1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file transforms calls of the current function (self recursion) followed 10 // by a return instruction with a branch to the entry of the function, creating 11 // a loop. This pass also implements the following extensions to the basic 12 // algorithm: 13 // 14 // 1. Trivial instructions between the call and return do not prevent the 15 // transformation from taking place, though currently the analysis cannot 16 // support moving any really useful instructions (only dead ones). 17 // 2. This pass transforms functions that are prevented from being tail 18 // recursive by an associative and commutative expression to use an 19 // accumulator variable, thus compiling the typical naive factorial or 20 // 'fib' implementation into efficient code. 21 // 3. TRE is performed if the function returns void, if the return 22 // returns the result returned by the call, or if the function returns a 23 // run-time constant on all exits from the function. It is possible, though 24 // unlikely, that the return returns something else (like constant 0), and 25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 26 // the function return the exact same value. 27 // 4. If it can prove that callees do not access their caller stack frame, 28 // they are marked as eligible for tail call elimination (by the code 29 // generator). 30 // 31 // There are several improvements that could be made: 32 // 33 // 1. If the function has any alloca instructions, these instructions will be 34 // moved out of the entry block of the function, causing them to be 35 // evaluated each time through the tail recursion. Safely keeping allocas 36 // in the entry block requires analysis to proves that the tail-called 37 // function does not read or write the stack object. 38 // 2. Tail recursion is only performed if the call immediately precedes the 39 // return instruction. It's possible that there could be a jump between 40 // the call and the return. 41 // 3. There can be intervening operations between the call and the return that 42 // prevent the TRE from occurring. For example, there could be GEP's and 43 // stores to memory that will not be read or written by the call. This 44 // requires some substantial analysis (such as with DSA) to prove safe to 45 // move ahead of the call, but doing so could allow many more TREs to be 46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 47 // 4. The algorithm we use to detect if callees access their caller stack 48 // frames is very primitive. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/DomTreeUpdater.h" 57 #include "llvm/Analysis/GlobalsModRef.h" 58 #include "llvm/Analysis/InstructionSimplify.h" 59 #include "llvm/Analysis/Loads.h" 60 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 61 #include "llvm/Analysis/PostDominators.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/IRBuilder.h" 72 #include "llvm/IR/InstIterator.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Module.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 82 using namespace llvm; 83 84 #define DEBUG_TYPE "tailcallelim" 85 86 STATISTIC(NumEliminated, "Number of tail calls removed"); 87 STATISTIC(NumRetDuped, "Number of return duplicated"); 88 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 89 90 /// Scan the specified function for alloca instructions. 91 /// If it contains any dynamic allocas, returns false. 92 static bool canTRE(Function &F) { 93 // TODO: We don't do TRE if dynamic allocas are used. 94 // Dynamic allocas allocate stack space which should be 95 // deallocated before new iteration started. That is 96 // currently not implemented. 97 return llvm::all_of(instructions(F), [](Instruction &I) { 98 auto *AI = dyn_cast<AllocaInst>(&I); 99 return !AI || AI->isStaticAlloca(); 100 }); 101 } 102 103 namespace { 104 struct AllocaDerivedValueTracker { 105 // Start at a root value and walk its use-def chain to mark calls that use the 106 // value or a derived value in AllocaUsers, and places where it may escape in 107 // EscapePoints. 