1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file transforms calls of the current function (self recursion) followed 10 // by a return instruction with a branch to the entry of the function, creating 11 // a loop. This pass also implements the following extensions to the basic 12 // algorithm: 13 // 14 // 1. Trivial instructions between the call and return do not prevent the 15 // transformation from taking place, though currently the analysis cannot 16 // support moving any really useful instructions (only dead ones). 17 // 2. This pass transforms functions that are prevented from being tail 18 // recursive by an associative and commutative expression to use an 19 // accumulator variable, thus compiling the typical naive factorial or 20 // 'fib' implementation into efficient code. 21 // 3. TRE is performed if the function returns void, if the return 22 // returns the result returned by the call, or if the function returns a 23 // run-time constant on all exits from the function. It is possible, though 24 // unlikely, that the return returns something else (like constant 0), and 25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 26 // the function return the exact same value. 27 // 4. If it can prove that callees do not access their caller stack frame, 28 // they are marked as eligible for tail call elimination (by the code 29 // generator). 30 // 31 // There are several improvements that could be made: 32 // 33 // 1. If the function has any alloca instructions, these instructions will be 34 // moved out of the entry block of the function, causing them to be 35 // evaluated each time through the tail recursion. Safely keeping allocas 36 // in the entry block requires analysis to proves that the tail-called 37 // function does not read or write the stack object. 38 // 2. Tail recursion is only performed if the call immediately precedes the 39 // return instruction. It's possible that there could be a jump between 40 // the call and the return. 41 // 3. There can be intervening operations between the call and the return that 42 // prevent the TRE from occurring. For example, there could be GEP's and 43 // stores to memory that will not be read or written by the call. This 44 // requires some substantial analysis (such as with DSA) to prove safe to 45 // move ahead of the call, but doing so could allow many more TREs to be 46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 47 // 4. The algorithm we use to detect if callees access their caller stack 48 // frames is very primitive. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/CFG.h" 57 #include "llvm/Analysis/CaptureTracking.h" 58 #include "llvm/Analysis/DomTreeUpdater.h" 59 #include "llvm/Analysis/GlobalsModRef.h" 60 #include "llvm/Analysis/InlineCost.h" 61 #include "llvm/Analysis/InstructionSimplify.h" 62 #include "llvm/Analysis/Loads.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/PostDominators.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallSite.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/DiagnosticInfo.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/InstIterator.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Module.h" 78 #include "llvm/IR/ValueHandle.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 84 using namespace llvm; 85 86 #define DEBUG_TYPE "tailcallelim" 87 88 STATISTIC(NumEliminated, "Number of tail calls removed"); 89 STATISTIC(NumRetDuped, "Number of return duplicated"); 90 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 91 92 /// Scan the specified function for alloca instructions. 93 /// If it contains any dynamic allocas, returns false. 94 static bool canTRE(Function &F) { 95 // Because of PR962, we don't TRE dynamic allocas. 96 return llvm::all_of(instructions(F), [](Instruction &I) { 97 auto *AI = dyn_cast<AllocaInst>(&I); 98 return !AI || AI->isStaticAlloca(); 99 }); 100 } 101 102 namespace { 103 struct AllocaDerivedValueTracker { 104 // Start at a root value and walk its use-def chain to mark calls that use the 105 // value or a derived value in AllocaUsers, and places where it may escape in 106 // EscapePoints. 