xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop.  This pass also implements the following extensions to the basic
12 // algorithm:
13 //
14 //  1. Trivial instructions between the call and return do not prevent the
15 //     transformation from taking place, though currently the analysis cannot
16 //     support moving any really useful instructions (only dead ones).
17 //  2. This pass transforms functions that are prevented from being tail
18 //     recursive by an associative and commutative expression to use an
19 //     accumulator variable, thus compiling the typical naive factorial or
20 //     'fib' implementation into efficient code.
21 //  3. TRE is performed if the function returns void, if the return
22 //     returns the result returned by the call, or if the function returns a
23 //     run-time constant on all exits from the function.  It is possible, though
24 //     unlikely, that the return returns something else (like constant 0), and
25 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
26 //     the function return the exact same value.
27 //  4. If it can prove that callees do not access their caller stack frame,
28 //     they are marked as eligible for tail call elimination (by the code
29 //     generator).
30 //
31 // There are several improvements that could be made:
32 //
33 //  1. If the function has any alloca instructions, these instructions will be
34 //     moved out of the entry block of the function, causing them to be
35 //     evaluated each time through the tail recursion.  Safely keeping allocas
36 //     in the entry block requires analysis to proves that the tail-called
37 //     function does not read or write the stack object.
38 //  2. Tail recursion is only performed if the call immediately precedes the
39 //     return instruction.  It's possible that there could be a jump between
40 //     the call and the return.
41 //  3. There can be intervening operations between the call and the return that
42 //     prevent the TRE from occurring.  For example, there could be GEP's and
43 //     stores to memory that will not be read or written by the call.  This
44 //     requires some substantial analysis (such as with DSA) to prove safe to
45 //     move ahead of the call, but doing so could allow many more TREs to be
46 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 //  4. The algorithm we use to detect if callees access their caller stack
48 //     frames is very primitive.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/DomTreeUpdater.h"
57 #include "llvm/Analysis/GlobalsModRef.h"
58 #include "llvm/Analysis/InstructionSimplify.h"
59 #include "llvm/Analysis/Loads.h"
60 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
61 #include "llvm/Analysis/PostDominators.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Module.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 using namespace llvm;
83 
84 #define DEBUG_TYPE "tailcallelim"
85 
86 STATISTIC(NumEliminated, "Number of tail calls removed");
87 STATISTIC(NumRetDuped,   "Number of return duplicated");
88 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
89 
90 /// Scan the specified function for alloca instructions.
91 /// If it contains any dynamic allocas, returns false.
92 static bool canTRE(Function &F) {
93   // TODO: We don't do TRE if dynamic allocas are used.
94   // Dynamic allocas allocate stack space which should be
95   // deallocated before new iteration started. That is
96   // currently not implemented.
97   return llvm::all_of(instructions(F), [](Instruction &I) {
98     auto *AI = dyn_cast<AllocaInst>(&I);
99     return !AI || AI->isStaticAlloca();
100   });
101 }
102 
103 namespace {
104 struct AllocaDerivedValueTracker {
105   // Start at a root value and walk its use-def chain to mark calls that use the
106   // value or a derived value in AllocaUsers, and places where it may escape in
107   // EscapePoints.
108   void walk(Value *Root) {
109     SmallVector<Use *, 32> Worklist;
110     SmallPtrSet<Use *, 32> Visited;
111 
112     auto AddUsesToWorklist = [&](Value *V) {
113       for (auto &U : V->uses()) {
114         if (!Visited.insert(&U).second)
115           continue;
116         Worklist.push_back(&U);
117       }
118     };
119 
120     AddUsesToWorklist(Root);
121 
122     while (!Worklist.empty()) {
123       Use *U = Worklist.pop_back_val();
124       Instruction *I = cast<Instruction>(U->getUser());
125 
126       switch (I->getOpcode()) {
127       case Instruction::Call:
128       case Instruction::Invoke: {
129         auto &CB = cast<CallBase>(*I);
130         // If the alloca-derived argument is passed byval it is not an escape
131         // point, or a use of an alloca. Calling with byval copies the contents
132         // of the alloca into argument registers or stack slots, which exist
133         // beyond the lifetime of the current frame.
