xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp (revision c9539b89010900499a200cdd6c0265ea5d950875)
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop.  This pass also implements the following extensions to the basic
12 // algorithm:
13 //
14 //  1. Trivial instructions between the call and return do not prevent the
15 //     transformation from taking place, though currently the analysis cannot
16 //     support moving any really useful instructions (only dead ones).
17 //  2. This pass transforms functions that are prevented from being tail
18 //     recursive by an associative and commutative expression to use an
19 //     accumulator variable, thus compiling the typical naive factorial or
20 //     'fib' implementation into efficient code.
21 //  3. TRE is performed if the function returns void, if the return
22 //     returns the result returned by the call, or if the function returns a
23 //     run-time constant on all exits from the function.  It is possible, though
24 //     unlikely, that the return returns something else (like constant 0), and
25 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
26 //     the function return the exact same value.
27 //  4. If it can prove that callees do not access their caller stack frame,
28 //     they are marked as eligible for tail call elimination (by the code
29 //     generator).
30 //
31 // There are several improvements that could be made:
32 //
33 //  1. If the function has any alloca instructions, these instructions will be
34 //     moved out of the entry block of the function, causing them to be
35 //     evaluated each time through the tail recursion.  Safely keeping allocas
36 //     in the entry block requires analysis to proves that the tail-called
37 //     function does not read or write the stack object.
38 //  2. Tail recursion is only performed if the call immediately precedes the
39 //     return instruction.  It's possible that there could be a jump between
40 //     the call and the return.
41 //  3. There can be intervening operations between the call and the return that
42 //     prevent the TRE from occurring.  For example, there could be GEP's and
43 //     stores to memory that will not be read or written by the call.  This
44 //     requires some substantial analysis (such as with DSA) to prove safe to
45 //     move ahead of the call, but doing so could allow many more TREs to be
46 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 //  4. The algorithm we use to detect if callees access their caller stack
48 //     frames is very primitive.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/DomTreeUpdater.h"
57 #include "llvm/Analysis/GlobalsModRef.h"
58 #include "llvm/Analysis/InstructionSimplify.h"
59 #include "llvm/Analysis/Loads.h"
60 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
61 #include "llvm/Analysis/PostDominators.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Module.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 using namespace llvm;
83 
84 #define DEBUG_TYPE "tailcallelim"
85 
86 STATISTIC(NumEliminated, "Number of tail calls removed");
87 STATISTIC(NumRetDuped,   "Number of return duplicated");
88 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
89 
90 /// Scan the specified function for alloca instructions.
91 /// If it contains any dynamic allocas, returns false.
92 static bool canTRE(Function &F) {
93   // TODO: We don't do TRE if dynamic allocas are used.
94   // Dynamic allocas allocate stack space which should be
95   // deallocated before new iteration started. That is
96   // currently not implemented.
97   return llvm::all_of(instructions(F), [](Instruction &I) {
98     auto *AI = dyn_cast<AllocaInst>(&I);
99     return !AI || AI->isStaticAlloca();
100   });
101 }
102 
103 namespace {
104 struct AllocaDerivedValueTracker {
105   // Start at a root value and walk its use-def chain to mark calls that use the
106   // value or a derived value in AllocaUsers, and places where it may escape in
107   // EscapePoints.
108   void walk(Value *Root) {
109     SmallVector<Use *, 32> Worklist;
110     SmallPtrSet<Use *, 32> Visited;
111 
112     auto AddUsesToWorklist = [&](Value *V) {
113       for (auto &U : V->uses()) {
114         if (!Visited.insert(&U).second)
115           continue;
116         Worklist.push_back(&U);
117       }
118     };
119 
120     AddUsesToWorklist(Root);
121 
122     while (!Worklist.empty()) {
123       Use *U = Worklist.pop_back_val();
124       Instruction *I = cast<Instruction>(U->getUser());
125 
126       switch (I->getOpcode()) {
127       case Instruction::Call:
128       case Instruction::Invoke: {
129         auto &CB = cast<CallBase>(*I);
130         // If the alloca-derived argument is passed byval it is not an escape
131         // point, or a use of an alloca. Calling with byval copies the contents
132         // of the alloca into argument registers or stack slots, which exist
133         // beyond the lifetime of the current frame.
