a terminating "
60349cc55cSDimitry Andric "deoptimizing call or is terminated with an unreachable"));
61349cc55cSDimitry Andric
detachDeadBlocks(ArrayRef<BasicBlock * > BBs,SmallVectorImpl<DominatorTree::UpdateType> * Updates,bool KeepOneInputPHIs)621fd87a68SDimitry Andric void llvm::detachDeadBlocks(
630b57cec5SDimitry Andric ArrayRef<BasicBlock *> BBs,
640b57cec5SDimitry Andric SmallVectorImpl<DominatorTree::UpdateType> *Updates,
650b57cec5SDimitry Andric bool KeepOneInputPHIs) {
660b57cec5SDimitry Andric for (auto *BB : BBs) {
670b57cec5SDimitry Andric // Loop through all of our successors and make sure they know that one
680b57cec5SDimitry Andric // of their predecessors is going away.
690b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
700b57cec5SDimitry Andric for (BasicBlock *Succ : successors(BB)) {
710b57cec5SDimitry Andric Succ->removePredecessor(BB, KeepOneInputPHIs);
720b57cec5SDimitry Andric if (Updates && UniqueSuccessors.insert(Succ).second)
730b57cec5SDimitry Andric Updates->push_back({DominatorTree::Delete, BB, Succ});
740b57cec5SDimitry Andric }
750b57cec5SDimitry Andric
760b57cec5SDimitry Andric // Zap all the instructions in the block.
770b57cec5SDimitry Andric while (!BB->empty()) {
780b57cec5SDimitry Andric Instruction &I = BB->back();
790b57cec5SDimitry Andric // If this instruction is used, replace uses with an arbitrary value.
800b57cec5SDimitry Andric // Because control flow can't get here, we don't care what we replace the
810b57cec5SDimitry Andric // value with. Note that since this block is unreachable, and all values
820b57cec5SDimitry Andric // contained within it must dominate their uses, that all uses will
830b57cec5SDimitry Andric // eventually be removed (they are themselves dead).
840b57cec5SDimitry Andric if (!I.use_empty())
85fcaf7f86SDimitry Andric I.replaceAllUsesWith(PoisonValue::get(I.getType()));
86bdd1243dSDimitry Andric BB->back().eraseFromParent();
870b57cec5SDimitry Andric }
880b57cec5SDimitry Andric new UnreachableInst(BB->getContext(), BB);
89bdd1243dSDimitry Andric assert(BB->size() == 1 &&
900b57cec5SDimitry Andric isa<UnreachableInst>(BB->getTerminator()) &&
910b57cec5SDimitry Andric "The successor list of BB isn't empty before "
920b57cec5SDimitry Andric "applying corresponding DTU updates.");
930b57cec5SDimitry Andric }
940b57cec5SDimitry Andric }
950b57cec5SDimitry Andric
DeleteDeadBlock(BasicBlock * BB,DomTreeUpdater * DTU,bool KeepOneInputPHIs)960b57cec5SDimitry Andric void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
970b57cec5SDimitry Andric bool KeepOneInputPHIs) {
980b57cec5SDimitry Andric DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
990b57cec5SDimitry Andric }
1000b57cec5SDimitry Andric
DeleteDeadBlocks(ArrayRef<BasicBlock * > BBs,DomTreeUpdater * DTU,bool KeepOneInputPHIs)1010b57cec5SDimitry Andric void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
1020b57cec5SDimitry Andric bool KeepOneInputPHIs) {
1030b57cec5SDimitry Andric #ifndef NDEBUG
1040b57cec5SDimitry Andric // Make sure that all predecessors of each dead block is also dead.
1050b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
1060b57cec5SDimitry Andric assert(Dead.size() == BBs.size() && "Duplicating blocks?");
1070b57cec5SDimitry Andric for (auto *BB : Dead)
1080b57cec5SDimitry Andric for (BasicBlock *Pred : predecessors(BB))
1090b57cec5SDimitry Andric assert(Dead.count(Pred) && "All predecessors must be dead!");
1100b57cec5SDimitry Andric #endif
1110b57cec5SDimitry Andric
1120b57cec5SDimitry Andric SmallVector<DominatorTree::UpdateType, 4> Updates;
1131fd87a68SDimitry Andric detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
1140b57cec5SDimitry Andric
1150b57cec5SDimitry Andric if (DTU)
116e8d8bef9SDimitry Andric DTU->applyUpdates(Updates);
1170b57cec5SDimitry Andric
1180b57cec5SDimitry Andric for (BasicBlock *BB : BBs)
1190b57cec5SDimitry Andric if (DTU)
1200b57cec5SDimitry Andric DTU->deleteBB(BB);
1210b57cec5SDimitry Andric else
1220b57cec5SDimitry Andric BB->eraseFromParent();
1230b57cec5SDimitry Andric }
1240b57cec5SDimitry Andric
EliminateUnreachableBlocks(Function & F,DomTreeUpdater * DTU,bool KeepOneInputPHIs)1250b57cec5SDimitry Andric bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
1260b57cec5SDimitry Andric bool KeepOneInputPHIs) {
1270b57cec5SDimitry Andric df_iterator_default_set<BasicBlock*> Reachable;
1280b57cec5SDimitry Andric
1290b57cec5SDimitry Andric // Mark all reachable blocks.
1300b57cec5SDimitry Andric for (BasicBlock *BB : depth_first_ext(&F, Reachable))
1310b57cec5SDimitry Andric (void)BB/* Mark all reachable blocks */;
1320b57cec5SDimitry Andric
1330b57cec5SDimitry Andric // Collect all dead blocks.
1340b57cec5SDimitry Andric std::vector<BasicBlock*> DeadBlocks;
135fe6060f1SDimitry Andric for (BasicBlock &BB : F)
136fe6060f1SDimitry Andric if (!Reachable.count(&BB))
137fe6060f1SDimitry Andric DeadBlocks.push_back(&BB);
1380b57cec5SDimitry Andric
1390b57cec5SDimitry Andric // Delete the dead blocks.
1400b57cec5SDimitry Andric DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
1410b57cec5SDimitry Andric
1420b57cec5SDimitry Andric return !DeadBlocks.empty();
1430b57cec5SDimitry Andric }
1440b57cec5SDimitry Andric
FoldSingleEntryPHINodes(BasicBlock * BB,MemoryDependenceResults * MemDep)145e8d8bef9SDimitry Andric bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
1460b57cec5SDimitry Andric MemoryDependenceResults *MemDep) {
147e8d8bef9SDimitry Andric if (!isa<PHINode>(BB->begin()))
148e8d8bef9SDimitry Andric return false;
1490b57cec5SDimitry Andric
1500b57cec5SDimitry Andric while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1510b57cec5SDimitry Andric if (PN->getIncomingValue(0) != PN)
1520b57cec5SDimitry Andric PN->replaceAllUsesWith(PN->getIncomingValue(0));
1530b57cec5SDimitry Andric else
154bdd1243dSDimitry Andric PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
1550b57cec5SDimitry Andric
1560b57cec5SDimitry Andric if (MemDep)
1570b57cec5SDimitry Andric MemDep->removeInstruction(PN); // Memdep updates AA itself.
1580b57cec5SDimitry Andric
1590b57cec5SDimitry Andric PN->eraseFromParent();
1600b57cec5SDimitry Andric }
161e8d8bef9SDimitry Andric return true;
1620b57cec5SDimitry Andric }
1630b57cec5SDimitry Andric
DeleteDeadPHIs(BasicBlock * BB,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU)1645ffd83dbSDimitry Andric bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
1655ffd83dbSDimitry Andric MemorySSAUpdater *MSSAU) {
1660b57cec5SDimitry Andric // Recursively deleting a PHI may cause multiple PHIs to be deleted
1670b57cec5SDimitry Andric // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
1680b57cec5SDimitry Andric SmallVector<WeakTrackingVH, 8> PHIs;
1690b57cec5SDimitry Andric for (PHINode &PN : BB->phis())
1700b57cec5SDimitry Andric PHIs.push_back(&PN);
1710b57cec5SDimitry Andric
1720b57cec5SDimitry Andric bool Changed = false;
1730b57cec5SDimitry Andric for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
1740b57cec5SDimitry Andric if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
1755ffd83dbSDimitry Andric Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
1760b57cec5SDimitry Andric
1770b57cec5SDimitry Andric return Changed;
1780b57cec5SDimitry Andric }
1790b57cec5SDimitry Andric
MergeBlockIntoPredecessor(BasicBlock * BB,DomTreeUpdater * DTU,LoopInfo * LI,MemorySSAUpdater * MSSAU,MemoryDependenceResults * MemDep,bool PredecessorWithTwoSuccessors,DominatorTree * DT)1800b57cec5SDimitry Andric bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
1810b57cec5SDimitry Andric LoopInfo *LI, MemorySSAUpdater *MSSAU,
1828bcb0991SDimitry Andric MemoryDependenceResults *MemDep,
183bdd1243dSDimitry Andric bool PredecessorWithTwoSuccessors,
184bdd1243dSDimitry Andric DominatorTree *DT) {
1850b57cec5SDimitry Andric if (BB->hasAddressTaken())
1860b57cec5SDimitry Andric return false;
1870b57cec5SDimitry Andric
1880b57cec5SDimitry Andric // Can't merge if there are multiple predecessors, or no predecessors.
1890b57cec5SDimitry Andric BasicBlock *PredBB = BB->getUniquePredecessor();
1900b57cec5SDimitry Andric if (!PredBB) return false;
1910b57cec5SDimitry Andric
1920b57cec5SDimitry Andric // Don't break self-loops.
1930b57cec5SDimitry Andric if (PredBB == BB) return false;
194fcaf7f86SDimitry Andric
195fcaf7f86SDimitry Andric // Don't break unwinding instructions or terminators with other side-effects.
196fcaf7f86SDimitry Andric Instruction *PTI = PredBB->getTerminator();
1975f757f3fSDimitry Andric if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects())
1980b57cec5SDimitry Andric return false;
1990b57cec5SDimitry Andric
2000b57cec5SDimitry Andric // Can't merge if there are multiple distinct successors.
2018bcb0991SDimitry Andric if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
2020b57cec5SDimitry Andric return false;
2030b57cec5SDimitry Andric
2048bcb0991SDimitry Andric // Currently only allow PredBB to have two predecessors, one being BB.
2058bcb0991SDimitry Andric // Update BI to branch to BB's only successor instead of BB.
2068bcb0991SDimitry Andric BranchInst *PredBB_BI;
2078bcb0991SDimitry Andric BasicBlock *NewSucc = nullptr;
2088bcb0991SDimitry Andric unsigned FallThruPath;
2098bcb0991SDimitry Andric if (PredecessorWithTwoSuccessors) {
210fcaf7f86SDimitry Andric if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
2118bcb0991SDimitry Andric return false;
2128bcb0991SDimitry Andric BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
2138bcb0991SDimitry Andric if (!BB_JmpI || !BB_JmpI->isUnconditional())
2148bcb0991SDimitry Andric return false;
2158bcb0991SDimitry Andric NewSucc = BB_JmpI->getSuccessor(0);
2168bcb0991SDimitry Andric FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
2178bcb0991SDimitry Andric }
2188bcb0991SDimitry Andric
2190b57cec5SDimitry Andric // Can't merge if there is PHI loop.
2200b57cec5SDimitry Andric for (PHINode &PN : BB->phis())
221fe6060f1SDimitry Andric if (llvm::is_contained(PN.incoming_values(), &PN))
2220b57cec5SDimitry Andric return false;
2230b57cec5SDimitry Andric
2240b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
2250b57cec5SDimitry Andric << PredBB->getName() << "\n");
2260b57cec5SDimitry Andric
2270b57cec5SDimitry Andric // Begin by getting rid of unneeded PHIs.
2280b57cec5SDimitry Andric SmallVector<AssertingVH<Value>, 4> IncomingValues;
2290b57cec5SDimitry Andric if (isa<PHINode>(BB->front())) {
2300b57cec5SDimitry Andric for (PHINode &PN : BB->phis())
2310b57cec5SDimitry Andric if (!isa<PHINode>(PN.getIncomingValue(0)) ||
2320b57cec5SDimitry Andric cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
2330b57cec5SDimitry Andric IncomingValues.push_back(PN.getIncomingValue(0));
2340b57cec5SDimitry Andric FoldSingleEntryPHINodes(BB, MemDep);
2350b57cec5SDimitry Andric }
2360b57cec5SDimitry Andric
237bdd1243dSDimitry Andric if (DT) {
238bdd1243dSDimitry Andric assert(!DTU && "cannot use both DT and DTU for updates");
239bdd1243dSDimitry Andric DomTreeNode *PredNode = DT->getNode(PredBB);
240bdd1243dSDimitry Andric DomTreeNode *BBNode = DT->getNode(BB);
241bdd1243dSDimitry Andric if (PredNode) {
242bdd1243dSDimitry Andric assert(BBNode && "PredNode unreachable but BBNode reachable?");
243bdd1243dSDimitry Andric for (DomTreeNode *C : to_vector(BBNode->children()))
244bdd1243dSDimitry Andric C->setIDom(PredNode);
245bdd1243dSDimitry Andric }
246bdd1243dSDimitry Andric }
2470b57cec5SDimitry Andric // DTU update: Collect all the edges that exit BB.
2480b57cec5SDimitry Andric // These dominator edges will be redirected from Pred.
2490b57cec5SDimitry Andric std::vector<DominatorTree::UpdateType> Updates;
2500b57cec5SDimitry Andric if (DTU) {
251bdd1243dSDimitry Andric assert(!DT && "cannot use both DT and DTU for updates");
2524824e7fdSDimitry Andric // To avoid processing the same predecessor more than once.
2534824e7fdSDimitry Andric SmallPtrSet<BasicBlock *, 8> SeenSuccs;
254fe6060f1SDimitry Andric SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
255349cc55cSDimitry Andric succ_end(PredBB));
2564824e7fdSDimitry Andric Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
2570b57cec5SDimitry Andric // Add insert edges first. Experimentally, for the particular case of two
2580b57cec5SDimitry Andric // blocks that can be merged, with a single successor and single predecessor
2590b57cec5SDimitry Andric // respectively, it is beneficial to have all insert updates first. Deleting
2600b57cec5SDimitry Andric // edges first may lead to unreachable blocks, followed by inserting edges
2610b57cec5SDimitry Andric // making the blocks reachable again. Such DT updates lead to high compile
2620b57cec5SDimitry Andric // times. We add inserts before deletes here to reduce compile time.
2634824e7fdSDimitry Andric for (BasicBlock *SuccOfBB : successors(BB))
264fe6060f1SDimitry Andric // This successor of BB may already be a PredBB's successor.
265fe6060f1SDimitry Andric if (!SuccsOfPredBB.contains(SuccOfBB))
2664824e7fdSDimitry Andric if (SeenSuccs.insert(SuccOfBB).second)
267fe6060f1SDimitry Andric Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
2684824e7fdSDimitry Andric SeenSuccs.clear();
2694824e7fdSDimitry Andric for (BasicBlock *SuccOfBB : successors(BB))
2704824e7fdSDimitry Andric if (SeenSuccs.insert(SuccOfBB).second)
271fe6060f1SDimitry Andric Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
2720b57cec5SDimitry Andric Updates.push_back({DominatorTree::Delete, PredBB, BB});
2730b57cec5SDimitry Andric }
2740b57cec5SDimitry Andric
2758bcb0991SDimitry Andric Instruction *STI = BB->getTerminator();
2768bcb0991SDimitry Andric Instruction *Start = &*BB->begin();
2778bcb0991SDimitry Andric // If there's nothing to move, mark the starting instruction as the last
278480093f4SDimitry Andric // instruction in the block. Terminator instruction is handled separately.
2798bcb0991SDimitry Andric if (Start == STI)
2808bcb0991SDimitry Andric Start = PTI;
2810b57cec5SDimitry Andric
2828bcb0991SDimitry Andric // Move all definitions in the successor to the predecessor...
283bdd1243dSDimitry Andric PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
2848bcb0991SDimitry Andric
2858bcb0991SDimitry Andric if (MSSAU)
2868bcb0991SDimitry Andric MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
2870b57cec5SDimitry Andric
2880b57cec5SDimitry Andric // Make all PHI nodes that referred to BB now refer to Pred as their
2890b57cec5SDimitry Andric // source...
2900b57cec5SDimitry Andric BB->replaceAllUsesWith(PredBB);
2910b57cec5SDimitry Andric
2928bcb0991SDimitry Andric if (PredecessorWithTwoSuccessors) {
2938bcb0991SDimitry Andric // Delete the unconditional branch from BB.
294bdd1243dSDimitry Andric BB->back().eraseFromParent();
2958bcb0991SDimitry Andric
2968bcb0991SDimitry Andric // Update branch in the predecessor.
2978bcb0991SDimitry Andric PredBB_BI->setSuccessor(FallThruPath, NewSucc);
2988bcb0991SDimitry Andric } else {
2998bcb0991SDimitry Andric // Delete the unconditional branch from the predecessor.
300bdd1243dSDimitry Andric PredBB->back().eraseFromParent();
3018bcb0991SDimitry Andric
3028bcb0991SDimitry Andric // Move terminator instruction.
3035f757f3fSDimitry Andric BB->back().moveBeforePreserving(*PredBB, PredBB->end());
304480093f4SDimitry Andric
305480093f4SDimitry Andric // Terminator may be a memory accessing instruction too.
306480093f4SDimitry Andric if (MSSAU)
307480093f4SDimitry Andric if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
308480093f4SDimitry Andric MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
309480093f4SDimitry Andric MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
3108bcb0991SDimitry Andric }
3118bcb0991SDimitry Andric // Add unreachable to now empty BB.
3120b57cec5SDimitry Andric new UnreachableInst(BB->getContext(), BB);
3130b57cec5SDimitry Andric
3140b57cec5SDimitry Andric // Inherit predecessors name if it exists.
3150b57cec5SDimitry Andric if (!PredBB->hasName())
3160b57cec5SDimitry Andric PredBB->takeName(BB);
3170b57cec5SDimitry Andric
3180b57cec5SDimitry Andric if (LI)
3190b57cec5SDimitry Andric LI->removeBlock(BB);
3200b57cec5SDimitry Andric
3210b57cec5SDimitry Andric if (MemDep)
3220b57cec5SDimitry Andric MemDep->invalidateCachedPredecessors();
3230b57cec5SDimitry Andric
324fe6060f1SDimitry Andric if (DTU)
325e8d8bef9SDimitry Andric DTU->applyUpdates(Updates);
326fe6060f1SDimitry Andric
327bdd1243dSDimitry Andric if (DT) {
328bdd1243dSDimitry Andric assert(succ_empty(BB) &&
329bdd1243dSDimitry Andric "successors should have been transferred to PredBB");
330bdd1243dSDimitry Andric DT->eraseNode(BB);
331bdd1243dSDimitry Andric }
332bdd1243dSDimitry Andric
333fe6060f1SDimitry Andric // Finally, erase the old block and update dominator info.