134         if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
135           continue;
136         bool IsNocapture =
137             CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
138         callUsesLocalStack(CB, IsNocapture);
139         if (IsNocapture) {
140           // If the alloca-derived argument is passed in as nocapture, then it
141           // can't propagate to the call's return. That would be capturing.
142           continue;
143         }
144         break;
145       }
146       case Instruction::Load: {
147         // The result of a load is not alloca-derived (unless an alloca has
148         // otherwise escaped, but this is a local analysis).
149         continue;
150       }
151       case Instruction::Store: {
152         if (U->getOperandNo() == 0)
153           EscapePoints.insert(I);
154         continue;  // Stores have no users to analyze.
155       }
156       case Instruction::BitCast:
157       case Instruction::GetElementPtr:
158       case Instruction::PHI:
159       case Instruction::Select:
160       case Instruction::AddrSpaceCast:
161         break;
162       default:
163         EscapePoints.insert(I);
164         break;
165       }
166 
167       AddUsesToWorklist(I);
168     }
169   }
170 
171   void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
172     // Add it to the list of alloca users.
173     AllocaUsers.insert(&CB);
174 
175     // If it's nocapture then it can't capture this alloca.
176     if (IsNocapture)
177       return;
178 
179     // If it can write to memory, it can leak the alloca value.
180     if (!CB.onlyReadsMemory())
181       EscapePoints.insert(&CB);
182   }
183 
184   SmallPtrSet<Instruction *, 32> AllocaUsers;
185   SmallPtrSet<Instruction *, 32> EscapePoints;
186 };
187 }
188 
189 static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) {
190   if (F.callsFunctionThatReturnsTwice())
191     return false;
192 
193   // The local stack holds all alloca instructions and all byval arguments.
194   AllocaDerivedValueTracker Tracker;
195   for (Argument &Arg : F.args()) {
196     if (Arg.hasByValAttr())
197       Tracker.walk(&Arg);
198   }
199   for (auto &BB : F) {
200     for (auto &I : BB)
201       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
202         Tracker.walk(AI);
203   }
204 
205   bool Modified = false;
206 
207   // Track whether a block is reachable after an alloca has escaped. Blocks that
208   // contain the escaping instruction will be marked as being visited without an
209   // escaped alloca, since that is how the block began.
210   enum VisitType {
211     UNVISITED,
212     UNESCAPED,
213     ESCAPED
214   };
215   DenseMap<BasicBlock *, VisitType> Visited;
216 
217   // We propagate the fact that an alloca has escaped from block to successor.
218   // Visit the blocks that are propagating the escapedness first. To do this, we
219   // maintain two worklists.
220   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
221 
222   // We may enter a block and visit it thinking that no alloca has escaped yet,
223   // then see an escape point and go back around a loop edge and come back to
224   // the same block twice. Because of this, we defer setting tail on calls when
225   // we first encounter them in a block. Every entry in this list does not
226   // statically use an alloca via use-def chain analysis, but may find an alloca
227   // through other means if the block turns out to be reachable after an escape
228   // point.
229   SmallVector<CallInst *, 32> DeferredTails;
230 
231   BasicBlock *BB = &F.getEntryBlock();
232   VisitType Escaped = UNESCAPED;
233   do {
234     for (auto &I : *BB) {
235       if (Tracker.EscapePoints.count(&I))
236         Escaped = ESCAPED;
237 
238       CallInst *CI = dyn_cast<CallInst>(&I);
239       // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
240       // considered accessing memory and will be marked as a tail call if we
241       // don't bail out here.
242       if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
243           isa<PseudoProbeInst>(&I))
244         continue;
245 
246       // Special-case operand bundles "clang.arc.attachedcall", "ptrauth", and
247       // "kcfi".