108 void walk(Value *Root) { 109 SmallVector<Use *, 32> Worklist; 110 SmallPtrSet<Use *, 32> Visited; 111 112 auto AddUsesToWorklist = [&](Value *V) { 113 for (auto &U : V->uses()) { 114 if (!Visited.insert(&U).second) 115 continue; 116 Worklist.push_back(&U); 117 } 118 }; 119 120 AddUsesToWorklist(Root); 121 122 while (!Worklist.empty()) { 123 Use *U = Worklist.pop_back_val(); 124 Instruction *I = cast<Instruction>(U->getUser()); 125 126 switch (I->getOpcode()) { 127 case Instruction::Call: 128 case Instruction::Invoke: { 129 auto &CB = cast<CallBase>(*I); 130 // If the alloca-derived argument is passed byval it is not an escape 131 // point, or a use of an alloca. Calling with byval copies the contents 132 // of the alloca into argument registers or stack slots, which exist 133 // beyond the lifetime of the current frame. 134 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U))) 135 continue; 136 bool IsNocapture = 137 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U)); 138 callUsesLocalStack(CB, IsNocapture); 139 if (IsNocapture) { 140 // If the alloca-derived argument is passed in as nocapture, then it 141 // can't propagate to the call's return. That would be capturing. 142 continue; 143 } 144 break; 145 } 146 case Instruction::Load: { 147 // The result of a load is not alloca-derived (unless an alloca has 148 // otherwise escaped, but this is a local analysis). 149 continue; 150 } 151 case Instruction::Store: { 152 if (U->getOperandNo() == 0) 153 EscapePoints.insert(I); 154 continue; // Stores have no users to analyze. 155 } 156 case Instruction::BitCast: 157 case Instruction::GetElementPtr: 158 case Instruction::PHI: 159 case Instruction::Select: 160 case Instruction::AddrSpaceCast: 161 break; 162 default: 163 EscapePoints.insert(I); 164 break; 165 } 166 167 AddUsesToWorklist(I); 168 } 169 } 170 171 void callUsesLocalStack(CallBase &CB, bool IsNocapture) { 172 // Add it to the list of alloca users. 173 AllocaUsers.insert(&CB); 174 175 // If it's nocapture then it can't capture this alloca. 176 if (IsNocapture) 177 return; 178 179 // If it can write to memory, it can leak the alloca value. 180 if (!CB.onlyReadsMemory()) 181 EscapePoints.insert(&CB); 182 } 183 184 SmallPtrSet<Instruction *, 32> AllocaUsers; 185 SmallPtrSet<Instruction *, 32> EscapePoints; 186 }; 187 } 188 189 static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) { 190 if (F.callsFunctionThatReturnsTwice()) 191 return false; 192 193 // The local stack holds all alloca instructions and all byval arguments. 194 AllocaDerivedValueTracker Tracker; 195 for (Argument &Arg : F.args()) { 196 if (Arg.hasByValAttr()) 197 Tracker.walk(&Arg); 198 } 199 for (auto &BB : F) { 200 for (auto &I : BB) 201 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 202 Tracker.walk(AI); 203 } 204 205 bool Modified = false; 206 207 // Track whether a block is reachable after an alloca has escaped. Blocks that 208 // contain the escaping instruction will be marked as being visited without an 209 // escaped alloca, since that is how the block began. 210 enum VisitType { 211 UNVISITED, 212 UNESCAPED, 213 ESCAPED 214 }; 215 DenseMap<BasicBlock *, VisitType> Visited; 216 217 // We propagate the fact that an alloca has escaped from block to successor. 218 // Visit the blocks that are propagating the escapedness first. To do this, we 219 // maintain two worklists. 220 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 221 222 // We may enter a block and visit it thinking that no alloca has escaped yet, 223 // then see an escape point and go back around a loop edge and come back to 224 // the same block twice. Because of this, we defer setting tail on calls when 225 // we first encounter them in a block. Every entry in this list does not 226 // statically use an alloca via use-def chain analysis, but may find an alloca 227 // through other means if the block turns out to be reachable after an escape 228 // point. 229 SmallVector<CallInst *, 32> DeferredTails; 230 231 BasicBlock *BB = &F.getEntryBlock(); 232 VisitType Escaped = UNESCAPED; 233 do { 234 for (auto &I : *BB) { 235 if (Tracker.EscapePoints.count(&I)) 236 Escaped = ESCAPED; 237 238 CallInst *CI = dyn_cast<CallInst>(&I); 239 // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is 240 // considered accessing memory and will be marked as a tail call if we 241 // don't bail out here. 242 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) || 243 isa<PseudoProbeInst>(&I)) 244 continue; 245 246 // Special-case operand bundles "clang.arc.attachedcall", "ptrauth", and 247 // "kcfi". 