334fe6060f1SDimitry Andric DeleteDeadBlock(BB, DTU);
3358bcb0991SDimitry Andric
3360b57cec5SDimitry Andric return true;
3370b57cec5SDimitry Andric }
3380b57cec5SDimitry Andric
MergeBlockSuccessorsIntoGivenBlocks(SmallPtrSetImpl<BasicBlock * > & MergeBlocks,Loop * L,DomTreeUpdater * DTU,LoopInfo * LI)3395ffd83dbSDimitry Andric bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
3405ffd83dbSDimitry Andric SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
3415ffd83dbSDimitry Andric LoopInfo *LI) {
3425ffd83dbSDimitry Andric assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
3435ffd83dbSDimitry Andric
3445ffd83dbSDimitry Andric bool BlocksHaveBeenMerged = false;
3455ffd83dbSDimitry Andric while (!MergeBlocks.empty()) {
3465ffd83dbSDimitry Andric BasicBlock *BB = *MergeBlocks.begin();
3475ffd83dbSDimitry Andric BasicBlock *Dest = BB->getSingleSuccessor();
3485ffd83dbSDimitry Andric if (Dest && (!L || L->contains(Dest))) {
3495ffd83dbSDimitry Andric BasicBlock *Fold = Dest->getUniquePredecessor();
3505ffd83dbSDimitry Andric (void)Fold;
3515ffd83dbSDimitry Andric if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
3525ffd83dbSDimitry Andric assert(Fold == BB &&
3535ffd83dbSDimitry Andric "Expecting BB to be unique predecessor of the Dest block");
3545ffd83dbSDimitry Andric MergeBlocks.erase(Dest);
3555ffd83dbSDimitry Andric BlocksHaveBeenMerged = true;
3565ffd83dbSDimitry Andric } else
3575ffd83dbSDimitry Andric MergeBlocks.erase(BB);
3585ffd83dbSDimitry Andric } else
3595ffd83dbSDimitry Andric MergeBlocks.erase(BB);
3605ffd83dbSDimitry Andric }
3615ffd83dbSDimitry Andric return BlocksHaveBeenMerged;
3625ffd83dbSDimitry Andric }
3635ffd83dbSDimitry Andric
364480093f4SDimitry Andric /// Remove redundant instructions within sequences of consecutive dbg.value
365480093f4SDimitry Andric /// instructions. This is done using a backward scan to keep the last dbg.value
366480093f4SDimitry Andric /// describing a specific variable/fragment.
367480093f4SDimitry Andric ///
368480093f4SDimitry Andric /// BackwardScan strategy:
369480093f4SDimitry Andric /// ----------------------
370480093f4SDimitry Andric /// Given a sequence of consecutive DbgValueInst like this
371480093f4SDimitry Andric ///
372480093f4SDimitry Andric /// dbg.value ..., "x", FragmentX1 (*)
373480093f4SDimitry Andric /// dbg.value ..., "y", FragmentY1
374480093f4SDimitry Andric /// dbg.value ..., "x", FragmentX2
375480093f4SDimitry Andric /// dbg.value ..., "x", FragmentX1 (**)
376480093f4SDimitry Andric ///
377480093f4SDimitry Andric /// then the instruction marked with (*) can be removed (it is guaranteed to be
378480093f4SDimitry Andric /// obsoleted by the instruction marked with (**) as the latter instruction is
379480093f4SDimitry Andric /// describing the same variable using the same fragment info).
380480093f4SDimitry Andric ///
381480093f4SDimitry Andric /// Possible improvements:
382480093f4SDimitry Andric /// - Check fully overlapping fragments and not only identical fragments.
38306c3fb27SDimitry Andric /// - Support dbg.declare. dbg.label, and possibly other meta instructions being
38406c3fb27SDimitry Andric /// part of the sequence of consecutive instructions.
385*0fca6ea1SDimitry Andric static bool
DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock * BB)386*0fca6ea1SDimitry Andric DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
387*0fca6ea1SDimitry Andric SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
3885f757f3fSDimitry Andric SmallDenseSet<DebugVariable> VariableSet;
3895f757f3fSDimitry Andric for (auto &I : reverse(*BB)) {
390*0fca6ea1SDimitry Andric for (DbgRecord &DR : reverse(I.getDbgRecordRange())) {
391*0fca6ea1SDimitry Andric if (isa<DbgLabelRecord>(DR)) {
392*0fca6ea1SDimitry Andric // Emulate existing behaviour (see comment below for dbg.declares).
393*0fca6ea1SDimitry Andric // FIXME: Don't do this.
394*0fca6ea1SDimitry Andric VariableSet.clear();
395*0fca6ea1SDimitry Andric continue;
396*0fca6ea1SDimitry Andric }
397*0fca6ea1SDimitry Andric
398*0fca6ea1SDimitry Andric DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
3995f757f3fSDimitry Andric // Skip declare-type records, as the debug intrinsic method only works
4005f757f3fSDimitry Andric // on dbg.value intrinsics.
401*0fca6ea1SDimitry Andric if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
4025f757f3fSDimitry Andric // The debug intrinsic method treats dbg.declares are "non-debug"
4035f757f3fSDimitry Andric // instructions (i.e., a break in a consecutive range of debug
4045f757f3fSDimitry Andric // intrinsics). Emulate that to create identical outputs. See
4055f757f3fSDimitry Andric // "Possible improvements" above.
4065f757f3fSDimitry Andric // FIXME: Delete the line below.
4075f757f3fSDimitry Andric VariableSet.clear();
4085f757f3fSDimitry Andric continue;
4095f757f3fSDimitry Andric }
4105f757f3fSDimitry Andric
411*0fca6ea1SDimitry Andric DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
412*0fca6ea1SDimitry Andric DVR.getDebugLoc()->getInlinedAt());
4135f757f3fSDimitry Andric auto R = VariableSet.insert(Key);
4145f757f3fSDimitry Andric // If the same variable fragment is described more than once it is enough
4155f757f3fSDimitry Andric // to keep the last one (i.e. the first found since we for reverse
4165f757f3fSDimitry Andric // iteration).
4177a6dacacSDimitry Andric if (R.second)
4187a6dacacSDimitry Andric continue;
4197a6dacacSDimitry Andric
420*0fca6ea1SDimitry Andric if (DVR.isDbgAssign()) {
4217a6dacacSDimitry Andric // Don't delete dbg.assign intrinsics that are linked to instructions.
422*0fca6ea1SDimitry Andric if (!at::getAssignmentInsts(&DVR).empty())
4237a6dacacSDimitry Andric continue;
4247a6dacacSDimitry Andric // Unlinked dbg.assign intrinsics can be treated like dbg.values.
4257a6dacacSDimitry Andric }
4267a6dacacSDimitry Andric
427*0fca6ea1SDimitry Andric ToBeRemoved.push_back(&DVR);
4285f757f3fSDimitry Andric continue;
4295f757f3fSDimitry Andric }
4305f757f3fSDimitry Andric // Sequence with consecutive dbg.value instrs ended. Clear the map to
4315f757f3fSDimitry Andric // restart identifying redundant instructions if case we find another
4325f757f3fSDimitry Andric // dbg.value sequence.
4335f757f3fSDimitry Andric VariableSet.clear();
4345f757f3fSDimitry Andric }
4355f757f3fSDimitry Andric
436*0fca6ea1SDimitry Andric for (auto &DVR : ToBeRemoved)
437*0fca6ea1SDimitry Andric DVR->eraseFromParent();
4385f757f3fSDimitry Andric
4395f757f3fSDimitry Andric return !ToBeRemoved.empty();
4405f757f3fSDimitry Andric }
4415f757f3fSDimitry Andric
removeRedundantDbgInstrsUsingBackwardScan(BasicBlock * BB)442480093f4SDimitry Andric static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
4435f757f3fSDimitry Andric if (BB->IsNewDbgInfoFormat)
444*0fca6ea1SDimitry Andric return DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BB);
4455f757f3fSDimitry Andric
446480093f4SDimitry Andric SmallVector<DbgValueInst *, 8> ToBeRemoved;
447480093f4SDimitry Andric SmallDenseSet<DebugVariable> VariableSet;
448480093f4SDimitry Andric for (auto &I : reverse(*BB)) {
449480093f4SDimitry Andric if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
450480093f4SDimitry Andric DebugVariable Key(DVI->getVariable(),
451480093f4SDimitry Andric DVI->getExpression(),
452480093f4SDimitry Andric DVI->getDebugLoc()->getInlinedAt());
453480093f4SDimitry Andric auto R = VariableSet.insert(Key);
454bdd1243dSDimitry Andric // If the variable fragment hasn't been seen before then we don't want
455bdd1243dSDimitry Andric // to remove this dbg intrinsic.
456bdd1243dSDimitry Andric if (R.second)
457bdd1243dSDimitry Andric continue;
458bdd1243dSDimitry Andric
459bdd1243dSDimitry Andric if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
460bdd1243dSDimitry Andric // Don't delete dbg.assign intrinsics that are linked to instructions.
461bdd1243dSDimitry Andric if (!at::getAssignmentInsts(DAI).empty())
462bdd1243dSDimitry Andric continue;
463bdd1243dSDimitry Andric // Unlinked dbg.assign intrinsics can be treated like dbg.values.
464bdd1243dSDimitry Andric }
465bdd1243dSDimitry Andric
466480093f4SDimitry Andric // If the same variable fragment is described more than once it is enough
467480093f4SDimitry Andric // to keep the last one (i.e. the first found since we for reverse
468480093f4SDimitry Andric // iteration).
469480093f4SDimitry Andric ToBeRemoved.push_back(DVI);
470480093f4SDimitry Andric continue;
471480093f4SDimitry Andric }
472480093f4SDimitry Andric // Sequence with consecutive dbg.value instrs ended. Clear the map to
473480093f4SDimitry Andric // restart identifying redundant instructions if case we find another
474480093f4SDimitry Andric // dbg.value sequence.
475480093f4SDimitry Andric VariableSet.clear();
476480093f4SDimitry Andric }
477480093f4SDimitry Andric
478480093f4SDimitry Andric for (auto &Instr : ToBeRemoved)
479480093f4SDimitry Andric Instr->eraseFromParent();
480480093f4SDimitry Andric
481480093f4SDimitry Andric return !ToBeRemoved.empty();
482480093f4SDimitry Andric }
483480093f4SDimitry Andric
484480093f4SDimitry Andric /// Remove redundant dbg.value instructions using a forward scan. This can
485480093f4SDimitry Andric /// remove a dbg.value instruction that is redundant due to indicating that a
486480093f4SDimitry Andric /// variable has the same value as already being indicated by an earlier
487480093f4SDimitry Andric /// dbg.value.
488480093f4SDimitry Andric ///
489480093f4SDimitry Andric /// ForwardScan strategy:
490480093f4SDimitry Andric /// ---------------------
491480093f4SDimitry Andric /// Given two identical dbg.value instructions, separated by a block of
492480093f4SDimitry Andric /// instructions that isn't describing the same variable, like this
493480093f4SDimitry Andric ///
494480093f4SDimitry Andric /// dbg.value X1, "x", FragmentX1 (**)
495480093f4SDimitry Andric /// <block of instructions, none being "dbg.value ..., "x", ...">
496480093f4SDimitry Andric /// dbg.value X1, "x", FragmentX1 (*)
497480093f4SDimitry Andric ///
498480093f4SDimitry Andric /// then the instruction marked with (*) can be removed. Variable "x" is already
499480093f4SDimitry Andric /// described as being mapped to the SSA value X1.
500480093f4SDimitry Andric ///
501480093f4SDimitry Andric /// Possible improvements:
502480093f4SDimitry Andric /// - Keep track of non-overlapping fragments.
503*0fca6ea1SDimitry Andric static bool
DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock * BB)504*0fca6ea1SDimitry Andric DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
505*0fca6ea1SDimitry Andric SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
5065f757f3fSDimitry Andric DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
5075f757f3fSDimitry Andric VariableMap;
5085f757f3fSDimitry Andric for (auto &I : *BB) {
509*0fca6ea1SDimitry Andric for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
510*0fca6ea1SDimitry Andric if (DVR.getType() == DbgVariableRecord::LocationType::Declare)
5115f757f3fSDimitry Andric continue;
512*0fca6ea1SDimitry Andric DebugVariable Key(DVR.getVariable(), std::nullopt,
513*0fca6ea1SDimitry Andric DVR.getDebugLoc()->getInlinedAt());
5145f757f3fSDimitry Andric auto VMI = VariableMap.find(Key);
5157a6dacacSDimitry Andric // A dbg.assign with no linked instructions can be treated like a
5167a6dacacSDimitry Andric // dbg.value (i.e. can be deleted).
5177a6dacacSDimitry Andric bool IsDbgValueKind =
518*0fca6ea1SDimitry Andric (!DVR.isDbgAssign() || at::getAssignmentInsts(&DVR).empty());
5197a6dacacSDimitry Andric
5205f757f3fSDimitry Andric // Update the map if we found a new value/expression describing the
5215f757f3fSDimitry Andric // variable, or if the variable wasn't mapped already.
522*0fca6ea1SDimitry Andric SmallVector<Value *, 4> Values(DVR.location_ops());
5235f757f3fSDimitry Andric if (VMI == VariableMap.end() || VMI->second.first != Values ||
524*0fca6ea1SDimitry Andric VMI->second.second != DVR.getExpression()) {
5257a6dacacSDimitry Andric if (IsDbgValueKind)
526*0fca6ea1SDimitry Andric VariableMap[Key] = {Values, DVR.getExpression()};
5277a6dacacSDimitry Andric else
5287a6dacacSDimitry Andric VariableMap[Key] = {Values, nullptr};
5295f757f3fSDimitry Andric continue;
5305f757f3fSDimitry Andric }
5317a6dacacSDimitry Andric // Don't delete dbg.assign intrinsics that are linked to instructions.
5327a6dacacSDimitry Andric if (!IsDbgValueKind)
5337a6dacacSDimitry Andric continue;
5345f757f3fSDimitry Andric // Found an identical mapping. Remember the instruction for later removal.
535*0fca6ea1SDimitry Andric ToBeRemoved.push_back(&DVR);
5365f757f3fSDimitry Andric }
5375f757f3fSDimitry Andric }
5385f757f3fSDimitry Andric
539*0fca6ea1SDimitry Andric for (auto *DVR : ToBeRemoved)
540*0fca6ea1SDimitry Andric DVR->eraseFromParent();
5415f757f3fSDimitry Andric
5425f757f3fSDimitry Andric return !ToBeRemoved.empty();
5435f757f3fSDimitry Andric }
5445f757f3fSDimitry Andric
545*0fca6ea1SDimitry Andric static bool
DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BasicBlock * BB)546*0fca6ea1SDimitry Andric DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
5477a6dacacSDimitry Andric assert(BB->isEntryBlock() && "expected entry block");
548*0fca6ea1SDimitry Andric SmallVector<DbgVariableRecord *, 8> ToBeRemoved;
5497a6dacacSDimitry Andric DenseSet<DebugVariable> SeenDefForAggregate;
5507a6dacacSDimitry Andric // Returns the DebugVariable for DVI with no fragment info.
551*0fca6ea1SDimitry Andric auto GetAggregateVariable = [](const DbgVariableRecord &DVR) {
552*0fca6ea1SDimitry Andric return DebugVariable(DVR.getVariable(), std::nullopt,
553*0fca6ea1SDimitry Andric DVR.getDebugLoc().getInlinedAt());
5547a6dacacSDimitry Andric };
5557a6dacacSDimitry Andric
5567a6dacacSDimitry Andric // Remove undef dbg.assign intrinsics that are encountered before
5577a6dacacSDimitry Andric // any non-undef intrinsics from the entry block.
5587a6dacacSDimitry Andric for (auto &I : *BB) {
559*0fca6ea1SDimitry Andric for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
560*0fca6ea1SDimitry Andric if (!DVR.isDbgValue() && !DVR.isDbgAssign())
5617a6dacacSDimitry Andric continue;
5627a6dacacSDimitry Andric bool IsDbgValueKind =
563*0fca6ea1SDimitry Andric (DVR.isDbgValue() || at::getAssignmentInsts(&DVR).empty());
564*0fca6ea1SDimitry Andric DebugVariable Aggregate = GetAggregateVariable(DVR);
5657a6dacacSDimitry Andric if (!SeenDefForAggregate.contains(Aggregate)) {
566*0fca6ea1SDimitry Andric bool IsKill = DVR.isKillLocation() && IsDbgValueKind;
5677a6dacacSDimitry Andric if (!IsKill) {
5687a6dacacSDimitry Andric SeenDefForAggregate.insert(Aggregate);
569*0fca6ea1SDimitry Andric } else if (DVR.isDbgAssign()) {
570*0fca6ea1SDimitry Andric ToBeRemoved.push_back(&DVR);
5717a6dacacSDimitry Andric }
5727a6dacacSDimitry Andric }
5737a6dacacSDimitry Andric }
5747a6dacacSDimitry Andric }
5757a6dacacSDimitry Andric
576*0fca6ea1SDimitry Andric for (DbgVariableRecord *DVR : ToBeRemoved)
577*0fca6ea1SDimitry Andric DVR->eraseFromParent();
5787a6dacacSDimitry Andric
5797a6dacacSDimitry Andric return !ToBeRemoved.empty();
5807a6dacacSDimitry Andric }
5817a6dacacSDimitry Andric
removeRedundantDbgInstrsUsingForwardScan(BasicBlock * BB)582480093f4SDimitry Andric static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
5835f757f3fSDimitry Andric if (BB->IsNewDbgInfoFormat)
584*0fca6ea1SDimitry Andric return DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BB);
5855f757f3fSDimitry Andric
586480093f4SDimitry Andric SmallVector<DbgValueInst *, 8> ToBeRemoved;
587fe6060f1SDimitry Andric DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
588fe6060f1SDimitry Andric VariableMap;
589480093f4SDimitry Andric for (auto &I : *BB) {
590480093f4SDimitry Andric if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
591bdd1243dSDimitry Andric DebugVariable Key(DVI->getVariable(), std::nullopt,
592480093f4SDimitry Andric DVI->getDebugLoc()->getInlinedAt());
593480093f4SDimitry Andric auto VMI = VariableMap.find(Key);
594bdd1243dSDimitry Andric auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
595bdd1243dSDimitry Andric // A dbg.assign with no linked instructions can be treated like a
596bdd1243dSDimitry Andric // dbg.value (i.e. can be deleted).
597bdd1243dSDimitry Andric bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
598bdd1243dSDimitry Andric
599480093f4SDimitry Andric // Update the map if we found a new value/expression describing the
600480093f4SDimitry Andric // variable, or if the variable wasn't mapped already.
601fe6060f1SDimitry Andric SmallVector<Value *, 4> Values(DVI->getValues());
602fe6060f1SDimitry Andric if (VMI == VariableMap.end() || VMI->second.first != Values ||
603480093f4SDimitry Andric VMI->second.second != DVI->getExpression()) {
6047a6dacacSDimitry Andric // Use a sentinel value (nullptr) for the DIExpression when we see a
605bdd1243dSDimitry Andric // linked dbg.assign so that the next debug intrinsic will never match
606bdd1243dSDimitry Andric // it (i.e. always treat linked dbg.assigns as if they're unique).
607bdd1243dSDimitry Andric if (IsDbgValueKind)
608fe6060f1SDimitry Andric VariableMap[Key] = {Values, DVI->getExpression()};
609bdd1243dSDimitry Andric else
610bdd1243dSDimitry Andric VariableMap[Key] = {Values, nullptr};
611480093f4SDimitry Andric continue;
612480093f4SDimitry Andric }
613bdd1243dSDimitry Andric
614bdd1243dSDimitry Andric // Don't delete dbg.assign intrinsics that are linked to instructions.
