1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file transforms calls of the current function (self recursion) followed 10 // by a return instruction with a branch to the entry of the function, creating 11 // a loop. This pass also implements the following extensions to the basic 12 // algorithm: 13 // 14 // 1. Trivial instructions between the call and return do not prevent the 15 // transformation from taking place, though currently the analysis cannot 16 // support moving any really useful instructions (only dead ones). 17 // 2. This pass transforms functions that are prevented from being tail 18 // recursive by an associative and commutative expression to use an 19 // accumulator variable, thus compiling the typical naive factorial or 20 // 'fib' implementation into efficient code. 21 // 3. TRE is performed if the function returns void, if the return 22 // returns the result returned by the call, or if the function returns a 23 // run-time constant on all exits from the function. It is possible, though 24 // unlikely, that the return returns something else (like constant 0), and 25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 26 // the function return the exact same value. 27 // 4. If it can prove that callees do not access their caller stack frame, 28 // they are marked as eligible for tail call elimination (by the code 29 // generator). 30 // 31 // There are several improvements that could be made: 32 // 33 // 1. If the function has any alloca instructions, these instructions will be 34 // moved out of the entry block of the function, causing them to be 35 // evaluated each time through the tail recursion. Safely keeping allocas 36 // in the entry block requires analysis to proves that the tail-called 37 // function does not read or write the stack object. 38 // 2. Tail recursion is only performed if the call immediately precedes the 39 // return instruction. It's possible that there could be a jump between 40 // the call and the return. 41 // 3. There can be intervening operations between the call and the return that 42 // prevent the TRE from occurring. For example, there could be GEP's and 43 // stores to memory that will not be read or written by the call. This 44 // requires some substantial analysis (such as with DSA) to prove safe to 45 // move ahead of the call, but doing so could allow many more TREs to be 46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 47 // 4. The algorithm we use to detect if callees access their caller stack 48 // frames is very primitive. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/CFG.h" 57 #include "llvm/Analysis/CaptureTracking.h" 58 #include "llvm/Analysis/DomTreeUpdater.h" 59 #include "llvm/Analysis/GlobalsModRef.h" 60 #include "llvm/Analysis/InlineCost.h" 61 #include "llvm/Analysis/InstructionSimplify.h" 62 #include "llvm/Analysis/Loads.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/PostDominators.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/InstIterator.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Module.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/InitializePasses.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 84 using namespace llvm; 85 86 #define DEBUG_TYPE "tailcallelim" 87 88 STATISTIC(NumEliminated, "Number of tail calls removed"); 89 STATISTIC(NumRetDuped, "Number of return duplicated"); 90 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 91 92 /// Scan the specified function for alloca instructions. 93 /// If it contains any dynamic allocas, returns false. 94 static bool canTRE(Function &F) { 95 // FIXME: The code generator produces really bad code when an 'escaping 96 // alloca' is changed from being a static alloca to being a dynamic alloca. 97 // Until this is resolved, disable this transformation if that would ever 98 // happen. This bug is PR962. 99 return llvm::all_of(instructions(F), [](Instruction &I) { 100 auto *AI = dyn_cast<AllocaInst>(&I); 101 return !AI || AI->isStaticAlloca(); 102 }); 103 } 104 105 namespace { 106 struct AllocaDerivedValueTracker { 107 // Start at a root value and walk its use-def chain to mark calls that use the 108 // value or a derived value in AllocaUsers, and places where it may escape in 109 // EscapePoints. 110 void walk(Value *Root) { 111 SmallVector<Use *, 32> Worklist; 112 SmallPtrSet<Use *, 32> Visited; 113 114 auto AddUsesToWorklist = [&](Value *V) { 115 for (auto &U : V->uses()) { 116 if (!Visited.insert(&U).second) 117 continue; 118 Worklist.push_back(&U); 119 } 120 }; 121 122 AddUsesToWorklist(Root); 123 124 while (!Worklist.empty()) { 125 Use *U = Worklist.pop_back_val(); 126 Instruction *I = cast<Instruction>(U->getUser()); 127 128 switch (I->getOpcode()) { 129 case Instruction::Call: 130 case Instruction::Invoke: { 131 auto &CB = cast<CallBase>(*I); 132 // If the alloca-derived argument is passed byval it is not an escape 133 // point, or a use of an alloca. Calling with byval copies the contents 134 // of the alloca into argument registers or stack slots, which exist 135 // beyond the lifetime of the current frame. 