248       bool IsNoTail = CI->isNoTailCall() ||
249                       CI->hasOperandBundlesOtherThan(
250                           {LLVMContext::OB_clang_arc_attachedcall,
251                            LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi});
252 
253       if (!IsNoTail && CI->doesNotAccessMemory()) {
254         // A call to a readnone function whose arguments are all things computed
255         // outside this function can be marked tail. Even if you stored the
256         // alloca address into a global, a readnone function can't load the
257         // global anyhow.
258         //
259         // Note that this runs whether we know an alloca has escaped or not. If
260         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
261         bool SafeToTail = true;
262         for (auto &Arg : CI->args()) {
263           if (isa<Constant>(Arg.getUser()))
264             continue;
265           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
266             if (!A->hasByValAttr())
267               continue;
268           SafeToTail = false;
269           break;
270         }
271         if (SafeToTail) {
272           using namespace ore;
273           ORE->emit([&]() {
274             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
275                    << "marked as tail call candidate (readnone)";
276           });
277           CI->setTailCall();
278           Modified = true;
279           continue;
280         }
281       }
282 
283       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI))
284         DeferredTails.push_back(CI);
285     }
286 
287     for (auto *SuccBB : successors(BB)) {
288       auto &State = Visited[SuccBB];
289       if (State < Escaped) {
290         State = Escaped;
291         if (State == ESCAPED)
292           WorklistEscaped.push_back(SuccBB);
293         else
294           WorklistUnescaped.push_back(SuccBB);
295       }
296     }
297 
298     if (!WorklistEscaped.empty()) {
299       BB = WorklistEscaped.pop_back_val();
300       Escaped = ESCAPED;
301     } else {
302       BB = nullptr;
303       while (!WorklistUnescaped.empty()) {
304         auto *NextBB = WorklistUnescaped.pop_back_val();
305         if (Visited[NextBB] == UNESCAPED) {
306           BB = NextBB;
307           Escaped = UNESCAPED;
308           break;
309         }
310       }
311     }
312   } while (BB);
313 
314   for (CallInst *CI : DeferredTails) {
315     if (Visited[CI->getParent()] != ESCAPED) {
316       // If the escape point was part way through the block, calls after the
317       // escape point wouldn't have been put into DeferredTails.
318       LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
319       CI->setTailCall();
320       Modified = true;
321     }
322   }
323 
324   return Modified;
325 }
326 
327 /// Return true if it is safe to move the specified
328 /// instruction from after the call to before the call, assuming that all
329 /// instructions between the call and this instruction are movable.
330 ///
331 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
332   if (isa<DbgInfoIntrinsic>(I))
333     return true;
334 
335   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
336     if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
337         llvm::findAllocaForValue(II->getArgOperand(1)))
338       return true;
339 
340   // FIXME: We can move load/store/call/free instructions above the call if the
341   // call does not mod/ref the memory location being processed.
342   if (I->mayHaveSideEffects())  // This also handles volatile loads.
343     return false;
344 
345   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
346     // Loads may always be moved above calls without side effects.
347     if (CI->mayHaveSideEffects()) {
348       // Non-volatile loads may be moved above a call with side effects if it
349       // does not write to memory and the load provably won't trap.
350       // Writes to memory only matter if they may alias the pointer
351       // being loaded from.
352       const DataLayout &DL = L->getDataLayout();
353       if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
354           !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
355                                        L->getAlign(), DL, L))
356         return false;
357     }
358   }
359 
360   // Otherwise, if this is a side-effect free instruction, check to make sure
361   // that it does not use the return value of the call.  If it doesn't use the
362   // return value of the call, it must only use things that are defined before
363   // the call, or movable instructions between the call and the instruction
364   // itself.
365   return !is_contained(I->operands(), CI);
366 }
367 
368 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
369   if (!I->isAssociative() || !I->isCommutative())
370     return false;
371 
372   assert(I->getNumOperands() >= 2 &&
373          "Associative/commutative operations should have at least 2 args!");
374 
375   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
376     // Accumulators must have an identity.
377     if (!ConstantExpr::getIntrinsicIdentity(II->getIntrinsicID(), I->getType()))
378       return false;
379   }
380 
381   // Exactly one operand should be the result of the call instruction.