615bdd1243dSDimitry Andric if (!IsDbgValueKind)
616bdd1243dSDimitry Andric continue;
617480093f4SDimitry Andric ToBeRemoved.push_back(DVI);
618480093f4SDimitry Andric }
619480093f4SDimitry Andric }
620480093f4SDimitry Andric
621480093f4SDimitry Andric for (auto &Instr : ToBeRemoved)
622480093f4SDimitry Andric Instr->eraseFromParent();
623480093f4SDimitry Andric
624480093f4SDimitry Andric return !ToBeRemoved.empty();
625480093f4SDimitry Andric }
626480093f4SDimitry Andric
627bdd1243dSDimitry Andric /// Remove redundant undef dbg.assign intrinsic from an entry block using a
628bdd1243dSDimitry Andric /// forward scan.
629bdd1243dSDimitry Andric /// Strategy:
630bdd1243dSDimitry Andric /// ---------------------
631bdd1243dSDimitry Andric /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
632bdd1243dSDimitry Andric /// linked to an intrinsic, and don't share an aggregate variable with a debug
633bdd1243dSDimitry Andric /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
634bdd1243dSDimitry Andric /// that come before non-undef debug intrinsics for the variable are
635bdd1243dSDimitry Andric /// deleted. Given:
636bdd1243dSDimitry Andric ///
637bdd1243dSDimitry Andric /// dbg.assign undef, "x", FragmentX1 (*)
638bdd1243dSDimitry Andric /// <block of instructions, none being "dbg.value ..., "x", ...">
639bdd1243dSDimitry Andric /// dbg.value %V, "x", FragmentX2
640bdd1243dSDimitry Andric /// <block of instructions, none being "dbg.value ..., "x", ...">
641bdd1243dSDimitry Andric /// dbg.assign undef, "x", FragmentX1
642bdd1243dSDimitry Andric ///
643bdd1243dSDimitry Andric /// then (only) the instruction marked with (*) can be removed.
644bdd1243dSDimitry Andric /// Possible improvements:
645bdd1243dSDimitry Andric /// - Keep track of non-overlapping fragments.
removeUndefDbgAssignsFromEntryBlock(BasicBlock * BB)6467a6dacacSDimitry Andric static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
6477a6dacacSDimitry Andric if (BB->IsNewDbgInfoFormat)
648*0fca6ea1SDimitry Andric return DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BB);
6497a6dacacSDimitry Andric
650bdd1243dSDimitry Andric assert(BB->isEntryBlock() && "expected entry block");
651bdd1243dSDimitry Andric SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved;
652bdd1243dSDimitry Andric DenseSet<DebugVariable> SeenDefForAggregate;
653bdd1243dSDimitry Andric // Returns the DebugVariable for DVI with no fragment info.
654bdd1243dSDimitry Andric auto GetAggregateVariable = [](DbgValueInst *DVI) {
655bdd1243dSDimitry Andric return DebugVariable(DVI->getVariable(), std::nullopt,
656bdd1243dSDimitry Andric DVI->getDebugLoc()->getInlinedAt());
657bdd1243dSDimitry Andric };
658bdd1243dSDimitry Andric
659bdd1243dSDimitry Andric // Remove undef dbg.assign intrinsics that are encountered before
660bdd1243dSDimitry Andric // any non-undef intrinsics from the entry block.
661bdd1243dSDimitry Andric for (auto &I : *BB) {
662bdd1243dSDimitry Andric DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I);
663bdd1243dSDimitry Andric if (!DVI)
664bdd1243dSDimitry Andric continue;
665bdd1243dSDimitry Andric auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
666bdd1243dSDimitry Andric bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
667bdd1243dSDimitry Andric DebugVariable Aggregate = GetAggregateVariable(DVI);
668bdd1243dSDimitry Andric if (!SeenDefForAggregate.contains(Aggregate)) {
669bdd1243dSDimitry Andric bool IsKill = DVI->isKillLocation() && IsDbgValueKind;
670bdd1243dSDimitry Andric if (!IsKill) {
671bdd1243dSDimitry Andric SeenDefForAggregate.insert(Aggregate);
672bdd1243dSDimitry Andric } else if (DAI) {
673bdd1243dSDimitry Andric ToBeRemoved.push_back(DAI);
674bdd1243dSDimitry Andric }
675bdd1243dSDimitry Andric }
676bdd1243dSDimitry Andric }
677bdd1243dSDimitry Andric
678bdd1243dSDimitry Andric for (DbgAssignIntrinsic *DAI : ToBeRemoved)
679bdd1243dSDimitry Andric DAI->eraseFromParent();
680bdd1243dSDimitry Andric
681bdd1243dSDimitry Andric return !ToBeRemoved.empty();
682bdd1243dSDimitry Andric }
683bdd1243dSDimitry Andric
RemoveRedundantDbgInstrs(BasicBlock * BB)684480093f4SDimitry Andric bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
685480093f4SDimitry Andric bool MadeChanges = false;
686480093f4SDimitry Andric // By using the "backward scan" strategy before the "forward scan" strategy we
687480093f4SDimitry Andric // can remove both dbg.value (2) and (3) in a situation like this:
688480093f4SDimitry Andric //
689480093f4SDimitry Andric // (1) dbg.value V1, "x", DIExpression()
690480093f4SDimitry Andric // ...
691480093f4SDimitry Andric // (2) dbg.value V2, "x", DIExpression()
692480093f4SDimitry Andric // (3) dbg.value V1, "x", DIExpression()
693480093f4SDimitry Andric //
694480093f4SDimitry Andric // The backward scan will remove (2), it is made obsolete by (3). After
695480093f4SDimitry Andric // getting (2) out of the way, the foward scan will remove (3) since "x"
696480093f4SDimitry Andric // already is described as having the value V1 at (1).
697480093f4SDimitry Andric MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
698bdd1243dSDimitry Andric if (BB->isEntryBlock() &&
699bdd1243dSDimitry Andric isAssignmentTrackingEnabled(*BB->getParent()->getParent()))
7007a6dacacSDimitry Andric MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB);
701480093f4SDimitry Andric MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
702480093f4SDimitry Andric
703480093f4SDimitry Andric if (MadeChanges)
704480093f4SDimitry Andric LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
705480093f4SDimitry Andric << BB->getName() << "\n");
706480093f4SDimitry Andric return MadeChanges;
707480093f4SDimitry Andric }
708480093f4SDimitry Andric
ReplaceInstWithValue(BasicBlock::iterator & BI,Value * V)709bdd1243dSDimitry Andric void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) {
7100b57cec5SDimitry Andric Instruction &I = *BI;
7110b57cec5SDimitry Andric // Replaces all of the uses of the instruction with uses of the value
7120b57cec5SDimitry Andric I.replaceAllUsesWith(V);
7130b57cec5SDimitry Andric
7140b57cec5SDimitry Andric // Make sure to propagate a name if there is one already.
7150b57cec5SDimitry Andric if (I.hasName() && !V->hasName())
7160b57cec5SDimitry Andric V->takeName(&I);
7170b57cec5SDimitry Andric
7180b57cec5SDimitry Andric // Delete the unnecessary instruction now...
719bdd1243dSDimitry Andric BI = BI->eraseFromParent();
7200b57cec5SDimitry Andric }
7210b57cec5SDimitry Andric
ReplaceInstWithInst(BasicBlock * BB,BasicBlock::iterator & BI,Instruction * I)722bdd1243dSDimitry Andric void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI,
723bdd1243dSDimitry Andric Instruction *I) {
7240b57cec5SDimitry Andric assert(I->getParent() == nullptr &&
7250b57cec5SDimitry Andric "ReplaceInstWithInst: Instruction already inserted into basic block!");
7260b57cec5SDimitry Andric
7270b57cec5SDimitry Andric // Copy debug location to newly added instruction, if it wasn't already set
7280b57cec5SDimitry Andric // by the caller.
7290b57cec5SDimitry Andric if (!I->getDebugLoc())
7300b57cec5SDimitry Andric I->setDebugLoc(BI->getDebugLoc());
7310b57cec5SDimitry Andric
7320b57cec5SDimitry Andric // Insert the new instruction into the basic block...
733bdd1243dSDimitry Andric BasicBlock::iterator New = I->insertInto(BB, BI);
7340b57cec5SDimitry Andric
7350b57cec5SDimitry Andric // Replace all uses of the old instruction, and delete it.
736bdd1243dSDimitry Andric ReplaceInstWithValue(BI, I);
7370b57cec5SDimitry Andric
7380b57cec5SDimitry Andric // Move BI back to point to the newly inserted instruction
7390b57cec5SDimitry Andric BI = New;
7400b57cec5SDimitry Andric }
7410b57cec5SDimitry Andric
IsBlockFollowedByDeoptOrUnreachable(const BasicBlock * BB)742349cc55cSDimitry Andric bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
743349cc55cSDimitry Andric // Remember visited blocks to avoid infinite loop
744349cc55cSDimitry Andric SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
745349cc55cSDimitry Andric unsigned Depth = 0;
746349cc55cSDimitry Andric while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
747349cc55cSDimitry Andric VisitedBlocks.insert(BB).second) {
74806c3fb27SDimitry Andric if (isa<UnreachableInst>(BB->getTerminator()) ||
74906c3fb27SDimitry Andric BB->getTerminatingDeoptimizeCall())
750349cc55cSDimitry Andric return true;
751349cc55cSDimitry Andric BB = BB->getUniqueSuccessor();
752349cc55cSDimitry Andric }
753349cc55cSDimitry Andric return false;
754349cc55cSDimitry Andric }
755349cc55cSDimitry Andric
ReplaceInstWithInst(Instruction * From,Instruction * To)7560b57cec5SDimitry Andric void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
7570b57cec5SDimitry Andric BasicBlock::iterator BI(From);
758bdd1243dSDimitry Andric ReplaceInstWithInst(From->getParent(), BI, To);
7590b57cec5SDimitry Andric }
7600b57cec5SDimitry Andric
SplitEdge(BasicBlock * BB,BasicBlock * Succ,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,const Twine & BBName)7610b57cec5SDimitry Andric BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
762e8d8bef9SDimitry Andric LoopInfo *LI, MemorySSAUpdater *MSSAU,
763e8d8bef9SDimitry Andric const Twine &BBName) {
7640b57cec5SDimitry Andric unsigned SuccNum = GetSuccessorNumber(BB, Succ);
7650b57cec5SDimitry Andric
7660b57cec5SDimitry Andric Instruction *LatchTerm = BB->getTerminator();
767fe6060f1SDimitry Andric
768fe6060f1SDimitry Andric CriticalEdgeSplittingOptions Options =
769fe6060f1SDimitry Andric CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
770fe6060f1SDimitry Andric
771fe6060f1SDimitry Andric if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
772fe6060f1SDimitry Andric // If it is a critical edge, and the succesor is an exception block, handle
773fe6060f1SDimitry Andric // the split edge logic in this specific function
774fe6060f1SDimitry Andric if (Succ->isEHPad())
775fe6060f1SDimitry Andric return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
776fe6060f1SDimitry Andric
777fe6060f1SDimitry Andric // If this is a critical edge, let SplitKnownCriticalEdge do it.
778fe6060f1SDimitry Andric return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
779fe6060f1SDimitry Andric }
7800b57cec5SDimitry Andric
7810b57cec5SDimitry Andric // If the edge isn't critical, then BB has a single successor or Succ has a
7820b57cec5SDimitry Andric // single pred. Split the block.
7830b57cec5SDimitry Andric if (BasicBlock *SP = Succ->getSinglePredecessor()) {
7840b57cec5SDimitry Andric // If the successor only has a single pred, split the top of the successor
7850b57cec5SDimitry Andric // block.
7860b57cec5SDimitry Andric assert(SP == BB && "CFG broken");
787*0fca6ea1SDimitry Andric (void)SP;
788e8d8bef9SDimitry Andric return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
789e8d8bef9SDimitry Andric /*Before=*/true);
7900b57cec5SDimitry Andric }
7910b57cec5SDimitry Andric
7920b57cec5SDimitry Andric // Otherwise, if BB has a single successor, split it at the bottom of the
7930b57cec5SDimitry Andric // block.
7940b57cec5SDimitry Andric assert(BB->getTerminator()->getNumSuccessors() == 1 &&
7950b57cec5SDimitry Andric "Should have a single succ!");
796e8d8bef9SDimitry Andric return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
7970b57cec5SDimitry Andric }
7980b57cec5SDimitry Andric
setUnwindEdgeTo(Instruction * TI,BasicBlock * Succ)799fe6060f1SDimitry Andric void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
800fe6060f1SDimitry Andric if (auto *II = dyn_cast<InvokeInst>(TI))
801fe6060f1SDimitry Andric II->setUnwindDest(Succ);
802fe6060f1SDimitry Andric else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
803fe6060f1SDimitry Andric CS->setUnwindDest(Succ);
804fe6060f1SDimitry Andric else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
805fe6060f1SDimitry Andric CR->setUnwindDest(Succ);
806fe6060f1SDimitry Andric else
807fe6060f1SDimitry Andric llvm_unreachable("unexpected terminator instruction");
808fe6060f1SDimitry Andric }
809fe6060f1SDimitry Andric
updatePhiNodes(BasicBlock * DestBB,BasicBlock * OldPred,BasicBlock * NewPred,PHINode * Until)810fe6060f1SDimitry Andric void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
811fe6060f1SDimitry Andric BasicBlock *NewPred, PHINode *Until) {
812fe6060f1SDimitry Andric int BBIdx = 0;
813fe6060f1SDimitry Andric for (PHINode &PN : DestBB->phis()) {
814fe6060f1SDimitry Andric // We manually update the LandingPadReplacement PHINode and it is the last
815fe6060f1SDimitry Andric // PHI Node. So, if we find it, we are done.
816fe6060f1SDimitry Andric if (Until == &PN)
817fe6060f1SDimitry Andric break;
818fe6060f1SDimitry Andric
819fe6060f1SDimitry Andric // Reuse the previous value of BBIdx if it lines up. In cases where we
820fe6060f1SDimitry Andric // have multiple phi nodes with *lots* of predecessors, this is a speed
821fe6060f1SDimitry Andric // win because we don't have to scan the PHI looking for TIBB. This
822fe6060f1SDimitry Andric // happens because the BB list of PHI nodes are usually in the same
823fe6060f1SDimitry Andric // order.
824fe6060f1SDimitry Andric if (PN.getIncomingBlock(BBIdx) != OldPred)
825fe6060f1SDimitry Andric BBIdx = PN.getBasicBlockIndex(OldPred);
826fe6060f1SDimitry Andric
827fe6060f1SDimitry Andric assert(BBIdx != -1 && "Invalid PHI Index!");
828fe6060f1SDimitry Andric PN.setIncomingBlock(BBIdx, NewPred);
829fe6060f1SDimitry Andric }
830fe6060f1SDimitry Andric }
831fe6060f1SDimitry Andric
ehAwareSplitEdge(BasicBlock * BB,BasicBlock * Succ,LandingPadInst * OriginalPad,PHINode * LandingPadReplacement,const CriticalEdgeSplittingOptions & Options,const Twine & BBName)832fe6060f1SDimitry Andric BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
833fe6060f1SDimitry Andric LandingPadInst *OriginalPad,
834fe6060f1SDimitry Andric PHINode *LandingPadReplacement,
835fe6060f1SDimitry Andric const CriticalEdgeSplittingOptions &Options,
836fe6060f1SDimitry Andric const Twine &BBName) {
837fe6060f1SDimitry Andric
838fe6060f1SDimitry Andric auto *PadInst = Succ->getFirstNonPHI();
839fe6060f1SDimitry Andric if (!LandingPadReplacement && !PadInst->isEHPad())
840fe6060f1SDimitry Andric return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
841fe6060f1SDimitry Andric
842fe6060f1SDimitry Andric auto *LI = Options.LI;
843fe6060f1SDimitry Andric SmallVector<BasicBlock *, 4> LoopPreds;
844fe6060f1SDimitry Andric // Check if extra modifications will be required to preserve loop-simplify
845fe6060f1SDimitry Andric // form after splitting. If it would require splitting blocks with IndirectBr
846fe6060f1SDimitry Andric // terminators, bail out if preserving loop-simplify form is requested.
847fe6060f1SDimitry Andric if (Options.PreserveLoopSimplify && LI) {
848fe6060f1SDimitry Andric if (Loop *BBLoop = LI->getLoopFor(BB)) {
849fe6060f1SDimitry Andric
850fe6060f1SDimitry Andric // The only way that we can break LoopSimplify form by splitting a
851fe6060f1SDimitry Andric // critical edge is when there exists some edge from BBLoop to Succ *and*
852fe6060f1SDimitry Andric // the only edge into Succ from outside of BBLoop is that of NewBB after
853fe6060f1SDimitry Andric // the split. If the first isn't true, then LoopSimplify still holds,
854fe6060f1SDimitry Andric // NewBB is the new exit block and it has no non-loop predecessors. If the
855fe6060f1SDimitry Andric // second isn't true, then Succ was not in LoopSimplify form prior to
856fe6060f1SDimitry Andric // the split as it had a non-loop predecessor. In both of these cases,
857fe6060f1SDimitry Andric // the predecessor must be directly in BBLoop, not in a subloop, or again
858fe6060f1SDimitry Andric // LoopSimplify doesn't hold.
859fe6060f1SDimitry Andric for (BasicBlock *P : predecessors(Succ)) {
860fe6060f1SDimitry Andric if (P == BB)
861fe6060f1SDimitry Andric continue; // The new block is known.
862fe6060f1SDimitry Andric if (LI->getLoopFor(P) != BBLoop) {
863fe6060f1SDimitry Andric // Loop is not in LoopSimplify form, no need to re simplify after
864fe6060f1SDimitry Andric // splitting edge.
865fe6060f1SDimitry Andric LoopPreds.clear();
866fe6060f1SDimitry Andric break;
867fe6060f1SDimitry Andric }
868fe6060f1SDimitry Andric LoopPreds.push_back(P);
869fe6060f1SDimitry Andric }
870fe6060f1SDimitry Andric // Loop-simplify form can be preserved, if we can split all in-loop
871fe6060f1SDimitry Andric // predecessors.