136 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U))) 137 continue; 138 bool IsNocapture = 139 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U)); 140 callUsesLocalStack(CB, IsNocapture); 141 if (IsNocapture) { 142 // If the alloca-derived argument is passed in as nocapture, then it 143 // can't propagate to the call's return. That would be capturing. 144 continue; 145 } 146 break; 147 } 148 case Instruction::Load: { 149 // The result of a load is not alloca-derived (unless an alloca has 150 // otherwise escaped, but this is a local analysis). 151 continue; 152 } 153 case Instruction::Store: { 154 if (U->getOperandNo() == 0) 155 EscapePoints.insert(I); 156 continue; // Stores have no users to analyze. 157 } 158 case Instruction::BitCast: 159 case Instruction::GetElementPtr: 160 case Instruction::PHI: 161 case Instruction::Select: 162 case Instruction::AddrSpaceCast: 163 break; 164 default: 165 EscapePoints.insert(I); 166 break; 167 } 168 169 AddUsesToWorklist(I); 170 } 171 } 172 173 void callUsesLocalStack(CallBase &CB, bool IsNocapture) { 174 // Add it to the list of alloca users. 175 AllocaUsers.insert(&CB); 176 177 // If it's nocapture then it can't capture this alloca. 178 if (IsNocapture) 179 return; 180 181 // If it can write to memory, it can leak the alloca value. 182 if (!CB.onlyReadsMemory()) 183 EscapePoints.insert(&CB); 184 } 185 186 SmallPtrSet<Instruction *, 32> AllocaUsers; 187 SmallPtrSet<Instruction *, 32> EscapePoints; 188 }; 189 } 190 191 static bool markTails(Function &F, bool &AllCallsAreTailCalls, 192 OptimizationRemarkEmitter *ORE) { 193 if (F.callsFunctionThatReturnsTwice()) 194 return false; 195 AllCallsAreTailCalls = true; 196 197 // The local stack holds all alloca instructions and all byval arguments. 198 AllocaDerivedValueTracker Tracker; 199 for (Argument &Arg : F.args()) { 200 if (Arg.hasByValAttr()) 201 Tracker.walk(&Arg); 202 } 203 for (auto &BB : F) { 204 for (auto &I : BB) 205 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 206 Tracker.walk(AI); 207 } 208 209 bool Modified = false; 210 211 // Track whether a block is reachable after an alloca has escaped. Blocks that 212 // contain the escaping instruction will be marked as being visited without an 213 // escaped alloca, since that is how the block began. 214 enum VisitType { 215 UNVISITED, 216 UNESCAPED, 217 ESCAPED 218 }; 219 DenseMap<BasicBlock *, VisitType> Visited; 220 221 // We propagate the fact that an alloca has escaped from block to successor. 222 // Visit the blocks that are propagating the escapedness first. To do this, we 223 // maintain two worklists. 224 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 225 226 // We may enter a block and visit it thinking that no alloca has escaped yet, 227 // then see an escape point and go back around a loop edge and come back to 228 // the same block twice. Because of this, we defer setting tail on calls when 229 // we first encounter them in a block. Every entry in this list does not 230 // statically use an alloca via use-def chain analysis, but may find an alloca 231 // through other means if the block turns out to be reachable after an escape 232 // point. 233 SmallVector<CallInst *, 32> DeferredTails; 234 235 BasicBlock *BB = &F.getEntryBlock(); 236 VisitType Escaped = UNESCAPED; 237 do { 238 for (auto &I : *BB) { 239 if (Tracker.EscapePoints.count(&I)) 240 Escaped = ESCAPED; 241 242 CallInst *CI = dyn_cast<CallInst>(&I); 243 // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is 244 // considered accessing memory and will be marked as a tail call if we 245 // don't bail out here. 246 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) || 247 isa<PseudoProbeInst>(&I)) 248 continue; 249 250 bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles(); 251 252 if (!IsNoTail && CI->doesNotAccessMemory()) { 253 // A call to a readnone function whose arguments are all things computed 254 // outside this function can be marked tail. Even if you stored the 255 // alloca address into a global, a readnone function can't load the 256 // global anyhow. 