248 bool IsNoTail = CI->isNoTailCall() || 249 CI->hasOperandBundlesOtherThan( 250 {LLVMContext::OB_clang_arc_attachedcall, 251 LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}); 252 253 if (!IsNoTail && CI->doesNotAccessMemory()) { 254 // A call to a readnone function whose arguments are all things computed 255 // outside this function can be marked tail. Even if you stored the 256 // alloca address into a global, a readnone function can't load the 257 // global anyhow. 258 // 259 // Note that this runs whether we know an alloca has escaped or not. If 260 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 261 bool SafeToTail = true; 262 for (auto &Arg : CI->args()) { 263 if (isa<Constant>(Arg.getUser())) 264 continue; 265 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 266 if (!A->hasByValAttr()) 267 continue; 268 SafeToTail = false; 269 break; 270 } 271 if (SafeToTail) { 272 using namespace ore; 273 ORE->emit([&]() { 274 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) 275 << "marked as tail call candidate (readnone)"; 276 }); 277 CI->setTailCall(); 278 Modified = true; 279 continue; 280 } 281 } 282 283 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) 284 DeferredTails.push_back(CI); 285 } 286 287 for (auto *SuccBB : successors(BB)) { 288 auto &State = Visited[SuccBB]; 289 if (State < Escaped) { 290 State = Escaped; 291 if (State == ESCAPED) 292 WorklistEscaped.push_back(SuccBB); 293 else 294 WorklistUnescaped.push_back(SuccBB); 295 } 296 } 297 298 if (!WorklistEscaped.empty()) { 299 BB = WorklistEscaped.pop_back_val(); 300 Escaped = ESCAPED; 301 } else { 302 BB = nullptr; 303 while (!WorklistUnescaped.empty()) { 304 auto *NextBB = WorklistUnescaped.pop_back_val(); 305 if (Visited[NextBB] == UNESCAPED) { 306 BB = NextBB; 307 Escaped = UNESCAPED; 308 break; 309 } 310 } 311 } 312 } while (BB); 313 314 for (CallInst *CI : DeferredTails) { 315 if (Visited[CI->getParent()] != ESCAPED) { 316 // If the escape point was part way through the block, calls after the 317 // escape point wouldn't have been put into DeferredTails. 318 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); 319 CI->setTailCall(); 320 Modified = true; 321 } 322 } 323 324 return Modified; 325 } 326 327 /// Return true if it is safe to move the specified 328 /// instruction from after the call to before the call, assuming that all 329 /// instructions between the call and this instruction are movable. 330 /// 331 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { 332 if (isa<DbgInfoIntrinsic>(I)) 333 return true; 334 335 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 336 if (II->getIntrinsicID() == Intrinsic::lifetime_end && 337 llvm::findAllocaForValue(II->getArgOperand(1))) 338 return true; 339 340 // FIXME: We can move load/store/call/free instructions above the call if the 341 // call does not mod/ref the memory location being processed. 342 if (I->mayHaveSideEffects()) // This also handles volatile loads. 343 return false; 344 345 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 346 // Loads may always be moved above calls without side effects. 347 if (CI->mayHaveSideEffects()) { 348 // Non-volatile loads may be moved above a call with side effects if it 349 // does not write to memory and the load provably won't trap. 350 // Writes to memory only matter if they may alias the pointer 351 // being loaded from. 352 const DataLayout &DL = L->getDataLayout(); 353 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || 354 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(), 355 L->getAlign(), DL, L)) 356 return false; 357 } 358 } 359 360 // Otherwise, if this is a side-effect free instruction, check to make sure 361 // that it does not use the return value of the call. If it doesn't use the 362 // return value of the call, it must only use things that are defined before 363 // the call, or movable instructions between the call and the instruction 364 // itself. 365 return !is_contained(I->operands(), CI); 366 } 367 368 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { 369 if (!I->isAssociative() || !I->isCommutative()) 370 return false; 371 372 assert(I->getNumOperands() >= 2 && 373 "Associative/commutative operations should have at least 2 args!"); 374 375 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 376 // Accumulators must have an identity. 