382   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
383       (I->getOperand(0) != CI && I->getOperand(1) != CI))
384     return false;
385 
386   // The only user of this instruction we allow is a single return instruction.
387   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
388     return false;
389 
390   return true;
391 }
392 
393 static Instruction *firstNonDbg(BasicBlock::iterator I) {
394   while (isa<DbgInfoIntrinsic>(I))
395     ++I;
396   return &*I;
397 }
398 
399 namespace {
400 class TailRecursionEliminator {
401   Function &F;
402   const TargetTransformInfo *TTI;
403   AliasAnalysis *AA;
404   OptimizationRemarkEmitter *ORE;
405   DomTreeUpdater &DTU;
406 
407   // The below are shared state we want to have available when eliminating any
408   // calls in the function. There values should be populated by
409   // createTailRecurseLoopHeader the first time we find a call we can eliminate.
410   BasicBlock *HeaderBB = nullptr;
411   SmallVector<PHINode *, 8> ArgumentPHIs;
412 
413   // PHI node to store our return value.
414   PHINode *RetPN = nullptr;
415 
416   // i1 PHI node to track if we have a valid return value stored in RetPN.
417   PHINode *RetKnownPN = nullptr;
418 
419   // Vector of select instructions we insereted. These selects use RetKnownPN
420   // to either propagate RetPN or select a new return value.
421   SmallVector<SelectInst *, 8> RetSelects;
422 
423   // The below are shared state needed when performing accumulator recursion.
424   // There values should be populated by insertAccumulator the first time we
425   // find an elimination that requires an accumulator.
426 
427   // PHI node to store our current accumulated value.
428   PHINode *AccPN = nullptr;
429 
430   // The instruction doing the accumulating.
431   Instruction *AccumulatorRecursionInstr = nullptr;
432 
433   TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
434                           AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
435                           DomTreeUpdater &DTU)
436       : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
437 
438   CallInst *findTRECandidate(BasicBlock *BB);
439 
440   void createTailRecurseLoopHeader(CallInst *CI);
441 
442   void insertAccumulator(Instruction *AccRecInstr);
443 
444   bool eliminateCall(CallInst *CI);
445 
446   void cleanupAndFinalize();
447 
448   bool processBlock(BasicBlock &BB);
449 
450   void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx);
451 
452   void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx);
453 
454 public:
455   static bool eliminate(Function &F, const TargetTransformInfo *TTI,
456                         AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
457                         DomTreeUpdater &DTU);
458 };
459 } // namespace
460 
461 CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) {
462   Instruction *TI = BB->getTerminator();
463 
464   if (&BB->front() == TI) // Make sure there is something before the terminator.
465     return nullptr;
466 
467   // Scan backwards from the return, checking to see if there is a tail call in
468   // this block.  If so, set CI to it.
469   CallInst *CI = nullptr;
470   BasicBlock::iterator BBI(TI);
471   while (true) {
472     CI = dyn_cast<CallInst>(BBI);
473     if (CI && CI->getCalledFunction() == &F)
474       break;
475 
476     if (BBI == BB->begin())
477       return nullptr;          // Didn't find a potential tail call.
478     --BBI;
479   }
480 
481   assert((!CI->isTailCall() || !CI->isNoTailCall()) &&
482          "Incompatible call site attributes(Tail,NoTail)");
483   if (!CI->isTailCall())
484     return nullptr;
485 
486   // As a special case, detect code like this:
487   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
488   // and disable this xform in this case, because the code generator will
489   // lower the call to fabs into inline code.
490   if (BB == &F.getEntryBlock() &&
491       firstNonDbg(BB->front().getIterator()) == CI &&
492       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
493       !TTI->isLoweredToCall(CI->getCalledFunction())) {
494     // A single-block function with just a call and a return. Check that
495     // the arguments match.