134         if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
135           continue;
136         bool IsNocapture =
137             CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
138         callUsesLocalStack(CB, IsNocapture);
139         if (IsNocapture) {
140           // If the alloca-derived argument is passed in as nocapture, then it
141           // can't propagate to the call's return. That would be capturing.
142           continue;
143         }
144         break;
145       }
146       case Instruction::Load: {
147         // The result of a load is not alloca-derived (unless an alloca has
148         // otherwise escaped, but this is a local analysis).
149         continue;
150       }
151       case Instruction::Store: {
152         if (U->getOperandNo() == 0)
153           EscapePoints.insert(I);
154         continue;  // Stores have no users to analyze.
155       }
156       case Instruction::BitCast:
157       case Instruction::GetElementPtr:
158       case Instruction::PHI:
159       case Instruction::Select:
160       case Instruction::AddrSpaceCast:
161         break;
162       default:
163         EscapePoints.insert(I);
164         break;
165       }
166 
167       AddUsesToWorklist(I);
168     }
169   }
170 
171   void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
172     // Add it to the list of alloca users.
173     AllocaUsers.insert(&CB);
174 
175     // If it's nocapture then it can't capture this alloca.
176     if (IsNocapture)
177       return;
178 
179     // If it can write to memory, it can leak the alloca value.
180     if (!CB.onlyReadsMemory())
181       EscapePoints.insert(&CB);
182   }
183 
184   SmallPtrSet<Instruction *, 32> AllocaUsers;
185   SmallPtrSet<Instruction *, 32> EscapePoints;
186 };
187 }
188 
189 static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) {
190   if (F.callsFunctionThatReturnsTwice())
191     return false;
192 
193   // The local stack holds all alloca instructions and all byval arguments.
194   AllocaDerivedValueTracker Tracker;
195   for (Argument &Arg : F.args()) {
196     if (Arg.hasByValAttr())
197       Tracker.walk(&Arg);
198   }
199   for (auto &BB : F) {
200     for (auto &I : BB)
201       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
202         Tracker.walk(AI);
203   }
204 
205   bool Modified = false;
206 
207   // Track whether a block is reachable after an alloca has escaped. Blocks that
208   // contain the escaping instruction will be marked as being visited without an
209   // escaped alloca, since that is how the block began.
210   enum VisitType {
211     UNVISITED,
212     UNESCAPED,
213     ESCAPED
214   };
215   DenseMap<BasicBlock *, VisitType> Visited;
216 
217   // We propagate the fact that an alloca has escaped from block to successor.
218   // Visit the blocks that are propagating the escapedness first. To do this, we
219   // maintain two worklists.
220   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
221 
222   // We may enter a block and visit it thinking that no alloca has escaped yet,
223   // then see an escape point and go back around a loop edge and come back to
224   // the same block twice. Because of this, we defer setting tail on calls when
225   // we first encounter them in a block. Every entry in this list does not
226   // statically use an alloca via use-def chain analysis, but may find an alloca
227   // through other means if the block turns out to be reachable after an escape
228   // point.
229   SmallVector<CallInst *, 32> DeferredTails;
230 
231   BasicBlock *BB = &F.getEntryBlock();
232   VisitType Escaped = UNESCAPED;
233   do {
234     for (auto &I : *BB) {
235       if (Tracker.EscapePoints.count(&I))
236         Escaped = ESCAPED;
237 
238       CallInst *CI = dyn_cast<CallInst>(&I);
239       // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
240       // considered accessing memory and will be marked as a tail call if we
241       // don't bail out here.