377 if (!ConstantExpr::getIntrinsicIdentity(II->getIntrinsicID(), I->getType())) 378 return false; 379 } 380 381 // Exactly one operand should be the result of the call instruction. 382 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 383 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 384 return false; 385 386 // The only user of this instruction we allow is a single return instruction. 387 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 388 return false; 389 390 return true; 391 } 392 393 static Instruction *firstNonDbg(BasicBlock::iterator I) { 394 while (isa<DbgInfoIntrinsic>(I)) 395 ++I; 396 return &*I; 397 } 398 399 namespace { 400 class TailRecursionEliminator { 401 Function &F; 402 const TargetTransformInfo *TTI; 403 AliasAnalysis *AA; 404 OptimizationRemarkEmitter *ORE; 405 DomTreeUpdater &DTU; 406 407 // The below are shared state we want to have available when eliminating any 408 // calls in the function. There values should be populated by 409 // createTailRecurseLoopHeader the first time we find a call we can eliminate. 410 BasicBlock *HeaderBB = nullptr; 411 SmallVector<PHINode *, 8> ArgumentPHIs; 412 413 // PHI node to store our return value. 414 PHINode *RetPN = nullptr; 415 416 // i1 PHI node to track if we have a valid return value stored in RetPN. 417 PHINode *RetKnownPN = nullptr; 418 419 // Vector of select instructions we insereted. These selects use RetKnownPN 420 // to either propagate RetPN or select a new return value. 421 SmallVector<SelectInst *, 8> RetSelects; 422 423 // The below are shared state needed when performing accumulator recursion. 424 // There values should be populated by insertAccumulator the first time we 425 // find an elimination that requires an accumulator. 426 427 // PHI node to store our current accumulated value. 428 PHINode *AccPN = nullptr; 429 430 // The instruction doing the accumulating. 431 Instruction *AccumulatorRecursionInstr = nullptr; 432 433 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI, 434 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 435 DomTreeUpdater &DTU) 436 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {} 437 438 CallInst *findTRECandidate(BasicBlock *BB); 439 440 void createTailRecurseLoopHeader(CallInst *CI); 441 442 void insertAccumulator(Instruction *AccRecInstr); 443 444 bool eliminateCall(CallInst *CI); 445 446 void cleanupAndFinalize(); 447 448 bool processBlock(BasicBlock &BB); 449 450 void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx); 451 452 void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx); 453 454 public: 455 static bool eliminate(Function &F, const TargetTransformInfo *TTI, 456 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 457 DomTreeUpdater &DTU); 458 }; 459 } // namespace 460 461 CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) { 462 Instruction *TI = BB->getTerminator(); 463 464 if (&BB->front() == TI) // Make sure there is something before the terminator. 465 return nullptr; 466 467 // Scan backwards from the return, checking to see if there is a tail call in 468 // this block. If so, set CI to it. 469 CallInst *CI = nullptr; 470 BasicBlock::iterator BBI(TI); 471 while (true) { 472 CI = dyn_cast<CallInst>(BBI); 473 if (CI && CI->getCalledFunction() == &F) 474 break; 475 476 if (BBI == BB->begin()) 477 return nullptr; // Didn't find a potential tail call. 478 --BBI; 479 } 480 481 assert((!CI->isTailCall() || !CI->isNoTailCall()) && 482 "Incompatible call site attributes(Tail,NoTail)"); 483 if (!CI->isTailCall()) 484 return nullptr; 485 486 // As a special case, detect code like this: 487 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 488 // and disable this xform in this case, because the code generator will 489 // lower the call to fabs into inline code. 490 if (BB == &F.getEntryBlock() && 491 firstNonDbg(BB->front().getIterator()) == CI && 492 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 493 !TTI->isLoweredToCall(CI->getCalledFunction())) { 494 // A single-block function with just a call and a return. Check that 495 // the arguments match. 