872fe6060f1SDimitry Andric if (any_of(LoopPreds, [](BasicBlock *Pred) {
873fe6060f1SDimitry Andric return isa<IndirectBrInst>(Pred->getTerminator());
874fe6060f1SDimitry Andric })) {
875fe6060f1SDimitry Andric return nullptr;
876fe6060f1SDimitry Andric }
877fe6060f1SDimitry Andric }
878fe6060f1SDimitry Andric }
879fe6060f1SDimitry Andric
880fe6060f1SDimitry Andric auto *NewBB =
881fe6060f1SDimitry Andric BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
882fe6060f1SDimitry Andric setUnwindEdgeTo(BB->getTerminator(), NewBB);
883fe6060f1SDimitry Andric updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
884fe6060f1SDimitry Andric
885fe6060f1SDimitry Andric if (LandingPadReplacement) {
886fe6060f1SDimitry Andric auto *NewLP = OriginalPad->clone();
887fe6060f1SDimitry Andric auto *Terminator = BranchInst::Create(Succ, NewBB);
888fe6060f1SDimitry Andric NewLP->insertBefore(Terminator);
889fe6060f1SDimitry Andric LandingPadReplacement->addIncoming(NewLP, NewBB);
890fe6060f1SDimitry Andric } else {
891fe6060f1SDimitry Andric Value *ParentPad = nullptr;
892fe6060f1SDimitry Andric if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
893fe6060f1SDimitry Andric ParentPad = FuncletPad->getParentPad();
894fe6060f1SDimitry Andric else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
895fe6060f1SDimitry Andric ParentPad = CatchSwitch->getParentPad();
896fe6060f1SDimitry Andric else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
897fe6060f1SDimitry Andric ParentPad = CleanupPad->getParentPad();
898fe6060f1SDimitry Andric else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
899fe6060f1SDimitry Andric ParentPad = LandingPad->getParent();
900fe6060f1SDimitry Andric else
901fe6060f1SDimitry Andric llvm_unreachable("handling for other EHPads not implemented yet");
902fe6060f1SDimitry Andric
903fe6060f1SDimitry Andric auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
904fe6060f1SDimitry Andric CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
905fe6060f1SDimitry Andric }
906fe6060f1SDimitry Andric
907fe6060f1SDimitry Andric auto *DT = Options.DT;
908fe6060f1SDimitry Andric auto *MSSAU = Options.MSSAU;
909fe6060f1SDimitry Andric if (!DT && !LI)
910fe6060f1SDimitry Andric return NewBB;
911fe6060f1SDimitry Andric
912fe6060f1SDimitry Andric if (DT) {
913fe6060f1SDimitry Andric DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
914fe6060f1SDimitry Andric SmallVector<DominatorTree::UpdateType, 3> Updates;
915fe6060f1SDimitry Andric
916fe6060f1SDimitry Andric Updates.push_back({DominatorTree::Insert, BB, NewBB});
917fe6060f1SDimitry Andric Updates.push_back({DominatorTree::Insert, NewBB, Succ});
918fe6060f1SDimitry Andric Updates.push_back({DominatorTree::Delete, BB, Succ});
919fe6060f1SDimitry Andric
920fe6060f1SDimitry Andric DTU.applyUpdates(Updates);
921fe6060f1SDimitry Andric DTU.flush();
922fe6060f1SDimitry Andric
923fe6060f1SDimitry Andric if (MSSAU) {
924fe6060f1SDimitry Andric MSSAU->applyUpdates(Updates, *DT);
925fe6060f1SDimitry Andric if (VerifyMemorySSA)
926fe6060f1SDimitry Andric MSSAU->getMemorySSA()->verifyMemorySSA();
927fe6060f1SDimitry Andric }
928fe6060f1SDimitry Andric }
929fe6060f1SDimitry Andric
930fe6060f1SDimitry Andric if (LI) {
931fe6060f1SDimitry Andric if (Loop *BBLoop = LI->getLoopFor(BB)) {
932fe6060f1SDimitry Andric // If one or the other blocks were not in a loop, the new block is not
933fe6060f1SDimitry Andric // either, and thus LI doesn't need to be updated.
934fe6060f1SDimitry Andric if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
935fe6060f1SDimitry Andric if (BBLoop == SuccLoop) {
936fe6060f1SDimitry Andric // Both in the same loop, the NewBB joins loop.
937fe6060f1SDimitry Andric SuccLoop->addBasicBlockToLoop(NewBB, *LI);
938fe6060f1SDimitry Andric } else if (BBLoop->contains(SuccLoop)) {
939fe6060f1SDimitry Andric // Edge from an outer loop to an inner loop. Add to the outer loop.
940fe6060f1SDimitry Andric BBLoop->addBasicBlockToLoop(NewBB, *LI);
941fe6060f1SDimitry Andric } else if (SuccLoop->contains(BBLoop)) {
942fe6060f1SDimitry Andric // Edge from an inner loop to an outer loop. Add to the outer loop.
943fe6060f1SDimitry Andric SuccLoop->addBasicBlockToLoop(NewBB, *LI);
944fe6060f1SDimitry Andric } else {
945fe6060f1SDimitry Andric // Edge from two loops with no containment relation. Because these
946fe6060f1SDimitry Andric // are natural loops, we know that the destination block must be the
947fe6060f1SDimitry Andric // header of its loop (adding a branch into a loop elsewhere would
948fe6060f1SDimitry Andric // create an irreducible loop).
949fe6060f1SDimitry Andric assert(SuccLoop->getHeader() == Succ &&
950fe6060f1SDimitry Andric "Should not create irreducible loops!");
951fe6060f1SDimitry Andric if (Loop *P = SuccLoop->getParentLoop())
952fe6060f1SDimitry Andric P->addBasicBlockToLoop(NewBB, *LI);
953fe6060f1SDimitry Andric }
954fe6060f1SDimitry Andric }
955fe6060f1SDimitry Andric
956fe6060f1SDimitry Andric // If BB is in a loop and Succ is outside of that loop, we may need to
957fe6060f1SDimitry Andric // update LoopSimplify form and LCSSA form.
958fe6060f1SDimitry Andric if (!BBLoop->contains(Succ)) {
959fe6060f1SDimitry Andric assert(!BBLoop->contains(NewBB) &&
960fe6060f1SDimitry Andric "Split point for loop exit is contained in loop!");
961fe6060f1SDimitry Andric
962fe6060f1SDimitry Andric // Update LCSSA form in the newly created exit block.
963fe6060f1SDimitry Andric if (Options.PreserveLCSSA) {
964fe6060f1SDimitry Andric createPHIsForSplitLoopExit(BB, NewBB, Succ);
965fe6060f1SDimitry Andric }
966fe6060f1SDimitry Andric
967fe6060f1SDimitry Andric if (!LoopPreds.empty()) {
968fe6060f1SDimitry Andric BasicBlock *NewExitBB = SplitBlockPredecessors(
969fe6060f1SDimitry Andric Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
970fe6060f1SDimitry Andric if (Options.PreserveLCSSA)
971fe6060f1SDimitry Andric createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
972fe6060f1SDimitry Andric }
973fe6060f1SDimitry Andric }
974fe6060f1SDimitry Andric }
975fe6060f1SDimitry Andric }
976fe6060f1SDimitry Andric
977fe6060f1SDimitry Andric return NewBB;
978fe6060f1SDimitry Andric }
979fe6060f1SDimitry Andric
createPHIsForSplitLoopExit(ArrayRef<BasicBlock * > Preds,BasicBlock * SplitBB,BasicBlock * DestBB)980fe6060f1SDimitry Andric void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
981fe6060f1SDimitry Andric BasicBlock *SplitBB, BasicBlock *DestBB) {
982fe6060f1SDimitry Andric // SplitBB shouldn't have anything non-trivial in it yet.
983fe6060f1SDimitry Andric assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
984fe6060f1SDimitry Andric SplitBB->isLandingPad()) &&
985fe6060f1SDimitry Andric "SplitBB has non-PHI nodes!");
986fe6060f1SDimitry Andric
987fe6060f1SDimitry Andric // For each PHI in the destination block.
988fe6060f1SDimitry Andric for (PHINode &PN : DestBB->phis()) {
989fe6060f1SDimitry Andric int Idx = PN.getBasicBlockIndex(SplitBB);
990fe6060f1SDimitry Andric assert(Idx >= 0 && "Invalid Block Index");
991fe6060f1SDimitry Andric Value *V = PN.getIncomingValue(Idx);
992fe6060f1SDimitry Andric
993fe6060f1SDimitry Andric // If the input is a PHI which already satisfies LCSSA, don't create
994fe6060f1SDimitry Andric // a new one.
995fe6060f1SDimitry Andric if (const PHINode *VP = dyn_cast<PHINode>(V))
996fe6060f1SDimitry Andric if (VP->getParent() == SplitBB)
997fe6060f1SDimitry Andric continue;
998fe6060f1SDimitry Andric
999fe6060f1SDimitry Andric // Otherwise a new PHI is needed. Create one and populate it.
10005f757f3fSDimitry Andric PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split");
10015f757f3fSDimitry Andric BasicBlock::iterator InsertPos =
10025f757f3fSDimitry Andric SplitBB->isLandingPad() ? SplitBB->begin()
10035f757f3fSDimitry Andric : SplitBB->getTerminator()->getIterator();
10045f757f3fSDimitry Andric NewPN->insertBefore(InsertPos);
1005fe6060f1SDimitry Andric for (BasicBlock *BB : Preds)
1006fe6060f1SDimitry Andric NewPN->addIncoming(V, BB);
1007fe6060f1SDimitry Andric
1008fe6060f1SDimitry Andric // Update the original PHI.
1009fe6060f1SDimitry Andric PN.setIncomingValue(Idx, NewPN);
1010fe6060f1SDimitry Andric }
1011fe6060f1SDimitry Andric }
1012fe6060f1SDimitry Andric
10130b57cec5SDimitry Andric unsigned
SplitAllCriticalEdges(Function & F,const CriticalEdgeSplittingOptions & Options)10140b57cec5SDimitry Andric llvm::SplitAllCriticalEdges(Function &F,
10150b57cec5SDimitry Andric const CriticalEdgeSplittingOptions &Options) {
10160b57cec5SDimitry Andric unsigned NumBroken = 0;
10170b57cec5SDimitry Andric for (BasicBlock &BB : F) {
10180b57cec5SDimitry Andric Instruction *TI = BB.getTerminator();
1019753f127fSDimitry Andric if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
10200b57cec5SDimitry Andric for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
10210b57cec5SDimitry Andric if (SplitCriticalEdge(TI, i, Options))
10220b57cec5SDimitry Andric ++NumBroken;
10230b57cec5SDimitry Andric }
10240b57cec5SDimitry Andric return NumBroken;
10250b57cec5SDimitry Andric }
10260b57cec5SDimitry Andric
SplitBlockImpl(BasicBlock * Old,BasicBlock::iterator SplitPt,DomTreeUpdater * DTU,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,const Twine & BBName,bool Before)10275f757f3fSDimitry Andric static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt,
1028e8d8bef9SDimitry Andric DomTreeUpdater *DTU, DominatorTree *DT,
1029e8d8bef9SDimitry Andric LoopInfo *LI, MemorySSAUpdater *MSSAU,
1030e8d8bef9SDimitry Andric const Twine &BBName, bool Before) {
1031e8d8bef9SDimitry Andric if (Before) {
1032e8d8bef9SDimitry Andric DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1033e8d8bef9SDimitry Andric return splitBlockBefore(Old, SplitPt,
1034e8d8bef9SDimitry Andric DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
1035e8d8bef9SDimitry Andric BBName);
1036e8d8bef9SDimitry Andric }
10375f757f3fSDimitry Andric BasicBlock::iterator SplitIt = SplitPt;
1038fe6060f1SDimitry Andric while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
10390b57cec5SDimitry Andric ++SplitIt;
1040fe6060f1SDimitry Andric assert(SplitIt != SplitPt->getParent()->end());
1041fe6060f1SDimitry Andric }
10428bcb0991SDimitry Andric std::string Name = BBName.str();
10438bcb0991SDimitry Andric BasicBlock *New = Old->splitBasicBlock(
10448bcb0991SDimitry Andric SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
10450b57cec5SDimitry Andric
10460b57cec5SDimitry Andric // The new block lives in whichever loop the old one did. This preserves
10470b57cec5SDimitry Andric // LCSSA as well, because we force the split point to be after any PHI nodes.
10480b57cec5SDimitry Andric if (LI)
10490b57cec5SDimitry Andric if (Loop *L = LI->getLoopFor(Old))
10500b57cec5SDimitry Andric L->addBasicBlockToLoop(New, *LI);
10510b57cec5SDimitry Andric
1052e8d8bef9SDimitry Andric if (DTU) {
1053e8d8bef9SDimitry Andric SmallVector<DominatorTree::UpdateType, 8> Updates;
1054e8d8bef9SDimitry Andric // Old dominates New. New node dominates all other nodes dominated by Old.
10554824e7fdSDimitry Andric SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
1056e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, Old, New});
10574824e7fdSDimitry Andric Updates.reserve(Updates.size() + 2 * succ_size(New));
10584824e7fdSDimitry Andric for (BasicBlock *SuccessorOfOld : successors(New))
10594824e7fdSDimitry Andric if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
10604824e7fdSDimitry Andric Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
10614824e7fdSDimitry Andric Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
1062e8d8bef9SDimitry Andric }
1063e8d8bef9SDimitry Andric
1064e8d8bef9SDimitry Andric DTU->applyUpdates(Updates);
1065e8d8bef9SDimitry Andric } else if (DT)
10660b57cec5SDimitry Andric // Old dominates New. New node dominates all other nodes dominated by Old.
10670b57cec5SDimitry Andric if (DomTreeNode *OldNode = DT->getNode(Old)) {
10680b57cec5SDimitry Andric std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
10690b57cec5SDimitry Andric
10700b57cec5SDimitry Andric DomTreeNode *NewNode = DT->addNewBlock(New, Old);
10710b57cec5SDimitry Andric for (DomTreeNode *I : Children)
10720b57cec5SDimitry Andric DT->changeImmediateDominator(I, NewNode);
10730b57cec5SDimitry Andric }
10740b57cec5SDimitry Andric
10750b57cec5SDimitry Andric // Move MemoryAccesses still tracked in Old, but part of New now.
10760b57cec5SDimitry Andric // Update accesses in successor blocks accordingly.
10770b57cec5SDimitry Andric if (MSSAU)
10780b57cec5SDimitry Andric MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
10790b57cec5SDimitry Andric
10800b57cec5SDimitry Andric return New;
10810b57cec5SDimitry Andric }
10820b57cec5SDimitry Andric
SplitBlock(BasicBlock * Old,BasicBlock::iterator SplitPt,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,const Twine & BBName,bool Before)10835f757f3fSDimitry Andric BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1084e8d8bef9SDimitry Andric DominatorTree *DT, LoopInfo *LI,
1085e8d8bef9SDimitry Andric MemorySSAUpdater *MSSAU, const Twine &BBName,
1086e8d8bef9SDimitry Andric bool Before) {
1087e8d8bef9SDimitry Andric return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
1088e8d8bef9SDimitry Andric Before);
1089e8d8bef9SDimitry Andric }
SplitBlock(BasicBlock * Old,BasicBlock::iterator SplitPt,DomTreeUpdater * DTU,LoopInfo * LI,MemorySSAUpdater * MSSAU,const Twine & BBName,bool Before)10905f757f3fSDimitry Andric BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
1091e8d8bef9SDimitry Andric DomTreeUpdater *DTU, LoopInfo *LI,
1092e8d8bef9SDimitry Andric MemorySSAUpdater *MSSAU, const Twine &BBName,
1093e8d8bef9SDimitry Andric bool Before) {
1094e8d8bef9SDimitry Andric return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
1095e8d8bef9SDimitry Andric Before);
1096e8d8bef9SDimitry Andric }
1097e8d8bef9SDimitry Andric
splitBlockBefore(BasicBlock * Old,BasicBlock::iterator SplitPt,DomTreeUpdater * DTU,LoopInfo * LI,MemorySSAUpdater * MSSAU,const Twine & BBName)10985f757f3fSDimitry Andric BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt,
1099e8d8bef9SDimitry Andric DomTreeUpdater *DTU, LoopInfo *LI,
1100e8d8bef9SDimitry Andric MemorySSAUpdater *MSSAU,
1101e8d8bef9SDimitry Andric const Twine &BBName) {
1102e8d8bef9SDimitry Andric
11035f757f3fSDimitry Andric BasicBlock::iterator SplitIt = SplitPt;
1104e8d8bef9SDimitry Andric while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
1105e8d8bef9SDimitry Andric ++SplitIt;
1106e8d8bef9SDimitry Andric std::string Name = BBName.str();
1107e8d8bef9SDimitry Andric BasicBlock *New = Old->splitBasicBlock(
1108e8d8bef9SDimitry Andric SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
1109e8d8bef9SDimitry Andric /* Before=*/true);
1110e8d8bef9SDimitry Andric
1111e8d8bef9SDimitry Andric // The new block lives in whichever loop the old one did. This preserves
1112e8d8bef9SDimitry Andric // LCSSA as well, because we force the split point to be after any PHI nodes.
1113e8d8bef9SDimitry Andric if (LI)
1114e8d8bef9SDimitry Andric if (Loop *L = LI->getLoopFor(Old))
1115e8d8bef9SDimitry Andric L->addBasicBlockToLoop(New, *LI);
1116e8d8bef9SDimitry Andric
1117e8d8bef9SDimitry Andric if (DTU) {
1118e8d8bef9SDimitry Andric SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
1119e8d8bef9SDimitry Andric // New dominates Old. The predecessor nodes of the Old node dominate
1120e8d8bef9SDimitry Andric // New node.
11214824e7fdSDimitry Andric SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
1122e8d8bef9SDimitry Andric DTUpdates.push_back({DominatorTree::Insert, New, Old});
11234824e7fdSDimitry Andric DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
11244824e7fdSDimitry Andric for (BasicBlock *PredecessorOfOld : predecessors(New))
11254824e7fdSDimitry Andric if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
11264824e7fdSDimitry Andric DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
11274824e7fdSDimitry Andric DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
1128e8d8bef9SDimitry Andric }
1129e8d8bef9SDimitry Andric
1130e8d8bef9SDimitry Andric DTU->applyUpdates(DTUpdates);
1131e8d8bef9SDimitry Andric
1132e8d8bef9SDimitry Andric // Move MemoryAccesses still tracked in Old, but part of New now.
1133e8d8bef9SDimitry Andric // Update accesses in successor blocks accordingly.
1134e8d8bef9SDimitry Andric if (MSSAU) {
1135e8d8bef9SDimitry Andric MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
1136e8d8bef9SDimitry Andric if (VerifyMemorySSA)
1137e8d8bef9SDimitry Andric MSSAU->getMemorySSA()->verifyMemorySSA();
1138e8d8bef9SDimitry Andric }
1139e8d8bef9SDimitry Andric }
1140e8d8bef9SDimitry Andric return New;
1141e8d8bef9SDimitry Andric }
1142e8d8bef9SDimitry Andric
11430b57cec5SDimitry Andric /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
1144*0fca6ea1SDimitry Andric /// Invalidates DFS Numbering when DTU or DT is provided.
UpdateAnalysisInformation(BasicBlock * OldBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,DomTreeUpdater * DTU,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA,bool & HasLoopExit)11450b57cec5SDimitry Andric static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
11460b57cec5SDimitry Andric ArrayRef<BasicBlock *> Preds,
1147e8d8bef9SDimitry Andric DomTreeUpdater *DTU, DominatorTree *DT,
1148e8d8bef9SDimitry Andric LoopInfo *LI, MemorySSAUpdater *MSSAU,
11490b57cec5SDimitry Andric bool PreserveLCSSA, bool &HasLoopExit) {
11500b57cec5SDimitry Andric // Update dominator tree if available.
1151e8d8bef9SDimitry Andric if (DTU) {
1152e8d8bef9SDimitry Andric // Recalculation of DomTree is needed when updating a forward DomTree and
1153e8d8bef9SDimitry Andric // the Entry BB is replaced.
1154fe6060f1SDimitry Andric if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
1155e8d8bef9SDimitry Andric // The entry block was removed and there is no external interface for
1156e8d8bef9SDimitry Andric // the dominator tree to be notified of this change. In this corner-case
1157e8d8bef9SDimitry Andric // we recalculate the entire tree.