242       if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
243           isa<PseudoProbeInst>(&I))
244         continue;
245 
246       // Special-case operand bundles "clang.arc.attachedcall" and "ptrauth".
247       bool IsNoTail =
248           CI->isNoTailCall() || CI->hasOperandBundlesOtherThan(
249             {LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_ptrauth});
250 
251       if (!IsNoTail && CI->doesNotAccessMemory()) {
252         // A call to a readnone function whose arguments are all things computed
253         // outside this function can be marked tail. Even if you stored the
254         // alloca address into a global, a readnone function can't load the
255         // global anyhow.
256         //
257         // Note that this runs whether we know an alloca has escaped or not. If
258         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
259         bool SafeToTail = true;
260         for (auto &Arg : CI->args()) {
261           if (isa<Constant>(Arg.getUser()))
262             continue;
263           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
264             if (!A->hasByValAttr())
265               continue;
266           SafeToTail = false;
267           break;
268         }
269         if (SafeToTail) {
270           using namespace ore;
271           ORE->emit([&]() {
272             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
273                    << "marked as tail call candidate (readnone)";
274           });
275           CI->setTailCall();
276           Modified = true;
277           continue;
278         }
279       }
280 
281       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI))
282         DeferredTails.push_back(CI);
283     }
284 
285     for (auto *SuccBB : successors(BB)) {
286       auto &State = Visited[SuccBB];
287       if (State < Escaped) {
288         State = Escaped;
289         if (State == ESCAPED)
290           WorklistEscaped.push_back(SuccBB);
291         else
292           WorklistUnescaped.push_back(SuccBB);
293       }
294     }
295 
296     if (!WorklistEscaped.empty()) {
297       BB = WorklistEscaped.pop_back_val();
298       Escaped = ESCAPED;
299     } else {
300       BB = nullptr;
301       while (!WorklistUnescaped.empty()) {
302         auto *NextBB = WorklistUnescaped.pop_back_val();
303         if (Visited[NextBB] == UNESCAPED) {
304           BB = NextBB;
305           Escaped = UNESCAPED;
306           break;
307         }
308       }
309     }
310   } while (BB);
311 
312   for (CallInst *CI : DeferredTails) {
313     if (Visited[CI->getParent()] != ESCAPED) {
314       // If the escape point was part way through the block, calls after the
315       // escape point wouldn't have been put into DeferredTails.
316       LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
317       CI->setTailCall();
318       Modified = true;
319     }
320   }
321 
322   return Modified;
323 }
324 
325 /// Return true if it is safe to move the specified
326 /// instruction from after the call to before the call, assuming that all
327 /// instructions between the call and this instruction are movable.
328 ///
329 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
330   if (isa<DbgInfoIntrinsic>(I))
331     return true;
332 
333   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
334     if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
335         llvm::findAllocaForValue(II->getArgOperand(1)))
336       return true;
337 
338   // FIXME: We can move load/store/call/free instructions above the call if the
339   // call does not mod/ref the memory location being processed.
340   if (I->mayHaveSideEffects())  // This also handles volatile loads.
341     return false;
342 
343   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
344     // Loads may always be moved above calls without side effects.
345     if (CI->mayHaveSideEffects()) {
346       // Non-volatile loads may be moved above a call with side effects if it
347       // does not write to memory and the load provably won't trap.
348       // Writes to memory only matter if they may alias the pointer
349       // being loaded from.
350       const DataLayout &DL = L->getModule()->getDataLayout();
351       if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
352           !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
353                                        L->getAlign(), DL, L))
354         return false;
355     }
356   }
357 
358   // Otherwise, if this is a side-effect free instruction, check to make sure
359   // that it does not use the return value of the call.  If it doesn't use the
360   // return value of the call, it must only use things that are defined before
361   // the call, or movable instructions between the call and the instruction
362   // itself.