496 auto I = CI->arg_begin(), E = CI->arg_end(); 497 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end(); 498 for (; I != E && FI != FE; ++I, ++FI) 499 if (*I != &*FI) break; 500 if (I == E && FI == FE) 501 return nullptr; 502 } 503 504 return CI; 505 } 506 507 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) { 508 HeaderBB = &F.getEntryBlock(); 509 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB); 510 NewEntry->takeName(HeaderBB); 511 HeaderBB->setName("tailrecurse"); 512 BranchInst::Create(HeaderBB, NewEntry); 513 // If the new branch preserves the debug location of CI, it could result in 514 // misleading stepping, if CI is located in a conditional branch. 515 // So, here we don't give any debug location to the new branch. 516 517 // Move all fixed sized allocas from HeaderBB to NewEntry. 518 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(), 519 NEBI = NewEntry->begin(); 520 OEBI != E;) 521 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 522 if (isa<ConstantInt>(AI->getArraySize())) 523 AI->moveBefore(&*NEBI); 524 525 // Now that we have created a new block, which jumps to the entry 526 // block, insert a PHI node for each argument of the function. 527 // For now, we initialize each PHI to only have the real arguments 528 // which are passed in. 529 BasicBlock::iterator InsertPos = HeaderBB->begin(); 530 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 531 PHINode *PN = PHINode::Create(I->getType(), 2, I->getName() + ".tr"); 532 PN->insertBefore(InsertPos); 533 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 534 PN->addIncoming(&*I, NewEntry); 535 ArgumentPHIs.push_back(PN); 536 } 537 538 // If the function doen't return void, create the RetPN and RetKnownPN PHI 539 // nodes to track our return value. We initialize RetPN with poison and 540 // RetKnownPN with false since we can't know our return value at function 541 // entry. 542 Type *RetType = F.getReturnType(); 543 if (!RetType->isVoidTy()) { 544 Type *BoolType = Type::getInt1Ty(F.getContext()); 545 RetPN = PHINode::Create(RetType, 2, "ret.tr"); 546 RetPN->insertBefore(InsertPos); 547 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr"); 548 RetKnownPN->insertBefore(InsertPos); 549 550 RetPN->addIncoming(PoisonValue::get(RetType), NewEntry); 551 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry); 552 } 553 554 // The entry block was changed from HeaderBB to NewEntry. 555 // The forward DominatorTree needs to be recalculated when the EntryBB is 556 // changed. In this corner-case we recalculate the entire tree. 557 DTU.recalculate(*NewEntry->getParent()); 558 } 559 560 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) { 561 assert(!AccPN && "Trying to insert multiple accumulators"); 562 563 AccumulatorRecursionInstr = AccRecInstr; 564 565 // Start by inserting a new PHI node for the accumulator. 566 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB); 567 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1, 568 "accumulator.tr"); 569 AccPN->insertBefore(HeaderBB->begin()); 570 571 // Loop over all of the predecessors of the tail recursion block. For the 572 // real entry into the function we seed the PHI with the identity constant for 573 // the accumulation operation. For any other existing branches to this block 574 // (due to other tail recursions eliminated) the accumulator is not modified. 575 // Because we haven't added the branch in the current block to HeaderBB yet, 576 // it will not show up as a predecessor. 577 for (pred_iterator PI = PB; PI != PE; ++PI) { 578 BasicBlock *P = *PI; 579 if (P == &F.getEntryBlock()) { 580 Constant *Identity = 581 ConstantExpr::getIdentity(AccRecInstr, AccRecInstr->getType()); 582 AccPN->addIncoming(Identity, P); 583 } else { 584 AccPN->addIncoming(AccPN, P); 585 } 586 } 587 588 ++NumAccumAdded; 589 } 590 591 // Creates a copy of contents of ByValue operand of the specified 592 // call instruction into the newly created temporarily variable. 593 void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI, 594 int OpndIdx) { 595 Type *AggTy = CI->getParamByValType(OpndIdx); 596 assert(AggTy); 597 const DataLayout &DL = F.getDataLayout(); 598 599 // Get alignment of byVal operand. 600 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne()); 601 602 // Create alloca for temporarily byval operands. 603 // Put alloca into the entry block. 