1158e8d8bef9SDimitry Andric DTU->recalculate(*NewBB->getParent());
1159e8d8bef9SDimitry Andric } else {
1160e8d8bef9SDimitry Andric // Split block expects NewBB to have a non-empty set of predecessors.
1161e8d8bef9SDimitry Andric SmallVector<DominatorTree::UpdateType, 8> Updates;
11624824e7fdSDimitry Andric SmallPtrSet<BasicBlock *, 8> UniquePreds;
1163e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
11644824e7fdSDimitry Andric Updates.reserve(Updates.size() + 2 * Preds.size());
11654824e7fdSDimitry Andric for (auto *Pred : Preds)
11664824e7fdSDimitry Andric if (UniquePreds.insert(Pred).second) {
11674824e7fdSDimitry Andric Updates.push_back({DominatorTree::Insert, Pred, NewBB});
11684824e7fdSDimitry Andric Updates.push_back({DominatorTree::Delete, Pred, OldBB});
1169e8d8bef9SDimitry Andric }
1170e8d8bef9SDimitry Andric DTU->applyUpdates(Updates);
1171e8d8bef9SDimitry Andric }
1172e8d8bef9SDimitry Andric } else if (DT) {
11730b57cec5SDimitry Andric if (OldBB == DT->getRootNode()->getBlock()) {
1174fe6060f1SDimitry Andric assert(NewBB->isEntryBlock());
11750b57cec5SDimitry Andric DT->setNewRoot(NewBB);
11760b57cec5SDimitry Andric } else {
11770b57cec5SDimitry Andric // Split block expects NewBB to have a non-empty set of predecessors.
11780b57cec5SDimitry Andric DT->splitBlock(NewBB);
11790b57cec5SDimitry Andric }
11800b57cec5SDimitry Andric }
11810b57cec5SDimitry Andric
11820b57cec5SDimitry Andric // Update MemoryPhis after split if MemorySSA is available
11830b57cec5SDimitry Andric if (MSSAU)
11840b57cec5SDimitry Andric MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
11850b57cec5SDimitry Andric
11860b57cec5SDimitry Andric // The rest of the logic is only relevant for updating the loop structures.
11870b57cec5SDimitry Andric if (!LI)
11880b57cec5SDimitry Andric return;
11890b57cec5SDimitry Andric
1190e8d8bef9SDimitry Andric if (DTU && DTU->hasDomTree())
1191e8d8bef9SDimitry Andric DT = &DTU->getDomTree();
11920b57cec5SDimitry Andric assert(DT && "DT should be available to update LoopInfo!");
11930b57cec5SDimitry Andric Loop *L = LI->getLoopFor(OldBB);
11940b57cec5SDimitry Andric
11950b57cec5SDimitry Andric // If we need to preserve loop analyses, collect some information about how
11960b57cec5SDimitry Andric // this split will affect loops.
11970b57cec5SDimitry Andric bool IsLoopEntry = !!L;
11980b57cec5SDimitry Andric bool SplitMakesNewLoopHeader = false;
11990b57cec5SDimitry Andric for (BasicBlock *Pred : Preds) {
12000b57cec5SDimitry Andric // Preds that are not reachable from entry should not be used to identify if
12010b57cec5SDimitry Andric // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
12020b57cec5SDimitry Andric // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
12030b57cec5SDimitry Andric // as true and make the NewBB the header of some loop. This breaks LI.
12040b57cec5SDimitry Andric if (!DT->isReachableFromEntry(Pred))
12050b57cec5SDimitry Andric continue;
12060b57cec5SDimitry Andric // If we need to preserve LCSSA, determine if any of the preds is a loop
12070b57cec5SDimitry Andric // exit.
12080b57cec5SDimitry Andric if (PreserveLCSSA)
12090b57cec5SDimitry Andric if (Loop *PL = LI->getLoopFor(Pred))
12100b57cec5SDimitry Andric if (!PL->contains(OldBB))
12110b57cec5SDimitry Andric HasLoopExit = true;
12120b57cec5SDimitry Andric
12130b57cec5SDimitry Andric // If we need to preserve LoopInfo, note whether any of the preds crosses
12140b57cec5SDimitry Andric // an interesting loop boundary.
12150b57cec5SDimitry Andric if (!L)
12160b57cec5SDimitry Andric continue;
12170b57cec5SDimitry Andric if (L->contains(Pred))
12180b57cec5SDimitry Andric IsLoopEntry = false;
12190b57cec5SDimitry Andric else
12200b57cec5SDimitry Andric SplitMakesNewLoopHeader = true;
12210b57cec5SDimitry Andric }
12220b57cec5SDimitry Andric
12230b57cec5SDimitry Andric // Unless we have a loop for OldBB, nothing else to do here.
12240b57cec5SDimitry Andric if (!L)
12250b57cec5SDimitry Andric return;
12260b57cec5SDimitry Andric
12270b57cec5SDimitry Andric if (IsLoopEntry) {
12280b57cec5SDimitry Andric // Add the new block to the nearest enclosing loop (and not an adjacent
12290b57cec5SDimitry Andric // loop). To find this, examine each of the predecessors and determine which
12300b57cec5SDimitry Andric // loops enclose them, and select the most-nested loop which contains the
12310b57cec5SDimitry Andric // loop containing the block being split.
12320b57cec5SDimitry Andric Loop *InnermostPredLoop = nullptr;
12330b57cec5SDimitry Andric for (BasicBlock *Pred : Preds) {
12340b57cec5SDimitry Andric if (Loop *PredLoop = LI->getLoopFor(Pred)) {
12350b57cec5SDimitry Andric // Seek a loop which actually contains the block being split (to avoid
12360b57cec5SDimitry Andric // adjacent loops).
12370b57cec5SDimitry Andric while (PredLoop && !PredLoop->contains(OldBB))
12380b57cec5SDimitry Andric PredLoop = PredLoop->getParentLoop();
12390b57cec5SDimitry Andric
12400b57cec5SDimitry Andric // Select the most-nested of these loops which contains the block.
12410b57cec5SDimitry Andric if (PredLoop && PredLoop->contains(OldBB) &&
12420b57cec5SDimitry Andric (!InnermostPredLoop ||
12430b57cec5SDimitry Andric InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
12440b57cec5SDimitry Andric InnermostPredLoop = PredLoop;
12450b57cec5SDimitry Andric }
12460b57cec5SDimitry Andric }
12470b57cec5SDimitry Andric
12480b57cec5SDimitry Andric if (InnermostPredLoop)
12490b57cec5SDimitry Andric InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
12500b57cec5SDimitry Andric } else {
12510b57cec5SDimitry Andric L->addBasicBlockToLoop(NewBB, *LI);
12520b57cec5SDimitry Andric if (SplitMakesNewLoopHeader)
12530b57cec5SDimitry Andric L->moveToHeader(NewBB);
12540b57cec5SDimitry Andric }
12550b57cec5SDimitry Andric }
12560b57cec5SDimitry Andric
12570b57cec5SDimitry Andric /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
12580b57cec5SDimitry Andric /// This also updates AliasAnalysis, if available.
UpdatePHINodes(BasicBlock * OrigBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,BranchInst * BI,bool HasLoopExit)12590b57cec5SDimitry Andric static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
12600b57cec5SDimitry Andric ArrayRef<BasicBlock *> Preds, BranchInst *BI,
12610b57cec5SDimitry Andric bool HasLoopExit) {
12620b57cec5SDimitry Andric // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
12630b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
12640b57cec5SDimitry Andric for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
12650b57cec5SDimitry Andric PHINode *PN = cast<PHINode>(I++);
12660b57cec5SDimitry Andric
12670b57cec5SDimitry Andric // Check to see if all of the values coming in are the same. If so, we
12680b57cec5SDimitry Andric // don't need to create a new PHI node, unless it's needed for LCSSA.
12690b57cec5SDimitry Andric Value *InVal = nullptr;
12700b57cec5SDimitry Andric if (!HasLoopExit) {
12710b57cec5SDimitry Andric InVal = PN->getIncomingValueForBlock(Preds[0]);
12720b57cec5SDimitry Andric for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
12730b57cec5SDimitry Andric if (!PredSet.count(PN->getIncomingBlock(i)))
12740b57cec5SDimitry Andric continue;
12750b57cec5SDimitry Andric if (!InVal)
12760b57cec5SDimitry Andric InVal = PN->getIncomingValue(i);
12770b57cec5SDimitry Andric else if (InVal != PN->getIncomingValue(i)) {
12780b57cec5SDimitry Andric InVal = nullptr;
12790b57cec5SDimitry Andric break;
12800b57cec5SDimitry Andric }
12810b57cec5SDimitry Andric }
12820b57cec5SDimitry Andric }
12830b57cec5SDimitry Andric
12840b57cec5SDimitry Andric if (InVal) {
12850b57cec5SDimitry Andric // If all incoming values for the new PHI would be the same, just don't
12860b57cec5SDimitry Andric // make a new PHI. Instead, just remove the incoming values from the old
12870b57cec5SDimitry Andric // PHI.
12885f757f3fSDimitry Andric PN->removeIncomingValueIf(
12895f757f3fSDimitry Andric [&](unsigned Idx) {
12905f757f3fSDimitry Andric return PredSet.contains(PN->getIncomingBlock(Idx));
12915f757f3fSDimitry Andric },
12925f757f3fSDimitry Andric /* DeletePHIIfEmpty */ false);
12930b57cec5SDimitry Andric
12940b57cec5SDimitry Andric // Add an incoming value to the PHI node in the loop for the preheader
12950b57cec5SDimitry Andric // edge.
12960b57cec5SDimitry Andric PN->addIncoming(InVal, NewBB);
12970b57cec5SDimitry Andric continue;
12980b57cec5SDimitry Andric }
12990b57cec5SDimitry Andric
13000b57cec5SDimitry Andric // If the values coming into the block are not the same, we need a new
13010b57cec5SDimitry Andric // PHI.
13020b57cec5SDimitry Andric // Create the new PHI node, insert it into NewBB at the end of the block
13030b57cec5SDimitry Andric PHINode *NewPHI =
1304*0fca6ea1SDimitry Andric PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI->getIterator());
13050b57cec5SDimitry Andric
13060b57cec5SDimitry Andric // NOTE! This loop walks backwards for a reason! First off, this minimizes
13070b57cec5SDimitry Andric // the cost of removal if we end up removing a large number of values, and
13080b57cec5SDimitry Andric // second off, this ensures that the indices for the incoming values aren't
13090b57cec5SDimitry Andric // invalidated when we remove one.
13100b57cec5SDimitry Andric for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
13110b57cec5SDimitry Andric BasicBlock *IncomingBB = PN->getIncomingBlock(i);
13120b57cec5SDimitry Andric if (PredSet.count(IncomingBB)) {
13130b57cec5SDimitry Andric Value *V = PN->removeIncomingValue(i, false);
13140b57cec5SDimitry Andric NewPHI->addIncoming(V, IncomingBB);
13150b57cec5SDimitry Andric }
13160b57cec5SDimitry Andric }
13170b57cec5SDimitry Andric
13180b57cec5SDimitry Andric PN->addIncoming(NewPHI, NewBB);
13190b57cec5SDimitry Andric }
13200b57cec5SDimitry Andric }
13210b57cec5SDimitry Andric
1322e8d8bef9SDimitry Andric static void SplitLandingPadPredecessorsImpl(
1323e8d8bef9SDimitry Andric BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1324e8d8bef9SDimitry Andric const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1325e8d8bef9SDimitry Andric DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1326e8d8bef9SDimitry Andric MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1327e8d8bef9SDimitry Andric
1328e8d8bef9SDimitry Andric static BasicBlock *
SplitBlockPredecessorsImpl(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix,DomTreeUpdater * DTU,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)1329e8d8bef9SDimitry Andric SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1330e8d8bef9SDimitry Andric const char *Suffix, DomTreeUpdater *DTU,
1331e8d8bef9SDimitry Andric DominatorTree *DT, LoopInfo *LI,
1332e8d8bef9SDimitry Andric MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
13330b57cec5SDimitry Andric // Do not attempt to split that which cannot be split.
13340b57cec5SDimitry Andric if (!BB->canSplitPredecessors())
13350b57cec5SDimitry Andric return nullptr;
13360b57cec5SDimitry Andric
13370b57cec5SDimitry Andric // For the landingpads we need to act a bit differently.
13380b57cec5SDimitry Andric // Delegate this work to the SplitLandingPadPredecessors.
13390b57cec5SDimitry Andric if (BB->isLandingPad()) {
13400b57cec5SDimitry Andric SmallVector<BasicBlock*, 2> NewBBs;
13410b57cec5SDimitry Andric std::string NewName = std::string(Suffix) + ".split-lp";
13420b57cec5SDimitry Andric
1343e8d8bef9SDimitry Andric SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1344e8d8bef9SDimitry Andric DTU, DT, LI, MSSAU, PreserveLCSSA);
13450b57cec5SDimitry Andric return NewBBs[0];
13460b57cec5SDimitry Andric }
13470b57cec5SDimitry Andric
13480b57cec5SDimitry Andric // Create new basic block, insert right before the original block.
13490b57cec5SDimitry Andric BasicBlock *NewBB = BasicBlock::Create(
13500b57cec5SDimitry Andric BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
13510b57cec5SDimitry Andric
13520b57cec5SDimitry Andric // The new block unconditionally branches to the old block.
13530b57cec5SDimitry Andric BranchInst *BI = BranchInst::Create(BB, NewBB);
1354e8d8bef9SDimitry Andric
1355e8d8bef9SDimitry Andric Loop *L = nullptr;
1356e8d8bef9SDimitry Andric BasicBlock *OldLatch = nullptr;
13570b57cec5SDimitry Andric // Splitting the predecessors of a loop header creates a preheader block.
1358e8d8bef9SDimitry Andric if (LI && LI->isLoopHeader(BB)) {
1359e8d8bef9SDimitry Andric L = LI->getLoopFor(BB);
13600b57cec5SDimitry Andric // Using the loop start line number prevents debuggers stepping into the
13610b57cec5SDimitry Andric // loop body for this instruction.
1362e8d8bef9SDimitry Andric BI->setDebugLoc(L->getStartLoc());
1363e8d8bef9SDimitry Andric
1364e8d8bef9SDimitry Andric // If BB is the header of the Loop, it is possible that the loop is
1365e8d8bef9SDimitry Andric // modified, such that the current latch does not remain the latch of the
1366e8d8bef9SDimitry Andric // loop. If that is the case, the loop metadata from the current latch needs
1367e8d8bef9SDimitry Andric // to be applied to the new latch.
1368e8d8bef9SDimitry Andric OldLatch = L->getLoopLatch();
1369e8d8bef9SDimitry Andric } else
13700b57cec5SDimitry Andric BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
13710b57cec5SDimitry Andric
13720b57cec5SDimitry Andric // Move the edges from Preds to point to NewBB instead of BB.
1373bdd1243dSDimitry Andric for (BasicBlock *Pred : Preds) {
13740b57cec5SDimitry Andric // This is slightly more strict than necessary; the minimum requirement
13750b57cec5SDimitry Andric // is that there be no more than one indirectbr branching to BB. And
13760b57cec5SDimitry Andric // all BlockAddress uses would need to be updated.
1377bdd1243dSDimitry Andric assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
13780b57cec5SDimitry Andric "Cannot split an edge from an IndirectBrInst");
1379bdd1243dSDimitry Andric Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
13800b57cec5SDimitry Andric }
13810b57cec5SDimitry Andric
13820b57cec5SDimitry Andric // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
13830b57cec5SDimitry Andric // node becomes an incoming value for BB's phi node. However, if the Preds
13840b57cec5SDimitry Andric // list is empty, we need to insert dummy entries into the PHI nodes in BB to
13850b57cec5SDimitry Andric // account for the newly created predecessor.
13860b57cec5SDimitry Andric if (Preds.empty()) {
13870b57cec5SDimitry Andric // Insert dummy values as the incoming value.
13880b57cec5SDimitry Andric for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1389fcaf7f86SDimitry Andric cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
13900b57cec5SDimitry Andric }
13910b57cec5SDimitry Andric
13920b57cec5SDimitry Andric // Update DominatorTree, LoopInfo, and LCCSA analysis information.
13930b57cec5SDimitry Andric bool HasLoopExit = false;
1394e8d8bef9SDimitry Andric UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
13950b57cec5SDimitry Andric HasLoopExit);
13960b57cec5SDimitry Andric
13970b57cec5SDimitry Andric if (!Preds.empty()) {
13980b57cec5SDimitry Andric // Update the PHI nodes in BB with the values coming from NewBB.
13990b57cec5SDimitry Andric UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
14000b57cec5SDimitry Andric }
14010b57cec5SDimitry Andric
1402e8d8bef9SDimitry Andric if (OldLatch) {
1403e8d8bef9SDimitry Andric BasicBlock *NewLatch = L->getLoopLatch();
1404e8d8bef9SDimitry Andric if (NewLatch != OldLatch) {
1405*0fca6ea1SDimitry Andric MDNode *MD = OldLatch->getTerminator()->getMetadata(LLVMContext::MD_loop);
1406*0fca6ea1SDimitry Andric NewLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, MD);
140781ad6265SDimitry Andric // It's still possible that OldLatch is the latch of another inner loop,
140881ad6265SDimitry Andric // in which case we do not remove the metadata.
140981ad6265SDimitry Andric Loop *IL = LI->getLoopFor(OldLatch);
141081ad6265SDimitry Andric if (IL && IL->getLoopLatch() != OldLatch)
1411*0fca6ea1SDimitry Andric OldLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, nullptr);
1412e8d8bef9SDimitry Andric }
1413e8d8bef9SDimitry Andric }
1414e8d8bef9SDimitry Andric
14150b57cec5SDimitry Andric return NewBB;
14160b57cec5SDimitry Andric }
14170b57cec5SDimitry Andric
SplitBlockPredecessors(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)1418e8d8bef9SDimitry Andric BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
14190b57cec5SDimitry Andric ArrayRef<BasicBlock *> Preds,
1420e8d8bef9SDimitry Andric const char *Suffix, DominatorTree *DT,
1421e8d8bef9SDimitry Andric LoopInfo *LI, MemorySSAUpdater *MSSAU,
1422e8d8bef9SDimitry Andric bool PreserveLCSSA) {
1423e8d8bef9SDimitry Andric return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1424e8d8bef9SDimitry Andric MSSAU, PreserveLCSSA);
1425e8d8bef9SDimitry Andric }
SplitBlockPredecessors(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix,DomTreeUpdater * DTU,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)1426e8d8bef9SDimitry Andric BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1427e8d8bef9SDimitry Andric ArrayRef<BasicBlock *> Preds,
1428e8d8bef9SDimitry Andric const char *Suffix,
1429e8d8bef9SDimitry Andric DomTreeUpdater *DTU, LoopInfo *LI,
14300b57cec5SDimitry Andric MemorySSAUpdater *MSSAU,
14310b57cec5SDimitry Andric bool PreserveLCSSA) {
1432e8d8bef9SDimitry Andric return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1433e8d8bef9SDimitry Andric /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1434e8d8bef9SDimitry Andric }
1435e8d8bef9SDimitry Andric
SplitLandingPadPredecessorsImpl(BasicBlock * OrigBB,ArrayRef<BasicBlock * > Preds,const char * Suffix1,const char * Suffix2,SmallVectorImpl<BasicBlock * > & NewBBs,DomTreeUpdater * DTU,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)1436e8d8bef9SDimitry Andric static void SplitLandingPadPredecessorsImpl(
1437e8d8bef9SDimitry Andric BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1438e8d8bef9SDimitry Andric const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1439e8d8bef9SDimitry Andric DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1440e8d8bef9SDimitry Andric MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
14410b57cec5SDimitry Andric assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
14420b57cec5SDimitry Andric
14430b57cec5SDimitry Andric // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
14440b57cec5SDimitry Andric // it right before the original block.