257 // 258 // Note that this runs whether we know an alloca has escaped or not. If 259 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 260 bool SafeToTail = true; 261 for (auto &Arg : CI->arg_operands()) { 262 if (isa<Constant>(Arg.getUser())) 263 continue; 264 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 265 if (!A->hasByValAttr()) 266 continue; 267 SafeToTail = false; 268 break; 269 } 270 if (SafeToTail) { 271 using namespace ore; 272 ORE->emit([&]() { 273 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) 274 << "marked as tail call candidate (readnone)"; 275 }); 276 CI->setTailCall(); 277 Modified = true; 278 continue; 279 } 280 } 281 282 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { 283 DeferredTails.push_back(CI); 284 } else { 285 AllCallsAreTailCalls = false; 286 } 287 } 288 289 for (auto *SuccBB : successors(BB)) { 290 auto &State = Visited[SuccBB]; 291 if (State < Escaped) { 292 State = Escaped; 293 if (State == ESCAPED) 294 WorklistEscaped.push_back(SuccBB); 295 else 296 WorklistUnescaped.push_back(SuccBB); 297 } 298 } 299 300 if (!WorklistEscaped.empty()) { 301 BB = WorklistEscaped.pop_back_val(); 302 Escaped = ESCAPED; 303 } else { 304 BB = nullptr; 305 while (!WorklistUnescaped.empty()) { 306 auto *NextBB = WorklistUnescaped.pop_back_val(); 307 if (Visited[NextBB] == UNESCAPED) { 308 BB = NextBB; 309 Escaped = UNESCAPED; 310 break; 311 } 312 } 313 } 314 } while (BB); 315 316 for (CallInst *CI : DeferredTails) { 317 if (Visited[CI->getParent()] != ESCAPED) { 318 // If the escape point was part way through the block, calls after the 319 // escape point wouldn't have been put into DeferredTails. 320 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); 321 CI->setTailCall(); 322 Modified = true; 323 } else { 324 AllCallsAreTailCalls = false; 325 } 326 } 327 328 return Modified; 329 } 330 331 /// Return true if it is safe to move the specified 332 /// instruction from after the call to before the call, assuming that all 333 /// instructions between the call and this instruction are movable. 334 /// 335 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { 336 // FIXME: We can move load/store/call/free instructions above the call if the 337 // call does not mod/ref the memory location being processed. 338 if (I->mayHaveSideEffects()) // This also handles volatile loads. 339 return false; 340 341 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 342 // Loads may always be moved above calls without side effects. 343 if (CI->mayHaveSideEffects()) { 344 // Non-volatile loads may be moved above a call with side effects if it 345 // does not write to memory and the load provably won't trap. 346 // Writes to memory only matter if they may alias the pointer 347 // being loaded from. 348 const DataLayout &DL = L->getModule()->getDataLayout(); 349 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || 350 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(), 351 L->getAlign(), DL, L)) 352 return false; 353 } 354 } 355 356 // Otherwise, if this is a side-effect free instruction, check to make sure 357 // that it does not use the return value of the call. If it doesn't use the 358 // return value of the call, it must only use things that are defined before 359 // the call, or movable instructions between the call and the instruction 360 // itself. 361 return !is_contained(I->operands(), CI); 362 } 363 364 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { 365 if (!I->isAssociative() || !I->isCommutative()) 366 return false; 367 368 assert(I->getNumOperands() == 2 && 369 "Associative/commutative operations should have 2 args!"); 370 371 // Exactly one operand should be the result of the call instruction. 372 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 373 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 374 return false; 375 376 // The only user of this instruction we allow is a single return instruction. 377 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 378 return false; 379 380 return true; 381 } 382 383 static Instruction *firstNonDbg(BasicBlock::iterator I) { 384 while (isa<DbgInfoIntrinsic>(I)) 385 ++I; 386 return &*I; 387 } 388 389 namespace { 390 class TailRecursionEliminator { 391 Function &F; 392 const TargetTransformInfo *TTI; 393 AliasAnalysis *AA; 394 OptimizationRemarkEmitter *ORE; 395 DomTreeUpdater &DTU; 396 397 // The below are shared state we want to have available when eliminating any 398 // calls in the function. There values should be populated by 399 // createTailRecurseLoopHeader the first time we find a call we can eliminate. 400 BasicBlock *HeaderBB = nullptr; 401 SmallVector<PHINode *, 8> ArgumentPHIs; 402 bool RemovableCallsMustBeMarkedTail = false; 403 404 // PHI node to store our return value. 405 PHINode *RetPN = nullptr; 406 407 // i1 PHI node to track if we have a valid return value stored in RetPN. 