107 void walk(Value *Root) { 108 SmallVector<Use *, 32> Worklist; 109 SmallPtrSet<Use *, 32> Visited; 110 111 auto AddUsesToWorklist = [&](Value *V) { 112 for (auto &U : V->uses()) { 113 if (!Visited.insert(&U).second) 114 continue; 115 Worklist.push_back(&U); 116 } 117 }; 118 119 AddUsesToWorklist(Root); 120 121 while (!Worklist.empty()) { 122 Use *U = Worklist.pop_back_val(); 123 Instruction *I = cast<Instruction>(U->getUser()); 124 125 switch (I->getOpcode()) { 126 case Instruction::Call: 127 case Instruction::Invoke: { 128 CallSite CS(I); 129 // If the alloca-derived argument is passed byval it is not an escape 130 // point, or a use of an alloca. Calling with byval copies the contents 131 // of the alloca into argument registers or stack slots, which exist 132 // beyond the lifetime of the current frame. 133 if (CS.isArgOperand(U) && CS.isByValArgument(CS.getArgumentNo(U))) 134 continue; 135 bool IsNocapture = 136 CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U)); 137 callUsesLocalStack(CS, IsNocapture); 138 if (IsNocapture) { 139 // If the alloca-derived argument is passed in as nocapture, then it 140 // can't propagate to the call's return. That would be capturing. 141 continue; 142 } 143 break; 144 } 145 case Instruction::Load: { 146 // The result of a load is not alloca-derived (unless an alloca has 147 // otherwise escaped, but this is a local analysis). 148 continue; 149 } 150 case Instruction::Store: { 151 if (U->getOperandNo() == 0) 152 EscapePoints.insert(I); 153 continue; // Stores have no users to analyze. 154 } 155 case Instruction::BitCast: 156 case Instruction::GetElementPtr: 157 case Instruction::PHI: 158 case Instruction::Select: 159 case Instruction::AddrSpaceCast: 160 break; 161 default: 162 EscapePoints.insert(I); 163 break; 164 } 165 166 AddUsesToWorklist(I); 167 } 168 } 169 170 void callUsesLocalStack(CallSite CS, bool IsNocapture) { 171 // Add it to the list of alloca users. 172 AllocaUsers.insert(CS.getInstruction()); 173 174 // If it's nocapture then it can't capture this alloca. 175 if (IsNocapture) 176 return; 177 178 // If it can write to memory, it can leak the alloca value. 179 if (!CS.onlyReadsMemory()) 180 EscapePoints.insert(CS.getInstruction()); 181 } 182 183 SmallPtrSet<Instruction *, 32> AllocaUsers; 184 SmallPtrSet<Instruction *, 32> EscapePoints; 185 }; 186 } 187 188 static bool markTails(Function &F, bool &AllCallsAreTailCalls, 189 OptimizationRemarkEmitter *ORE) { 190 if (F.callsFunctionThatReturnsTwice()) 191 return false; 192 AllCallsAreTailCalls = true; 193 194 // The local stack holds all alloca instructions and all byval arguments. 195 AllocaDerivedValueTracker Tracker; 196 for (Argument &Arg : F.args()) { 197 if (Arg.hasByValAttr()) 198 Tracker.walk(&Arg); 199 } 200 for (auto &BB : F) { 201 for (auto &I : BB) 202 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 203 Tracker.walk(AI); 204 } 205 206 bool Modified = false; 207 208 // Track whether a block is reachable after an alloca has escaped. Blocks that 209 // contain the escaping instruction will be marked as being visited without an 210 // escaped alloca, since that is how the block began. 211 enum VisitType { 212 UNVISITED, 213 UNESCAPED, 214 ESCAPED 215 }; 216 DenseMap<BasicBlock *, VisitType> Visited; 217 218 // We propagate the fact that an alloca has escaped from block to successor. 219 // Visit the blocks that are propagating the escapedness first. To do this, we 220 // maintain two worklists. 221 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 222 223 // We may enter a block and visit it thinking that no alloca has escaped yet, 224 // then see an escape point and go back around a loop edge and come back to 225 // the same block twice. Because of this, we defer setting tail on calls when 226 // we first encounter them in a block. Every entry in this list does not 227 // statically use an alloca via use-def chain analysis, but may find an alloca 228 // through other means if the block turns out to be reachable after an escape 229 // point. 230 SmallVector<CallInst *, 32> DeferredTails; 231 232 BasicBlock *BB = &F.getEntryBlock(); 233 VisitType Escaped = UNESCAPED; 234 do { 235 for (auto &I : *BB) { 236 if (Tracker.EscapePoints.count(&I)) 237 Escaped = ESCAPED; 238 239 CallInst *CI = dyn_cast<CallInst>(&I); 240 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I)) 241 continue; 242 243 bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles(); 244 245 if (!IsNoTail && CI->doesNotAccessMemory()) { 246 // A call to a readnone function whose arguments are all things computed 247 // outside this function can be marked tail. Even if you stored the 248 // alloca address into a global, a readnone function can't load the 249 // global anyhow. 