1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file transforms calls of the current function (self recursion) followed 10 // by a return instruction with a branch to the entry of the function, creating 11 // a loop. This pass also implements the following extensions to the basic 12 // algorithm: 13 // 14 // 1. Trivial instructions between the call and return do not prevent the 15 // transformation from taking place, though currently the analysis cannot 16 // support moving any really useful instructions (only dead ones). 17 // 2. This pass transforms functions that are prevented from being tail 18 // recursive by an associative and commutative expression to use an 19 // accumulator variable, thus compiling the typical naive factorial or 20 // 'fib' implementation into efficient code. 21 // 3. TRE is performed if the function returns void, if the return 22 // returns the result returned by the call, or if the function returns a 23 // run-time constant on all exits from the function. It is possible, though 24 // unlikely, that the return returns something else (like constant 0), and 25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 26 // the function return the exact same value. 27 // 4. If it can prove that callees do not access their caller stack frame, 28 // they are marked as eligible for tail call elimination (by the code 29 // generator). 30 // 31 // There are several improvements that could be made: 32 // 33 // 1. If the function has any alloca instructions, these instructions will be 34 // moved out of the entry block of the function, causing them to be 35 // evaluated each time through the tail recursion. Safely keeping allocas 36 // in the entry block requires analysis to proves that the tail-called 37 // function does not read or write the stack object. 38 // 2. Tail recursion is only performed if the call immediately precedes the 39 // return instruction. It's possible that there could be a jump between 40 // the call and the return. 41 // 3. There can be intervening operations between the call and the return that 42 // prevent the TRE from occurring. For example, there could be GEP's and 43 // stores to memory that will not be read or written by the call. This 44 // requires some substantial analysis (such as with DSA) to prove safe to 45 // move ahead of the call, but doing so could allow many more TREs to be 46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 47 // 4. The algorithm we use to detect if callees access their caller stack 48 // frames is very primitive. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/CFG.h" 57 #include "llvm/Analysis/CaptureTracking.h" 58 #include "llvm/Analysis/DomTreeUpdater.h" 59 #include "llvm/Analysis/GlobalsModRef.h" 60 #include "llvm/Analysis/InlineCost.h" 61 #include "llvm/Analysis/InstructionSimplify.h" 62 #include "llvm/Analysis/Loads.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/PostDominators.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/Analysis/ValueTracking.h" 67 #include "llvm/IR/CFG.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/DiagnosticInfo.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/InstIterator.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/ValueHandle.h" 80 #include "llvm/InitializePasses.h" 81 #include "llvm/Pass.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Transforms/Scalar.h" 85 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 86 #include "llvm/Transforms/Utils/Local.h" 87 using namespace llvm; 88 89 #define DEBUG_TYPE "tailcallelim" 90 91 STATISTIC(NumEliminated, "Number of tail calls removed"); 92 STATISTIC(NumRetDuped, "Number of return duplicated"); 93 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 94 95 /// Scan the specified function for alloca instructions. 96 /// If it contains any dynamic allocas, returns false. 97 static bool canTRE(Function &F) { 98 // TODO: We don't do TRE if dynamic allocas are used. 99 // Dynamic allocas allocate stack space which should be 100 // deallocated before new iteration started. That is 101 // currently not implemented. 