1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file transforms calls of the current function (self recursion) followed 10 // by a return instruction with a branch to the entry of the function, creating 11 // a loop. This pass also implements the following extensions to the basic 12 // algorithm: 13 // 14 // 1. Trivial instructions between the call and return do not prevent the 15 // transformation from taking place, though currently the analysis cannot 16 // support moving any really useful instructions (only dead ones). 17 // 2. This pass transforms functions that are prevented from being tail 18 // recursive by an associative and commutative expression to use an 19 // accumulator variable, thus compiling the typical naive factorial or 20 // 'fib' implementation into efficient code. 21 // 3. TRE is performed if the function returns void, if the return 22 // returns the result returned by the call, or if the function returns a 23 // run-time constant on all exits from the function. It is possible, though 24 // unlikely, that the return returns something else (like constant 0), and 25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 26 // the function return the exact same value. 27 // 4. If it can prove that callees do not access their caller stack frame, 28 // they are marked as eligible for tail call elimination (by the code 29 // generator). 30 // 31 // There are several improvements that could be made: 32 // 33 // 1. If the function has any alloca instructions, these instructions will be 34 // moved out of the entry block of the function, causing them to be 35 // evaluated each time through the tail recursion. Safely keeping allocas 36 // in the entry block requires analysis to proves that the tail-called 37 // function does not read or write the stack object. 38 // 2. Tail recursion is only performed if the call immediately precedes the 39 // return instruction. It's possible that there could be a jump between 40 // the call and the return. 41 // 3. There can be intervening operations between the call and the return that 42 // prevent the TRE from occurring. For example, there could be GEP's and 43 // stores to memory that will not be read or written by the call. This 44 // requires some substantial analysis (such as with DSA) to prove safe to 45 // move ahead of the call, but doing so could allow many more TREs to be 46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 47 // 4. The algorithm we use to detect if callees access their caller stack 48 // frames is very primitive. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/DomTreeUpdater.h" 57 #include "llvm/Analysis/GlobalsModRef.h" 58 #include "llvm/Analysis/InstructionSimplify.h" 59 #include "llvm/Analysis/Loads.h" 60 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 61 #include "llvm/Analysis/PostDominators.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/IRBuilder.h" 72 #include "llvm/IR/InstIterator.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Module.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 82 using namespace llvm; 83 84 #define DEBUG_TYPE "tailcallelim" 85 86 STATISTIC(NumEliminated, "Number of tail calls removed"); 87 STATISTIC(NumRetDuped, "Number of return duplicated"); 88 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 89 90 /// Scan the specified function for alloca instructions. 91 /// If it contains any dynamic allocas, returns false. 92 static bool canTRE(Function &F) { 93 // TODO: We don't do TRE if dynamic allocas are used. 94 // Dynamic allocas allocate stack space which should be 95 // deallocated before new iteration started. That is 96 // currently not implemented. 97 return llvm::all_of(instructions(F), [](Instruction &I) { 98 auto *AI = dyn_cast<AllocaInst>(&I); 99 return !AI || AI->isStaticAlloca(); 100 }); 101 } 102 103 namespace { 104 struct AllocaDerivedValueTracker { 105 // Start at a root value and walk its use-def chain to mark calls that use the 106 // value or a derived value in AllocaUsers, and places where it may escape in 107 // EscapePoints. 