250 // 251 // Note that this runs whether we know an alloca has escaped or not. If 252 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 253 bool SafeToTail = true; 254 for (auto &Arg : CI->arg_operands()) { 255 if (isa<Constant>(Arg.getUser())) 256 continue; 257 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 258 if (!A->hasByValAttr()) 259 continue; 260 SafeToTail = false; 261 break; 262 } 263 if (SafeToTail) { 264 using namespace ore; 265 ORE->emit([&]() { 266 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) 267 << "marked as tail call candidate (readnone)"; 268 }); 269 CI->setTailCall(); 270 Modified = true; 271 continue; 272 } 273 } 274 275 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { 276 DeferredTails.push_back(CI); 277 } else { 278 AllCallsAreTailCalls = false; 279 } 280 } 281 282 for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) { 283 auto &State = Visited[SuccBB]; 284 if (State < Escaped) { 285 State = Escaped; 286 if (State == ESCAPED) 287 WorklistEscaped.push_back(SuccBB); 288 else 289 WorklistUnescaped.push_back(SuccBB); 290 } 291 } 292 293 if (!WorklistEscaped.empty()) { 294 BB = WorklistEscaped.pop_back_val(); 295 Escaped = ESCAPED; 296 } else { 297 BB = nullptr; 298 while (!WorklistUnescaped.empty()) { 299 auto *NextBB = WorklistUnescaped.pop_back_val(); 300 if (Visited[NextBB] == UNESCAPED) { 301 BB = NextBB; 302 Escaped = UNESCAPED; 303 break; 304 } 305 } 306 } 307 } while (BB); 308 309 for (CallInst *CI : DeferredTails) { 310 if (Visited[CI->getParent()] != ESCAPED) { 311 // If the escape point was part way through the block, calls after the 312 // escape point wouldn't have been put into DeferredTails. 313 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); 314 CI->setTailCall(); 315 Modified = true; 316 } else { 317 AllCallsAreTailCalls = false; 318 } 319 } 320 321 return Modified; 322 } 323 324 /// Return true if it is safe to move the specified 325 /// instruction from after the call to before the call, assuming that all 326 /// instructions between the call and this instruction are movable. 327 /// 328 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { 329 // FIXME: We can move load/store/call/free instructions above the call if the 330 // call does not mod/ref the memory location being processed. 331 if (I->mayHaveSideEffects()) // This also handles volatile loads. 332 return false; 333 334 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 335 // Loads may always be moved above calls without side effects. 336 if (CI->mayHaveSideEffects()) { 337 // Non-volatile loads may be moved above a call with side effects if it 338 // does not write to memory and the load provably won't trap. 339 // Writes to memory only matter if they may alias the pointer 340 // being loaded from. 341 const DataLayout &DL = L->getModule()->getDataLayout(); 342 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || 343 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(), 344 MaybeAlign(L->getAlignment()), DL, L)) 345 return false; 346 } 347 } 348 349 // Otherwise, if this is a side-effect free instruction, check to make sure 350 // that it does not use the return value of the call. If it doesn't use the 351 // return value of the call, it must only use things that are defined before 352 // the call, or movable instructions between the call and the instruction 353 // itself. 354 return !is_contained(I->operands(), CI); 355 } 356 357 /// Return true if the specified value is the same when the return would exit 358 /// as it was when the initial iteration of the recursive function was executed. 359 /// 360 /// We currently handle static constants and arguments that are not modified as 361 /// part of the recursion. 362 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { 363 if (isa<Constant>(V)) return true; // Static constants are always dyn consts 364 365 // Check to see if this is an immutable argument, if so, the value 366 // will be available to initialize the accumulator. 