102 return llvm::all_of(instructions(F), [](Instruction &I) { 103 auto *AI = dyn_cast<AllocaInst>(&I); 104 return !AI || AI->isStaticAlloca(); 105 }); 106 } 107 108 namespace { 109 struct AllocaDerivedValueTracker { 110 // Start at a root value and walk its use-def chain to mark calls that use the 111 // value or a derived value in AllocaUsers, and places where it may escape in 112 // EscapePoints. 113 void walk(Value *Root) { 114 SmallVector<Use *, 32> Worklist; 115 SmallPtrSet<Use *, 32> Visited; 116 117 auto AddUsesToWorklist = [&](Value *V) { 118 for (auto &U : V->uses()) { 119 if (!Visited.insert(&U).second) 120 continue; 121 Worklist.push_back(&U); 122 } 123 }; 124 125 AddUsesToWorklist(Root); 126 127 while (!Worklist.empty()) { 128 Use *U = Worklist.pop_back_val(); 129 Instruction *I = cast<Instruction>(U->getUser()); 130 131 switch (I->getOpcode()) { 132 case Instruction::Call: 133 case Instruction::Invoke: { 134 auto &CB = cast<CallBase>(*I); 135 // If the alloca-derived argument is passed byval it is not an escape 136 // point, or a use of an alloca. Calling with byval copies the contents 137 // of the alloca into argument registers or stack slots, which exist 138 // beyond the lifetime of the current frame. 139 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U))) 140 continue; 141 bool IsNocapture = 142 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U)); 143 callUsesLocalStack(CB, IsNocapture); 144 if (IsNocapture) { 145 // If the alloca-derived argument is passed in as nocapture, then it 146 // can't propagate to the call's return. That would be capturing. 147 continue; 148 } 149 break; 150 } 151 case Instruction::Load: { 152 // The result of a load is not alloca-derived (unless an alloca has 153 // otherwise escaped, but this is a local analysis). 154 continue; 155 } 156 case Instruction::Store: { 157 if (U->getOperandNo() == 0) 158 EscapePoints.insert(I); 159 continue; // Stores have no users to analyze. 160 } 161 case Instruction::BitCast: 162 case Instruction::GetElementPtr: 163 case Instruction::PHI: 164 case Instruction::Select: 165 case Instruction::AddrSpaceCast: 166 break; 167 default: 168 EscapePoints.insert(I); 169 break; 170 } 171 172 AddUsesToWorklist(I); 173 } 174 } 175 176 void callUsesLocalStack(CallBase &CB, bool IsNocapture) { 177 // Add it to the list of alloca users. 178 AllocaUsers.insert(&CB); 179 180 // If it's nocapture then it can't capture this alloca. 181 if (IsNocapture) 182 return; 183 184 // If it can write to memory, it can leak the alloca value. 185 if (!CB.onlyReadsMemory()) 186 EscapePoints.insert(&CB); 187 } 188 189 SmallPtrSet<Instruction *, 32> AllocaUsers; 190 SmallPtrSet<Instruction *, 32> EscapePoints; 191 }; 192 } 193 194 static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) { 195 if (F.callsFunctionThatReturnsTwice()) 196 return false; 197 198 // The local stack holds all alloca instructions and all byval arguments. 199 AllocaDerivedValueTracker Tracker; 200 for (Argument &Arg : F.args()) { 201 if (Arg.hasByValAttr()) 202 Tracker.walk(&Arg); 203 } 204 for (auto &BB : F) { 205 for (auto &I : BB) 206 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 207 Tracker.walk(AI); 208 } 209 210 bool Modified = false; 211 212 // Track whether a block is reachable after an alloca has escaped. Blocks that 213 // contain the escaping instruction will be marked as being visited without an 214 // escaped alloca, since that is how the block began. 215 enum VisitType { 216 UNVISITED, 217 UNESCAPED, 218 ESCAPED 219 }; 220 DenseMap<BasicBlock *, VisitType> Visited; 221 222 // We propagate the fact that an alloca has escaped from block to successor. 223 // Visit the blocks that are propagating the escapedness first. To do this, we 224 // maintain two worklists. 225 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 226 227 // We may enter a block and visit it thinking that no alloca has escaped yet, 228 // then see an escape point and go back around a loop edge and come back to 229 // the same block twice. Because of this, we defer setting tail on calls when 230 // we first encounter them in a block. Every entry in this list does not 231 // statically use an alloca via use-def chain analysis, but may find an alloca 232 // through other means if the block turns out to be reachable after an escape 233 // point. 