496     auto I = CI->arg_begin(), E = CI->arg_end();
497     Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
498     for (; I != E && FI != FE; ++I, ++FI)
499       if (*I != &*FI) break;
500     if (I == E && FI == FE)
501       return nullptr;
502   }
503 
504   return CI;
505 }
506 
507 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
508   HeaderBB = &F.getEntryBlock();
509   BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
510   NewEntry->takeName(HeaderBB);
511   HeaderBB->setName("tailrecurse");
512   BranchInst::Create(HeaderBB, NewEntry);
513   // If the new branch preserves the debug location of CI, it could result in
514   // misleading stepping, if CI is located in a conditional branch.
515   // So, here we don't give any debug location to the new branch.
516 
517   // Move all fixed sized allocas from HeaderBB to NewEntry.
518   for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
519                             NEBI = NewEntry->begin();
520        OEBI != E;)
521     if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
522       if (isa<ConstantInt>(AI->getArraySize()))
523         AI->moveBefore(&*NEBI);
524 
525   // Now that we have created a new block, which jumps to the entry
526   // block, insert a PHI node for each argument of the function.
527   // For now, we initialize each PHI to only have the real arguments
528   // which are passed in.
529   BasicBlock::iterator InsertPos = HeaderBB->begin();
530   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
531     PHINode *PN = PHINode::Create(I->getType(), 2, I->getName() + ".tr");
532     PN->insertBefore(InsertPos);
533     I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
534     PN->addIncoming(&*I, NewEntry);
535     ArgumentPHIs.push_back(PN);
536   }
537 
538   // If the function doen't return void, create the RetPN and RetKnownPN PHI
539   // nodes to track our return value. We initialize RetPN with poison and
540   // RetKnownPN with false since we can't know our return value at function
541   // entry.
542   Type *RetType = F.getReturnType();
543   if (!RetType->isVoidTy()) {
544     Type *BoolType = Type::getInt1Ty(F.getContext());
545     RetPN = PHINode::Create(RetType, 2, "ret.tr");
546     RetPN->insertBefore(InsertPos);
547     RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr");
548     RetKnownPN->insertBefore(InsertPos);
549 
550     RetPN->addIncoming(PoisonValue::get(RetType), NewEntry);
551     RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
552   }
553 
554   // The entry block was changed from HeaderBB to NewEntry.
555   // The forward DominatorTree needs to be recalculated when the EntryBB is
556   // changed. In this corner-case we recalculate the entire tree.
557   DTU.recalculate(*NewEntry->getParent());
558 }
559 
560 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
561   assert(!AccPN && "Trying to insert multiple accumulators");
562 
563   AccumulatorRecursionInstr = AccRecInstr;
564 
565   // Start by inserting a new PHI node for the accumulator.
566   pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
567   AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
568                           "accumulator.tr");
569   AccPN->insertBefore(HeaderBB->begin());
570 
571   // Loop over all of the predecessors of the tail recursion block.  For the
572   // real entry into the function we seed the PHI with the identity constant for
573   // the accumulation operation.  For any other existing branches to this block
574   // (due to other tail recursions eliminated) the accumulator is not modified.
575   // Because we haven't added the branch in the current block to HeaderBB yet,
576   // it will not show up as a predecessor.
577   for (pred_iterator PI = PB; PI != PE; ++PI) {
578     BasicBlock *P = *PI;
579     if (P == &F.getEntryBlock()) {
580       Constant *Identity =
581           ConstantExpr::getIdentity(AccRecInstr, AccRecInstr->getType());
582       AccPN->addIncoming(Identity, P);
583     } else {
584       AccPN->addIncoming(AccPN, P);
585     }
586   }
587 
588   ++NumAccumAdded;
589 }
590 
591 // Creates a copy of contents of ByValue operand of the specified
592 // call instruction into the newly created temporarily variable.
593 void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI,
594                                                               int OpndIdx) {
595   Type *AggTy = CI->getParamByValType(OpndIdx);
596   assert(AggTy);
597   const DataLayout &DL = F.getDataLayout();
598 
599   // Get alignment of byVal operand.
600   Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
601 
602   // Create alloca for temporarily byval operands.
603   // Put alloca into the entry block.