108 void walk(Value *Root) { 109 SmallVector<Use *, 32> Worklist; 110 SmallPtrSet<Use *, 32> Visited; 111 112 auto AddUsesToWorklist = [&](Value *V) { 113 for (auto &U : V->uses()) { 114 if (!Visited.insert(&U).second) 115 continue; 116 Worklist.push_back(&U); 117 } 118 }; 119 120 AddUsesToWorklist(Root); 121 122 while (!Worklist.empty()) { 123 Use *U = Worklist.pop_back_val(); 124 Instruction *I = cast<Instruction>(U->getUser()); 125 126 switch (I->getOpcode()) { 127 case Instruction::Call: 128 case Instruction::Invoke: { 129 auto &CB = cast<CallBase>(*I); 130 // If the alloca-derived argument is passed byval it is not an escape 131 // point, or a use of an alloca. Calling with byval copies the contents 132 // of the alloca into argument registers or stack slots, which exist 133 // beyond the lifetime of the current frame. 134 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U))) 135 continue; 136 bool IsNocapture = 137 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U)); 138 callUsesLocalStack(CB, IsNocapture); 139 if (IsNocapture) { 140 // If the alloca-derived argument is passed in as nocapture, then it 141 // can't propagate to the call's return. That would be capturing. 142 continue; 143 } 144 break; 145 } 146 case Instruction::Load: { 147 // The result of a load is not alloca-derived (unless an alloca has 148 // otherwise escaped, but this is a local analysis). 149 continue; 150 } 151 case Instruction::Store: { 152 if (U->getOperandNo() == 0) 153 EscapePoints.insert(I); 154 continue; // Stores have no users to analyze. 155 } 156 case Instruction::BitCast: 157 case Instruction::GetElementPtr: 158 case Instruction::PHI: 159 case Instruction::Select: 160 case Instruction::AddrSpaceCast: 161 break; 162 default: 163 EscapePoints.insert(I); 164 break; 165 } 166 167 AddUsesToWorklist(I); 168 } 169 } 170 171 void callUsesLocalStack(CallBase &CB, bool IsNocapture) { 172 // Add it to the list of alloca users. 173 AllocaUsers.insert(&CB); 174 175 // If it's nocapture then it can't capture this alloca. 176 if (IsNocapture) 177 return; 178 179 // If it can write to memory, it can leak the alloca value. 180 if (!CB.onlyReadsMemory()) 181 EscapePoints.insert(&CB); 182 } 183 184 SmallPtrSet<Instruction *, 32> AllocaUsers; 185 SmallPtrSet<Instruction *, 32> EscapePoints; 186 }; 187 } 188 189 static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) { 190 if (F.callsFunctionThatReturnsTwice()) 191 return false; 192 193 // The local stack holds all alloca instructions and all byval arguments. 194 AllocaDerivedValueTracker Tracker; 195 for (Argument &Arg : F.args()) { 196 if (Arg.hasByValAttr()) 197 Tracker.walk(&Arg); 198 } 199 for (auto &BB : F) { 200 for (auto &I : BB) 201 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 202 Tracker.walk(AI); 203 } 204 205 bool Modified = false; 206 207 // Track whether a block is reachable after an alloca has escaped. Blocks that 208 // contain the escaping instruction will be marked as being visited without an 209 // escaped alloca, since that is how the block began. 210 enum VisitType { 211 UNVISITED, 212 UNESCAPED, 213 ESCAPED 214 }; 215 DenseMap<BasicBlock *, VisitType> Visited; 216 217 // We propagate the fact that an alloca has escaped from block to successor. 218 // Visit the blocks that are propagating the escapedness first. To do this, we 219 // maintain two worklists. 220 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 221 222 // We may enter a block and visit it thinking that no alloca has escaped yet, 223 // then see an escape point and go back around a loop edge and come back to 224 // the same block twice. Because of this, we defer setting tail on calls when 225 // we first encounter them in a block. Every entry in this list does not 226 // statically use an alloca via use-def chain analysis, but may find an alloca 227 // through other means if the block turns out to be reachable after an escape 228 // point. 229 SmallVector<CallInst *, 32> DeferredTails; 230 231 BasicBlock *BB = &F.getEntryBlock(); 232 VisitType Escaped = UNESCAPED; 233 do { 234 for (auto &I : *BB) { 235 if (Tracker.EscapePoints.count(&I)) 236 Escaped = ESCAPED; 237 238 CallInst *CI = dyn_cast<CallInst>(&I); 239 // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is 240 // considered accessing memory and will be marked as a tail call if we 241 // don't bail out here. 242 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) || 243 isa<PseudoProbeInst>(&I)) 244 continue; 245 246 // Special-case operand bundles "clang.arc.attachedcall", "ptrauth", and 247 // "kcfi". 