363   return !is_contained(I->operands(), CI);
364 }
365 
366 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
367   if (!I->isAssociative() || !I->isCommutative())
368     return false;
369 
370   assert(I->getNumOperands() == 2 &&
371          "Associative/commutative operations should have 2 args!");
372 
373   // Exactly one operand should be the result of the call instruction.
374   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
375       (I->getOperand(0) != CI && I->getOperand(1) != CI))
376     return false;
377 
378   // The only user of this instruction we allow is a single return instruction.
379   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
380     return false;
381 
382   return true;
383 }
384 
385 static Instruction *firstNonDbg(BasicBlock::iterator I) {
386   while (isa<DbgInfoIntrinsic>(I))
387     ++I;
388   return &*I;
389 }
390 
391 namespace {
392 class TailRecursionEliminator {
393   Function &F;
394   const TargetTransformInfo *TTI;
395   AliasAnalysis *AA;
396   OptimizationRemarkEmitter *ORE;
397   DomTreeUpdater &DTU;
398 
399   // The below are shared state we want to have available when eliminating any
400   // calls in the function. There values should be populated by
401   // createTailRecurseLoopHeader the first time we find a call we can eliminate.
402   BasicBlock *HeaderBB = nullptr;
403   SmallVector<PHINode *, 8> ArgumentPHIs;
404 
405   // PHI node to store our return value.
406   PHINode *RetPN = nullptr;
407 
408   // i1 PHI node to track if we have a valid return value stored in RetPN.
409   PHINode *RetKnownPN = nullptr;
410 
411   // Vector of select instructions we insereted. These selects use RetKnownPN
412   // to either propagate RetPN or select a new return value.
413   SmallVector<SelectInst *, 8> RetSelects;
414 
415   // The below are shared state needed when performing accumulator recursion.
416   // There values should be populated by insertAccumulator the first time we
417   // find an elimination that requires an accumulator.
418 
419   // PHI node to store our current accumulated value.
420   PHINode *AccPN = nullptr;
421 
422   // The instruction doing the accumulating.
423   Instruction *AccumulatorRecursionInstr = nullptr;
424 
425   TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
426                           AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
427                           DomTreeUpdater &DTU)
428       : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
429 
430   CallInst *findTRECandidate(BasicBlock *BB);
431 
432   void createTailRecurseLoopHeader(CallInst *CI);
433 
434   void insertAccumulator(Instruction *AccRecInstr);
435 
436   bool eliminateCall(CallInst *CI);
437 
438   void cleanupAndFinalize();
439 
440   bool processBlock(BasicBlock &BB);
441 
442   void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx);
443 
444   void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx);
445 
446 public:
447   static bool eliminate(Function &F, const TargetTransformInfo *TTI,
448                         AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
449                         DomTreeUpdater &DTU);
450 };
451 } // namespace
452 
453 CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) {
454   Instruction *TI = BB->getTerminator();
455 
456   if (&BB->front() == TI) // Make sure there is something before the terminator.
457     return nullptr;
458 
459   // Scan backwards from the return, checking to see if there is a tail call in
460   // this block.  If so, set CI to it.
461   CallInst *CI = nullptr;
462   BasicBlock::iterator BBI(TI);
463   while (true) {
464     CI = dyn_cast<CallInst>(BBI);
465     if (CI && CI->getCalledFunction() == &F)
466       break;
467 
468     if (BBI == BB->begin())
469       return nullptr;          // Didn't find a potential tail call.
470     --BBI;
471   }
472 
473   assert((!CI->isTailCall() || !CI->isNoTailCall()) &&
474          "Incompatible call site attributes(Tail,NoTail)");
475   if (!CI->isTailCall())
476     return nullptr;
477 
478   // As a special case, detect code like this:
479   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
480   // and disable this xform in this case, because the code generator will
481   // lower the call to fabs into inline code.