14450b57cec5SDimitry Andric BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
14460b57cec5SDimitry Andric OrigBB->getName() + Suffix1,
14470b57cec5SDimitry Andric OrigBB->getParent(), OrigBB);
14480b57cec5SDimitry Andric NewBBs.push_back(NewBB1);
14490b57cec5SDimitry Andric
14500b57cec5SDimitry Andric // The new block unconditionally branches to the old block.
14510b57cec5SDimitry Andric BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
14520b57cec5SDimitry Andric BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
14530b57cec5SDimitry Andric
14540b57cec5SDimitry Andric // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1455bdd1243dSDimitry Andric for (BasicBlock *Pred : Preds) {
14560b57cec5SDimitry Andric // This is slightly more strict than necessary; the minimum requirement
14570b57cec5SDimitry Andric // is that there be no more than one indirectbr branching to BB. And
14580b57cec5SDimitry Andric // all BlockAddress uses would need to be updated.
1459bdd1243dSDimitry Andric assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
14600b57cec5SDimitry Andric "Cannot split an edge from an IndirectBrInst");
1461bdd1243dSDimitry Andric Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
14620b57cec5SDimitry Andric }
14630b57cec5SDimitry Andric
14640b57cec5SDimitry Andric bool HasLoopExit = false;
1465e8d8bef9SDimitry Andric UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1466e8d8bef9SDimitry Andric PreserveLCSSA, HasLoopExit);
14670b57cec5SDimitry Andric
14680b57cec5SDimitry Andric // Update the PHI nodes in OrigBB with the values coming from NewBB1.
14690b57cec5SDimitry Andric UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
14700b57cec5SDimitry Andric
14710b57cec5SDimitry Andric // Move the remaining edges from OrigBB to point to NewBB2.
14720b57cec5SDimitry Andric SmallVector<BasicBlock*, 8> NewBB2Preds;
14730b57cec5SDimitry Andric for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
14740b57cec5SDimitry Andric i != e; ) {
14750b57cec5SDimitry Andric BasicBlock *Pred = *i++;
14760b57cec5SDimitry Andric if (Pred == NewBB1) continue;
14770b57cec5SDimitry Andric assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
14780b57cec5SDimitry Andric "Cannot split an edge from an IndirectBrInst");
14790b57cec5SDimitry Andric NewBB2Preds.push_back(Pred);
14800b57cec5SDimitry Andric e = pred_end(OrigBB);
14810b57cec5SDimitry Andric }
14820b57cec5SDimitry Andric
14830b57cec5SDimitry Andric BasicBlock *NewBB2 = nullptr;
14840b57cec5SDimitry Andric if (!NewBB2Preds.empty()) {
14850b57cec5SDimitry Andric // Create another basic block for the rest of OrigBB's predecessors.
14860b57cec5SDimitry Andric NewBB2 = BasicBlock::Create(OrigBB->getContext(),
14870b57cec5SDimitry Andric OrigBB->getName() + Suffix2,
14880b57cec5SDimitry Andric OrigBB->getParent(), OrigBB);
14890b57cec5SDimitry Andric NewBBs.push_back(NewBB2);
14900b57cec5SDimitry Andric
14910b57cec5SDimitry Andric // The new block unconditionally branches to the old block.
14920b57cec5SDimitry Andric BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
14930b57cec5SDimitry Andric BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
14940b57cec5SDimitry Andric
14950b57cec5SDimitry Andric // Move the remaining edges from OrigBB to point to NewBB2.
14960b57cec5SDimitry Andric for (BasicBlock *NewBB2Pred : NewBB2Preds)
14970b57cec5SDimitry Andric NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
14980b57cec5SDimitry Andric
14990b57cec5SDimitry Andric // Update DominatorTree, LoopInfo, and LCCSA analysis information.
15000b57cec5SDimitry Andric HasLoopExit = false;
1501e8d8bef9SDimitry Andric UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
15020b57cec5SDimitry Andric PreserveLCSSA, HasLoopExit);
15030b57cec5SDimitry Andric
15040b57cec5SDimitry Andric // Update the PHI nodes in OrigBB with the values coming from NewBB2.
15050b57cec5SDimitry Andric UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
15060b57cec5SDimitry Andric }
15070b57cec5SDimitry Andric
15080b57cec5SDimitry Andric LandingPadInst *LPad = OrigBB->getLandingPadInst();
15090b57cec5SDimitry Andric Instruction *Clone1 = LPad->clone();
15100b57cec5SDimitry Andric Clone1->setName(Twine("lpad") + Suffix1);
1511bdd1243dSDimitry Andric Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
15120b57cec5SDimitry Andric
15130b57cec5SDimitry Andric if (NewBB2) {
15140b57cec5SDimitry Andric Instruction *Clone2 = LPad->clone();
15150b57cec5SDimitry Andric Clone2->setName(Twine("lpad") + Suffix2);
1516bdd1243dSDimitry Andric Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
15170b57cec5SDimitry Andric
15180b57cec5SDimitry Andric // Create a PHI node for the two cloned landingpad instructions only
15190b57cec5SDimitry Andric // if the original landingpad instruction has some uses.
15200b57cec5SDimitry Andric if (!LPad->use_empty()) {
15210b57cec5SDimitry Andric assert(!LPad->getType()->isTokenTy() &&
15220b57cec5SDimitry Andric "Split cannot be applied if LPad is token type. Otherwise an "
15230b57cec5SDimitry Andric "invalid PHINode of token type would be created.");
1524*0fca6ea1SDimitry Andric PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad->getIterator());
15250b57cec5SDimitry Andric PN->addIncoming(Clone1, NewBB1);
15260b57cec5SDimitry Andric PN->addIncoming(Clone2, NewBB2);
15270b57cec5SDimitry Andric LPad->replaceAllUsesWith(PN);
15280b57cec5SDimitry Andric }
15290b57cec5SDimitry Andric LPad->eraseFromParent();
15300b57cec5SDimitry Andric } else {
15310b57cec5SDimitry Andric // There is no second clone. Just replace the landing pad with the first
15320b57cec5SDimitry Andric // clone.
15330b57cec5SDimitry Andric LPad->replaceAllUsesWith(Clone1);
15340b57cec5SDimitry Andric LPad->eraseFromParent();
15350b57cec5SDimitry Andric }
15360b57cec5SDimitry Andric }
15370b57cec5SDimitry Andric
SplitLandingPadPredecessors(BasicBlock * OrigBB,ArrayRef<BasicBlock * > Preds,const char * Suffix1,const char * Suffix2,SmallVectorImpl<BasicBlock * > & NewBBs,DomTreeUpdater * DTU,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)1538e8d8bef9SDimitry Andric void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1539e8d8bef9SDimitry Andric ArrayRef<BasicBlock *> Preds,
1540e8d8bef9SDimitry Andric const char *Suffix1, const char *Suffix2,
1541e8d8bef9SDimitry Andric SmallVectorImpl<BasicBlock *> &NewBBs,
1542e8d8bef9SDimitry Andric DomTreeUpdater *DTU, LoopInfo *LI,
1543e8d8bef9SDimitry Andric MemorySSAUpdater *MSSAU,
1544e8d8bef9SDimitry Andric bool PreserveLCSSA) {
1545e8d8bef9SDimitry Andric return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1546e8d8bef9SDimitry Andric NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1547e8d8bef9SDimitry Andric PreserveLCSSA);
1548e8d8bef9SDimitry Andric }
1549e8d8bef9SDimitry Andric
FoldReturnIntoUncondBranch(ReturnInst * RI,BasicBlock * BB,BasicBlock * Pred,DomTreeUpdater * DTU)15500b57cec5SDimitry Andric ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
15510b57cec5SDimitry Andric BasicBlock *Pred,
15520b57cec5SDimitry Andric DomTreeUpdater *DTU) {
15530b57cec5SDimitry Andric Instruction *UncondBranch = Pred->getTerminator();
15540b57cec5SDimitry Andric // Clone the return and add it to the end of the predecessor.
15550b57cec5SDimitry Andric Instruction *NewRet = RI->clone();
1556bdd1243dSDimitry Andric NewRet->insertInto(Pred, Pred->end());
15570b57cec5SDimitry Andric
15580b57cec5SDimitry Andric // If the return instruction returns a value, and if the value was a
15590b57cec5SDimitry Andric // PHI node in "BB", propagate the right value into the return.
1560fe6060f1SDimitry Andric for (Use &Op : NewRet->operands()) {
1561fe6060f1SDimitry Andric Value *V = Op;
15620b57cec5SDimitry Andric Instruction *NewBC = nullptr;
15630b57cec5SDimitry Andric if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
15640b57cec5SDimitry Andric // Return value might be bitcasted. Clone and insert it before the
15650b57cec5SDimitry Andric // return instruction.
15660b57cec5SDimitry Andric V = BCI->getOperand(0);
15670b57cec5SDimitry Andric NewBC = BCI->clone();
1568bdd1243dSDimitry Andric NewBC->insertInto(Pred, NewRet->getIterator());
1569fe6060f1SDimitry Andric Op = NewBC;
15700b57cec5SDimitry Andric }
15715ffd83dbSDimitry Andric
15725ffd83dbSDimitry Andric Instruction *NewEV = nullptr;
15735ffd83dbSDimitry Andric if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
15745ffd83dbSDimitry Andric V = EVI->getOperand(0);
15755ffd83dbSDimitry Andric NewEV = EVI->clone();
15765ffd83dbSDimitry Andric if (NewBC) {
15775ffd83dbSDimitry Andric NewBC->setOperand(0, NewEV);
1578bdd1243dSDimitry Andric NewEV->insertInto(Pred, NewBC->getIterator());
15795ffd83dbSDimitry Andric } else {
1580bdd1243dSDimitry Andric NewEV->insertInto(Pred, NewRet->getIterator());
1581fe6060f1SDimitry Andric Op = NewEV;
15825ffd83dbSDimitry Andric }
15835ffd83dbSDimitry Andric }
15845ffd83dbSDimitry Andric
15850b57cec5SDimitry Andric if (PHINode *PN = dyn_cast<PHINode>(V)) {
15860b57cec5SDimitry Andric if (PN->getParent() == BB) {
15875ffd83dbSDimitry Andric if (NewEV) {
15885ffd83dbSDimitry Andric NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
15895ffd83dbSDimitry Andric } else if (NewBC)
15900b57cec5SDimitry Andric NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
15910b57cec5SDimitry Andric else
1592fe6060f1SDimitry Andric Op = PN->getIncomingValueForBlock(Pred);
15930b57cec5SDimitry Andric }
15940b57cec5SDimitry Andric }
15950b57cec5SDimitry Andric }
15960b57cec5SDimitry Andric
15970b57cec5SDimitry Andric // Update any PHI nodes in the returning block to realize that we no
15980b57cec5SDimitry Andric // longer branch to them.
15990b57cec5SDimitry Andric BB->removePredecessor(Pred);
16000b57cec5SDimitry Andric UncondBranch->eraseFromParent();
16010b57cec5SDimitry Andric
16020b57cec5SDimitry Andric if (DTU)
16030b57cec5SDimitry Andric DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
16040b57cec5SDimitry Andric
16050b57cec5SDimitry Andric return cast<ReturnInst>(NewRet);
16060b57cec5SDimitry Andric }
16070b57cec5SDimitry Andric
SplitBlockAndInsertIfThen(Value * Cond,BasicBlock::iterator SplitBefore,bool Unreachable,MDNode * BranchWeights,DomTreeUpdater * DTU,LoopInfo * LI,BasicBlock * ThenBlock)1608e8d8bef9SDimitry Andric Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
16095f757f3fSDimitry Andric BasicBlock::iterator SplitBefore,
1610e8d8bef9SDimitry Andric bool Unreachable,
1611e8d8bef9SDimitry Andric MDNode *BranchWeights,
1612e8d8bef9SDimitry Andric DomTreeUpdater *DTU, LoopInfo *LI,
1613e8d8bef9SDimitry Andric BasicBlock *ThenBlock) {
161406c3fb27SDimitry Andric SplitBlockAndInsertIfThenElse(
161506c3fb27SDimitry Andric Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr,
161606c3fb27SDimitry Andric /* UnreachableThen */ Unreachable,
161706c3fb27SDimitry Andric /* UnreachableElse */ false, BranchWeights, DTU, LI);
161806c3fb27SDimitry Andric return ThenBlock->getTerminator();
161906c3fb27SDimitry Andric }
162006c3fb27SDimitry Andric
SplitBlockAndInsertIfElse(Value * Cond,BasicBlock::iterator SplitBefore,bool Unreachable,MDNode * BranchWeights,DomTreeUpdater * DTU,LoopInfo * LI,BasicBlock * ElseBlock)162106c3fb27SDimitry Andric Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond,
16225f757f3fSDimitry Andric BasicBlock::iterator SplitBefore,
162306c3fb27SDimitry Andric bool Unreachable,
162406c3fb27SDimitry Andric MDNode *BranchWeights,
162506c3fb27SDimitry Andric DomTreeUpdater *DTU, LoopInfo *LI,
162606c3fb27SDimitry Andric BasicBlock *ElseBlock) {
162706c3fb27SDimitry Andric SplitBlockAndInsertIfThenElse(
162806c3fb27SDimitry Andric Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock,
162906c3fb27SDimitry Andric /* UnreachableThen */ false,
163006c3fb27SDimitry Andric /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI);
163106c3fb27SDimitry Andric return ElseBlock->getTerminator();
1632e8d8bef9SDimitry Andric }
1633e8d8bef9SDimitry Andric
SplitBlockAndInsertIfThenElse(Value * Cond,BasicBlock::iterator SplitBefore,Instruction ** ThenTerm,Instruction ** ElseTerm,MDNode * BranchWeights,DomTreeUpdater * DTU,LoopInfo * LI)16345f757f3fSDimitry Andric void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore,
16350b57cec5SDimitry Andric Instruction **ThenTerm,
16360b57cec5SDimitry Andric Instruction **ElseTerm,
1637bdd1243dSDimitry Andric MDNode *BranchWeights,
163806c3fb27SDimitry Andric DomTreeUpdater *DTU, LoopInfo *LI) {
163906c3fb27SDimitry Andric BasicBlock *ThenBlock = nullptr;
164006c3fb27SDimitry Andric BasicBlock *ElseBlock = nullptr;
164106c3fb27SDimitry Andric SplitBlockAndInsertIfThenElse(
164206c3fb27SDimitry Andric Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false,
164306c3fb27SDimitry Andric /* UnreachableElse */ false, BranchWeights, DTU, LI);
1644bdd1243dSDimitry Andric
164506c3fb27SDimitry Andric *ThenTerm = ThenBlock->getTerminator();
164606c3fb27SDimitry Andric *ElseTerm = ElseBlock->getTerminator();
164706c3fb27SDimitry Andric }
164806c3fb27SDimitry Andric
SplitBlockAndInsertIfThenElse(Value * Cond,BasicBlock::iterator SplitBefore,BasicBlock ** ThenBlock,BasicBlock ** ElseBlock,bool UnreachableThen,bool UnreachableElse,MDNode * BranchWeights,DomTreeUpdater * DTU,LoopInfo * LI)164906c3fb27SDimitry Andric void llvm::SplitBlockAndInsertIfThenElse(
16505f757f3fSDimitry Andric Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock,
165106c3fb27SDimitry Andric BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse,
165206c3fb27SDimitry Andric MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) {
165306c3fb27SDimitry Andric assert((ThenBlock || ElseBlock) &&
165406c3fb27SDimitry Andric "At least one branch block must be created");
165506c3fb27SDimitry Andric assert((!UnreachableThen || !UnreachableElse) &&
165606c3fb27SDimitry Andric "Split block tail must be reachable");
165706c3fb27SDimitry Andric
165806c3fb27SDimitry Andric SmallVector<DominatorTree::UpdateType, 8> Updates;
1659bdd1243dSDimitry Andric SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
166006c3fb27SDimitry Andric BasicBlock *Head = SplitBefore->getParent();
166106c3fb27SDimitry Andric if (DTU) {
1662bdd1243dSDimitry Andric UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head));
166306c3fb27SDimitry Andric Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
166406c3fb27SDimitry Andric }
1665bdd1243dSDimitry Andric
16660b57cec5SDimitry Andric LLVMContext &C = Head->getContext();
16675f757f3fSDimitry Andric BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
166806c3fb27SDimitry Andric BasicBlock *TrueBlock = Tail;
166906c3fb27SDimitry Andric BasicBlock *FalseBlock = Tail;
167006c3fb27SDimitry Andric bool ThenToTailEdge = false;
167106c3fb27SDimitry Andric bool ElseToTailEdge = false;
167206c3fb27SDimitry Andric
167306c3fb27SDimitry Andric // Encapsulate the logic around creation/insertion/etc of a new block.
167406c3fb27SDimitry Andric auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB,
167506c3fb27SDimitry Andric bool &ToTailEdge) {
167606c3fb27SDimitry Andric if (PBB == nullptr)
167706c3fb27SDimitry Andric return; // Do not create/insert a block.
167806c3fb27SDimitry Andric
167906c3fb27SDimitry Andric if (*PBB)
168006c3fb27SDimitry Andric BB = *PBB; // Caller supplied block, use it.
168106c3fb27SDimitry Andric else {
168206c3fb27SDimitry Andric // Create a new block.
168306c3fb27SDimitry Andric BB = BasicBlock::Create(C, "", Head->getParent(), Tail);
168406c3fb27SDimitry Andric if (Unreachable)
168506c3fb27SDimitry Andric (void)new UnreachableInst(C, BB);
168606c3fb27SDimitry Andric else {
168706c3fb27SDimitry Andric (void)BranchInst::Create(Tail, BB);
168806c3fb27SDimitry Andric ToTailEdge = true;
168906c3fb27SDimitry Andric }
169006c3fb27SDimitry Andric BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc());
169106c3fb27SDimitry Andric // Pass the new block back to the caller.