367 if (Argument *Arg = dyn_cast<Argument>(V)) { 368 // Figure out which argument number this is... 369 unsigned ArgNo = 0; 370 Function *F = CI->getParent()->getParent(); 371 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) 372 ++ArgNo; 373 374 // If we are passing this argument into call as the corresponding 375 // argument operand, then the argument is dynamically constant. 376 // Otherwise, we cannot transform this function safely. 377 if (CI->getArgOperand(ArgNo) == Arg) 378 return true; 379 } 380 381 // Switch cases are always constant integers. If the value is being switched 382 // on and the return is only reachable from one of its cases, it's 383 // effectively constant. 384 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) 385 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) 386 if (SI->getCondition() == V) 387 return SI->getDefaultDest() != RI->getParent(); 388 389 // Not a constant or immutable argument, we can't safely transform. 390 return false; 391 } 392 393 /// Check to see if the function containing the specified tail call consistently 394 /// returns the same runtime-constant value at all exit points except for 395 /// IgnoreRI. If so, return the returned value. 396 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { 397 Function *F = CI->getParent()->getParent(); 398 Value *ReturnedValue = nullptr; 399 400 for (BasicBlock &BBI : *F) { 401 ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()); 402 if (RI == nullptr || RI == IgnoreRI) continue; 403 404 // We can only perform this transformation if the value returned is 405 // evaluatable at the start of the initial invocation of the function, 406 // instead of at the end of the evaluation. 407 // 408 Value *RetOp = RI->getOperand(0); 409 if (!isDynamicConstant(RetOp, CI, RI)) 410 return nullptr; 411 412 if (ReturnedValue && RetOp != ReturnedValue) 413 return nullptr; // Cannot transform if differing values are returned. 414 ReturnedValue = RetOp; 415 } 416 return ReturnedValue; 417 } 418 419 /// If the specified instruction can be transformed using accumulator recursion 420 /// elimination, return the constant which is the start of the accumulator 421 /// value. Otherwise return null. 422 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { 423 if (!I->isAssociative() || !I->isCommutative()) return nullptr; 424 assert(I->getNumOperands() == 2 && 425 "Associative/commutative operations should have 2 args!"); 426 427 // Exactly one operand should be the result of the call instruction. 428 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 429 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 430 return nullptr; 431 432 // The only user of this instruction we allow is a single return instruction. 433 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 434 return nullptr; 435 436 // Ok, now we have to check all of the other return instructions in this 437 // function. If they return non-constants or differing values, then we cannot 438 // transform the function safely. 439 return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI); 440 } 441 442 static Instruction *firstNonDbg(BasicBlock::iterator I) { 443 while (isa<DbgInfoIntrinsic>(I)) 444 ++I; 445 return &*I; 446 } 447 448 static CallInst *findTRECandidate(Instruction *TI, 449 bool CannotTailCallElimCallsMarkedTail, 450 const TargetTransformInfo *TTI) { 451 BasicBlock *BB = TI->getParent(); 452 Function *F = BB->getParent(); 453 454 if (&BB->front() == TI) // Make sure there is something before the terminator. 455 return nullptr; 456 457 // Scan backwards from the return, checking to see if there is a tail call in 458 // this block. If so, set CI to it. 459 CallInst *CI = nullptr; 460 BasicBlock::iterator BBI(TI); 461 while (true) { 462 CI = dyn_cast<CallInst>(BBI); 463 if (CI && CI->getCalledFunction() == F) 464 break; 465 466 if (BBI == BB->begin()) 467 return nullptr; // Didn't find a potential tail call. 468 --BBI; 469 } 470 471 // If this call is marked as a tail call, and if there are dynamic allocas in 472 // the function, we cannot perform this optimization. 473 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 474 return nullptr; 475 476 // As a special case, detect code like this: 477 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 478 // and disable this xform in this case, because the code generator will 479 // lower the call to fabs into inline code. 480 if (BB == &F->getEntryBlock() && 481 firstNonDbg(BB->front().getIterator()) == CI && 482 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 483 !TTI->isLoweredToCall(CI->getCalledFunction())) { 484 // A single-block function with just a call and a return. Check that 485 // the arguments match. 