408 PHINode *RetKnownPN = nullptr; 409 410 // Vector of select instructions we insereted. These selects use RetKnownPN 411 // to either propagate RetPN or select a new return value. 412 SmallVector<SelectInst *, 8> RetSelects; 413 414 // The below are shared state needed when performing accumulator recursion. 415 // There values should be populated by insertAccumulator the first time we 416 // find an elimination that requires an accumulator. 417 418 // PHI node to store our current accumulated value. 419 PHINode *AccPN = nullptr; 420 421 // The instruction doing the accumulating. 422 Instruction *AccumulatorRecursionInstr = nullptr; 423 424 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI, 425 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 426 DomTreeUpdater &DTU) 427 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {} 428 429 CallInst *findTRECandidate(BasicBlock *BB, 430 bool CannotTailCallElimCallsMarkedTail); 431 432 void createTailRecurseLoopHeader(CallInst *CI); 433 434 void insertAccumulator(Instruction *AccRecInstr); 435 436 bool eliminateCall(CallInst *CI); 437 438 void cleanupAndFinalize(); 439 440 bool processBlock(BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail); 441 442 public: 443 static bool eliminate(Function &F, const TargetTransformInfo *TTI, 444 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 445 DomTreeUpdater &DTU); 446 }; 447 } // namespace 448 449 CallInst *TailRecursionEliminator::findTRECandidate( 450 BasicBlock *BB, bool CannotTailCallElimCallsMarkedTail) { 451 Instruction *TI = BB->getTerminator(); 452 453 if (&BB->front() == TI) // Make sure there is something before the terminator. 454 return nullptr; 455 456 // Scan backwards from the return, checking to see if there is a tail call in 457 // this block. If so, set CI to it. 458 CallInst *CI = nullptr; 459 BasicBlock::iterator BBI(TI); 460 while (true) { 461 CI = dyn_cast<CallInst>(BBI); 462 if (CI && CI->getCalledFunction() == &F) 463 break; 464 465 if (BBI == BB->begin()) 466 return nullptr; // Didn't find a potential tail call. 467 --BBI; 468 } 469 470 // If this call is marked as a tail call, and if there are dynamic allocas in 471 // the function, we cannot perform this optimization. 472 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 473 return nullptr; 474 475 // As a special case, detect code like this: 476 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 477 // and disable this xform in this case, because the code generator will 478 // lower the call to fabs into inline code. 479 if (BB == &F.getEntryBlock() && 480 firstNonDbg(BB->front().getIterator()) == CI && 481 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 482 !TTI->isLoweredToCall(CI->getCalledFunction())) { 483 // A single-block function with just a call and a return. Check that 484 // the arguments match. 485 auto I = CI->arg_begin(), E = CI->arg_end(); 486 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end(); 487 for (; I != E && FI != FE; ++I, ++FI) 488 if (*I != &*FI) break; 489 if (I == E && FI == FE) 490 return nullptr; 491 } 492 493 return CI; 494 } 495 496 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) { 497 HeaderBB = &F.getEntryBlock(); 498 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB); 499 NewEntry->takeName(HeaderBB); 500 HeaderBB->setName("tailrecurse"); 501 BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry); 502 BI->setDebugLoc(CI->getDebugLoc()); 503 504 // If this function has self recursive calls in the tail position where some 505 // are marked tail and some are not, only transform one flavor or another. 506 // We have to choose whether we move allocas in the entry block to the new 507 // entry block or not, so we can't make a good choice for both. We make this 508 // decision here based on whether the first call we found to remove is 509 // marked tail. 510 // NOTE: We could do slightly better here in the case that the function has 511 // no entry block allocas. 512 RemovableCallsMustBeMarkedTail = CI->isTailCall(); 513 514 // If this tail call is marked 'tail' and if there are any allocas in the 515 // entry block, move them up to the new entry block. 516 if (RemovableCallsMustBeMarkedTail) 517 // Move all fixed sized allocas from HeaderBB to NewEntry. 518 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(), 519 NEBI = NewEntry->begin(); 520 OEBI != E;) 521 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 522 if (isa<ConstantInt>(AI->getArraySize())) 523 AI->moveBefore(&*NEBI); 524 525 // Now that we have created a new block, which jumps to the entry 526 // block, insert a PHI node for each argument of the function. 