482   if (BB == &F.getEntryBlock() &&
483       firstNonDbg(BB->front().getIterator()) == CI &&
484       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
485       !TTI->isLoweredToCall(CI->getCalledFunction())) {
486     // A single-block function with just a call and a return. Check that
487     // the arguments match.
488     auto I = CI->arg_begin(), E = CI->arg_end();
489     Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
490     for (; I != E && FI != FE; ++I, ++FI)
491       if (*I != &*FI) break;
492     if (I == E && FI == FE)
493       return nullptr;
494   }
495 
496   return CI;
497 }
498 
499 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
500   HeaderBB = &F.getEntryBlock();
501   BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
502   NewEntry->takeName(HeaderBB);
503   HeaderBB->setName("tailrecurse");
504   BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
505   BI->setDebugLoc(CI->getDebugLoc());
506 
507   // Move all fixed sized allocas from HeaderBB to NewEntry.
508   for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
509                             NEBI = NewEntry->begin();
510        OEBI != E;)
511     if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
512       if (isa<ConstantInt>(AI->getArraySize()))
513         AI->moveBefore(&*NEBI);
514 
515   // Now that we have created a new block, which jumps to the entry
516   // block, insert a PHI node for each argument of the function.
517   // For now, we initialize each PHI to only have the real arguments
518   // which are passed in.
519   Instruction *InsertPos = &HeaderBB->front();
520   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
521     PHINode *PN =
522         PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos);
523     I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
524     PN->addIncoming(&*I, NewEntry);
525     ArgumentPHIs.push_back(PN);
526   }
527 
528   // If the function doen't return void, create the RetPN and RetKnownPN PHI
529   // nodes to track our return value. We initialize RetPN with poison and
530   // RetKnownPN with false since we can't know our return value at function
531   // entry.
532   Type *RetType = F.getReturnType();
533   if (!RetType->isVoidTy()) {
534     Type *BoolType = Type::getInt1Ty(F.getContext());
535     RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos);
536     RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos);
537 
538     RetPN->addIncoming(PoisonValue::get(RetType), NewEntry);
539     RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
540   }
541 
542   // The entry block was changed from HeaderBB to NewEntry.
543   // The forward DominatorTree needs to be recalculated when the EntryBB is
544   // changed. In this corner-case we recalculate the entire tree.
545   DTU.recalculate(*NewEntry->getParent());
546 }
547 
548 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
549   assert(!AccPN && "Trying to insert multiple accumulators");
550 
551   AccumulatorRecursionInstr = AccRecInstr;
552 
553   // Start by inserting a new PHI node for the accumulator.
554   pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
555   AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
556                           "accumulator.tr", &HeaderBB->front());
557 
558   // Loop over all of the predecessors of the tail recursion block.  For the
559   // real entry into the function we seed the PHI with the identity constant for
560   // the accumulation operation.  For any other existing branches to this block
561   // (due to other tail recursions eliminated) the accumulator is not modified.
562   // Because we haven't added the branch in the current block to HeaderBB yet,
563   // it will not show up as a predecessor.
564   for (pred_iterator PI = PB; PI != PE; ++PI) {
565     BasicBlock *P = *PI;
566     if (P == &F.getEntryBlock()) {
567       Constant *Identity = ConstantExpr::getBinOpIdentity(
568           AccRecInstr->getOpcode(), AccRecInstr->getType());
569       AccPN->addIncoming(Identity, P);
570     } else {
571       AccPN->addIncoming(AccPN, P);
572     }
573   }
574 
575   ++NumAccumAdded;
576 }
577 
578 // Creates a copy of contents of ByValue operand of the specified
579 // call instruction into the newly created temporarily variable.
580 void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI,
581                                                               int OpndIdx) {
582   Type *AggTy = CI->getParamByValType(OpndIdx);
583   assert(AggTy);
584   const DataLayout &DL = F.getParent()->getDataLayout();
585 
586   // Get alignment of byVal operand.