234 SmallVector<CallInst *, 32> DeferredTails; 235 236 BasicBlock *BB = &F.getEntryBlock(); 237 VisitType Escaped = UNESCAPED; 238 do { 239 for (auto &I : *BB) { 240 if (Tracker.EscapePoints.count(&I)) 241 Escaped = ESCAPED; 242 243 CallInst *CI = dyn_cast<CallInst>(&I); 244 // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is 245 // considered accessing memory and will be marked as a tail call if we 246 // don't bail out here. 247 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) || 248 isa<PseudoProbeInst>(&I)) 249 continue; 250 251 // Special-case operand bundle "clang.arc.attachedcall". 252 bool IsNoTail = 253 CI->isNoTailCall() || CI->hasOperandBundlesOtherThan( 254 LLVMContext::OB_clang_arc_attachedcall); 255 256 if (!IsNoTail && CI->doesNotAccessMemory()) { 257 // A call to a readnone function whose arguments are all things computed 258 // outside this function can be marked tail. Even if you stored the 259 // alloca address into a global, a readnone function can't load the 260 // global anyhow. 261 // 262 // Note that this runs whether we know an alloca has escaped or not. If 263 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 264 bool SafeToTail = true; 265 for (auto &Arg : CI->args()) { 266 if (isa<Constant>(Arg.getUser())) 267 continue; 268 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 269 if (!A->hasByValAttr()) 270 continue; 271 SafeToTail = false; 272 break; 273 } 274 if (SafeToTail) { 275 using namespace ore; 276 ORE->emit([&]() { 277 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) 278 << "marked as tail call candidate (readnone)"; 279 }); 280 CI->setTailCall(); 281 Modified = true; 282 continue; 283 } 284 } 285 286 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) 287 DeferredTails.push_back(CI); 288 } 289 290 for (auto *SuccBB : successors(BB)) { 291 auto &State = Visited[SuccBB]; 292 if (State < Escaped) { 293 State = Escaped; 294 if (State == ESCAPED) 295 WorklistEscaped.push_back(SuccBB); 296 else 297 WorklistUnescaped.push_back(SuccBB); 298 } 299 } 300 301 if (!WorklistEscaped.empty()) { 302 BB = WorklistEscaped.pop_back_val(); 303 Escaped = ESCAPED; 304 } else { 305 BB = nullptr; 306 while (!WorklistUnescaped.empty()) { 307 auto *NextBB = WorklistUnescaped.pop_back_val(); 308 if (Visited[NextBB] == UNESCAPED) { 309 BB = NextBB; 310 Escaped = UNESCAPED; 311 break; 312 } 313 } 314 } 315 } while (BB); 316 317 for (CallInst *CI : DeferredTails) { 318 if (Visited[CI->getParent()] != ESCAPED) { 319 // If the escape point was part way through the block, calls after the 320 // escape point wouldn't have been put into DeferredTails. 321 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); 322 CI->setTailCall(); 323 Modified = true; 324 } 325 } 326 327 return Modified; 328 } 329 330 /// Return true if it is safe to move the specified 331 /// instruction from after the call to before the call, assuming that all 332 /// instructions between the call and this instruction are movable. 333 /// 334 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { 335 if (isa<DbgInfoIntrinsic>(I)) 336 return true; 337 338 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 339 if (II->getIntrinsicID() == Intrinsic::lifetime_end && 340 llvm::findAllocaForValue(II->getArgOperand(1))) 341 return true; 342 343 // FIXME: We can move load/store/call/free instructions above the call if the 344 // call does not mod/ref the memory location being processed. 345 if (I->mayHaveSideEffects()) // This also handles volatile loads. 346 return false; 347 348 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 349 // Loads may always be moved above calls without side effects. 350 if (CI->mayHaveSideEffects()) { 351 // Non-volatile loads may be moved above a call with side effects if it 352 // does not write to memory and the load provably won't trap. 353 // Writes to memory only matter if they may alias the pointer 354 // being loaded from. 355 const DataLayout &DL = L->getModule()->getDataLayout(); 356 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || 357 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(), 358 L->getAlign(), DL, L)) 359 return false; 360 } 361 } 362 363 // Otherwise, if this is a side-effect free instruction, check to make sure 364 // that it does not use the return value of the call. If it doesn't use the 365 // return value of the call, it must only use things that are defined before 366 // the call, or movable instructions between the call and the instruction 367 // itself. 