xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop.  This pass also implements the following extensions to the basic
12 // algorithm:
13 //
14 //  1. Trivial instructions between the call and return do not prevent the
15 //     transformation from taking place, though currently the analysis cannot
16 //     support moving any really useful instructions (only dead ones).
17 //  2. This pass transforms functions that are prevented from being tail
18 //     recursive by an associative and commutative expression to use an
19 //     accumulator variable, thus compiling the typical naive factorial or
20 //     'fib' implementation into efficient code.
21 //  3. TRE is performed if the function returns void, if the return
22 //     returns the result returned by the call, or if the function returns a
23 //     run-time constant on all exits from the function.  It is possible, though
24 //     unlikely, that the return returns something else (like constant 0), and
25 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
26 //     the function return the exact same value.
27 //  4. If it can prove that callees do not access their caller stack frame,
28 //     they are marked as eligible for tail call elimination (by the code
29 //     generator).
30 //
31 // There are several improvements that could be made:
32 //
33 //  1. If the function has any alloca instructions, these instructions will be
34 //     moved out of the entry block of the function, causing them to be
35 //     evaluated each time through the tail recursion.  Safely keeping allocas
36 //     in the entry block requires analysis to proves that the tail-called
37 //     function does not read or write the stack object.
38 //  2. Tail recursion is only performed if the call immediately precedes the
39 //     return instruction.  It's possible that there could be a jump between
40 //     the call and the return.
41 //  3. There can be intervening operations between the call and the return that
42 //     prevent the TRE from occurring.  For example, there could be GEP's and
43 //     stores to memory that will not be read or written by the call.  This
44 //     requires some substantial analysis (such as with DSA) to prove safe to
45 //     move ahead of the call, but doing so could allow many more TREs to be
46 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 //  4. The algorithm we use to detect if callees access their caller stack
48 //     frames is very primitive.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/CFG.h"
57 #include "llvm/Analysis/CaptureTracking.h"
58 #include "llvm/Analysis/DomTreeUpdater.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/PostDominators.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallSite.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/DiagnosticInfo.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/InstIterator.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Module.h"
78 #include "llvm/IR/ValueHandle.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
85 using namespace llvm;
86 
87 #define DEBUG_TYPE "tailcallelim"
88 
89 STATISTIC(NumEliminated, "Number of tail calls removed");
90 STATISTIC(NumRetDuped,   "Number of return duplicated");
91 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
92 
93 /// Scan the specified function for alloca instructions.
94 /// If it contains any dynamic allocas, returns false.
95 static bool canTRE(Function &F) {
96   // Because of PR962, we don't TRE dynamic allocas.
97   return llvm::all_of(instructions(F), [](Instruction &I) {
98     auto *AI = dyn_cast<AllocaInst>(&I);
99     return !AI || AI->isStaticAlloca();
100   });
101 }
102 
103 namespace {
104 struct AllocaDerivedValueTracker {
105   // Start at a root value and walk its use-def chain to mark calls that use the
106   // value or a derived value in AllocaUsers, and places where it may escape in
107   // EscapePoints.
108   void walk(Value *Root) {
109     SmallVector<Use *, 32> Worklist;
110     SmallPtrSet<Use *, 32> Visited;
111 
112     auto AddUsesToWorklist = [&](Value *V) {
113       for (auto &U : V->uses()) {
114         if (!Visited.insert(&U).second)
115           continue;
116         Worklist.push_back(&U);
117       }
118     };
119 
120     AddUsesToWorklist(Root);
121 
122     while (!Worklist.empty()) {
123       Use *U = Worklist.pop_back_val();
124       Instruction *I = cast<Instruction>(U->getUser());
125 
126       switch (I->getOpcode()) {
127       case Instruction::Call:
128       case Instruction::Invoke: {
129         CallSite CS(I);
130         // If the alloca-derived argument is passed byval it is not an escape
131         // point, or a use of an alloca. Calling with byval copies the contents
132         // of the alloca into argument registers or stack slots, which exist
133         // beyond the lifetime of the current frame.
134         if (CS.isArgOperand(U) && CS.isByValArgument(CS.getArgumentNo(U)))
135           continue;
136         bool IsNocapture =
137             CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
138         callUsesLocalStack(CS, IsNocapture);
139         if (IsNocapture) {
140           // If the alloca-derived argument is passed in as nocapture, then it
141           // can't propagate to the call's return. That would be capturing.