248 bool IsNoTail = CI->isNoTailCall() || 249 CI->hasOperandBundlesOtherThan( 250 {LLVMContext::OB_clang_arc_attachedcall, 251 LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}); 252 253 if (!IsNoTail && CI->doesNotAccessMemory()) { 254 // A call to a readnone function whose arguments are all things computed 255 // outside this function can be marked tail. Even if you stored the 256 // alloca address into a global, a readnone function can't load the 257 // global anyhow. 258 // 259 // Note that this runs whether we know an alloca has escaped or not. If 260 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 261 bool SafeToTail = true; 262 for (auto &Arg : CI->args()) { 263 if (isa<Constant>(Arg.getUser())) 264 continue; 265 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 266 if (!A->hasByValAttr()) 267 continue; 268 SafeToTail = false; 269 break; 270 } 271 if (SafeToTail) { 272 using namespace ore; 273 ORE->emit([&]() { 274 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) 275 << "marked as tail call candidate (readnone)"; 276 }); 277 CI->setTailCall(); 278 Modified = true; 279 continue; 280 } 281 } 282 283 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) 284 DeferredTails.push_back(CI); 285 } 286 287 for (auto *SuccBB : successors(BB)) { 288 auto &State = Visited[SuccBB]; 289 if (State < Escaped) { 290 State = Escaped; 291 if (State == ESCAPED) 292 WorklistEscaped.push_back(SuccBB); 293 else 294 WorklistUnescaped.push_back(SuccBB); 295 } 296 } 297 298 if (!WorklistEscaped.empty()) { 299 BB = WorklistEscaped.pop_back_val(); 300 Escaped = ESCAPED; 301 } else { 302 BB = nullptr; 303 while (!WorklistUnescaped.empty()) { 304 auto *NextBB = WorklistUnescaped.pop_back_val(); 305 if (Visited[NextBB] == UNESCAPED) { 306 BB = NextBB; 307 Escaped = UNESCAPED; 308 break; 309 } 310 } 311 } 312 } while (BB); 313 314 for (CallInst *CI : DeferredTails) { 315 if (Visited[CI->getParent()] != ESCAPED) { 316 // If the escape point was part way through the block, calls after the 317 // escape point wouldn't have been put into DeferredTails. 318 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); 319 CI->setTailCall(); 320 Modified = true; 321 } 322 } 323 324 return Modified; 325 } 326 327 /// Return true if it is safe to move the specified 328 /// instruction from after the call to before the call, assuming that all 329 /// instructions between the call and this instruction are movable. 330 /// 331 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { 332 if (isa<DbgInfoIntrinsic>(I)) 333 return true; 334 335 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 336 if (II->getIntrinsicID() == Intrinsic::lifetime_end && 337 llvm::findAllocaForValue(II->getArgOperand(1))) 338 return true; 339 340 // FIXME: We can move load/store/call/free instructions above the call if the 341 // call does not mod/ref the memory location being processed. 342 if (I->mayHaveSideEffects()) // This also handles volatile loads. 343 return false; 344 345 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 346 // Loads may always be moved above calls without side effects. 347 if (CI->mayHaveSideEffects()) { 348 // Non-volatile loads may be moved above a call with side effects if it 349 // does not write to memory and the load provably won't trap. 350 // Writes to memory only matter if they may alias the pointer 351 // being loaded from. 352 const DataLayout &DL = L->getModule()->getDataLayout(); 353 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || 354 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(), 355 L->getAlign(), DL, L)) 356 return false; 357 } 358 } 359 360 // Otherwise, if this is a side-effect free instruction, check to make sure 361 // that it does not use the return value of the call. If it doesn't use the 362 // return value of the call, it must only use things that are defined before 363 // the call, or movable instructions between the call and the instruction 364 // itself. 365 return !is_contained(I->operands(), CI); 366 } 367 368 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { 369 if (!I->isAssociative() || !I->isCommutative()) 370 return false; 371 372 assert(I->getNumOperands() >= 2 && 373 "Associative/commutative operations should have at least 2 args!"); 374 375 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 376 // Accumulators must have an identity. 