604   Value *NewAlloca = new AllocaInst(
605       AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
606       CI->getArgOperand(OpndIdx)->getName(), F.getEntryBlock().begin());
607 
608   IRBuilder<> Builder(CI);
609   Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
610 
611   // Copy data from byvalue operand into the temporarily variable.
612   Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment,
613                        CI->getArgOperand(OpndIdx),
614                        /*SrcAlign*/ Alignment, Size);
615   CI->setArgOperand(OpndIdx, NewAlloca);
616 }
617 
618 // Creates a copy from temporarily variable(keeping value of ByVal argument)
619 // into the corresponding function argument location.
620 void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments(
621     CallInst *CI, int OpndIdx) {
622   Type *AggTy = CI->getParamByValType(OpndIdx);
623   assert(AggTy);
624   const DataLayout &DL = F.getDataLayout();
625 
626   // Get alignment of byVal operand.
627   Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
628 
629   IRBuilder<> Builder(CI);
630   Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
631 
632   // Copy data from the temporarily variable into corresponding
633   // function argument location.
634   Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment,
635                        CI->getArgOperand(OpndIdx),
636                        /*SrcAlign*/ Alignment, Size);
637 }
638 
639 bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
640   ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
641 
642   // Ok, we found a potential tail call.  We can currently only transform the
643   // tail call if all of the instructions between the call and the return are
644   // movable to above the call itself, leaving the call next to the return.
645   // Check that this is the case now.
646   Instruction *AccRecInstr = nullptr;
647   BasicBlock::iterator BBI(CI);
648   for (++BBI; &*BBI != Ret; ++BBI) {
649     if (canMoveAboveCall(&*BBI, CI, AA))
650       continue;
651 
652     // If we can't move the instruction above the call, it might be because it
653     // is an associative and commutative operation that could be transformed
654     // using accumulator recursion elimination.  Check to see if this is the
655     // case, and if so, remember which instruction accumulates for later.
656     if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
657       return false; // We cannot eliminate the tail recursion!
658 
659     // Yes, this is accumulator recursion.  Remember which instruction
660     // accumulates.
661     AccRecInstr = &*BBI;
662   }
663 
664   BasicBlock *BB = Ret->getParent();
665 
666   using namespace ore;
667   ORE->emit([&]() {
668     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
669            << "transforming tail recursion into loop";
670   });
671 
672   // OK! We can transform this tail call.  If this is the first one found,
673   // create the new entry block, allowing us to branch back to the old entry.
674   if (!HeaderBB)
675     createTailRecurseLoopHeader(CI);
676 
677   // Copy values of ByVal operands into local temporarily variables.
678   for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
679     if (CI->isByValArgument(I))
680       copyByValueOperandIntoLocalTemp(CI, I);
681   }
682 
683   // Ok, now that we know we have a pseudo-entry block WITH all of the
684   // required PHI nodes, add entries into the PHI node for the actual
685   // parameters passed into the tail-recursive call.
686   for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
687     if (CI->isByValArgument(I)) {
688       copyLocalTempOfByValueOperandIntoArguments(CI, I);
689       // When eliminating a tail call, we modify the values of the arguments.
690       // Therefore, if the byval parameter has a readonly attribute, we have to
691       // remove it. It is safe because, from the perspective of a caller, the
692       // byval parameter is always treated as "readonly," even if the readonly
693       // attribute is removed.
694       F.removeParamAttr(I, Attribute::ReadOnly);
695       ArgumentPHIs[I]->addIncoming(F.getArg(I), BB);
696     } else
697       ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB);
698   }
699 
700   if (AccRecInstr) {
701     insertAccumulator(AccRecInstr);
702 
703     // Rewrite the accumulator recursion instruction so that it does not use
704     // the result of the call anymore, instead, use the PHI node we just
705     // inserted.
706     AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
707   }
708 
709   // Update our return value tracking
710   if (RetPN) {
711     if (Ret->getReturnValue() == CI || AccRecInstr) {
712       // Defer selecting a return value
713       RetPN->addIncoming(RetPN, BB);
714       RetKnownPN->addIncoming(RetKnownPN, BB);
715     } else {
716       // We found a return value we want to use, insert a select instruction to
717       // select it if we don't already know what our return value will be and
718       // store the result in our return value PHI node.