587   Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
588 
589   // Create alloca for temporarily byval operands.
590   // Put alloca into the entry block.
591   Value *NewAlloca = new AllocaInst(
592       AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
593       CI->getArgOperand(OpndIdx)->getName(), &*F.getEntryBlock().begin());
594 
595   IRBuilder<> Builder(CI);
596   Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
597 
598   // Copy data from byvalue operand into the temporarily variable.
599   Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment,
600                        CI->getArgOperand(OpndIdx),
601                        /*SrcAlign*/ Alignment, Size);
602   CI->setArgOperand(OpndIdx, NewAlloca);
603 }
604 
605 // Creates a copy from temporarily variable(keeping value of ByVal argument)
606 // into the corresponding function argument location.
607 void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments(
608     CallInst *CI, int OpndIdx) {
609   Type *AggTy = CI->getParamByValType(OpndIdx);
610   assert(AggTy);
611   const DataLayout &DL = F.getParent()->getDataLayout();
612 
613   // Get alignment of byVal operand.
614   Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
615 
616   IRBuilder<> Builder(CI);
617   Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
618 
619   // Copy data from the temporarily variable into corresponding
620   // function argument location.
621   Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment,
622                        CI->getArgOperand(OpndIdx),
623                        /*SrcAlign*/ Alignment, Size);
624 }
625 
626 bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
627   ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
628 
629   // Ok, we found a potential tail call.  We can currently only transform the
630   // tail call if all of the instructions between the call and the return are
631   // movable to above the call itself, leaving the call next to the return.
632   // Check that this is the case now.
633   Instruction *AccRecInstr = nullptr;
634   BasicBlock::iterator BBI(CI);
635   for (++BBI; &*BBI != Ret; ++BBI) {
636     if (canMoveAboveCall(&*BBI, CI, AA))
637       continue;
638 
639     // If we can't move the instruction above the call, it might be because it
640     // is an associative and commutative operation that could be transformed
641     // using accumulator recursion elimination.  Check to see if this is the
642     // case, and if so, remember which instruction accumulates for later.
643     if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
644       return false; // We cannot eliminate the tail recursion!
645 
646     // Yes, this is accumulator recursion.  Remember which instruction
647     // accumulates.
648     AccRecInstr = &*BBI;
649   }
650 
651   BasicBlock *BB = Ret->getParent();
652 
653   using namespace ore;
654   ORE->emit([&]() {
655     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
656            << "transforming tail recursion into loop";
657   });
658 
659   // OK! We can transform this tail call.  If this is the first one found,
660   // create the new entry block, allowing us to branch back to the old entry.
661   if (!HeaderBB)
662     createTailRecurseLoopHeader(CI);
663 
664   // Copy values of ByVal operands into local temporarily variables.
665   for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
666     if (CI->isByValArgument(I))
667       copyByValueOperandIntoLocalTemp(CI, I);
668   }
669 
670   // Ok, now that we know we have a pseudo-entry block WITH all of the
671   // required PHI nodes, add entries into the PHI node for the actual
672   // parameters passed into the tail-recursive call.
673   for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
674     if (CI->isByValArgument(I)) {
675       copyLocalTempOfByValueOperandIntoArguments(CI, I);
676       ArgumentPHIs[I]->addIncoming(F.getArg(I), BB);
677     } else
678       ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB);
679   }
680 
681   if (AccRecInstr) {
682     insertAccumulator(AccRecInstr);
683 
684     // Rewrite the accumulator recursion instruction so that it does not use
685     // the result of the call anymore, instead, use the PHI node we just
686     // inserted.
687     AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
688   }
689 
690   // Update our return value tracking
691   if (RetPN) {
692     if (Ret->getReturnValue() == CI || AccRecInstr) {
693       // Defer selecting a return value
694       RetPN->addIncoming(RetPN, BB);
695       RetKnownPN->addIncoming(RetKnownPN, BB);
696     } else {
697       // We found a return value we want to use, insert a select instruction to
698       // select it if we don't already know what our return value will be and
699       // store the result in our return value PHI node.