142           continue;
143         }
144         break;
145       }
146       case Instruction::Load: {
147         // The result of a load is not alloca-derived (unless an alloca has
148         // otherwise escaped, but this is a local analysis).
149         continue;
150       }
151       case Instruction::Store: {
152         if (U->getOperandNo() == 0)
153           EscapePoints.insert(I);
154         continue;  // Stores have no users to analyze.
155       }
156       case Instruction::BitCast:
157       case Instruction::GetElementPtr:
158       case Instruction::PHI:
159       case Instruction::Select:
160       case Instruction::AddrSpaceCast:
161         break;
162       default:
163         EscapePoints.insert(I);
164         break;
165       }
166 
167       AddUsesToWorklist(I);
168     }
169   }
170 
171   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
172     // Add it to the list of alloca users.
173     AllocaUsers.insert(CS.getInstruction());
174 
175     // If it's nocapture then it can't capture this alloca.
176     if (IsNocapture)
177       return;
178 
179     // If it can write to memory, it can leak the alloca value.
180     if (!CS.onlyReadsMemory())
181       EscapePoints.insert(CS.getInstruction());
182   }
183 
184   SmallPtrSet<Instruction *, 32> AllocaUsers;
185   SmallPtrSet<Instruction *, 32> EscapePoints;
186 };
187 }
188 
189 static bool markTails(Function &F, bool &AllCallsAreTailCalls,
190                       OptimizationRemarkEmitter *ORE) {
191   if (F.callsFunctionThatReturnsTwice())
192     return false;
193   AllCallsAreTailCalls = true;
194 
195   // The local stack holds all alloca instructions and all byval arguments.
196   AllocaDerivedValueTracker Tracker;
197   for (Argument &Arg : F.args()) {
198     if (Arg.hasByValAttr())
199       Tracker.walk(&Arg);
200   }
201   for (auto &BB : F) {
202     for (auto &I : BB)
203       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
204         Tracker.walk(AI);
205   }
206 
207   bool Modified = false;
208 
209   // Track whether a block is reachable after an alloca has escaped. Blocks that
210   // contain the escaping instruction will be marked as being visited without an
211   // escaped alloca, since that is how the block began.
212   enum VisitType {
213     UNVISITED,
214     UNESCAPED,
215     ESCAPED
216   };
217   DenseMap<BasicBlock *, VisitType> Visited;
218 
219   // We propagate the fact that an alloca has escaped from block to successor.
220   // Visit the blocks that are propagating the escapedness first. To do this, we
221   // maintain two worklists.
222   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
223 
224   // We may enter a block and visit it thinking that no alloca has escaped yet,
225   // then see an escape point and go back around a loop edge and come back to
226   // the same block twice. Because of this, we defer setting tail on calls when
227   // we first encounter them in a block. Every entry in this list does not
228   // statically use an alloca via use-def chain analysis, but may find an alloca
229   // through other means if the block turns out to be reachable after an escape
230   // point.
231   SmallVector<CallInst *, 32> DeferredTails;
232 
233   BasicBlock *BB = &F.getEntryBlock();
234   VisitType Escaped = UNESCAPED;
235   do {
236     for (auto &I : *BB) {
237       if (Tracker.EscapePoints.count(&I))
238         Escaped = ESCAPED;
239 
240       CallInst *CI = dyn_cast<CallInst>(&I);
241       if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I))
242         continue;
243 
244       bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();
245 
246       if (!IsNoTail && CI->doesNotAccessMemory()) {
247         // A call to a readnone function whose arguments are all things computed
248         // outside this function can be marked tail. Even if you stored the
249         // alloca address into a global, a readnone function can't load the
250         // global anyhow.