377 if (!ConstantExpr::getIntrinsicIdentity(II->getIntrinsicID(), I->getType())) 378 return false; 379 } 380 381 // Exactly one operand should be the result of the call instruction. 382 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 383 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 384 return false; 385 386 // The only user of this instruction we allow is a single return instruction. 387 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 388 return false; 389 390 return true; 391 } 392 393 static Instruction *firstNonDbg(BasicBlock::iterator I) { 394 while (isa<DbgInfoIntrinsic>(I)) 395 ++I; 396 return &*I; 397 } 398 399 namespace { 400 class TailRecursionEliminator { 401 Function &F; 402 const TargetTransformInfo *TTI; 403 AliasAnalysis *AA; 404 OptimizationRemarkEmitter *ORE; 405 DomTreeUpdater &DTU; 406 407 // The below are shared state we want to have available when eliminating any 408 // calls in the function. There values should be populated by 409 // createTailRecurseLoopHeader the first time we find a call we can eliminate. 410 BasicBlock *HeaderBB = nullptr; 411 SmallVector<PHINode *, 8> ArgumentPHIs; 412 413 // PHI node to store our return value. 414 PHINode *RetPN = nullptr; 415 416 // i1 PHI node to track if we have a valid return value stored in RetPN. 417 PHINode *RetKnownPN = nullptr; 418 419 // Vector of select instructions we insereted. These selects use RetKnownPN 420 // to either propagate RetPN or select a new return value. 421 SmallVector<SelectInst *, 8> RetSelects; 422 423 // The below are shared state needed when performing accumulator recursion. 424 // There values should be populated by insertAccumulator the first time we 425 // find an elimination that requires an accumulator. 426 427 // PHI node to store our current accumulated value. 428 PHINode *AccPN = nullptr; 429 430 // The instruction doing the accumulating. 431 Instruction *AccumulatorRecursionInstr = nullptr; 432 433 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI, 434 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 435 DomTreeUpdater &DTU) 436 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {} 437 438 CallInst *findTRECandidate(BasicBlock *BB); 439 440 void createTailRecurseLoopHeader(CallInst *CI); 441 442 void insertAccumulator(Instruction *AccRecInstr); 443 444 bool eliminateCall(CallInst *CI); 445 446 void cleanupAndFinalize(); 447 448 bool processBlock(BasicBlock &BB); 449 450 void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx); 451 452 void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx); 453 454 public: 455 static bool eliminate(Function &F, const TargetTransformInfo *TTI, 456 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 457 DomTreeUpdater &DTU); 458 }; 459 } // namespace 460 461 CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) { 462 Instruction *TI = BB->getTerminator(); 463 464 if (&BB->front() == TI) // Make sure there is something before the terminator. 465 return nullptr; 466 467 // Scan backwards from the return, checking to see if there is a tail call in 468 // this block. If so, set CI to it. 469 CallInst *CI = nullptr; 470 BasicBlock::iterator BBI(TI); 471 while (true) { 472 CI = dyn_cast<CallInst>(BBI); 473 if (CI && CI->getCalledFunction() == &F) 474 break; 475 476 if (BBI == BB->begin()) 477 return nullptr; // Didn't find a potential tail call. 478 --BBI; 479 } 480 481 assert((!CI->isTailCall() || !CI->isNoTailCall()) && 482 "Incompatible call site attributes(Tail,NoTail)"); 483 if (!CI->isTailCall()) 484 return nullptr; 485 486 // As a special case, detect code like this: 487 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 488 // and disable this xform in this case, because the code generator will 489 // lower the call to fabs into inline code. 490 if (BB == &F.getEntryBlock() && 491 firstNonDbg(BB->front().getIterator()) == CI && 492 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 493 !TTI->isLoweredToCall(CI->getCalledFunction())) { 494 // A single-block function with just a call and a return. Check that 495 // the arguments match. 