527 // For now, we initialize each PHI to only have the real arguments 528 // which are passed in. 529 Instruction *InsertPos = &HeaderBB->front(); 530 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 531 PHINode *PN = 532 PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos); 533 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 534 PN->addIncoming(&*I, NewEntry); 535 ArgumentPHIs.push_back(PN); 536 } 537 538 // If the function doen't return void, create the RetPN and RetKnownPN PHI 539 // nodes to track our return value. We initialize RetPN with undef and 540 // RetKnownPN with false since we can't know our return value at function 541 // entry. 542 Type *RetType = F.getReturnType(); 543 if (!RetType->isVoidTy()) { 544 Type *BoolType = Type::getInt1Ty(F.getContext()); 545 RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos); 546 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos); 547 548 RetPN->addIncoming(UndefValue::get(RetType), NewEntry); 549 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry); 550 } 551 552 // The entry block was changed from HeaderBB to NewEntry. 553 // The forward DominatorTree needs to be recalculated when the EntryBB is 554 // changed. In this corner-case we recalculate the entire tree. 555 DTU.recalculate(*NewEntry->getParent()); 556 } 557 558 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) { 559 assert(!AccPN && "Trying to insert multiple accumulators"); 560 561 AccumulatorRecursionInstr = AccRecInstr; 562 563 // Start by inserting a new PHI node for the accumulator. 564 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB); 565 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1, 566 "accumulator.tr", &HeaderBB->front()); 567 568 // Loop over all of the predecessors of the tail recursion block. For the 569 // real entry into the function we seed the PHI with the identity constant for 570 // the accumulation operation. For any other existing branches to this block 571 // (due to other tail recursions eliminated) the accumulator is not modified. 572 // Because we haven't added the branch in the current block to HeaderBB yet, 573 // it will not show up as a predecessor. 574 for (pred_iterator PI = PB; PI != PE; ++PI) { 575 BasicBlock *P = *PI; 576 if (P == &F.getEntryBlock()) { 577 Constant *Identity = ConstantExpr::getBinOpIdentity( 578 AccRecInstr->getOpcode(), AccRecInstr->getType()); 579 AccPN->addIncoming(Identity, P); 580 } else { 581 AccPN->addIncoming(AccPN, P); 582 } 583 } 584 585 ++NumAccumAdded; 586 } 587 588 bool TailRecursionEliminator::eliminateCall(CallInst *CI) { 589 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator()); 590 591 // Ok, we found a potential tail call. We can currently only transform the 592 // tail call if all of the instructions between the call and the return are 593 // movable to above the call itself, leaving the call next to the return. 594 // Check that this is the case now. 595 Instruction *AccRecInstr = nullptr; 596 BasicBlock::iterator BBI(CI); 597 for (++BBI; &*BBI != Ret; ++BBI) { 598 if (canMoveAboveCall(&*BBI, CI, AA)) 599 continue; 600 601 // If we can't move the instruction above the call, it might be because it 602 // is an associative and commutative operation that could be transformed 603 // using accumulator recursion elimination. Check to see if this is the 604 // case, and if so, remember which instruction accumulates for later. 605 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI)) 606 return false; // We cannot eliminate the tail recursion! 607 608 // Yes, this is accumulator recursion. Remember which instruction 609 // accumulates. 610 AccRecInstr = &*BBI; 611 } 612 613 BasicBlock *BB = Ret->getParent(); 614 615 using namespace ore; 616 ORE->emit([&]() { 617 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) 618 << "transforming tail recursion into loop"; 619 }); 620 621 // OK! We can transform this tail call. If this is the first one found, 622 // create the new entry block, allowing us to branch back to the old entry. 623 if (!HeaderBB) 624 createTailRecurseLoopHeader(CI); 625 626 if (RemovableCallsMustBeMarkedTail && !CI->isTailCall()) 627 return false; 628 629 // Ok, now that we know we have a pseudo-entry block WITH all of the 630 // required PHI nodes, add entries into the PHI node for the actual 631 // parameters passed into the tail-recursive call. 632 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 633 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 634 635 if (AccRecInstr) { 636 insertAccumulator(AccRecInstr); 637 638 // Rewrite the accumulator recursion instruction so that it does not use 639 // the result of the call anymore, instead, use the PHI node we just 640 // inserted. 