368 return !is_contained(I->operands(), CI); 369 } 370 371 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { 372 if (!I->isAssociative() || !I->isCommutative()) 373 return false; 374 375 assert(I->getNumOperands() == 2 && 376 "Associative/commutative operations should have 2 args!"); 377 378 // Exactly one operand should be the result of the call instruction. 379 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 380 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 381 return false; 382 383 // The only user of this instruction we allow is a single return instruction. 384 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 385 return false; 386 387 return true; 388 } 389 390 static Instruction *firstNonDbg(BasicBlock::iterator I) { 391 while (isa<DbgInfoIntrinsic>(I)) 392 ++I; 393 return &*I; 394 } 395 396 namespace { 397 class TailRecursionEliminator { 398 Function &F; 399 const TargetTransformInfo *TTI; 400 AliasAnalysis *AA; 401 OptimizationRemarkEmitter *ORE; 402 DomTreeUpdater &DTU; 403 404 // The below are shared state we want to have available when eliminating any 405 // calls in the function. There values should be populated by 406 // createTailRecurseLoopHeader the first time we find a call we can eliminate. 407 BasicBlock *HeaderBB = nullptr; 408 SmallVector<PHINode *, 8> ArgumentPHIs; 409 410 // PHI node to store our return value. 411 PHINode *RetPN = nullptr; 412 413 // i1 PHI node to track if we have a valid return value stored in RetPN. 414 PHINode *RetKnownPN = nullptr; 415 416 // Vector of select instructions we insereted. These selects use RetKnownPN 417 // to either propagate RetPN or select a new return value. 418 SmallVector<SelectInst *, 8> RetSelects; 419 420 // The below are shared state needed when performing accumulator recursion. 421 // There values should be populated by insertAccumulator the first time we 422 // find an elimination that requires an accumulator. 423 424 // PHI node to store our current accumulated value. 425 PHINode *AccPN = nullptr; 426 427 // The instruction doing the accumulating. 428 Instruction *AccumulatorRecursionInstr = nullptr; 429 430 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI, 431 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 432 DomTreeUpdater &DTU) 433 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {} 434 435 CallInst *findTRECandidate(BasicBlock *BB); 436 437 void createTailRecurseLoopHeader(CallInst *CI); 438 439 void insertAccumulator(Instruction *AccRecInstr); 440 441 bool eliminateCall(CallInst *CI); 442 443 void cleanupAndFinalize(); 444 445 bool processBlock(BasicBlock &BB); 446 447 void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx); 448 449 void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx); 450 451 public: 452 static bool eliminate(Function &F, const TargetTransformInfo *TTI, 453 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 454 DomTreeUpdater &DTU); 455 }; 456 } // namespace 457 458 CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) { 459 Instruction *TI = BB->getTerminator(); 460 461 if (&BB->front() == TI) // Make sure there is something before the terminator. 462 return nullptr; 463 464 // Scan backwards from the return, checking to see if there is a tail call in 465 // this block. If so, set CI to it. 466 CallInst *CI = nullptr; 467 BasicBlock::iterator BBI(TI); 468 while (true) { 469 CI = dyn_cast<CallInst>(BBI); 470 if (CI && CI->getCalledFunction() == &F) 471 break; 472 473 if (BBI == BB->begin()) 474 return nullptr; // Didn't find a potential tail call. 475 --BBI; 476 } 477 478 assert((!CI->isTailCall() || !CI->isNoTailCall()) && 479 "Incompatible call site attributes(Tail,NoTail)"); 480 if (!CI->isTailCall()) 481 return nullptr; 482 483 // As a special case, detect code like this: 484 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 485 // and disable this xform in this case, because the code generator will 486 // lower the call to fabs into inline code. 487 if (BB == &F.getEntryBlock() && 488 firstNonDbg(BB->front().getIterator()) == CI && 489 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 490 !TTI->isLoweredToCall(CI->getCalledFunction())) { 491 // A single-block function with just a call and a return. Check that 492 // the arguments match. 