496 auto I = CI->arg_begin(), E = CI->arg_end(); 497 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end(); 498 for (; I != E && FI != FE; ++I, ++FI) 499 if (*I != &*FI) break; 500 if (I == E && FI == FE) 501 return nullptr; 502 } 503 504 return CI; 505 } 506 507 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) { 508 HeaderBB = &F.getEntryBlock(); 509 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB); 510 NewEntry->takeName(HeaderBB); 511 HeaderBB->setName("tailrecurse"); 512 BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry); 513 BI->setDebugLoc(CI->getDebugLoc()); 514 515 // Move all fixed sized allocas from HeaderBB to NewEntry. 516 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(), 517 NEBI = NewEntry->begin(); 518 OEBI != E;) 519 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 520 if (isa<ConstantInt>(AI->getArraySize())) 521 AI->moveBefore(&*NEBI); 522 523 // Now that we have created a new block, which jumps to the entry 524 // block, insert a PHI node for each argument of the function. 525 // For now, we initialize each PHI to only have the real arguments 526 // which are passed in. 527 BasicBlock::iterator InsertPos = HeaderBB->begin(); 528 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 529 PHINode *PN = PHINode::Create(I->getType(), 2, I->getName() + ".tr"); 530 PN->insertBefore(InsertPos); 531 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 532 PN->addIncoming(&*I, NewEntry); 533 ArgumentPHIs.push_back(PN); 534 } 535 536 // If the function doen't return void, create the RetPN and RetKnownPN PHI 537 // nodes to track our return value. We initialize RetPN with poison and 538 // RetKnownPN with false since we can't know our return value at function 539 // entry. 540 Type *RetType = F.getReturnType(); 541 if (!RetType->isVoidTy()) { 542 Type *BoolType = Type::getInt1Ty(F.getContext()); 543 RetPN = PHINode::Create(RetType, 2, "ret.tr"); 544 RetPN->insertBefore(InsertPos); 545 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr"); 546 RetKnownPN->insertBefore(InsertPos); 547 548 RetPN->addIncoming(PoisonValue::get(RetType), NewEntry); 549 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry); 550 } 551 552 // The entry block was changed from HeaderBB to NewEntry. 553 // The forward DominatorTree needs to be recalculated when the EntryBB is 554 // changed. In this corner-case we recalculate the entire tree. 555 DTU.recalculate(*NewEntry->getParent()); 556 } 557 558 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) { 559 assert(!AccPN && "Trying to insert multiple accumulators"); 560 561 AccumulatorRecursionInstr = AccRecInstr; 562 563 // Start by inserting a new PHI node for the accumulator. 564 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB); 565 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1, 566 "accumulator.tr"); 567 AccPN->insertBefore(HeaderBB->begin()); 568 569 // Loop over all of the predecessors of the tail recursion block. For the 570 // real entry into the function we seed the PHI with the identity constant for 571 // the accumulation operation. For any other existing branches to this block 572 // (due to other tail recursions eliminated) the accumulator is not modified. 573 // Because we haven't added the branch in the current block to HeaderBB yet, 574 // it will not show up as a predecessor. 575 for (pred_iterator PI = PB; PI != PE; ++PI) { 576 BasicBlock *P = *PI; 577 if (P == &F.getEntryBlock()) { 578 Constant *Identity = 579 ConstantExpr::getIdentity(AccRecInstr, AccRecInstr->getType()); 580 AccPN->addIncoming(Identity, P); 581 } else { 582 AccPN->addIncoming(AccPN, P); 583 } 584 } 585 586 ++NumAccumAdded; 587 } 588 589 // Creates a copy of contents of ByValue operand of the specified 590 // call instruction into the newly created temporarily variable. 591 void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI, 592 int OpndIdx) { 593 Type *AggTy = CI->getParamByValType(OpndIdx); 594 assert(AggTy); 595 const DataLayout &DL = F.getParent()->getDataLayout(); 596 597 // Get alignment of byVal operand. 598 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne()); 599 600 // Create alloca for temporarily byval operands. 601 // Put alloca into the entry block. 