486 CallSite::arg_iterator I = CallSite(CI).arg_begin(), 487 E = CallSite(CI).arg_end(); 488 Function::arg_iterator FI = F->arg_begin(), 489 FE = F->arg_end(); 490 for (; I != E && FI != FE; ++I, ++FI) 491 if (*I != &*FI) break; 492 if (I == E && FI == FE) 493 return nullptr; 494 } 495 496 return CI; 497 } 498 499 static bool eliminateRecursiveTailCall( 500 CallInst *CI, ReturnInst *Ret, BasicBlock *&OldEntry, 501 bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs, 502 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) { 503 // If we are introducing accumulator recursion to eliminate operations after 504 // the call instruction that are both associative and commutative, the initial 505 // value for the accumulator is placed in this variable. If this value is set 506 // then we actually perform accumulator recursion elimination instead of 507 // simple tail recursion elimination. If the operation is an LLVM instruction 508 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then 509 // we are handling the case when the return instruction returns a constant C 510 // which is different to the constant returned by other return instructions 511 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a 512 // special case of accumulator recursion, the operation being "return C". 513 Value *AccumulatorRecursionEliminationInitVal = nullptr; 514 Instruction *AccumulatorRecursionInstr = nullptr; 515 516 // Ok, we found a potential tail call. We can currently only transform the 517 // tail call if all of the instructions between the call and the return are 518 // movable to above the call itself, leaving the call next to the return. 519 // Check that this is the case now. 520 BasicBlock::iterator BBI(CI); 521 for (++BBI; &*BBI != Ret; ++BBI) { 522 if (canMoveAboveCall(&*BBI, CI, AA)) 523 continue; 524 525 // If we can't move the instruction above the call, it might be because it 526 // is an associative and commutative operation that could be transformed 527 // using accumulator recursion elimination. Check to see if this is the 528 // case, and if so, remember the initial accumulator value for later. 529 if ((AccumulatorRecursionEliminationInitVal = 530 canTransformAccumulatorRecursion(&*BBI, CI))) { 531 // Yes, this is accumulator recursion. Remember which instruction 532 // accumulates. 533 AccumulatorRecursionInstr = &*BBI; 534 } else { 535 return false; // Otherwise, we cannot eliminate the tail recursion! 536 } 537 } 538 539 // We can only transform call/return pairs that either ignore the return value 540 // of the call and return void, ignore the value of the call and return a 541 // constant, return the value returned by the tail call, or that are being 542 // accumulator recursion variable eliminated. 543 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && 544 !isa<UndefValue>(Ret->getReturnValue()) && 545 AccumulatorRecursionEliminationInitVal == nullptr && 546 !getCommonReturnValue(nullptr, CI)) { 547 // One case remains that we are able to handle: the current return 548 // instruction returns a constant, and all other return instructions 549 // return a different constant. 550 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) 551 return false; // Current return instruction does not return a constant. 552 // Check that all other return instructions return a common constant. If 553 // so, record it in AccumulatorRecursionEliminationInitVal. 554 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); 555 if (!AccumulatorRecursionEliminationInitVal) 556 return false; 557 } 558 559 BasicBlock *BB = Ret->getParent(); 560 Function *F = BB->getParent(); 561 562 using namespace ore; 563 ORE->emit([&]() { 564 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) 565 << "transforming tail recursion into loop"; 566 }); 567 568 // OK! We can transform this tail call. If this is the first one found, 569 // create the new entry block, allowing us to branch back to the old entry. 