604 Value *NewAlloca = new AllocaInst( 605 AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 606 CI->getArgOperand(OpndIdx)->getName(), F.getEntryBlock().begin()); 607 608 IRBuilder<> Builder(CI); 609 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy)); 610 611 // Copy data from byvalue operand into the temporarily variable. 612 Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment, 613 CI->getArgOperand(OpndIdx), 614 /*SrcAlign*/ Alignment, Size); 615 CI->setArgOperand(OpndIdx, NewAlloca); 616 } 617 618 // Creates a copy from temporarily variable(keeping value of ByVal argument) 619 // into the corresponding function argument location. 620 void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments( 621 CallInst *CI, int OpndIdx) { 622 Type *AggTy = CI->getParamByValType(OpndIdx); 623 assert(AggTy); 624 const DataLayout &DL = F.getDataLayout(); 625 626 // Get alignment of byVal operand. 627 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne()); 628 629 IRBuilder<> Builder(CI); 630 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy)); 631 632 // Copy data from the temporarily variable into corresponding 633 // function argument location. 634 Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment, 635 CI->getArgOperand(OpndIdx), 636 /*SrcAlign*/ Alignment, Size); 637 } 638 639 bool TailRecursionEliminator::eliminateCall(CallInst *CI) { 640 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator()); 641 642 // Ok, we found a potential tail call. We can currently only transform the 643 // tail call if all of the instructions between the call and the return are 644 // movable to above the call itself, leaving the call next to the return. 645 // Check that this is the case now. 646 Instruction *AccRecInstr = nullptr; 647 BasicBlock::iterator BBI(CI); 648 for (++BBI; &*BBI != Ret; ++BBI) { 649 if (canMoveAboveCall(&*BBI, CI, AA)) 650 continue; 651 652 // If we can't move the instruction above the call, it might be because it 653 // is an associative and commutative operation that could be transformed 654 // using accumulator recursion elimination. Check to see if this is the 655 // case, and if so, remember which instruction accumulates for later. 656 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI)) 657 return false; // We cannot eliminate the tail recursion! 658 659 // Yes, this is accumulator recursion. Remember which instruction 660 // accumulates. 661 AccRecInstr = &*BBI; 662 } 663 664 BasicBlock *BB = Ret->getParent(); 665 666 using namespace ore; 667 ORE->emit([&]() { 668 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) 669 << "transforming tail recursion into loop"; 670 }); 671 672 // OK! We can transform this tail call. If this is the first one found, 673 // create the new entry block, allowing us to branch back to the old entry. 674 if (!HeaderBB) 675 createTailRecurseLoopHeader(CI); 676 677 // Copy values of ByVal operands into local temporarily variables. 678 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) { 679 if (CI->isByValArgument(I)) 680 copyByValueOperandIntoLocalTemp(CI, I); 681 } 682 683 // Ok, now that we know we have a pseudo-entry block WITH all of the 684 // required PHI nodes, add entries into the PHI node for the actual 685 // parameters passed into the tail-recursive call. 686 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) { 687 if (CI->isByValArgument(I)) { 688 copyLocalTempOfByValueOperandIntoArguments(CI, I); 689 // When eliminating a tail call, we modify the values of the arguments. 690 // Therefore, if the byval parameter has a readonly attribute, we have to 691 // remove it. It is safe because, from the perspective of a caller, the 692 // byval parameter is always treated as "readonly," even if the readonly 693 // attribute is removed. 694 F.removeParamAttr(I, Attribute::ReadOnly); 695 ArgumentPHIs[I]->addIncoming(F.getArg(I), BB); 696 } else 697 ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB); 698 } 699 700 if (AccRecInstr) { 701 insertAccumulator(AccRecInstr); 702 703 // Rewrite the accumulator recursion instruction so that it does not use 704 // the result of the call anymore, instead, use the PHI node we just 705 // inserted. 