602 Value *NewAlloca = new AllocaInst( 603 AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 604 CI->getArgOperand(OpndIdx)->getName(), &*F.getEntryBlock().begin()); 605 606 IRBuilder<> Builder(CI); 607 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy)); 608 609 // Copy data from byvalue operand into the temporarily variable. 610 Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment, 611 CI->getArgOperand(OpndIdx), 612 /*SrcAlign*/ Alignment, Size); 613 CI->setArgOperand(OpndIdx, NewAlloca); 614 } 615 616 // Creates a copy from temporarily variable(keeping value of ByVal argument) 617 // into the corresponding function argument location. 618 void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments( 619 CallInst *CI, int OpndIdx) { 620 Type *AggTy = CI->getParamByValType(OpndIdx); 621 assert(AggTy); 622 const DataLayout &DL = F.getParent()->getDataLayout(); 623 624 // Get alignment of byVal operand. 625 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne()); 626 627 IRBuilder<> Builder(CI); 628 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy)); 629 630 // Copy data from the temporarily variable into corresponding 631 // function argument location. 632 Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment, 633 CI->getArgOperand(OpndIdx), 634 /*SrcAlign*/ Alignment, Size); 635 } 636 637 bool TailRecursionEliminator::eliminateCall(CallInst *CI) { 638 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator()); 639 640 // Ok, we found a potential tail call. We can currently only transform the 641 // tail call if all of the instructions between the call and the return are 642 // movable to above the call itself, leaving the call next to the return. 643 // Check that this is the case now. 644 Instruction *AccRecInstr = nullptr; 645 BasicBlock::iterator BBI(CI); 646 for (++BBI; &*BBI != Ret; ++BBI) { 647 if (canMoveAboveCall(&*BBI, CI, AA)) 648 continue; 649 650 // If we can't move the instruction above the call, it might be because it 651 // is an associative and commutative operation that could be transformed 652 // using accumulator recursion elimination. Check to see if this is the 653 // case, and if so, remember which instruction accumulates for later. 654 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI)) 655 return false; // We cannot eliminate the tail recursion! 656 657 // Yes, this is accumulator recursion. Remember which instruction 658 // accumulates. 659 AccRecInstr = &*BBI; 660 } 661 662 BasicBlock *BB = Ret->getParent(); 663 664 using namespace ore; 665 ORE->emit([&]() { 666 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) 667 << "transforming tail recursion into loop"; 668 }); 669 670 // OK! We can transform this tail call. If this is the first one found, 671 // create the new entry block, allowing us to branch back to the old entry. 672 if (!HeaderBB) 673 createTailRecurseLoopHeader(CI); 674 675 // Copy values of ByVal operands into local temporarily variables. 676 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) { 677 if (CI->isByValArgument(I)) 678 copyByValueOperandIntoLocalTemp(CI, I); 679 } 680 681 // Ok, now that we know we have a pseudo-entry block WITH all of the 682 // required PHI nodes, add entries into the PHI node for the actual 683 // parameters passed into the tail-recursive call. 684 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) { 685 if (CI->isByValArgument(I)) { 686 copyLocalTempOfByValueOperandIntoArguments(CI, I); 687 // When eliminating a tail call, we modify the values of the arguments. 688 // Therefore, if the byval parameter has a readonly attribute, we have to 689 // remove it. It is safe because, from the perspective of a caller, the 690 // byval parameter is always treated as "readonly," even if the readonly 691 // attribute is removed. 692 F.removeParamAttr(I, Attribute::ReadOnly); 693 ArgumentPHIs[I]->addIncoming(F.getArg(I), BB); 694 } else 695 ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB); 696 } 697 698 if (AccRecInstr) { 699 insertAccumulator(AccRecInstr); 700 701 // Rewrite the accumulator recursion instruction so that it does not use 702 // the result of the call anymore, instead, use the PHI node we just 703 // inserted. 