719       SelectInst *SI =
720           SelectInst::Create(RetKnownPN, RetPN, Ret->getReturnValue(),
721                              "current.ret.tr", Ret->getIterator());
722       RetSelects.push_back(SI);
723 
724       RetPN->addIncoming(SI, BB);
725       RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
726     }
727 
728     if (AccPN)
729       AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
730   }
731 
732   // Now that all of the PHI nodes are in place, remove the call and
733   // ret instructions, replacing them with an unconditional branch.
734   BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret->getIterator());
735   NewBI->setDebugLoc(CI->getDebugLoc());
736 
737   Ret->eraseFromParent();  // Remove return.
738   CI->eraseFromParent();   // Remove call.
739   DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
740   ++NumEliminated;
741   return true;
742 }
743 
744 void TailRecursionEliminator::cleanupAndFinalize() {
745   // If we eliminated any tail recursions, it's possible that we inserted some
746   // silly PHI nodes which just merge an initial value (the incoming operand)
747   // with themselves.  Check to see if we did and clean up our mess if so.  This
748   // occurs when a function passes an argument straight through to its tail
749   // call.
750   for (PHINode *PN : ArgumentPHIs) {
751     // If the PHI Node is a dynamic constant, replace it with the value it is.
752     if (Value *PNV = simplifyInstruction(PN, F.getDataLayout())) {
753       PN->replaceAllUsesWith(PNV);
754       PN->eraseFromParent();
755     }
756   }
757 
758   if (RetPN) {
759     if (RetSelects.empty()) {
760       // If we didn't insert any select instructions, then we know we didn't
761       // store a return value and we can remove the PHI nodes we inserted.
762       RetPN->dropAllReferences();
763       RetPN->eraseFromParent();
764 
765       RetKnownPN->dropAllReferences();
766       RetKnownPN->eraseFromParent();
767 
768       if (AccPN) {
769         // We need to insert a copy of our accumulator instruction before any
770         // return in the function, and return its result instead.
771         Instruction *AccRecInstr = AccumulatorRecursionInstr;
772         for (BasicBlock &BB : F) {
773           ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
774           if (!RI)
775             continue;
776 
777           Instruction *AccRecInstrNew = AccRecInstr->clone();
778           AccRecInstrNew->setName("accumulator.ret.tr");
779           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
780                                      RI->getOperand(0));
781           AccRecInstrNew->insertBefore(RI);
782           AccRecInstrNew->dropLocation();
783           RI->setOperand(0, AccRecInstrNew);
784         }
785       }
786     } else {
787       // We need to insert a select instruction before any return left in the
788       // function to select our stored return value if we have one.
789       for (BasicBlock &BB : F) {
790         ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
791         if (!RI)
792           continue;
793 
794         SelectInst *SI =
795             SelectInst::Create(RetKnownPN, RetPN, RI->getOperand(0),
796                                "current.ret.tr", RI->getIterator());
797         RetSelects.push_back(SI);
798         RI->setOperand(0, SI);
799       }
800 
801       if (AccPN) {
802         // We need to insert a copy of our accumulator instruction before any
803         // of the selects we inserted, and select its result instead.
804         Instruction *AccRecInstr = AccumulatorRecursionInstr;
805         for (SelectInst *SI : RetSelects) {
806           Instruction *AccRecInstrNew = AccRecInstr->clone();
807           AccRecInstrNew->setName("accumulator.ret.tr");
808           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
809                                      SI->getFalseValue());
810           AccRecInstrNew->insertBefore(SI);
811           AccRecInstrNew->dropLocation();
812           SI->setFalseValue(AccRecInstrNew);
813         }
814       }
815     }
816   }
817 }
818 
819 bool TailRecursionEliminator::processBlock(BasicBlock &BB) {
820   Instruction *TI = BB.getTerminator();
821 
822   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
823     if (BI->isConditional())
824       return false;
825 
826     BasicBlock *Succ = BI->getSuccessor(0);
827     ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
828 
829     if (!Ret)
830       return false;
831 
832     CallInst *CI = findTRECandidate(&BB);
833 
834     if (!CI)
835       return false;
836 
837     LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
838                       << "INTO UNCOND BRANCH PRED: " << BB);
839     FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
840     ++NumRetDuped;
841 
842     // If all predecessors of Succ have been eliminated by
843     // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
844     // because the ret instruction in there is still using a value which
845     // eliminateCall will attempt to remove.  This block can only contain
846     // instructions that can't have uses, therefore it is safe to remove.