706 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 707 } 708 709 // Update our return value tracking 710 if (RetPN) { 711 if (Ret->getReturnValue() == CI || AccRecInstr) { 712 // Defer selecting a return value 713 RetPN->addIncoming(RetPN, BB); 714 RetKnownPN->addIncoming(RetKnownPN, BB); 715 } else { 716 // We found a return value we want to use, insert a select instruction to 717 // select it if we don't already know what our return value will be and 718 // store the result in our return value PHI node. 719 SelectInst *SI = 720 SelectInst::Create(RetKnownPN, RetPN, Ret->getReturnValue(), 721 "current.ret.tr", Ret->getIterator()); 722 RetSelects.push_back(SI); 723 724 RetPN->addIncoming(SI, BB); 725 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB); 726 } 727 728 if (AccPN) 729 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB); 730 } 731 732 // Now that all of the PHI nodes are in place, remove the call and 733 // ret instructions, replacing them with an unconditional branch. 734 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret->getIterator()); 735 NewBI->setDebugLoc(CI->getDebugLoc()); 736 737 Ret->eraseFromParent(); // Remove return. 738 CI->eraseFromParent(); // Remove call. 739 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}}); 740 ++NumEliminated; 741 return true; 742 } 743 744 void TailRecursionEliminator::cleanupAndFinalize() { 745 // If we eliminated any tail recursions, it's possible that we inserted some 746 // silly PHI nodes which just merge an initial value (the incoming operand) 747 // with themselves. Check to see if we did and clean up our mess if so. This 748 // occurs when a function passes an argument straight through to its tail 749 // call. 750 for (PHINode *PN : ArgumentPHIs) { 751 // If the PHI Node is a dynamic constant, replace it with the value it is. 752 if (Value *PNV = simplifyInstruction(PN, F.getDataLayout())) { 753 PN->replaceAllUsesWith(PNV); 754 PN->eraseFromParent(); 755 } 756 } 757 758 if (RetPN) { 759 if (RetSelects.empty()) { 760 // If we didn't insert any select instructions, then we know we didn't 761 // store a return value and we can remove the PHI nodes we inserted. 762 RetPN->dropAllReferences(); 763 RetPN->eraseFromParent(); 764 765 RetKnownPN->dropAllReferences(); 766 RetKnownPN->eraseFromParent(); 767 768 if (AccPN) { 769 // We need to insert a copy of our accumulator instruction before any 770 // return in the function, and return its result instead. 771 Instruction *AccRecInstr = AccumulatorRecursionInstr; 772 for (BasicBlock &BB : F) { 773 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 774 if (!RI) 775 continue; 776 777 Instruction *AccRecInstrNew = AccRecInstr->clone(); 778 AccRecInstrNew->setName("accumulator.ret.tr"); 779 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 780 RI->getOperand(0)); 781 AccRecInstrNew->insertBefore(RI); 782 AccRecInstrNew->dropLocation(); 783 RI->setOperand(0, AccRecInstrNew); 784 } 785 } 786 } else { 787 // We need to insert a select instruction before any return left in the 788 // function to select our stored return value if we have one. 789 for (BasicBlock &BB : F) { 790 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 791 if (!RI) 792 continue; 793 794 SelectInst *SI = 795 SelectInst::Create(RetKnownPN, RetPN, RI->getOperand(0), 796 "current.ret.tr", RI->getIterator()); 797 RetSelects.push_back(SI); 798 RI->setOperand(0, SI); 799 } 800 801 if (AccPN) { 802 // We need to insert a copy of our accumulator instruction before any 803 // of the selects we inserted, and select its result instead. 804 Instruction *AccRecInstr = AccumulatorRecursionInstr; 805 for (SelectInst *SI : RetSelects) { 806 Instruction *AccRecInstrNew = AccRecInstr->clone(); 807 AccRecInstrNew->setName("accumulator.ret.tr"); 808 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 809 SI->getFalseValue()); 810 AccRecInstrNew->insertBefore(SI); 811 AccRecInstrNew->dropLocation(); 812 SI->setFalseValue(AccRecInstrNew); 813 } 814 } 815 } 816 } 817 } 818 819 bool TailRecursionEliminator::processBlock(BasicBlock &BB) { 820 Instruction *TI = BB.getTerminator(); 821 822 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 823 if (BI->isConditional()) 824 return false; 825 826 BasicBlock *Succ = BI->getSuccessor(0); 827 ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true)); 828 829 if (!Ret) 830 return false; 831 832 CallInst *CI = findTRECandidate(&BB); 833 834 if (!CI) 835 return false; 836 837 LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ 838 << "INTO UNCOND BRANCH PRED: " << BB); 839 FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU); 840 ++NumRetDuped; 841 842 // If all predecessors of Succ have been eliminated by 843 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 844 // because the ret instruction in there is still using a value which 845 // eliminateCall will attempt to remove. This block can only contain 846 // instructions that can't have uses, therefore it is safe to remove. 