641 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 642 } 643 644 // Update our return value tracking 645 if (RetPN) { 646 if (Ret->getReturnValue() == CI || AccRecInstr) { 647 // Defer selecting a return value 648 RetPN->addIncoming(RetPN, BB); 649 RetKnownPN->addIncoming(RetKnownPN, BB); 650 } else { 651 // We found a return value we want to use, insert a select instruction to 652 // select it if we don't already know what our return value will be and 653 // store the result in our return value PHI node. 654 SelectInst *SI = SelectInst::Create( 655 RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret); 656 RetSelects.push_back(SI); 657 658 RetPN->addIncoming(SI, BB); 659 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB); 660 } 661 662 if (AccPN) 663 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB); 664 } 665 666 // Now that all of the PHI nodes are in place, remove the call and 667 // ret instructions, replacing them with an unconditional branch. 668 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret); 669 NewBI->setDebugLoc(CI->getDebugLoc()); 670 671 BB->getInstList().erase(Ret); // Remove return. 672 BB->getInstList().erase(CI); // Remove call. 673 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}}); 674 ++NumEliminated; 675 return true; 676 } 677 678 void TailRecursionEliminator::cleanupAndFinalize() { 679 // If we eliminated any tail recursions, it's possible that we inserted some 680 // silly PHI nodes which just merge an initial value (the incoming operand) 681 // with themselves. Check to see if we did and clean up our mess if so. This 682 // occurs when a function passes an argument straight through to its tail 683 // call. 684 for (PHINode *PN : ArgumentPHIs) { 685 // If the PHI Node is a dynamic constant, replace it with the value it is. 686 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { 687 PN->replaceAllUsesWith(PNV); 688 PN->eraseFromParent(); 689 } 690 } 691 692 if (RetPN) { 693 if (RetSelects.empty()) { 694 // If we didn't insert any select instructions, then we know we didn't 695 // store a return value and we can remove the PHI nodes we inserted. 696 RetPN->dropAllReferences(); 697 RetPN->eraseFromParent(); 698 699 RetKnownPN->dropAllReferences(); 700 RetKnownPN->eraseFromParent(); 701 702 if (AccPN) { 703 // We need to insert a copy of our accumulator instruction before any 704 // return in the function, and return its result instead. 705 Instruction *AccRecInstr = AccumulatorRecursionInstr; 706 for (BasicBlock &BB : F) { 707 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 708 if (!RI) 709 continue; 710 711 Instruction *AccRecInstrNew = AccRecInstr->clone(); 712 AccRecInstrNew->setName("accumulator.ret.tr"); 713 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 714 RI->getOperand(0)); 715 AccRecInstrNew->insertBefore(RI); 716 RI->setOperand(0, AccRecInstrNew); 717 } 718 } 719 } else { 720 // We need to insert a select instruction before any return left in the 721 // function to select our stored return value if we have one. 722 for (BasicBlock &BB : F) { 723 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 724 if (!RI) 725 continue; 726 727 SelectInst *SI = SelectInst::Create( 728 RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI); 729 RetSelects.push_back(SI); 730 RI->setOperand(0, SI); 731 } 732 733 if (AccPN) { 734 // We need to insert a copy of our accumulator instruction before any 735 // of the selects we inserted, and select its result instead. 736 Instruction *AccRecInstr = AccumulatorRecursionInstr; 737 for (SelectInst *SI : RetSelects) { 738 Instruction *AccRecInstrNew = AccRecInstr->clone(); 739 AccRecInstrNew->setName("accumulator.ret.tr"); 740 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 741 SI->getFalseValue()); 742 AccRecInstrNew->insertBefore(SI); 743 SI->setFalseValue(AccRecInstrNew); 744 } 745 } 746 } 747 } 748 } 749 750 bool TailRecursionEliminator::processBlock( 751 BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail) { 752 Instruction *TI = BB.getTerminator(); 753 754 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 755 if (BI->isConditional()) 756 return false; 757 758 BasicBlock *Succ = BI->getSuccessor(0); 759 ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true)); 760 761 if (!Ret) 762 return false; 763 764 CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail); 765 766 if (!CI) 767 return false; 768 769 LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ 770 << "INTO UNCOND BRANCH PRED: " << BB); 771 FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU); 772 ++NumRetDuped; 773 774 // If all predecessors of Succ have been eliminated by 775 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 776 // because the ret instruction in there is still using a value which 777 // eliminateCall will attempt to remove. This block can only contain 778 // instructions that can't have uses, therefore it is safe to remove. 