251         //
252         // Note that this runs whether we know an alloca has escaped or not. If
253         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
254         bool SafeToTail = true;
255         for (auto &Arg : CI->arg_operands()) {
256           if (isa<Constant>(Arg.getUser()))
257             continue;
258           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
259             if (!A->hasByValAttr())
260               continue;
261           SafeToTail = false;
262           break;
263         }
264         if (SafeToTail) {
265           using namespace ore;
266           ORE->emit([&]() {
267             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
268                    << "marked as tail call candidate (readnone)";
269           });
270           CI->setTailCall();
271           Modified = true;
272           continue;
273         }
274       }
275 
276       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
277         DeferredTails.push_back(CI);
278       } else {
279         AllCallsAreTailCalls = false;
280       }
281     }
282 
283     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
284       auto &State = Visited[SuccBB];
285       if (State < Escaped) {
286         State = Escaped;
287         if (State == ESCAPED)
288           WorklistEscaped.push_back(SuccBB);
289         else
290           WorklistUnescaped.push_back(SuccBB);
291       }
292     }
293 
294     if (!WorklistEscaped.empty()) {
295       BB = WorklistEscaped.pop_back_val();
296       Escaped = ESCAPED;
297     } else {
298       BB = nullptr;
299       while (!WorklistUnescaped.empty()) {
300         auto *NextBB = WorklistUnescaped.pop_back_val();
301         if (Visited[NextBB] == UNESCAPED) {
302           BB = NextBB;
303           Escaped = UNESCAPED;
304           break;
305         }
306       }
307     }
308   } while (BB);
309 
310   for (CallInst *CI : DeferredTails) {
311     if (Visited[CI->getParent()] != ESCAPED) {
312       // If the escape point was part way through the block, calls after the
313       // escape point wouldn't have been put into DeferredTails.
314       LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
315       CI->setTailCall();
316       Modified = true;
317     } else {
318       AllCallsAreTailCalls = false;
319     }
320   }
321 
322   return Modified;
323 }
324 
325 /// Return true if it is safe to move the specified
326 /// instruction from after the call to before the call, assuming that all
327 /// instructions between the call and this instruction are movable.
328 ///
329 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
330   // FIXME: We can move load/store/call/free instructions above the call if the
331   // call does not mod/ref the memory location being processed.
332   if (I->mayHaveSideEffects())  // This also handles volatile loads.
333     return false;
334 
335   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
336     // Loads may always be moved above calls without side effects.
337     if (CI->mayHaveSideEffects()) {
338       // Non-volatile loads may be moved above a call with side effects if it
339       // does not write to memory and the load provably won't trap.
340       // Writes to memory only matter if they may alias the pointer
341       // being loaded from.
342       const DataLayout &DL = L->getModule()->getDataLayout();
343       if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
344           !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
345                                        MaybeAlign(L->getAlignment()), DL, L))
346         return false;
347     }
348   }
349 
350   // Otherwise, if this is a side-effect free instruction, check to make sure
351   // that it does not use the return value of the call.  If it doesn't use the
352   // return value of the call, it must only use things that are defined before
353   // the call, or movable instructions between the call and the instruction
354   // itself.
355   return !is_contained(I->operands(), CI);
356 }
357 
358 /// Return true if the specified value is the same when the return would exit
359 /// as it was when the initial iteration of the recursive function was executed.
360 ///
361 /// We currently handle static constants and arguments that are not modified as
362 /// part of the recursion.
363 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
364   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
365 
366   // Check to see if this is an immutable argument, if so, the value
367   // will be available to initialize the accumulator.
368   if (Argument *Arg = dyn_cast<Argument>(V)) {
369     // Figure out which argument number this is...
370     unsigned ArgNo = 0;
371     Function *F = CI->getParent()->getParent();
372     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
373       ++ArgNo;
374 
375     // If we are passing this argument into call as the corresponding
376     // argument operand, then the argument is dynamically constant.
377     // Otherwise, we cannot transform this function safely.
378     if (CI->getArgOperand(ArgNo) == Arg)
379       return true;
380   }
381 
382   // Switch cases are always constant integers. If the value is being switched
383   // on and the return is only reachable from one of its cases, it's
384   // effectively constant.
385   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
386     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
387       if (SI->getCondition() == V)
388         return SI->getDefaultDest() != RI->getParent();
389 
390   // Not a constant or immutable argument, we can't safely transform.
391   return false;
392 }
393 
394 /// Check to see if the function containing the specified tail call consistently
395 /// returns the same runtime-constant value at all exit points except for
396 /// IgnoreRI. If so, return the returned value.
397 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
398   Function *F = CI->getParent()->getParent();
399   Value *ReturnedValue = nullptr;
400 
401   for (BasicBlock &BBI : *F) {
402     ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
403     if (RI == nullptr || RI == IgnoreRI) continue;
404 
405     // We can only perform this transformation if the value returned is
406     // evaluatable at the start of the initial invocation of the function,
407     // instead of at the end of the evaluation.