700       SelectInst *SI = SelectInst::Create(
701           RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
702       RetSelects.push_back(SI);
703 
704       RetPN->addIncoming(SI, BB);
705       RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
706     }
707 
708     if (AccPN)
709       AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
710   }
711 
712   // Now that all of the PHI nodes are in place, remove the call and
713   // ret instructions, replacing them with an unconditional branch.
714   BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
715   NewBI->setDebugLoc(CI->getDebugLoc());
716 
717   BB->getInstList().erase(Ret);  // Remove return.
718   BB->getInstList().erase(CI);   // Remove call.
719   DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
720   ++NumEliminated;
721   return true;
722 }
723 
724 void TailRecursionEliminator::cleanupAndFinalize() {
725   // If we eliminated any tail recursions, it's possible that we inserted some
726   // silly PHI nodes which just merge an initial value (the incoming operand)
727   // with themselves.  Check to see if we did and clean up our mess if so.  This
728   // occurs when a function passes an argument straight through to its tail
729   // call.
730   for (PHINode *PN : ArgumentPHIs) {
731     // If the PHI Node is a dynamic constant, replace it with the value it is.
732     if (Value *PNV = simplifyInstruction(PN, F.getParent()->getDataLayout())) {
733       PN->replaceAllUsesWith(PNV);
734       PN->eraseFromParent();
735     }
736   }
737 
738   if (RetPN) {
739     if (RetSelects.empty()) {
740       // If we didn't insert any select instructions, then we know we didn't
741       // store a return value and we can remove the PHI nodes we inserted.
742       RetPN->dropAllReferences();
743       RetPN->eraseFromParent();
744 
745       RetKnownPN->dropAllReferences();
746       RetKnownPN->eraseFromParent();
747 
748       if (AccPN) {
749         // We need to insert a copy of our accumulator instruction before any
750         // return in the function, and return its result instead.
751         Instruction *AccRecInstr = AccumulatorRecursionInstr;
752         for (BasicBlock &BB : F) {
753           ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
754           if (!RI)
755             continue;
756 
757           Instruction *AccRecInstrNew = AccRecInstr->clone();
758           AccRecInstrNew->setName("accumulator.ret.tr");
759           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
760                                      RI->getOperand(0));
761           AccRecInstrNew->insertBefore(RI);
762           RI->setOperand(0, AccRecInstrNew);
763         }
764       }
765     } else {
766       // We need to insert a select instruction before any return left in the
767       // function to select our stored return value if we have one.
768       for (BasicBlock &BB : F) {
769         ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
770         if (!RI)
771           continue;
772 
773         SelectInst *SI = SelectInst::Create(
774             RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
775         RetSelects.push_back(SI);
776         RI->setOperand(0, SI);
777       }
778 
779       if (AccPN) {
780         // We need to insert a copy of our accumulator instruction before any
781         // of the selects we inserted, and select its result instead.
782         Instruction *AccRecInstr = AccumulatorRecursionInstr;
783         for (SelectInst *SI : RetSelects) {
784           Instruction *AccRecInstrNew = AccRecInstr->clone();
785           AccRecInstrNew->setName("accumulator.ret.tr");
786           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
787                                      SI->getFalseValue());
788           AccRecInstrNew->insertBefore(SI);
789           SI->setFalseValue(AccRecInstrNew);
790         }
791       }
792     }
793   }
794 }
795 
796 bool TailRecursionEliminator::processBlock(BasicBlock &BB) {
797   Instruction *TI = BB.getTerminator();
798 
799   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
800     if (BI->isConditional())
801       return false;
802 
803     BasicBlock *Succ = BI->getSuccessor(0);
804     ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
805 
806     if (!Ret)
807       return false;
808 
809     CallInst *CI = findTRECandidate(&BB);
810 
811     if (!CI)
812       return false;
813 
814     LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
815                       << "INTO UNCOND BRANCH PRED: " << BB);
816     FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
817     ++NumRetDuped;
818 
819     // If all predecessors of Succ have been eliminated by
820     // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
821     // because the ret instruction in there is still using a value which
822     // eliminateCall will attempt to remove.  This block can only contain
823     // instructions that can't have uses, therefore it is safe to remove.