570 if (!OldEntry) { 571 OldEntry = &F->getEntryBlock(); 572 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); 573 NewEntry->takeName(OldEntry); 574 OldEntry->setName("tailrecurse"); 575 BranchInst *BI = BranchInst::Create(OldEntry, NewEntry); 576 BI->setDebugLoc(CI->getDebugLoc()); 577 578 // If this tail call is marked 'tail' and if there are any allocas in the 579 // entry block, move them up to the new entry block. 580 TailCallsAreMarkedTail = CI->isTailCall(); 581 if (TailCallsAreMarkedTail) 582 // Move all fixed sized allocas from OldEntry to NewEntry. 583 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), 584 NEBI = NewEntry->begin(); OEBI != E; ) 585 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 586 if (isa<ConstantInt>(AI->getArraySize())) 587 AI->moveBefore(&*NEBI); 588 589 // Now that we have created a new block, which jumps to the entry 590 // block, insert a PHI node for each argument of the function. 591 // For now, we initialize each PHI to only have the real arguments 592 // which are passed in. 593 Instruction *InsertPos = &OldEntry->front(); 594 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 595 I != E; ++I) { 596 PHINode *PN = PHINode::Create(I->getType(), 2, 597 I->getName() + ".tr", InsertPos); 598 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 599 PN->addIncoming(&*I, NewEntry); 600 ArgumentPHIs.push_back(PN); 601 } 602 // The entry block was changed from OldEntry to NewEntry. 603 // The forward DominatorTree needs to be recalculated when the EntryBB is 604 // changed. In this corner-case we recalculate the entire tree. 605 DTU.recalculate(*NewEntry->getParent()); 606 } 607 608 // If this function has self recursive calls in the tail position where some 609 // are marked tail and some are not, only transform one flavor or another. We 610 // have to choose whether we move allocas in the entry block to the new entry 611 // block or not, so we can't make a good choice for both. NOTE: We could do 612 // slightly better here in the case that the function has no entry block 613 // allocas. 614 if (TailCallsAreMarkedTail && !CI->isTailCall()) 615 return false; 616 617 // Ok, now that we know we have a pseudo-entry block WITH all of the 618 // required PHI nodes, add entries into the PHI node for the actual 619 // parameters passed into the tail-recursive call. 620 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 621 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 622 623 // If we are introducing an accumulator variable to eliminate the recursion, 624 // do so now. Note that we _know_ that no subsequent tail recursion 625 // eliminations will happen on this function because of the way the 626 // accumulator recursion predicate is set up. 627 // 628 if (AccumulatorRecursionEliminationInitVal) { 629 Instruction *AccRecInstr = AccumulatorRecursionInstr; 630 // Start by inserting a new PHI node for the accumulator. 631 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); 632 PHINode *AccPN = PHINode::Create( 633 AccumulatorRecursionEliminationInitVal->getType(), 634 std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front()); 635 636 // Loop over all of the predecessors of the tail recursion block. For the 637 // real entry into the function we seed the PHI with the initial value, 638 // computed earlier. For any other existing branches to this block (due to 639 // other tail recursions eliminated) the accumulator is not modified. 640 // Because we haven't added the branch in the current block to OldEntry yet, 641 // it will not show up as a predecessor. 642 for (pred_iterator PI = PB; PI != PE; ++PI) { 643 BasicBlock *P = *PI; 644 if (P == &F->getEntryBlock()) 645 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); 646 else 647 AccPN->addIncoming(AccPN, P); 648 } 649 650 if (AccRecInstr) { 651 // Add an incoming argument for the current block, which is computed by 652 // our associative and commutative accumulator instruction. 653 AccPN->addIncoming(AccRecInstr, BB); 654 655 // Next, rewrite the accumulator recursion instruction so that it does not 656 // use the result of the call anymore, instead, use the PHI node we just 657 // inserted. 658 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 659 } else { 660 // Add an incoming argument for the current block, which is just the 661 // constant returned by the current return instruction. 