408     //
409     Value *RetOp = RI->getOperand(0);
410     if (!isDynamicConstant(RetOp, CI, RI))
411       return nullptr;
412 
413     if (ReturnedValue && RetOp != ReturnedValue)
414       return nullptr;     // Cannot transform if differing values are returned.
415     ReturnedValue = RetOp;
416   }
417   return ReturnedValue;
418 }
419 
420 /// If the specified instruction can be transformed using accumulator recursion
421 /// elimination, return the constant which is the start of the accumulator
422 /// value.  Otherwise return null.
423 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
424   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
425   assert(I->getNumOperands() == 2 &&
426          "Associative/commutative operations should have 2 args!");
427 
428   // Exactly one operand should be the result of the call instruction.
429   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
430       (I->getOperand(0) != CI && I->getOperand(1) != CI))
431     return nullptr;
432 
433   // The only user of this instruction we allow is a single return instruction.
434   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
435     return nullptr;
436 
437   // Ok, now we have to check all of the other return instructions in this
438   // function.  If they return non-constants or differing values, then we cannot
439   // transform the function safely.
440   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
441 }
442 
443 static Instruction *firstNonDbg(BasicBlock::iterator I) {
444   while (isa<DbgInfoIntrinsic>(I))
445     ++I;
446   return &*I;
447 }
448 
449 static CallInst *findTRECandidate(Instruction *TI,
450                                   bool CannotTailCallElimCallsMarkedTail,
451                                   const TargetTransformInfo *TTI) {
452   BasicBlock *BB = TI->getParent();
453   Function *F = BB->getParent();
454 
455   if (&BB->front() == TI) // Make sure there is something before the terminator.
456     return nullptr;
457 
458   // Scan backwards from the return, checking to see if there is a tail call in
459   // this block.  If so, set CI to it.
460   CallInst *CI = nullptr;
461   BasicBlock::iterator BBI(TI);
462   while (true) {
463     CI = dyn_cast<CallInst>(BBI);
464     if (CI && CI->getCalledFunction() == F)
465       break;
466 
467     if (BBI == BB->begin())
468       return nullptr;          // Didn't find a potential tail call.
469     --BBI;
470   }
471 
472   // If this call is marked as a tail call, and if there are dynamic allocas in
473   // the function, we cannot perform this optimization.
474   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
475     return nullptr;
476 
477   // As a special case, detect code like this:
478   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
479   // and disable this xform in this case, because the code generator will
480   // lower the call to fabs into inline code.
481   if (BB == &F->getEntryBlock() &&
482       firstNonDbg(BB->front().getIterator()) == CI &&
483       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
484       !TTI->isLoweredToCall(CI->getCalledFunction())) {
485     // A single-block function with just a call and a return. Check that
486     // the arguments match.
487     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
488                            E = CallSite(CI).arg_end();
489     Function::arg_iterator FI = F->arg_begin(),
490                            FE = F->arg_end();
491     for (; I != E && FI != FE; ++I, ++FI)
492       if (*I != &*FI) break;
493     if (I == E && FI == FE)
494       return nullptr;
495   }
496 
497   return CI;
498 }
499 
500 static bool eliminateRecursiveTailCall(
501     CallInst *CI, ReturnInst *Ret, BasicBlock *&OldEntry,
502     bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
503     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
504   // If we are introducing accumulator recursion to eliminate operations after
505   // the call instruction that are both associative and commutative, the initial
506   // value for the accumulator is placed in this variable.  If this value is set
507   // then we actually perform accumulator recursion elimination instead of
508   // simple tail recursion elimination.  If the operation is an LLVM instruction
509   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
510   // we are handling the case when the return instruction returns a constant C
511   // which is different to the constant returned by other return instructions
512   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
513   // special case of accumulator recursion, the operation being "return C".
514   Value *AccumulatorRecursionEliminationInitVal = nullptr;
515   Instruction *AccumulatorRecursionInstr = nullptr;
516 
517   // Ok, we found a potential tail call.  We can currently only transform the
518   // tail call if all of the instructions between the call and the return are
519   // movable to above the call itself, leaving the call next to the return.
520   // Check that this is the case now.
521   BasicBlock::iterator BBI(CI);
522   for (++BBI; &*BBI != Ret; ++BBI) {
523     if (canMoveAboveCall(&*BBI, CI, AA))
524       continue;
525 
526     // If we can't move the instruction above the call, it might be because it
527     // is an associative and commutative operation that could be transformed
528     // using accumulator recursion elimination.  Check to see if this is the
529     // case, and if so, remember the initial accumulator value for later.