847 if (pred_empty(Succ)) 848 DTU.deleteBB(Succ); 849 850 eliminateCall(CI); 851 return true; 852 } else if (isa<ReturnInst>(TI)) { 853 CallInst *CI = findTRECandidate(&BB); 854 855 if (CI) 856 return eliminateCall(CI); 857 } 858 859 return false; 860 } 861 862 bool TailRecursionEliminator::eliminate(Function &F, 863 const TargetTransformInfo *TTI, 864 AliasAnalysis *AA, 865 OptimizationRemarkEmitter *ORE, 866 DomTreeUpdater &DTU) { 867 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 868 return false; 869 870 bool MadeChange = false; 871 MadeChange |= markTails(F, ORE); 872 873 // If this function is a varargs function, we won't be able to PHI the args 874 // right, so don't even try to convert it... 875 if (F.getFunctionType()->isVarArg()) 876 return MadeChange; 877 878 if (!canTRE(F)) 879 return MadeChange; 880 881 // Change any tail recursive calls to loops. 882 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU); 883 884 for (BasicBlock &BB : F) 885 MadeChange |= TRE.processBlock(BB); 886 887 TRE.cleanupAndFinalize(); 888 889 return MadeChange; 890 } 891 892 namespace { 893 struct TailCallElim : public FunctionPass { 894 static char ID; // Pass identification, replacement for typeid 895 TailCallElim() : FunctionPass(ID) { 896 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 897 } 898 899 void getAnalysisUsage(AnalysisUsage &AU) const override { 900 AU.addRequired<TargetTransformInfoWrapperPass>(); 901 AU.addRequired<AAResultsWrapperPass>(); 902 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 903 AU.addPreserved<GlobalsAAWrapperPass>(); 904 AU.addPreserved<DominatorTreeWrapperPass>(); 905 AU.addPreserved<PostDominatorTreeWrapperPass>(); 906 } 907 908 bool runOnFunction(Function &F) override { 909 if (skipFunction(F)) 910 return false; 911 912 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 913 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 914 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 915 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 916 // There is no noticable performance difference here between Lazy and Eager 917 // UpdateStrategy based on some test results. It is feasible to switch the 918 // UpdateStrategy to Lazy if we find it profitable later. 919 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 920 921 return TailRecursionEliminator::eliminate( 922 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 923 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 924 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU); 925 } 926 }; 927 } 928 929 char TailCallElim::ID = 0; 930 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", 931 false, false) 932 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 933 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 934 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", 935 false, false) 936 937 // Public interface to the TailCallElimination pass 938 FunctionPass *llvm::createTailCallEliminationPass() { 939 return new TailCallElim(); 940 } 941 942 PreservedAnalyses TailCallElimPass::run(Function &F, 943 FunctionAnalysisManager &AM) { 944 945 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 946 AliasAnalysis &AA = AM.getResult<AAManager>(F); 947 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 948 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 949 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F); 950 // There is no noticable performance difference here between Lazy and Eager 951 // UpdateStrategy based on some test results. It is feasible to switch the 952 // UpdateStrategy to Lazy if we find it profitable later. 953 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 954 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU); 955 956 if (!Changed) 957 return PreservedAnalyses::all(); 958 PreservedAnalyses PA; 959 PA.preserve<DominatorTreeAnalysis>(); 960 PA.preserve<PostDominatorTreeAnalysis>(); 961 return PA; 962 } 963