493 auto I = CI->arg_begin(), E = CI->arg_end(); 494 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end(); 495 for (; I != E && FI != FE; ++I, ++FI) 496 if (*I != &*FI) break; 497 if (I == E && FI == FE) 498 return nullptr; 499 } 500 501 return CI; 502 } 503 504 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) { 505 HeaderBB = &F.getEntryBlock(); 506 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB); 507 NewEntry->takeName(HeaderBB); 508 HeaderBB->setName("tailrecurse"); 509 BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry); 510 BI->setDebugLoc(CI->getDebugLoc()); 511 512 // Move all fixed sized allocas from HeaderBB to NewEntry. 513 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(), 514 NEBI = NewEntry->begin(); 515 OEBI != E;) 516 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 517 if (isa<ConstantInt>(AI->getArraySize())) 518 AI->moveBefore(&*NEBI); 519 520 // Now that we have created a new block, which jumps to the entry 521 // block, insert a PHI node for each argument of the function. 522 // For now, we initialize each PHI to only have the real arguments 523 // which are passed in. 524 Instruction *InsertPos = &HeaderBB->front(); 525 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 526 PHINode *PN = 527 PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos); 528 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 529 PN->addIncoming(&*I, NewEntry); 530 ArgumentPHIs.push_back(PN); 531 } 532 533 // If the function doen't return void, create the RetPN and RetKnownPN PHI 534 // nodes to track our return value. We initialize RetPN with undef and 535 // RetKnownPN with false since we can't know our return value at function 536 // entry. 537 Type *RetType = F.getReturnType(); 538 if (!RetType->isVoidTy()) { 539 Type *BoolType = Type::getInt1Ty(F.getContext()); 540 RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos); 541 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos); 542 543 RetPN->addIncoming(UndefValue::get(RetType), NewEntry); 544 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry); 545 } 546 547 // The entry block was changed from HeaderBB to NewEntry. 548 // The forward DominatorTree needs to be recalculated when the EntryBB is 549 // changed. In this corner-case we recalculate the entire tree. 550 DTU.recalculate(*NewEntry->getParent()); 551 } 552 553 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) { 554 assert(!AccPN && "Trying to insert multiple accumulators"); 555 556 AccumulatorRecursionInstr = AccRecInstr; 557 558 // Start by inserting a new PHI node for the accumulator. 559 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB); 560 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1, 561 "accumulator.tr", &HeaderBB->front()); 562 563 // Loop over all of the predecessors of the tail recursion block. For the 564 // real entry into the function we seed the PHI with the identity constant for 565 // the accumulation operation. For any other existing branches to this block 566 // (due to other tail recursions eliminated) the accumulator is not modified. 567 // Because we haven't added the branch in the current block to HeaderBB yet, 568 // it will not show up as a predecessor. 569 for (pred_iterator PI = PB; PI != PE; ++PI) { 570 BasicBlock *P = *PI; 571 if (P == &F.getEntryBlock()) { 572 Constant *Identity = ConstantExpr::getBinOpIdentity( 573 AccRecInstr->getOpcode(), AccRecInstr->getType()); 574 AccPN->addIncoming(Identity, P); 575 } else { 576 AccPN->addIncoming(AccPN, P); 577 } 578 } 579 580 ++NumAccumAdded; 581 } 582 583 // Creates a copy of contents of ByValue operand of the specified 584 // call instruction into the newly created temporarily variable. 585 void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI, 586 int OpndIdx) { 587 Type *AggTy = CI->getParamByValType(OpndIdx); 588 assert(AggTy); 589 const DataLayout &DL = F.getParent()->getDataLayout(); 590 591 // Get alignment of byVal operand. 