530     if ((AccumulatorRecursionEliminationInitVal =
531              canTransformAccumulatorRecursion(&*BBI, CI))) {
532       // Yes, this is accumulator recursion.  Remember which instruction
533       // accumulates.
534       AccumulatorRecursionInstr = &*BBI;
535     } else {
536       return false;   // Otherwise, we cannot eliminate the tail recursion!
537     }
538   }
539 
540   // We can only transform call/return pairs that either ignore the return value
541   // of the call and return void, ignore the value of the call and return a
542   // constant, return the value returned by the tail call, or that are being
543   // accumulator recursion variable eliminated.
544   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
545       !isa<UndefValue>(Ret->getReturnValue()) &&
546       AccumulatorRecursionEliminationInitVal == nullptr &&
547       !getCommonReturnValue(nullptr, CI)) {
548     // One case remains that we are able to handle: the current return
549     // instruction returns a constant, and all other return instructions
550     // return a different constant.
551     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
552       return false; // Current return instruction does not return a constant.
553     // Check that all other return instructions return a common constant.  If
554     // so, record it in AccumulatorRecursionEliminationInitVal.
555     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
556     if (!AccumulatorRecursionEliminationInitVal)
557       return false;
558   }
559 
560   BasicBlock *BB = Ret->getParent();
561   Function *F = BB->getParent();
562 
563   using namespace ore;
564   ORE->emit([&]() {
565     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
566            << "transforming tail recursion into loop";
567   });
568 
569   // OK! We can transform this tail call.  If this is the first one found,
570   // create the new entry block, allowing us to branch back to the old entry.
571   if (!OldEntry) {
572     OldEntry = &F->getEntryBlock();
573     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
574     NewEntry->takeName(OldEntry);
575     OldEntry->setName("tailrecurse");
576     BranchInst *BI = BranchInst::Create(OldEntry, NewEntry);
577     BI->setDebugLoc(CI->getDebugLoc());
578 
579     // If this tail call is marked 'tail' and if there are any allocas in the
580     // entry block, move them up to the new entry block.
581     TailCallsAreMarkedTail = CI->isTailCall();
582     if (TailCallsAreMarkedTail)
583       // Move all fixed sized allocas from OldEntry to NewEntry.
584       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
585              NEBI = NewEntry->begin(); OEBI != E; )
586         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
587           if (isa<ConstantInt>(AI->getArraySize()))
588             AI->moveBefore(&*NEBI);
589 
590     // Now that we have created a new block, which jumps to the entry
591     // block, insert a PHI node for each argument of the function.
592     // For now, we initialize each PHI to only have the real arguments
593     // which are passed in.
594     Instruction *InsertPos = &OldEntry->front();
595     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
596          I != E; ++I) {
597       PHINode *PN = PHINode::Create(I->getType(), 2,
598                                     I->getName() + ".tr", InsertPos);
599       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
600       PN->addIncoming(&*I, NewEntry);
601       ArgumentPHIs.push_back(PN);
602     }
603     // The entry block was changed from OldEntry to NewEntry.
604     // The forward DominatorTree needs to be recalculated when the EntryBB is
605     // changed. In this corner-case we recalculate the entire tree.
606     DTU.recalculate(*NewEntry->getParent());
607   }
608 
609   // If this function has self recursive calls in the tail position where some
610   // are marked tail and some are not, only transform one flavor or another.  We
611   // have to choose whether we move allocas in the entry block to the new entry
612   // block or not, so we can't make a good choice for both.  NOTE: We could do
613   // slightly better here in the case that the function has no entry block
614   // allocas.
615   if (TailCallsAreMarkedTail && !CI->isTailCall())
616     return false;
617 
618   // Ok, now that we know we have a pseudo-entry block WITH all of the
619   // required PHI nodes, add entries into the PHI node for the actual
620   // parameters passed into the tail-recursive call.
621   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
622     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
623 
624   // If we are introducing an accumulator variable to eliminate the recursion,
625   // do so now.  Note that we _know_ that no subsequent tail recursion
626   // eliminations will happen on this function because of the way the
627   // accumulator recursion predicate is set up.