169206c3fb27SDimitry Andric *PBB = BB;
169306c3fb27SDimitry Andric }
169406c3fb27SDimitry Andric };
169506c3fb27SDimitry Andric
169606c3fb27SDimitry Andric handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge);
169706c3fb27SDimitry Andric handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge);
169806c3fb27SDimitry Andric
169906c3fb27SDimitry Andric Instruction *HeadOldTerm = Head->getTerminator();
17000b57cec5SDimitry Andric BranchInst *HeadNewTerm =
170106c3fb27SDimitry Andric BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond);
17020b57cec5SDimitry Andric HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
17030b57cec5SDimitry Andric ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
170406c3fb27SDimitry Andric
1705bdd1243dSDimitry Andric if (DTU) {
170606c3fb27SDimitry Andric Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock);
170706c3fb27SDimitry Andric Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock);
170806c3fb27SDimitry Andric if (ThenToTailEdge)
170906c3fb27SDimitry Andric Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail);
171006c3fb27SDimitry Andric if (ElseToTailEdge)
171106c3fb27SDimitry Andric Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail);
1712bdd1243dSDimitry Andric for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
171306c3fb27SDimitry Andric Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor);
1714bdd1243dSDimitry Andric for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
171506c3fb27SDimitry Andric Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor);
1716bdd1243dSDimitry Andric DTU->applyUpdates(Updates);
1717bdd1243dSDimitry Andric }
171806c3fb27SDimitry Andric
171906c3fb27SDimitry Andric if (LI) {
172006c3fb27SDimitry Andric if (Loop *L = LI->getLoopFor(Head); L) {
172106c3fb27SDimitry Andric if (ThenToTailEdge)
172206c3fb27SDimitry Andric L->addBasicBlockToLoop(TrueBlock, *LI);
172306c3fb27SDimitry Andric if (ElseToTailEdge)
172406c3fb27SDimitry Andric L->addBasicBlockToLoop(FalseBlock, *LI);
172506c3fb27SDimitry Andric L->addBasicBlockToLoop(Tail, *LI);
172606c3fb27SDimitry Andric }
172706c3fb27SDimitry Andric }
172806c3fb27SDimitry Andric }
172906c3fb27SDimitry Andric
173006c3fb27SDimitry Andric std::pair<Instruction*, Value*>
SplitBlockAndInsertSimpleForLoop(Value * End,Instruction * SplitBefore)173106c3fb27SDimitry Andric llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) {
173206c3fb27SDimitry Andric BasicBlock *LoopPred = SplitBefore->getParent();
173306c3fb27SDimitry Andric BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore);
173406c3fb27SDimitry Andric BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore);
173506c3fb27SDimitry Andric
173606c3fb27SDimitry Andric auto *Ty = End->getType();
1737*0fca6ea1SDimitry Andric auto &DL = SplitBefore->getDataLayout();
173806c3fb27SDimitry Andric const unsigned Bitwidth = DL.getTypeSizeInBits(Ty);
173906c3fb27SDimitry Andric
174006c3fb27SDimitry Andric IRBuilder<> Builder(LoopBody->getTerminator());
174106c3fb27SDimitry Andric auto *IV = Builder.CreatePHI(Ty, 2, "iv");
174206c3fb27SDimitry Andric auto *IVNext =
174306c3fb27SDimitry Andric Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
174406c3fb27SDimitry Andric /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
174506c3fb27SDimitry Andric auto *IVCheck = Builder.CreateICmpEQ(IVNext, End,
174606c3fb27SDimitry Andric IV->getName() + ".check");
174706c3fb27SDimitry Andric Builder.CreateCondBr(IVCheck, LoopExit, LoopBody);
174806c3fb27SDimitry Andric LoopBody->getTerminator()->eraseFromParent();
174906c3fb27SDimitry Andric
175006c3fb27SDimitry Andric // Populate the IV PHI.
175106c3fb27SDimitry Andric IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred);
175206c3fb27SDimitry Andric IV->addIncoming(IVNext, LoopBody);
175306c3fb27SDimitry Andric
175406c3fb27SDimitry Andric return std::make_pair(LoopBody->getFirstNonPHI(), IV);
175506c3fb27SDimitry Andric }
175606c3fb27SDimitry Andric
SplitBlockAndInsertForEachLane(ElementCount EC,Type * IndexTy,Instruction * InsertBefore,std::function<void (IRBuilderBase &,Value *)> Func)175706c3fb27SDimitry Andric void llvm::SplitBlockAndInsertForEachLane(ElementCount EC,
175806c3fb27SDimitry Andric Type *IndexTy, Instruction *InsertBefore,
175906c3fb27SDimitry Andric std::function<void(IRBuilderBase&, Value*)> Func) {
176006c3fb27SDimitry Andric
176106c3fb27SDimitry Andric IRBuilder<> IRB(InsertBefore);
176206c3fb27SDimitry Andric
176306c3fb27SDimitry Andric if (EC.isScalable()) {
176406c3fb27SDimitry Andric Value *NumElements = IRB.CreateElementCount(IndexTy, EC);
176506c3fb27SDimitry Andric
176606c3fb27SDimitry Andric auto [BodyIP, Index] =
176706c3fb27SDimitry Andric SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore);
176806c3fb27SDimitry Andric
176906c3fb27SDimitry Andric IRB.SetInsertPoint(BodyIP);
177006c3fb27SDimitry Andric Func(IRB, Index);
177106c3fb27SDimitry Andric return;
177206c3fb27SDimitry Andric }
177306c3fb27SDimitry Andric
177406c3fb27SDimitry Andric unsigned Num = EC.getFixedValue();
177506c3fb27SDimitry Andric for (unsigned Idx = 0; Idx < Num; ++Idx) {
177606c3fb27SDimitry Andric IRB.SetInsertPoint(InsertBefore);
177706c3fb27SDimitry Andric Func(IRB, ConstantInt::get(IndexTy, Idx));
177806c3fb27SDimitry Andric }
177906c3fb27SDimitry Andric }
178006c3fb27SDimitry Andric
SplitBlockAndInsertForEachLane(Value * EVL,Instruction * InsertBefore,std::function<void (IRBuilderBase &,Value *)> Func)178106c3fb27SDimitry Andric void llvm::SplitBlockAndInsertForEachLane(
178206c3fb27SDimitry Andric Value *EVL, Instruction *InsertBefore,
178306c3fb27SDimitry Andric std::function<void(IRBuilderBase &, Value *)> Func) {
178406c3fb27SDimitry Andric
178506c3fb27SDimitry Andric IRBuilder<> IRB(InsertBefore);
178606c3fb27SDimitry Andric Type *Ty = EVL->getType();
178706c3fb27SDimitry Andric
178806c3fb27SDimitry Andric if (!isa<ConstantInt>(EVL)) {
178906c3fb27SDimitry Andric auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore);
179006c3fb27SDimitry Andric IRB.SetInsertPoint(BodyIP);
179106c3fb27SDimitry Andric Func(IRB, Index);
179206c3fb27SDimitry Andric return;
179306c3fb27SDimitry Andric }
179406c3fb27SDimitry Andric
179506c3fb27SDimitry Andric unsigned Num = cast<ConstantInt>(EVL)->getZExtValue();
179606c3fb27SDimitry Andric for (unsigned Idx = 0; Idx < Num; ++Idx) {
179706c3fb27SDimitry Andric IRB.SetInsertPoint(InsertBefore);
179806c3fb27SDimitry Andric Func(IRB, ConstantInt::get(Ty, Idx));
179906c3fb27SDimitry Andric }
18000b57cec5SDimitry Andric }
18010b57cec5SDimitry Andric
GetIfCondition(BasicBlock * BB,BasicBlock * & IfTrue,BasicBlock * & IfFalse)1802fe6060f1SDimitry Andric BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
18030b57cec5SDimitry Andric BasicBlock *&IfFalse) {
18040b57cec5SDimitry Andric PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
18050b57cec5SDimitry Andric BasicBlock *Pred1 = nullptr;
18060b57cec5SDimitry Andric BasicBlock *Pred2 = nullptr;
18070b57cec5SDimitry Andric
18080b57cec5SDimitry Andric if (SomePHI) {
18090b57cec5SDimitry Andric if (SomePHI->getNumIncomingValues() != 2)
18100b57cec5SDimitry Andric return nullptr;
18110b57cec5SDimitry Andric Pred1 = SomePHI->getIncomingBlock(0);
18120b57cec5SDimitry Andric Pred2 = SomePHI->getIncomingBlock(1);
18130b57cec5SDimitry Andric } else {
18140b57cec5SDimitry Andric pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
18150b57cec5SDimitry Andric if (PI == PE) // No predecessor
18160b57cec5SDimitry Andric return nullptr;
18170b57cec5SDimitry Andric Pred1 = *PI++;
18180b57cec5SDimitry Andric if (PI == PE) // Only one predecessor
18190b57cec5SDimitry Andric return nullptr;
18200b57cec5SDimitry Andric Pred2 = *PI++;
18210b57cec5SDimitry Andric if (PI != PE) // More than two predecessors
18220b57cec5SDimitry Andric return nullptr;
18230b57cec5SDimitry Andric }
18240b57cec5SDimitry Andric
18250b57cec5SDimitry Andric // We can only handle branches. Other control flow will be lowered to
18260b57cec5SDimitry Andric // branches if possible anyway.
18270b57cec5SDimitry Andric BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
18280b57cec5SDimitry Andric BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
18290b57cec5SDimitry Andric if (!Pred1Br || !Pred2Br)
18300b57cec5SDimitry Andric return nullptr;
18310b57cec5SDimitry Andric
18320b57cec5SDimitry Andric // Eliminate code duplication by ensuring that Pred1Br is conditional if
18330b57cec5SDimitry Andric // either are.
18340b57cec5SDimitry Andric if (Pred2Br->isConditional()) {
18350b57cec5SDimitry Andric // If both branches are conditional, we don't have an "if statement". In
18360b57cec5SDimitry Andric // reality, we could transform this case, but since the condition will be
18370b57cec5SDimitry Andric // required anyway, we stand no chance of eliminating it, so the xform is
18380b57cec5SDimitry Andric // probably not profitable.
18390b57cec5SDimitry Andric if (Pred1Br->isConditional())
18400b57cec5SDimitry Andric return nullptr;
18410b57cec5SDimitry Andric
18420b57cec5SDimitry Andric std::swap(Pred1, Pred2);
18430b57cec5SDimitry Andric std::swap(Pred1Br, Pred2Br);
18440b57cec5SDimitry Andric }
18450b57cec5SDimitry Andric
18460b57cec5SDimitry Andric if (Pred1Br->isConditional()) {
18470b57cec5SDimitry Andric // The only thing we have to watch out for here is to make sure that Pred2
18480b57cec5SDimitry Andric // doesn't have incoming edges from other blocks. If it does, the condition
18490b57cec5SDimitry Andric // doesn't dominate BB.
18500b57cec5SDimitry Andric if (!Pred2->getSinglePredecessor())
18510b57cec5SDimitry Andric return nullptr;
18520b57cec5SDimitry Andric
18530b57cec5SDimitry Andric // If we found a conditional branch predecessor, make sure that it branches
18540b57cec5SDimitry Andric // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
18550b57cec5SDimitry Andric if (Pred1Br->getSuccessor(0) == BB &&
18560b57cec5SDimitry Andric Pred1Br->getSuccessor(1) == Pred2) {
18570b57cec5SDimitry Andric IfTrue = Pred1;
18580b57cec5SDimitry Andric IfFalse = Pred2;
18590b57cec5SDimitry Andric } else if (Pred1Br->getSuccessor(0) == Pred2 &&
18600b57cec5SDimitry Andric Pred1Br->getSuccessor(1) == BB) {
18610b57cec5SDimitry Andric IfTrue = Pred2;
18620b57cec5SDimitry Andric IfFalse = Pred1;
18630b57cec5SDimitry Andric } else {
18640b57cec5SDimitry Andric // We know that one arm of the conditional goes to BB, so the other must
18650b57cec5SDimitry Andric // go somewhere unrelated, and this must not be an "if statement".
18660b57cec5SDimitry Andric return nullptr;
18670b57cec5SDimitry Andric }
18680b57cec5SDimitry Andric
1869fe6060f1SDimitry Andric return Pred1Br;
18700b57cec5SDimitry Andric }
18710b57cec5SDimitry Andric
18720b57cec5SDimitry Andric // Ok, if we got here, both predecessors end with an unconditional branch to
18730b57cec5SDimitry Andric // BB. Don't panic! If both blocks only have a single (identical)
18740b57cec5SDimitry Andric // predecessor, and THAT is a conditional branch, then we're all ok!
18750b57cec5SDimitry Andric BasicBlock *CommonPred = Pred1->getSinglePredecessor();
18760b57cec5SDimitry Andric if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
18770b57cec5SDimitry Andric return nullptr;
18780b57cec5SDimitry Andric
18790b57cec5SDimitry Andric // Otherwise, if this is a conditional branch, then we can use it!
18800b57cec5SDimitry Andric BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
18810b57cec5SDimitry Andric if (!BI) return nullptr;
18820b57cec5SDimitry Andric
18830b57cec5SDimitry Andric assert(BI->isConditional() && "Two successors but not conditional?");
18840b57cec5SDimitry Andric if (BI->getSuccessor(0) == Pred1) {
18850b57cec5SDimitry Andric IfTrue = Pred1;
18860b57cec5SDimitry Andric IfFalse = Pred2;
18870b57cec5SDimitry Andric } else {
18880b57cec5SDimitry Andric IfTrue = Pred2;
18890b57cec5SDimitry Andric IfFalse = Pred1;
18900b57cec5SDimitry Andric }
1891fe6060f1SDimitry Andric return BI;
18920b57cec5SDimitry Andric }
18935ffd83dbSDimitry Andric
18945ffd83dbSDimitry Andric // After creating a control flow hub, the operands of PHINodes in an outgoing
18955ffd83dbSDimitry Andric // block Out no longer match the predecessors of that block. Predecessors of Out
18965ffd83dbSDimitry Andric // that are incoming blocks to the hub are now replaced by just one edge from
18975ffd83dbSDimitry Andric // the hub. To match this new control flow, the corresponding values from each
18985ffd83dbSDimitry Andric // PHINode must now be moved a new PHINode in the first guard block of the hub.
18995ffd83dbSDimitry Andric //
19005ffd83dbSDimitry Andric // This operation cannot be performed with SSAUpdater, because it involves one
19015ffd83dbSDimitry Andric // new use: If the block Out is in the list of Incoming blocks, then the newly
19025ffd83dbSDimitry Andric // created PHI in the Hub will use itself along that edge from Out to Hub.
reconnectPhis(BasicBlock * Out,BasicBlock * GuardBlock,const SetVector<BasicBlock * > & Incoming,BasicBlock * FirstGuardBlock)19035ffd83dbSDimitry Andric static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
19045ffd83dbSDimitry Andric const SetVector<BasicBlock *> &Incoming,
19055ffd83dbSDimitry Andric BasicBlock *FirstGuardBlock) {
19065ffd83dbSDimitry Andric auto I = Out->begin();
19075ffd83dbSDimitry Andric while (I != Out->end() && isa<PHINode>(I)) {
19085ffd83dbSDimitry Andric auto Phi = cast<PHINode>(I);
19095ffd83dbSDimitry Andric auto NewPhi =
19105ffd83dbSDimitry Andric PHINode::Create(Phi->getType(), Incoming.size(),
1911*0fca6ea1SDimitry Andric Phi->getName() + ".moved", FirstGuardBlock->begin());
1912bdd1243dSDimitry Andric for (auto *In : Incoming) {
19135ffd83dbSDimitry Andric Value *V = UndefValue::get(Phi->getType());
19145ffd83dbSDimitry Andric if (In == Out) {
19155ffd83dbSDimitry Andric V = NewPhi;
19165ffd83dbSDimitry Andric } else if (Phi->getBasicBlockIndex(In) != -1) {
19175ffd83dbSDimitry Andric V = Phi->removeIncomingValue(In, false);
19185ffd83dbSDimitry Andric }
19195ffd83dbSDimitry Andric NewPhi->addIncoming(V, In);
19205ffd83dbSDimitry Andric }
19215ffd83dbSDimitry Andric assert(NewPhi->getNumIncomingValues() == Incoming.size());
19225ffd83dbSDimitry Andric if (Phi->getNumOperands() == 0) {
19235ffd83dbSDimitry Andric Phi->replaceAllUsesWith(NewPhi);
19245ffd83dbSDimitry Andric I = Phi->eraseFromParent();
19255ffd83dbSDimitry Andric continue;
19265ffd83dbSDimitry Andric }
19275ffd83dbSDimitry Andric Phi->addIncoming(NewPhi, GuardBlock);
19285ffd83dbSDimitry Andric ++I;
19295ffd83dbSDimitry Andric }
19305ffd83dbSDimitry Andric }
19315ffd83dbSDimitry Andric
1932bdd1243dSDimitry Andric using BBPredicates = DenseMap<BasicBlock *, Instruction *>;
19335ffd83dbSDimitry Andric using BBSetVector = SetVector<BasicBlock *>;
19345ffd83dbSDimitry Andric
19355ffd83dbSDimitry Andric // Redirects the terminator of the incoming block to the first guard
19365ffd83dbSDimitry Andric // block in the hub. The condition of the original terminator (if it
19375ffd83dbSDimitry Andric // was conditional) and its original successors are returned as a
19385ffd83dbSDimitry Andric // tuple <condition, succ0, succ1>. The function additionally filters
19395ffd83dbSDimitry Andric // out successors that are not in the set of outgoing blocks.
19405ffd83dbSDimitry Andric //
19415ffd83dbSDimitry Andric // - condition is non-null iff the branch is conditional.
19425ffd83dbSDimitry Andric // - Succ1 is non-null iff the sole/taken target is an outgoing block.
19435ffd83dbSDimitry Andric // - Succ2 is non-null iff condition is non-null and the fallthrough
19445ffd83dbSDimitry Andric // target is an outgoing block.
19455ffd83dbSDimitry Andric static std::tuple<Value *, BasicBlock *, BasicBlock *>
redirectToHub(BasicBlock * BB,BasicBlock * FirstGuardBlock,const BBSetVector & Outgoing)19465ffd83dbSDimitry Andric redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
19475ffd83dbSDimitry Andric const BBSetVector &Outgoing) {
1948bdd1243dSDimitry Andric assert(isa<BranchInst>(BB->getTerminator()) &&
1949bdd1243dSDimitry Andric "Only support branch terminator.");
19505ffd83dbSDimitry Andric auto Branch = cast<BranchInst>(BB->getTerminator());
19515ffd83dbSDimitry Andric auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
19525ffd83dbSDimitry Andric
19535ffd83dbSDimitry Andric BasicBlock *Succ0 = Branch->getSuccessor(0);
19545ffd83dbSDimitry Andric BasicBlock *Succ1 = nullptr;
19555ffd83dbSDimitry Andric Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
19565ffd83dbSDimitry Andric
19575ffd83dbSDimitry Andric if (Branch->isUnconditional()) {
19585ffd83dbSDimitry Andric Branch->setSuccessor(0, FirstGuardBlock);
19595ffd83dbSDimitry Andric assert(Succ0);
19605ffd83dbSDimitry Andric } else {
19615ffd83dbSDimitry Andric Succ1 = Branch->getSuccessor(1);
19625ffd83dbSDimitry Andric Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
19635ffd83dbSDimitry Andric assert(Succ0 || Succ1);
19645ffd83dbSDimitry Andric if (Succ0 && !Succ1) {
19655ffd83dbSDimitry Andric Branch->setSuccessor(0, FirstGuardBlock);
19665ffd83dbSDimitry Andric } else if (Succ1 && !Succ0) {
19675ffd83dbSDimitry Andric Branch->setSuccessor(1, FirstGuardBlock);
19685ffd83dbSDimitry Andric } else {
19695ffd83dbSDimitry Andric Branch->eraseFromParent();
19705ffd83dbSDimitry Andric BranchInst::Create(FirstGuardBlock, BB);
19715ffd83dbSDimitry Andric }
19725ffd83dbSDimitry Andric }
19735ffd83dbSDimitry Andric
19745ffd83dbSDimitry Andric assert(Succ0 || Succ1);
19755ffd83dbSDimitry Andric return std::make_tuple(Condition, Succ0, Succ1);
19765ffd83dbSDimitry Andric }
1977bdd1243dSDimitry Andric // Setup the branch instructions for guard blocks.