592 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne()); 593 594 // Create alloca for temporarily byval operands. 595 // Put alloca into the entry block. 596 Value *NewAlloca = new AllocaInst( 597 AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 598 CI->getArgOperand(OpndIdx)->getName(), &*F.getEntryBlock().begin()); 599 600 IRBuilder<> Builder(CI); 601 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy)); 602 603 // Copy data from byvalue operand into the temporarily variable. 604 Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment, 605 CI->getArgOperand(OpndIdx), 606 /*SrcAlign*/ Alignment, Size); 607 CI->setArgOperand(OpndIdx, NewAlloca); 608 } 609 610 // Creates a copy from temporarily variable(keeping value of ByVal argument) 611 // into the corresponding function argument location. 612 void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments( 613 CallInst *CI, int OpndIdx) { 614 Type *AggTy = CI->getParamByValType(OpndIdx); 615 assert(AggTy); 616 const DataLayout &DL = F.getParent()->getDataLayout(); 617 618 // Get alignment of byVal operand. 619 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne()); 620 621 IRBuilder<> Builder(CI); 622 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy)); 623 624 // Copy data from the temporarily variable into corresponding 625 // function argument location. 626 Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment, 627 CI->getArgOperand(OpndIdx), 628 /*SrcAlign*/ Alignment, Size); 629 } 630 631 bool TailRecursionEliminator::eliminateCall(CallInst *CI) { 632 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator()); 633 634 // Ok, we found a potential tail call. We can currently only transform the 635 // tail call if all of the instructions between the call and the return are 636 // movable to above the call itself, leaving the call next to the return. 637 // Check that this is the case now. 638 Instruction *AccRecInstr = nullptr; 639 BasicBlock::iterator BBI(CI); 640 for (++BBI; &*BBI != Ret; ++BBI) { 641 if (canMoveAboveCall(&*BBI, CI, AA)) 642 continue; 643 644 // If we can't move the instruction above the call, it might be because it 645 // is an associative and commutative operation that could be transformed 646 // using accumulator recursion elimination. Check to see if this is the 647 // case, and if so, remember which instruction accumulates for later. 648 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI)) 649 return false; // We cannot eliminate the tail recursion! 650 651 // Yes, this is accumulator recursion. Remember which instruction 652 // accumulates. 653 AccRecInstr = &*BBI; 654 } 655 656 BasicBlock *BB = Ret->getParent(); 657 658 using namespace ore; 659 ORE->emit([&]() { 660 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) 661 << "transforming tail recursion into loop"; 662 }); 663 664 // OK! We can transform this tail call. If this is the first one found, 665 // create the new entry block, allowing us to branch back to the old entry. 666 if (!HeaderBB) 667 createTailRecurseLoopHeader(CI); 668 669 // Copy values of ByVal operands into local temporarily variables. 670 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) { 671 if (CI->isByValArgument(I)) 672 copyByValueOperandIntoLocalTemp(CI, I); 673 } 674 675 // Ok, now that we know we have a pseudo-entry block WITH all of the 676 // required PHI nodes, add entries into the PHI node for the actual 677 // parameters passed into the tail-recursive call. 678 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) { 679 if (CI->isByValArgument(I)) { 680 copyLocalTempOfByValueOperandIntoArguments(CI, I); 681 ArgumentPHIs[I]->addIncoming(F.getArg(I), BB); 682 } else 683 ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB); 684 } 685 686 if (AccRecInstr) { 687 insertAccumulator(AccRecInstr); 688 689 // Rewrite the accumulator recursion instruction so that it does not use 690 // the result of the call anymore, instead, use the PHI node we just 691 // inserted. 