779 if (pred_empty(Succ)) 780 DTU.deleteBB(Succ); 781 782 eliminateCall(CI); 783 return true; 784 } else if (isa<ReturnInst>(TI)) { 785 CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail); 786 787 if (CI) 788 return eliminateCall(CI); 789 } 790 791 return false; 792 } 793 794 bool TailRecursionEliminator::eliminate(Function &F, 795 const TargetTransformInfo *TTI, 796 AliasAnalysis *AA, 797 OptimizationRemarkEmitter *ORE, 798 DomTreeUpdater &DTU) { 799 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 800 return false; 801 802 bool MadeChange = false; 803 bool AllCallsAreTailCalls = false; 804 MadeChange |= markTails(F, AllCallsAreTailCalls, ORE); 805 if (!AllCallsAreTailCalls) 806 return MadeChange; 807 808 // If this function is a varargs function, we won't be able to PHI the args 809 // right, so don't even try to convert it... 810 if (F.getFunctionType()->isVarArg()) 811 return MadeChange; 812 813 // If false, we cannot perform TRE on tail calls marked with the 'tail' 814 // attribute, because doing so would cause the stack size to increase (real 815 // TRE would deallocate variable sized allocas, TRE doesn't). 816 bool CanTRETailMarkedCall = canTRE(F); 817 818 // Change any tail recursive calls to loops. 819 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU); 820 821 for (BasicBlock &BB : F) 822 MadeChange |= TRE.processBlock(BB, !CanTRETailMarkedCall); 823 824 TRE.cleanupAndFinalize(); 825 826 return MadeChange; 827 } 828 829 namespace { 830 struct TailCallElim : public FunctionPass { 831 static char ID; // Pass identification, replacement for typeid 832 TailCallElim() : FunctionPass(ID) { 833 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 834 } 835 836 void getAnalysisUsage(AnalysisUsage &AU) const override { 837 AU.addRequired<TargetTransformInfoWrapperPass>(); 838 AU.addRequired<AAResultsWrapperPass>(); 839 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 840 AU.addPreserved<GlobalsAAWrapperPass>(); 841 AU.addPreserved<DominatorTreeWrapperPass>(); 842 AU.addPreserved<PostDominatorTreeWrapperPass>(); 843 } 844 845 bool runOnFunction(Function &F) override { 846 if (skipFunction(F)) 847 return false; 848 849 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 850 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 851 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 852 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 853 // There is no noticable performance difference here between Lazy and Eager 854 // UpdateStrategy based on some test results. It is feasible to switch the 855 // UpdateStrategy to Lazy if we find it profitable later. 856 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 857 858 return TailRecursionEliminator::eliminate( 859 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 860 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 861 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU); 862 } 863 }; 864 } 865 866 char TailCallElim::ID = 0; 867 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", 868 false, false) 869 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 870 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 871 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", 872 false, false) 873 874 // Public interface to the TailCallElimination pass 875 FunctionPass *llvm::createTailCallEliminationPass() { 876 return new TailCallElim(); 877 } 878 879 PreservedAnalyses TailCallElimPass::run(Function &F, 880 FunctionAnalysisManager &AM) { 881 882 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 883 AliasAnalysis &AA = AM.getResult<AAManager>(F); 884 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 885 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 886 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F); 887 // There is no noticable performance difference here between Lazy and Eager 888 // UpdateStrategy based on some test results. It is feasible to switch the 889 // UpdateStrategy to Lazy if we find it profitable later. 890 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 891 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU); 892 893 if (!Changed) 894 return PreservedAnalyses::all(); 895 PreservedAnalyses PA; 896 PA.preserve<GlobalsAA>(); 897 PA.preserve<DominatorTreeAnalysis>(); 898 PA.preserve<PostDominatorTreeAnalysis>(); 899 return PA; 900 } 901