847     if (pred_empty(Succ))
848       DTU.deleteBB(Succ);
849 
850     eliminateCall(CI);
851     return true;
852   } else if (isa<ReturnInst>(TI)) {
853     CallInst *CI = findTRECandidate(&BB);
854 
855     if (CI)
856       return eliminateCall(CI);
857   }
858 
859   return false;
860 }
861 
862 bool TailRecursionEliminator::eliminate(Function &F,
863                                         const TargetTransformInfo *TTI,
864                                         AliasAnalysis *AA,
865                                         OptimizationRemarkEmitter *ORE,
866                                         DomTreeUpdater &DTU) {
867   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
868     return false;
869 
870   bool MadeChange = false;
871   MadeChange |= markTails(F, ORE);
872 
873   // If this function is a varargs function, we won't be able to PHI the args
874   // right, so don't even try to convert it...
875   if (F.getFunctionType()->isVarArg())
876     return MadeChange;
877 
878   if (!canTRE(F))
879     return MadeChange;
880 
881   // Change any tail recursive calls to loops.
882   TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
883 
884   for (BasicBlock &BB : F)
885     MadeChange |= TRE.processBlock(BB);
886 
887   TRE.cleanupAndFinalize();
888 
889   return MadeChange;
890 }
891 
892 namespace {
893 struct TailCallElim : public FunctionPass {
894   static char ID; // Pass identification, replacement for typeid
895   TailCallElim() : FunctionPass(ID) {
896     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
897   }
898 
899   void getAnalysisUsage(AnalysisUsage &AU) const override {
900     AU.addRequired<TargetTransformInfoWrapperPass>();
901     AU.addRequired<AAResultsWrapperPass>();
902     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
903     AU.addPreserved<GlobalsAAWrapperPass>();
904     AU.addPreserved<DominatorTreeWrapperPass>();
905     AU.addPreserved<PostDominatorTreeWrapperPass>();
906   }
907 
908   bool runOnFunction(Function &F) override {
909     if (skipFunction(F))
910       return false;
911 
912     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
913     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
914     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
915     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
916     // There is no noticable performance difference here between Lazy and Eager
917     // UpdateStrategy based on some test results. It is feasible to switch the
918     // UpdateStrategy to Lazy if we find it profitable later.
919     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
920 
921     return TailRecursionEliminator::eliminate(
922         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
923         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
924         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
925   }
926 };
927 }
928 
929 char TailCallElim::ID = 0;
930 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
931                       false, false)
932 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
933 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
934 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
935                     false, false)
936 
937 // Public interface to the TailCallElimination pass
938 FunctionPass *llvm::createTailCallEliminationPass() {
939   return new TailCallElim();
940 }
941 
942 PreservedAnalyses TailCallElimPass::run(Function &F,
943                                         FunctionAnalysisManager &AM) {
944 
945   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
946   AliasAnalysis &AA = AM.getResult<AAManager>(F);
947   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
948   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
949   auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
950   // There is no noticable performance difference here between Lazy and Eager
951   // UpdateStrategy based on some test results. It is feasible to switch the
952   // UpdateStrategy to Lazy if we find it profitable later.
953   DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
954   bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
955 
956   if (!Changed)
957     return PreservedAnalyses::all();
958   PreservedAnalyses PA;
959   PA.preserve<DominatorTreeAnalysis>();
960   PA.preserve<PostDominatorTreeAnalysis>();
961   return PA;
962 }
963