692 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 693 } 694 695 // Update our return value tracking 696 if (RetPN) { 697 if (Ret->getReturnValue() == CI || AccRecInstr) { 698 // Defer selecting a return value 699 RetPN->addIncoming(RetPN, BB); 700 RetKnownPN->addIncoming(RetKnownPN, BB); 701 } else { 702 // We found a return value we want to use, insert a select instruction to 703 // select it if we don't already know what our return value will be and 704 // store the result in our return value PHI node. 705 SelectInst *SI = SelectInst::Create( 706 RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret); 707 RetSelects.push_back(SI); 708 709 RetPN->addIncoming(SI, BB); 710 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB); 711 } 712 713 if (AccPN) 714 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB); 715 } 716 717 // Now that all of the PHI nodes are in place, remove the call and 718 // ret instructions, replacing them with an unconditional branch. 719 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret); 720 NewBI->setDebugLoc(CI->getDebugLoc()); 721 722 BB->getInstList().erase(Ret); // Remove return. 723 BB->getInstList().erase(CI); // Remove call. 724 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}}); 725 ++NumEliminated; 726 return true; 727 } 728 729 void TailRecursionEliminator::cleanupAndFinalize() { 730 // If we eliminated any tail recursions, it's possible that we inserted some 731 // silly PHI nodes which just merge an initial value (the incoming operand) 732 // with themselves. Check to see if we did and clean up our mess if so. This 733 // occurs when a function passes an argument straight through to its tail 734 // call. 735 for (PHINode *PN : ArgumentPHIs) { 736 // If the PHI Node is a dynamic constant, replace it with the value it is. 737 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { 738 PN->replaceAllUsesWith(PNV); 739 PN->eraseFromParent(); 740 } 741 } 742 743 if (RetPN) { 744 if (RetSelects.empty()) { 745 // If we didn't insert any select instructions, then we know we didn't 746 // store a return value and we can remove the PHI nodes we inserted. 747 RetPN->dropAllReferences(); 748 RetPN->eraseFromParent(); 749 750 RetKnownPN->dropAllReferences(); 751 RetKnownPN->eraseFromParent(); 752 753 if (AccPN) { 754 // We need to insert a copy of our accumulator instruction before any 755 // return in the function, and return its result instead. 756 Instruction *AccRecInstr = AccumulatorRecursionInstr; 757 for (BasicBlock &BB : F) { 758 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 759 if (!RI) 760 continue; 761 762 Instruction *AccRecInstrNew = AccRecInstr->clone(); 763 AccRecInstrNew->setName("accumulator.ret.tr"); 764 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 765 RI->getOperand(0)); 766 AccRecInstrNew->insertBefore(RI); 767 RI->setOperand(0, AccRecInstrNew); 768 } 769 } 770 } else { 771 // We need to insert a select instruction before any return left in the 772 // function to select our stored return value if we have one. 773 for (BasicBlock &BB : F) { 774 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 775 if (!RI) 776 continue; 777 778 SelectInst *SI = SelectInst::Create( 779 RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI); 780 RetSelects.push_back(SI); 781 RI->setOperand(0, SI); 782 } 783 784 if (AccPN) { 785 // We need to insert a copy of our accumulator instruction before any 786 // of the selects we inserted, and select its result instead. 787 Instruction *AccRecInstr = AccumulatorRecursionInstr; 788 for (SelectInst *SI : RetSelects) { 789 Instruction *AccRecInstrNew = AccRecInstr->clone(); 790 AccRecInstrNew->setName("accumulator.ret.tr"); 791 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 792 SI->getFalseValue()); 793 AccRecInstrNew->insertBefore(SI); 794 SI->setFalseValue(AccRecInstrNew); 795 } 796 } 797 } 798 } 799 } 800 801 bool TailRecursionEliminator::processBlock(BasicBlock &BB) { 802 Instruction *TI = BB.getTerminator(); 803 804 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 805 if (BI->isConditional()) 806 return false; 807 808 BasicBlock *Succ = BI->getSuccessor(0); 809 ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true)); 810 811 if (!Ret) 812 return false; 813 814 CallInst *CI = findTRECandidate(&BB); 815 816 if (!CI) 817 return false; 818 819 LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ 820 << "INTO UNCOND BRANCH PRED: " << BB); 821 FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU); 822 ++NumRetDuped; 823 824 // If all predecessors of Succ have been eliminated by 825 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 826 // because the ret instruction in there is still using a value which 827 // eliminateCall will attempt to remove. This block can only contain 828 // instructions that can't have uses, therefore it is safe to remove. 