704 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 705 } 706 707 // Update our return value tracking 708 if (RetPN) { 709 if (Ret->getReturnValue() == CI || AccRecInstr) { 710 // Defer selecting a return value 711 RetPN->addIncoming(RetPN, BB); 712 RetKnownPN->addIncoming(RetKnownPN, BB); 713 } else { 714 // We found a return value we want to use, insert a select instruction to 715 // select it if we don't already know what our return value will be and 716 // store the result in our return value PHI node. 717 SelectInst *SI = SelectInst::Create( 718 RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret); 719 RetSelects.push_back(SI); 720 721 RetPN->addIncoming(SI, BB); 722 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB); 723 } 724 725 if (AccPN) 726 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB); 727 } 728 729 // Now that all of the PHI nodes are in place, remove the call and 730 // ret instructions, replacing them with an unconditional branch. 731 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret); 732 NewBI->setDebugLoc(CI->getDebugLoc()); 733 734 Ret->eraseFromParent(); // Remove return. 735 CI->eraseFromParent(); // Remove call. 736 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}}); 737 ++NumEliminated; 738 return true; 739 } 740 741 void TailRecursionEliminator::cleanupAndFinalize() { 742 // If we eliminated any tail recursions, it's possible that we inserted some 743 // silly PHI nodes which just merge an initial value (the incoming operand) 744 // with themselves. Check to see if we did and clean up our mess if so. This 745 // occurs when a function passes an argument straight through to its tail 746 // call. 747 for (PHINode *PN : ArgumentPHIs) { 748 // If the PHI Node is a dynamic constant, replace it with the value it is. 749 if (Value *PNV = simplifyInstruction(PN, F.getParent()->getDataLayout())) { 750 PN->replaceAllUsesWith(PNV); 751 PN->eraseFromParent(); 752 } 753 } 754 755 if (RetPN) { 756 if (RetSelects.empty()) { 757 // If we didn't insert any select instructions, then we know we didn't 758 // store a return value and we can remove the PHI nodes we inserted. 759 RetPN->dropAllReferences(); 760 RetPN->eraseFromParent(); 761 762 RetKnownPN->dropAllReferences(); 763 RetKnownPN->eraseFromParent(); 764 765 if (AccPN) { 766 // We need to insert a copy of our accumulator instruction before any 767 // return in the function, and return its result instead. 768 Instruction *AccRecInstr = AccumulatorRecursionInstr; 769 for (BasicBlock &BB : F) { 770 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 771 if (!RI) 772 continue; 773 774 Instruction *AccRecInstrNew = AccRecInstr->clone(); 775 AccRecInstrNew->setName("accumulator.ret.tr"); 776 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 777 RI->getOperand(0)); 778 AccRecInstrNew->insertBefore(RI); 779 RI->setOperand(0, AccRecInstrNew); 780 } 781 } 782 } else { 783 // We need to insert a select instruction before any return left in the 784 // function to select our stored return value if we have one. 785 for (BasicBlock &BB : F) { 786 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 787 if (!RI) 788 continue; 789 790 SelectInst *SI = SelectInst::Create( 791 RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI); 792 RetSelects.push_back(SI); 793 RI->setOperand(0, SI); 794 } 795 796 if (AccPN) { 797 // We need to insert a copy of our accumulator instruction before any 798 // of the selects we inserted, and select its result instead. 799 Instruction *AccRecInstr = AccumulatorRecursionInstr; 800 for (SelectInst *SI : RetSelects) { 801 Instruction *AccRecInstrNew = AccRecInstr->clone(); 802 AccRecInstrNew->setName("accumulator.ret.tr"); 803 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 804 SI->getFalseValue()); 805 AccRecInstrNew->insertBefore(SI); 806 SI->setFalseValue(AccRecInstrNew); 807 } 808 } 809 } 810 } 811 } 812 813 bool TailRecursionEliminator::processBlock(BasicBlock &BB) { 814 Instruction *TI = BB.getTerminator(); 815 816 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 817 if (BI->isConditional()) 818 return false; 819 820 BasicBlock *Succ = BI->getSuccessor(0); 821 ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true)); 822 823 if (!Ret) 824 return false; 825 826 CallInst *CI = findTRECandidate(&BB); 827 828 if (!CI) 829 return false; 830 831 LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ 832 << "INTO UNCOND BRANCH PRED: " << BB); 833 FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU); 834 ++NumRetDuped; 835 836 // If all predecessors of Succ have been eliminated by 837 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 838 // because the ret instruction in there is still using a value which 839 // eliminateCall will attempt to remove. This block can only contain 840 // instructions that can't have uses, therefore it is safe to remove. 