19785ffd83dbSDimitry Andric //
19795ffd83dbSDimitry Andric // Each guard block terminates in a conditional branch that transfers
19805ffd83dbSDimitry Andric // control to the corresponding outgoing block or the next guard
19815ffd83dbSDimitry Andric // block. The last guard block has two outgoing blocks as successors
19825ffd83dbSDimitry Andric // since the condition for the final outgoing block is trivially
19835ffd83dbSDimitry Andric // true. So we create one less block (including the first guard block)
19845ffd83dbSDimitry Andric // than the number of outgoing blocks.
setupBranchForGuard(SmallVectorImpl<BasicBlock * > & GuardBlocks,const BBSetVector & Outgoing,BBPredicates & GuardPredicates)1985bdd1243dSDimitry Andric static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1986bdd1243dSDimitry Andric const BBSetVector &Outgoing,
1987bdd1243dSDimitry Andric BBPredicates &GuardPredicates) {
19885ffd83dbSDimitry Andric // To help keep the loop simple, temporarily append the last
19895ffd83dbSDimitry Andric // outgoing block to the list of guard blocks.
19905ffd83dbSDimitry Andric GuardBlocks.push_back(Outgoing.back());
19915ffd83dbSDimitry Andric
19925ffd83dbSDimitry Andric for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
19935ffd83dbSDimitry Andric auto Out = Outgoing[i];
19945ffd83dbSDimitry Andric assert(GuardPredicates.count(Out));
19955ffd83dbSDimitry Andric BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
19965ffd83dbSDimitry Andric GuardBlocks[i]);
19975ffd83dbSDimitry Andric }
19985ffd83dbSDimitry Andric
19995ffd83dbSDimitry Andric // Remove the last block from the guard list.
20005ffd83dbSDimitry Andric GuardBlocks.pop_back();
20015ffd83dbSDimitry Andric }
20025ffd83dbSDimitry Andric
2003bdd1243dSDimitry Andric /// We are using one integer to represent the block we are branching to. Then at
2004bdd1243dSDimitry Andric /// each guard block, the predicate was calcuated using a simple `icmp eq`.
calcPredicateUsingInteger(const BBSetVector & Incoming,const BBSetVector & Outgoing,SmallVectorImpl<BasicBlock * > & GuardBlocks,BBPredicates & GuardPredicates)2005bdd1243dSDimitry Andric static void calcPredicateUsingInteger(
2006bdd1243dSDimitry Andric const BBSetVector &Incoming, const BBSetVector &Outgoing,
2007bdd1243dSDimitry Andric SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) {
2008bdd1243dSDimitry Andric auto &Context = Incoming.front()->getContext();
2009bdd1243dSDimitry Andric auto FirstGuardBlock = GuardBlocks.front();
2010bdd1243dSDimitry Andric
2011bdd1243dSDimitry Andric auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(),
2012bdd1243dSDimitry Andric "merged.bb.idx", FirstGuardBlock);
2013bdd1243dSDimitry Andric
2014bdd1243dSDimitry Andric for (auto In : Incoming) {
2015bdd1243dSDimitry Andric Value *Condition;
2016bdd1243dSDimitry Andric BasicBlock *Succ0;
2017bdd1243dSDimitry Andric BasicBlock *Succ1;
2018bdd1243dSDimitry Andric std::tie(Condition, Succ0, Succ1) =
2019bdd1243dSDimitry Andric redirectToHub(In, FirstGuardBlock, Outgoing);
2020bdd1243dSDimitry Andric Value *IncomingId = nullptr;
2021bdd1243dSDimitry Andric if (Succ0 && Succ1) {
2022bdd1243dSDimitry Andric // target_bb_index = Condition ? index_of_succ0 : index_of_succ1.
2023bdd1243dSDimitry Andric auto Succ0Iter = find(Outgoing, Succ0);
2024bdd1243dSDimitry Andric auto Succ1Iter = find(Outgoing, Succ1);
2025bdd1243dSDimitry Andric Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context),
2026bdd1243dSDimitry Andric std::distance(Outgoing.begin(), Succ0Iter));
2027bdd1243dSDimitry Andric Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context),
2028bdd1243dSDimitry Andric std::distance(Outgoing.begin(), Succ1Iter));
2029bdd1243dSDimitry Andric IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
2030*0fca6ea1SDimitry Andric In->getTerminator()->getIterator());
2031bdd1243dSDimitry Andric } else {
2032bdd1243dSDimitry Andric // Get the index of the non-null successor.
2033bdd1243dSDimitry Andric auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
2034bdd1243dSDimitry Andric IncomingId = ConstantInt::get(Type::getInt32Ty(Context),
2035bdd1243dSDimitry Andric std::distance(Outgoing.begin(), SuccIter));
2036bdd1243dSDimitry Andric }
2037bdd1243dSDimitry Andric Phi->addIncoming(IncomingId, In);
2038bdd1243dSDimitry Andric }
2039bdd1243dSDimitry Andric
2040bdd1243dSDimitry Andric for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2041bdd1243dSDimitry Andric auto Out = Outgoing[i];
2042bdd1243dSDimitry Andric auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
2043bdd1243dSDimitry Andric ConstantInt::get(Type::getInt32Ty(Context), i),
2044bdd1243dSDimitry Andric Out->getName() + ".predicate", GuardBlocks[i]);
2045bdd1243dSDimitry Andric GuardPredicates[Out] = Cmp;
2046bdd1243dSDimitry Andric }
2047bdd1243dSDimitry Andric }
2048bdd1243dSDimitry Andric
2049bdd1243dSDimitry Andric /// We record the predicate of each outgoing block using a phi of boolean.
calcPredicateUsingBooleans(const BBSetVector & Incoming,const BBSetVector & Outgoing,SmallVectorImpl<BasicBlock * > & GuardBlocks,BBPredicates & GuardPredicates,SmallVectorImpl<WeakVH> & DeletionCandidates)2050bdd1243dSDimitry Andric static void calcPredicateUsingBooleans(
2051bdd1243dSDimitry Andric const BBSetVector &Incoming, const BBSetVector &Outgoing,
2052bdd1243dSDimitry Andric SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
2053bdd1243dSDimitry Andric SmallVectorImpl<WeakVH> &DeletionCandidates) {
2054bdd1243dSDimitry Andric auto &Context = Incoming.front()->getContext();
2055bdd1243dSDimitry Andric auto BoolTrue = ConstantInt::getTrue(Context);
2056bdd1243dSDimitry Andric auto BoolFalse = ConstantInt::getFalse(Context);
2057bdd1243dSDimitry Andric auto FirstGuardBlock = GuardBlocks.front();
2058bdd1243dSDimitry Andric
2059bdd1243dSDimitry Andric // The predicate for the last outgoing is trivially true, and so we
2060bdd1243dSDimitry Andric // process only the first N-1 successors.
2061bdd1243dSDimitry Andric for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2062bdd1243dSDimitry Andric auto Out = Outgoing[i];
2063bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
2064bdd1243dSDimitry Andric
2065bdd1243dSDimitry Andric auto Phi =
2066bdd1243dSDimitry Andric PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
2067bdd1243dSDimitry Andric StringRef("Guard.") + Out->getName(), FirstGuardBlock);
2068bdd1243dSDimitry Andric GuardPredicates[Out] = Phi;
2069bdd1243dSDimitry Andric }
2070bdd1243dSDimitry Andric
2071bdd1243dSDimitry Andric for (auto *In : Incoming) {
2072bdd1243dSDimitry Andric Value *Condition;
2073bdd1243dSDimitry Andric BasicBlock *Succ0;
2074bdd1243dSDimitry Andric BasicBlock *Succ1;
2075bdd1243dSDimitry Andric std::tie(Condition, Succ0, Succ1) =
2076bdd1243dSDimitry Andric redirectToHub(In, FirstGuardBlock, Outgoing);
2077bdd1243dSDimitry Andric
2078bdd1243dSDimitry Andric // Optimization: Consider an incoming block A with both successors
2079bdd1243dSDimitry Andric // Succ0 and Succ1 in the set of outgoing blocks. The predicates
2080bdd1243dSDimitry Andric // for Succ0 and Succ1 complement each other. If Succ0 is visited
2081bdd1243dSDimitry Andric // first in the loop below, control will branch to Succ0 using the
2082bdd1243dSDimitry Andric // corresponding predicate. But if that branch is not taken, then
2083bdd1243dSDimitry Andric // control must reach Succ1, which means that the incoming value of
2084bdd1243dSDimitry Andric // the predicate from `In` is true for Succ1.
2085bdd1243dSDimitry Andric bool OneSuccessorDone = false;
2086bdd1243dSDimitry Andric for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
2087bdd1243dSDimitry Andric auto Out = Outgoing[i];
2088bdd1243dSDimitry Andric PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
2089bdd1243dSDimitry Andric if (Out != Succ0 && Out != Succ1) {
2090bdd1243dSDimitry Andric Phi->addIncoming(BoolFalse, In);
2091bdd1243dSDimitry Andric } else if (!Succ0 || !Succ1 || OneSuccessorDone) {
2092bdd1243dSDimitry Andric // Optimization: When only one successor is an outgoing block,
2093bdd1243dSDimitry Andric // the incoming predicate from `In` is always true.
2094bdd1243dSDimitry Andric Phi->addIncoming(BoolTrue, In);
2095bdd1243dSDimitry Andric } else {
2096bdd1243dSDimitry Andric assert(Succ0 && Succ1);
2097bdd1243dSDimitry Andric if (Out == Succ0) {
2098bdd1243dSDimitry Andric Phi->addIncoming(Condition, In);
2099bdd1243dSDimitry Andric } else {
2100bdd1243dSDimitry Andric auto Inverted = invertCondition(Condition);
2101bdd1243dSDimitry Andric DeletionCandidates.push_back(Condition);
2102bdd1243dSDimitry Andric Phi->addIncoming(Inverted, In);
2103bdd1243dSDimitry Andric }
2104bdd1243dSDimitry Andric OneSuccessorDone = true;
2105bdd1243dSDimitry Andric }
2106bdd1243dSDimitry Andric }
2107bdd1243dSDimitry Andric }
2108bdd1243dSDimitry Andric }
2109bdd1243dSDimitry Andric
2110bdd1243dSDimitry Andric // Capture the existing control flow as guard predicates, and redirect
2111bdd1243dSDimitry Andric // control flow from \p Incoming block through the \p GuardBlocks to the
2112bdd1243dSDimitry Andric // \p Outgoing blocks.
2113bdd1243dSDimitry Andric //
2114bdd1243dSDimitry Andric // There is one guard predicate for each outgoing block OutBB. The
2115bdd1243dSDimitry Andric // predicate represents whether the hub should transfer control flow
2116bdd1243dSDimitry Andric // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
2117bdd1243dSDimitry Andric // them in the same order as the Outgoing set-vector, and control
2118bdd1243dSDimitry Andric // branches to the first outgoing block whose predicate evaluates to true.
2119bdd1243dSDimitry Andric static void
convertToGuardPredicates(SmallVectorImpl<BasicBlock * > & GuardBlocks,SmallVectorImpl<WeakVH> & DeletionCandidates,const BBSetVector & Incoming,const BBSetVector & Outgoing,const StringRef Prefix,std::optional<unsigned> MaxControlFlowBooleans)2120bdd1243dSDimitry Andric convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks,
2121bdd1243dSDimitry Andric SmallVectorImpl<WeakVH> &DeletionCandidates,
2122bdd1243dSDimitry Andric const BBSetVector &Incoming,
2123bdd1243dSDimitry Andric const BBSetVector &Outgoing, const StringRef Prefix,
2124bdd1243dSDimitry Andric std::optional<unsigned> MaxControlFlowBooleans) {
2125bdd1243dSDimitry Andric BBPredicates GuardPredicates;
2126bdd1243dSDimitry Andric auto F = Incoming.front()->getParent();
2127bdd1243dSDimitry Andric
2128bdd1243dSDimitry Andric for (int i = 0, e = Outgoing.size() - 1; i != e; ++i)
2129bdd1243dSDimitry Andric GuardBlocks.push_back(
2130bdd1243dSDimitry Andric BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
2131bdd1243dSDimitry Andric
2132bdd1243dSDimitry Andric // When we are using an integer to record which target block to jump to, we
2133bdd1243dSDimitry Andric // are creating less live values, actually we are using one single integer to
2134bdd1243dSDimitry Andric // store the index of the target block. When we are using booleans to store
2135bdd1243dSDimitry Andric // the branching information, we need (N-1) boolean values, where N is the
2136bdd1243dSDimitry Andric // number of outgoing block.
2137bdd1243dSDimitry Andric if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
2138bdd1243dSDimitry Andric calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates,
2139bdd1243dSDimitry Andric DeletionCandidates);
2140bdd1243dSDimitry Andric else
2141bdd1243dSDimitry Andric calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates);
2142bdd1243dSDimitry Andric
2143bdd1243dSDimitry Andric setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
2144bdd1243dSDimitry Andric }
2145bdd1243dSDimitry Andric
CreateControlFlowHub(DomTreeUpdater * DTU,SmallVectorImpl<BasicBlock * > & GuardBlocks,const BBSetVector & Incoming,const BBSetVector & Outgoing,const StringRef Prefix,std::optional<unsigned> MaxControlFlowBooleans)21465ffd83dbSDimitry Andric BasicBlock *llvm::CreateControlFlowHub(
21475ffd83dbSDimitry Andric DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
21485ffd83dbSDimitry Andric const BBSetVector &Incoming, const BBSetVector &Outgoing,
2149bdd1243dSDimitry Andric const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
2150bdd1243dSDimitry Andric if (Outgoing.size() < 2)
2151bdd1243dSDimitry Andric return Outgoing.front();
21525ffd83dbSDimitry Andric
21535ffd83dbSDimitry Andric SmallVector<DominatorTree::UpdateType, 16> Updates;
21545ffd83dbSDimitry Andric if (DTU) {
2155bdd1243dSDimitry Andric for (auto *In : Incoming) {
2156bdd1243dSDimitry Andric for (auto Succ : successors(In))
21575ffd83dbSDimitry Andric if (Outgoing.count(Succ))
21585ffd83dbSDimitry Andric Updates.push_back({DominatorTree::Delete, In, Succ});
21595ffd83dbSDimitry Andric }
21605ffd83dbSDimitry Andric }
21615ffd83dbSDimitry Andric
21625ffd83dbSDimitry Andric SmallVector<WeakVH, 8> DeletionCandidates;
2163bdd1243dSDimitry Andric convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing,
2164bdd1243dSDimitry Andric Prefix, MaxControlFlowBooleans);
2165bdd1243dSDimitry Andric auto FirstGuardBlock = GuardBlocks.front();
21665ffd83dbSDimitry Andric
21675ffd83dbSDimitry Andric // Update the PHINodes in each outgoing block to match the new control flow.
2168bdd1243dSDimitry Andric for (int i = 0, e = GuardBlocks.size(); i != e; ++i)
21695ffd83dbSDimitry Andric reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
2170bdd1243dSDimitry Andric
21715ffd83dbSDimitry Andric reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
21725ffd83dbSDimitry Andric
21735ffd83dbSDimitry Andric if (DTU) {
21745ffd83dbSDimitry Andric int NumGuards = GuardBlocks.size();
21755ffd83dbSDimitry Andric assert((int)Outgoing.size() == NumGuards + 1);
2176bdd1243dSDimitry Andric
2177bdd1243dSDimitry Andric for (auto In : Incoming)
2178bdd1243dSDimitry Andric Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
2179bdd1243dSDimitry Andric
21805ffd83dbSDimitry Andric for (int i = 0; i != NumGuards - 1; ++i) {
21815ffd83dbSDimitry Andric Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
21825ffd83dbSDimitry Andric Updates.push_back(
21835ffd83dbSDimitry Andric {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
21845ffd83dbSDimitry Andric }
21855ffd83dbSDimitry Andric Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
21865ffd83dbSDimitry Andric Outgoing[NumGuards - 1]});
21875ffd83dbSDimitry Andric Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
21885ffd83dbSDimitry Andric Outgoing[NumGuards]});
21895ffd83dbSDimitry Andric DTU->applyUpdates(Updates);
21905ffd83dbSDimitry Andric }
21915ffd83dbSDimitry Andric
21925ffd83dbSDimitry Andric for (auto I : DeletionCandidates) {
21935ffd83dbSDimitry Andric if (I->use_empty())
21945ffd83dbSDimitry Andric if (auto Inst = dyn_cast_or_null<Instruction>(I))
21955ffd83dbSDimitry Andric Inst->eraseFromParent();
21965ffd83dbSDimitry Andric }
21975ffd83dbSDimitry Andric
21985ffd83dbSDimitry Andric return FirstGuardBlock;
21995ffd83dbSDimitry Andric }
220006c3fb27SDimitry Andric
InvertBranch(BranchInst * PBI,IRBuilderBase & Builder)220106c3fb27SDimitry Andric void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) {
220206c3fb27SDimitry Andric Value *NewCond = PBI->getCondition();
220306c3fb27SDimitry Andric // If this is a "cmp" instruction, only used for branching (and nowhere
220406c3fb27SDimitry Andric // else), then we can simply invert the predicate.
220506c3fb27SDimitry Andric if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
220606c3fb27SDimitry Andric CmpInst *CI = cast<CmpInst>(NewCond);
220706c3fb27SDimitry Andric CI->setPredicate(CI->getInversePredicate());
220806c3fb27SDimitry Andric } else
220906c3fb27SDimitry Andric NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not");
221006c3fb27SDimitry Andric
221106c3fb27SDimitry Andric PBI->setCondition(NewCond);
221206c3fb27SDimitry Andric PBI->swapSuccessors();
221306c3fb27SDimitry Andric }
22145f757f3fSDimitry Andric
hasOnlySimpleTerminator(const Function & F)22155f757f3fSDimitry Andric bool llvm::hasOnlySimpleTerminator(const Function &F) {
22165f757f3fSDimitry Andric for (auto &BB : F) {
22175f757f3fSDimitry Andric auto *Term = BB.getTerminator();
22185f757f3fSDimitry Andric if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) ||
22195f757f3fSDimitry Andric isa<BranchInst>(Term)))
22205f757f3fSDimitry Andric return false;
22215f757f3fSDimitry Andric }
22225f757f3fSDimitry Andric return true;
22235f757f3fSDimitry Andric }
22245f757f3fSDimitry Andric
isPresplitCoroSuspendExitEdge(const BasicBlock & Src,const BasicBlock & Dest)22255f757f3fSDimitry Andric bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src,
22265f757f3fSDimitry Andric const BasicBlock &Dest) {
22275f757f3fSDimitry Andric assert(Src.getParent() == Dest.getParent());
22285f757f3fSDimitry Andric if (!Src.getParent()->isPresplitCoroutine())
22295f757f3fSDimitry Andric return false;
22305f757f3fSDimitry Andric if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator()))
22315f757f3fSDimitry Andric if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition()))
22325f757f3fSDimitry Andric return Intr->getIntrinsicID() == Intrinsic::coro_suspend &&
22335f757f3fSDimitry Andric SW->getDefaultDest() == &Dest;
22345f757f3fSDimitry Andric return false;
22355f757f3fSDimitry Andric }
2236