628   //
629   if (AccumulatorRecursionEliminationInitVal) {
630     Instruction *AccRecInstr = AccumulatorRecursionInstr;
631     // Start by inserting a new PHI node for the accumulator.
632     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
633     PHINode *AccPN = PHINode::Create(
634         AccumulatorRecursionEliminationInitVal->getType(),
635         std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
636 
637     // Loop over all of the predecessors of the tail recursion block.  For the
638     // real entry into the function we seed the PHI with the initial value,
639     // computed earlier.  For any other existing branches to this block (due to
640     // other tail recursions eliminated) the accumulator is not modified.
641     // Because we haven't added the branch in the current block to OldEntry yet,
642     // it will not show up as a predecessor.
643     for (pred_iterator PI = PB; PI != PE; ++PI) {
644       BasicBlock *P = *PI;
645       if (P == &F->getEntryBlock())
646         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
647       else
648         AccPN->addIncoming(AccPN, P);
649     }
650 
651     if (AccRecInstr) {
652       // Add an incoming argument for the current block, which is computed by
653       // our associative and commutative accumulator instruction.
654       AccPN->addIncoming(AccRecInstr, BB);
655 
656       // Next, rewrite the accumulator recursion instruction so that it does not
657       // use the result of the call anymore, instead, use the PHI node we just
658       // inserted.
659       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
660     } else {
661       // Add an incoming argument for the current block, which is just the
662       // constant returned by the current return instruction.
663       AccPN->addIncoming(Ret->getReturnValue(), BB);
664     }
665 
666     // Finally, rewrite any return instructions in the program to return the PHI
667     // node instead of the "initval" that they do currently.  This loop will
668     // actually rewrite the return value we are destroying, but that's ok.
669     for (BasicBlock &BBI : *F)
670       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
671         RI->setOperand(0, AccPN);
672     ++NumAccumAdded;
673   }
674 
675   // Now that all of the PHI nodes are in place, remove the call and
676   // ret instructions, replacing them with an unconditional branch.
677   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
678   NewBI->setDebugLoc(CI->getDebugLoc());
679 
680   BB->getInstList().erase(Ret);  // Remove return.
681   BB->getInstList().erase(CI);   // Remove call.
682   DTU.applyUpdates({{DominatorTree::Insert, BB, OldEntry}});
683   ++NumEliminated;
684   return true;
685 }
686 
687 static bool foldReturnAndProcessPred(
688     BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry,
689     bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
690     bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
691     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
692   bool Change = false;
693 
694   // Make sure this block is a trivial return block.
695   assert(BB->getFirstNonPHIOrDbg() == Ret &&
696          "Trying to fold non-trivial return block");
697 
698   // If the return block contains nothing but the return and PHI's,
699   // there might be an opportunity to duplicate the return in its
700   // predecessors and perform TRE there. Look for predecessors that end
701   // in unconditional branch and recursive call(s).
702   SmallVector<BranchInst*, 8> UncondBranchPreds;
703   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
704     BasicBlock *Pred = *PI;
705     Instruction *PTI = Pred->getTerminator();
706     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
707       if (BI->isUnconditional())
708         UncondBranchPreds.push_back(BI);
709   }
710 
711   while (!UncondBranchPreds.empty()) {
712     BranchInst *BI = UncondBranchPreds.pop_back_val();
713     BasicBlock *Pred = BI->getParent();
714     if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
715       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
716                         << "INTO UNCOND BRANCH PRED: " << *Pred);
717       ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU);
718 
719       // Cleanup: if all predecessors of BB have been eliminated by
720       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
721       // because the ret instruction in there is still using a value which
722       // eliminateRecursiveTailCall will attempt to remove.
723       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
724         DTU.deleteBB(BB);
725 
726       eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
727                                  ArgumentPHIs, AA, ORE, DTU);
728       ++NumRetDuped;
729       Change = true;
730     }
731   }
732 
733   return Change;
734 }
735 
736 static bool processReturningBlock(
737     ReturnInst *Ret, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail,
738     SmallVectorImpl<PHINode *> &ArgumentPHIs,
739     bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
740     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
741   CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
742   if (!CI)
743     return false;
744 
745   return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
746                                     ArgumentPHIs, AA, ORE, DTU);
747 }
748 
749 static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI,
750                                    AliasAnalysis *AA,
751                                    OptimizationRemarkEmitter *ORE,
752                                    DomTreeUpdater &DTU) {
753   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
754     return false;
755 
756   bool MadeChange = false;
757   bool AllCallsAreTailCalls = false;
758   MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
759   if (!AllCallsAreTailCalls)
760     return MadeChange;
761 
762   // If this function is a varargs function, we won't be able to PHI the args
763   // right, so don't even try to convert it...