829 if (pred_empty(Succ)) 830 DTU.deleteBB(Succ); 831 832 eliminateCall(CI); 833 return true; 834 } else if (isa<ReturnInst>(TI)) { 835 CallInst *CI = findTRECandidate(&BB); 836 837 if (CI) 838 return eliminateCall(CI); 839 } 840 841 return false; 842 } 843 844 bool TailRecursionEliminator::eliminate(Function &F, 845 const TargetTransformInfo *TTI, 846 AliasAnalysis *AA, 847 OptimizationRemarkEmitter *ORE, 848 DomTreeUpdater &DTU) { 849 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 850 return false; 851 852 bool MadeChange = false; 853 MadeChange |= markTails(F, ORE); 854 855 // If this function is a varargs function, we won't be able to PHI the args 856 // right, so don't even try to convert it... 857 if (F.getFunctionType()->isVarArg()) 858 return MadeChange; 859 860 if (!canTRE(F)) 861 return MadeChange; 862 863 // Change any tail recursive calls to loops. 864 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU); 865 866 for (BasicBlock &BB : F) 867 MadeChange |= TRE.processBlock(BB); 868 869 TRE.cleanupAndFinalize(); 870 871 return MadeChange; 872 } 873 874 namespace { 875 struct TailCallElim : public FunctionPass { 876 static char ID; // Pass identification, replacement for typeid 877 TailCallElim() : FunctionPass(ID) { 878 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 879 } 880 881 void getAnalysisUsage(AnalysisUsage &AU) const override { 882 AU.addRequired<TargetTransformInfoWrapperPass>(); 883 AU.addRequired<AAResultsWrapperPass>(); 884 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 885 AU.addPreserved<GlobalsAAWrapperPass>(); 886 AU.addPreserved<DominatorTreeWrapperPass>(); 887 AU.addPreserved<PostDominatorTreeWrapperPass>(); 888 } 889 890 bool runOnFunction(Function &F) override { 891 if (skipFunction(F)) 892 return false; 893 894 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 895 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 896 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 897 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 898 // There is no noticable performance difference here between Lazy and Eager 899 // UpdateStrategy based on some test results. It is feasible to switch the 900 // UpdateStrategy to Lazy if we find it profitable later. 901 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 902 903 return TailRecursionEliminator::eliminate( 904 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 905 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 906 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU); 907 } 908 }; 909 } 910 911 char TailCallElim::ID = 0; 912 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", 913 false, false) 914 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 915 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 916 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", 917 false, false) 918 919 // Public interface to the TailCallElimination pass 920 FunctionPass *llvm::createTailCallEliminationPass() { 921 return new TailCallElim(); 922 } 923 924 PreservedAnalyses TailCallElimPass::run(Function &F, 925 FunctionAnalysisManager &AM) { 926 927 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 928 AliasAnalysis &AA = AM.getResult<AAManager>(F); 929 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 930 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 931 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F); 932 // There is no noticable performance difference here between Lazy and Eager 933 // UpdateStrategy based on some test results. It is feasible to switch the 934 // UpdateStrategy to Lazy if we find it profitable later. 935 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 936 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU); 937 938 if (!Changed) 939 return PreservedAnalyses::all(); 940 PreservedAnalyses PA; 941 PA.preserve<DominatorTreeAnalysis>(); 942 PA.preserve<PostDominatorTreeAnalysis>(); 943 return PA; 944 } 945