662 AccPN->addIncoming(Ret->getReturnValue(), BB); 663 } 664 665 // Finally, rewrite any return instructions in the program to return the PHI 666 // node instead of the "initval" that they do currently. This loop will 667 // actually rewrite the return value we are destroying, but that's ok. 668 for (BasicBlock &BBI : *F) 669 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator())) 670 RI->setOperand(0, AccPN); 671 ++NumAccumAdded; 672 } 673 674 // Now that all of the PHI nodes are in place, remove the call and 675 // ret instructions, replacing them with an unconditional branch. 676 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); 677 NewBI->setDebugLoc(CI->getDebugLoc()); 678 679 BB->getInstList().erase(Ret); // Remove return. 680 BB->getInstList().erase(CI); // Remove call. 681 DTU.applyUpdates({{DominatorTree::Insert, BB, OldEntry}}); 682 ++NumEliminated; 683 return true; 684 } 685 686 static bool foldReturnAndProcessPred( 687 BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry, 688 bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs, 689 bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI, 690 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) { 691 bool Change = false; 692 693 // Make sure this block is a trivial return block. 694 assert(BB->getFirstNonPHIOrDbg() == Ret && 695 "Trying to fold non-trivial return block"); 696 697 // If the return block contains nothing but the return and PHI's, 698 // there might be an opportunity to duplicate the return in its 699 // predecessors and perform TRE there. Look for predecessors that end 700 // in unconditional branch and recursive call(s). 701 SmallVector<BranchInst*, 8> UncondBranchPreds; 702 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 703 BasicBlock *Pred = *PI; 704 Instruction *PTI = Pred->getTerminator(); 705 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) 706 if (BI->isUnconditional()) 707 UncondBranchPreds.push_back(BI); 708 } 709 710 while (!UncondBranchPreds.empty()) { 711 BranchInst *BI = UncondBranchPreds.pop_back_val(); 712 BasicBlock *Pred = BI->getParent(); 713 if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){ 714 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 715 << "INTO UNCOND BRANCH PRED: " << *Pred); 716 ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU); 717 718 // Cleanup: if all predecessors of BB have been eliminated by 719 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 720 // because the ret instruction in there is still using a value which 721 // eliminateRecursiveTailCall will attempt to remove. 722 if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 723 DTU.deleteBB(BB); 724 725 eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail, 726 ArgumentPHIs, AA, ORE, DTU); 727 ++NumRetDuped; 728 Change = true; 729 } 730 } 731 732 return Change; 733 } 734 735 static bool processReturningBlock( 736 ReturnInst *Ret, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail, 737 SmallVectorImpl<PHINode *> &ArgumentPHIs, 738 bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI, 739 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) { 740 CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI); 741 if (!CI) 742 return false; 743 744 return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, 745 ArgumentPHIs, AA, ORE, DTU); 746 } 747 748 static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI, 749 AliasAnalysis *AA, 750 OptimizationRemarkEmitter *ORE, 751 DomTreeUpdater &DTU) { 752 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 753 return false; 754 755 bool MadeChange = false; 756 bool AllCallsAreTailCalls = false; 757 MadeChange |= markTails(F, AllCallsAreTailCalls, ORE); 758 if (!AllCallsAreTailCalls) 759 return MadeChange; 760 761 // If this function is a varargs function, we won't be able to PHI the args 762 // right, so don't even try to convert it... 763 if (F.getFunctionType()->isVarArg()) 764 return false; 765 766 BasicBlock *OldEntry = nullptr; 767 bool TailCallsAreMarkedTail = false; 768 SmallVector<PHINode*, 8> ArgumentPHIs; 769 770 // If false, we cannot perform TRE on tail calls marked with the 'tail' 771 // attribute, because doing so would cause the stack size to increase (real 772 // TRE would deallocate variable sized allocas, TRE doesn't). 773 bool CanTRETailMarkedCall = canTRE(F); 774 775 // Change any tail recursive calls to loops. 