824     if (pred_empty(Succ))
825       DTU.deleteBB(Succ);
826 
827     eliminateCall(CI);
828     return true;
829   } else if (isa<ReturnInst>(TI)) {
830     CallInst *CI = findTRECandidate(&BB);
831 
832     if (CI)
833       return eliminateCall(CI);
834   }
835 
836   return false;
837 }
838 
839 bool TailRecursionEliminator::eliminate(Function &F,
840                                         const TargetTransformInfo *TTI,
841                                         AliasAnalysis *AA,
842                                         OptimizationRemarkEmitter *ORE,
843                                         DomTreeUpdater &DTU) {
844   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
845     return false;
846 
847   bool MadeChange = false;
848   MadeChange |= markTails(F, ORE);
849 
850   // If this function is a varargs function, we won't be able to PHI the args
851   // right, so don't even try to convert it...
852   if (F.getFunctionType()->isVarArg())
853     return MadeChange;
854 
855   if (!canTRE(F))
856     return MadeChange;
857 
858   // Change any tail recursive calls to loops.
859   TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
860 
861   for (BasicBlock &BB : F)
862     MadeChange |= TRE.processBlock(BB);
863 
864   TRE.cleanupAndFinalize();
865 
866   return MadeChange;
867 }
868 
869 namespace {
870 struct TailCallElim : public FunctionPass {
871   static char ID; // Pass identification, replacement for typeid
872   TailCallElim() : FunctionPass(ID) {
873     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
874   }
875 
876   void getAnalysisUsage(AnalysisUsage &AU) const override {
877     AU.addRequired<TargetTransformInfoWrapperPass>();
878     AU.addRequired<AAResultsWrapperPass>();
879     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
880     AU.addPreserved<GlobalsAAWrapperPass>();
881     AU.addPreserved<DominatorTreeWrapperPass>();
882     AU.addPreserved<PostDominatorTreeWrapperPass>();
883   }
884 
885   bool runOnFunction(Function &F) override {
886     if (skipFunction(F))
887       return false;
888 
889     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
890     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
891     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
892     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
893     // There is no noticable performance difference here between Lazy and Eager
894     // UpdateStrategy based on some test results. It is feasible to switch the
895     // UpdateStrategy to Lazy if we find it profitable later.
896     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
897 
898     return TailRecursionEliminator::eliminate(
899         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
900         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
901         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
902   }
903 };
904 }
905 
906 char TailCallElim::ID = 0;
907 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
908                       false, false)
909 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
910 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
911 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
912                     false, false)
913 
914 // Public interface to the TailCallElimination pass
915 FunctionPass *llvm::createTailCallEliminationPass() {
916   return new TailCallElim();
917 }
918 
919 PreservedAnalyses TailCallElimPass::run(Function &F,
920                                         FunctionAnalysisManager &AM) {
921 
922   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
923   AliasAnalysis &AA = AM.getResult<AAManager>(F);
924   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
925   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
926   auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
927   // There is no noticable performance difference here between Lazy and Eager
928   // UpdateStrategy based on some test results. It is feasible to switch the
929   // UpdateStrategy to Lazy if we find it profitable later.
930   DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
931   bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
932 
933   if (!Changed)
934     return PreservedAnalyses::all();
935   PreservedAnalyses PA;
936   PA.preserve<DominatorTreeAnalysis>();
937   PA.preserve<PostDominatorTreeAnalysis>();
938   return PA;
939 }
940