841 if (pred_empty(Succ)) 842 DTU.deleteBB(Succ); 843 844 eliminateCall(CI); 845 return true; 846 } else if (isa<ReturnInst>(TI)) { 847 CallInst *CI = findTRECandidate(&BB); 848 849 if (CI) 850 return eliminateCall(CI); 851 } 852 853 return false; 854 } 855 856 bool TailRecursionEliminator::eliminate(Function &F, 857 const TargetTransformInfo *TTI, 858 AliasAnalysis *AA, 859 OptimizationRemarkEmitter *ORE, 860 DomTreeUpdater &DTU) { 861 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 862 return false; 863 864 bool MadeChange = false; 865 MadeChange |= markTails(F, ORE); 866 867 // If this function is a varargs function, we won't be able to PHI the args 868 // right, so don't even try to convert it... 869 if (F.getFunctionType()->isVarArg()) 870 return MadeChange; 871 872 if (!canTRE(F)) 873 return MadeChange; 874 875 // Change any tail recursive calls to loops. 876 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU); 877 878 for (BasicBlock &BB : F) 879 MadeChange |= TRE.processBlock(BB); 880 881 TRE.cleanupAndFinalize(); 882 883 return MadeChange; 884 } 885 886 namespace { 887 struct TailCallElim : public FunctionPass { 888 static char ID; // Pass identification, replacement for typeid 889 TailCallElim() : FunctionPass(ID) { 890 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 891 } 892 893 void getAnalysisUsage(AnalysisUsage &AU) const override { 894 AU.addRequired<TargetTransformInfoWrapperPass>(); 895 AU.addRequired<AAResultsWrapperPass>(); 896 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 897 AU.addPreserved<GlobalsAAWrapperPass>(); 898 AU.addPreserved<DominatorTreeWrapperPass>(); 899 AU.addPreserved<PostDominatorTreeWrapperPass>(); 900 } 901 902 bool runOnFunction(Function &F) override { 903 if (skipFunction(F)) 904 return false; 905 906 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 907 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 908 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 909 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 910 // There is no noticable performance difference here between Lazy and Eager 911 // UpdateStrategy based on some test results. It is feasible to switch the 912 // UpdateStrategy to Lazy if we find it profitable later. 913 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 914 915 return TailRecursionEliminator::eliminate( 916 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 917 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 918 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU); 919 } 920 }; 921 } 922 923 char TailCallElim::ID = 0; 924 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", 925 false, false) 926 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 927 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 928 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", 929 false, false) 930 931 // Public interface to the TailCallElimination pass 932 FunctionPass *llvm::createTailCallEliminationPass() { 933 return new TailCallElim(); 934 } 935 936 PreservedAnalyses TailCallElimPass::run(Function &F, 937 FunctionAnalysisManager &AM) { 938 939 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 940 AliasAnalysis &AA = AM.getResult<AAManager>(F); 941 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 942 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 943 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F); 944 // There is no noticable performance difference here between Lazy and Eager 945 // UpdateStrategy based on some test results. It is feasible to switch the 946 // UpdateStrategy to Lazy if we find it profitable later. 947 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 948 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU); 949 950 if (!Changed) 951 return PreservedAnalyses::all(); 952 PreservedAnalyses PA; 953 PA.preserve<DominatorTreeAnalysis>(); 954 PA.preserve<PostDominatorTreeAnalysis>(); 955 return PA; 956 } 957