764   if (F.getFunctionType()->isVarArg())
765     return false;
766 
767   BasicBlock *OldEntry = nullptr;
768   bool TailCallsAreMarkedTail = false;
769   SmallVector<PHINode*, 8> ArgumentPHIs;
770 
771   // If false, we cannot perform TRE on tail calls marked with the 'tail'
772   // attribute, because doing so would cause the stack size to increase (real
773   // TRE would deallocate variable sized allocas, TRE doesn't).
774   bool CanTRETailMarkedCall = canTRE(F);
775 
776   // Change any tail recursive calls to loops.
777   //
778   // FIXME: The code generator produces really bad code when an 'escaping
779   // alloca' is changed from being a static alloca to being a dynamic alloca.
780   // Until this is resolved, disable this transformation if that would ever
781   // happen.  This bug is PR962.
782   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
783     BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
784     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
785       bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
786                                           ArgumentPHIs, !CanTRETailMarkedCall,
787                                           TTI, AA, ORE, DTU);
788       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
789         Change = foldReturnAndProcessPred(
790             BB, Ret, OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
791             !CanTRETailMarkedCall, TTI, AA, ORE, DTU);
792       MadeChange |= Change;
793     }
794   }
795 
796   // If we eliminated any tail recursions, it's possible that we inserted some
797   // silly PHI nodes which just merge an initial value (the incoming operand)
798   // with themselves.  Check to see if we did and clean up our mess if so.  This
799   // occurs when a function passes an argument straight through to its tail
800   // call.
801   for (PHINode *PN : ArgumentPHIs) {
802     // If the PHI Node is a dynamic constant, replace it with the value it is.
803     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
804       PN->replaceAllUsesWith(PNV);
805       PN->eraseFromParent();
806     }
807   }
808 
809   return MadeChange;
810 }
811 
812 namespace {
813 struct TailCallElim : public FunctionPass {
814   static char ID; // Pass identification, replacement for typeid
815   TailCallElim() : FunctionPass(ID) {
816     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
817   }
818 
819   void getAnalysisUsage(AnalysisUsage &AU) const override {
820     AU.addRequired<TargetTransformInfoWrapperPass>();
821     AU.addRequired<AAResultsWrapperPass>();
822     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
823     AU.addPreserved<GlobalsAAWrapperPass>();
824     AU.addPreserved<DominatorTreeWrapperPass>();
825     AU.addPreserved<PostDominatorTreeWrapperPass>();
826   }
827 
828   bool runOnFunction(Function &F) override {
829     if (skipFunction(F))
830       return false;
831 
832     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
833     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
834     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
835     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
836     // There is no noticable performance difference here between Lazy and Eager
837     // UpdateStrategy based on some test results. It is feasible to switch the
838     // UpdateStrategy to Lazy if we find it profitable later.
839     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
840 
841     return eliminateTailRecursion(
842         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
843         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
844         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
845   }
846 };
847 }
848 
849 char TailCallElim::ID = 0;
850 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
851                       false, false)
852 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
853 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
854 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
855                     false, false)
856 
857 // Public interface to the TailCallElimination pass
858 FunctionPass *llvm::createTailCallEliminationPass() {
859   return new TailCallElim();
860 }
861 
862 PreservedAnalyses TailCallElimPass::run(Function &F,
863                                         FunctionAnalysisManager &AM) {
864 
865   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
866   AliasAnalysis &AA = AM.getResult<AAManager>(F);
867   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
868   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
869   auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
870   // There is no noticable performance difference here between Lazy and Eager
871   // UpdateStrategy based on some test results. It is feasible to switch the
872   // UpdateStrategy to Lazy if we find it profitable later.
873   DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
874   bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE, DTU);
875 
876   if (!Changed)
877     return PreservedAnalyses::all();
878   PreservedAnalyses PA;
879   PA.preserve<GlobalsAA>();
880   PA.preserve<DominatorTreeAnalysis>();
881   PA.preserve<PostDominatorTreeAnalysis>();
882   return PA;
883 }
884