776 // 777 // FIXME: The code generator produces really bad code when an 'escaping 778 // alloca' is changed from being a static alloca to being a dynamic alloca. 779 // Until this is resolved, disable this transformation if that would ever 780 // happen. This bug is PR962. 781 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) { 782 BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB. 783 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { 784 bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, 785 ArgumentPHIs, !CanTRETailMarkedCall, 786 TTI, AA, ORE, DTU); 787 if (!Change && BB->getFirstNonPHIOrDbg() == Ret) 788 Change = foldReturnAndProcessPred( 789 BB, Ret, OldEntry, TailCallsAreMarkedTail, ArgumentPHIs, 790 !CanTRETailMarkedCall, TTI, AA, ORE, DTU); 791 MadeChange |= Change; 792 } 793 } 794 795 // If we eliminated any tail recursions, it's possible that we inserted some 796 // silly PHI nodes which just merge an initial value (the incoming operand) 797 // with themselves. Check to see if we did and clean up our mess if so. This 798 // occurs when a function passes an argument straight through to its tail 799 // call. 800 for (PHINode *PN : ArgumentPHIs) { 801 // If the PHI Node is a dynamic constant, replace it with the value it is. 802 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { 803 PN->replaceAllUsesWith(PNV); 804 PN->eraseFromParent(); 805 } 806 } 807 808 return MadeChange; 809 } 810 811 namespace { 812 struct TailCallElim : public FunctionPass { 813 static char ID; // Pass identification, replacement for typeid 814 TailCallElim() : FunctionPass(ID) { 815 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 816 } 817 818 void getAnalysisUsage(AnalysisUsage &AU) const override { 819 AU.addRequired<TargetTransformInfoWrapperPass>(); 820 AU.addRequired<AAResultsWrapperPass>(); 821 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 822 AU.addPreserved<GlobalsAAWrapperPass>(); 823 AU.addPreserved<DominatorTreeWrapperPass>(); 824 AU.addPreserved<PostDominatorTreeWrapperPass>(); 825 } 826 827 bool runOnFunction(Function &F) override { 828 if (skipFunction(F)) 829 return false; 830 831 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 832 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 833 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 834 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 835 // There is no noticable performance difference here between Lazy and Eager 836 // UpdateStrategy based on some test results. It is feasible to switch the 837 // UpdateStrategy to Lazy if we find it profitable later. 838 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 839 840 return eliminateTailRecursion( 841 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 842 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 843 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU); 844 } 845 }; 846 } 847 848 char TailCallElim::ID = 0; 849 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", 850 false, false) 851 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 852 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 853 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", 854 false, false) 855 856 // Public interface to the TailCallElimination pass 857 FunctionPass *llvm::createTailCallEliminationPass() { 858 return new TailCallElim(); 859 } 860 861 PreservedAnalyses TailCallElimPass::run(Function &F, 862 FunctionAnalysisManager &AM) { 863 864 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 865 AliasAnalysis &AA = AM.getResult<AAManager>(F); 866 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 867 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 868 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F); 869 // There is no noticable performance difference here between Lazy and Eager 870 // UpdateStrategy based on some test results. It is feasible to switch the 871 // UpdateStrategy to Lazy if we find it profitable later. 872 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 873 bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE, DTU); 874 875 if (!Changed) 876 return PreservedAnalyses::all(); 877 PreservedAnalyses PA; 878 PA.preserve<GlobalsAA>(); 879 PA.preserve<DominatorTreeAnalysis>(); 880 PA.preserve<PostDominatorTreeAnalysis>(); 881 return PA; 882 } 883