1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file transforms calls of the current function (self recursion) followed 10 // by a return instruction with a branch to the entry of the function, creating 11 // a loop. This pass also implements the following extensions to the basic 12 // algorithm: 13 // 14 // 1. Trivial instructions between the call and return do not prevent the 15 // transformation from taking place, though currently the analysis cannot 16 // support moving any really useful instructions (only dead ones). 17 // 2. This pass transforms functions that are prevented from being tail 18 // recursive by an associative and commutative expression to use an 19 // accumulator variable, thus compiling the typical naive factorial or 20 // 'fib' implementation into efficient code. 21 // 3. TRE is performed if the function returns void, if the return 22 // returns the result returned by the call, or if the function returns a 23 // run-time constant on all exits from the function. It is possible, though 24 // unlikely, that the return returns something else (like constant 0), and 25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 26 // the function return the exact same value. 27 // 4. If it can prove that callees do not access their caller stack frame, 28 // they are marked as eligible for tail call elimination (by the code 29 // generator). 30 // 31 // There are several improvements that could be made: 32 // 33 // 1. If the function has any alloca instructions, these instructions will be 34 // moved out of the entry block of the function, causing them to be 35 // evaluated each time through the tail recursion. Safely keeping allocas 36 // in the entry block requires analysis to proves that the tail-called 37 // function does not read or write the stack object. 38 // 2. Tail recursion is only performed if the call immediately precedes the 39 // return instruction. It's possible that there could be a jump between 40 // the call and the return. 41 // 3. There can be intervening operations between the call and the return that 42 // prevent the TRE from occurring. For example, there could be GEP's and 43 // stores to memory that will not be read or written by the call. This 44 // requires some substantial analysis (such as with DSA) to prove safe to 45 // move ahead of the call, but doing so could allow many more TREs to be 46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 47 // 4. The algorithm we use to detect if callees access their caller stack 48 // frames is very primitive. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/CFG.h" 57 #include "llvm/Analysis/CaptureTracking.h" 58 #include "llvm/Analysis/DomTreeUpdater.h" 59 #include "llvm/Analysis/GlobalsModRef.h" 60 #include "llvm/Analysis/InlineCost.h" 61 #include "llvm/Analysis/InstructionSimplify.h" 62 #include "llvm/Analysis/Loads.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/PostDominators.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/InstIterator.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Module.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/InitializePasses.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 84 using namespace llvm; 85 86 #define DEBUG_TYPE "tailcallelim" 87 88 STATISTIC(NumEliminated, "Number of tail calls removed"); 89 STATISTIC(NumRetDuped, "Number of return duplicated"); 90 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 91 92 /// Scan the specified function for alloca instructions. 93 /// If it contains any dynamic allocas, returns false. 94 static bool canTRE(Function &F) { 95 // Because of PR962, we don't TRE dynamic allocas. 96 return llvm::all_of(instructions(F), [](Instruction &I) { 97 auto *AI = dyn_cast<AllocaInst>(&I); 98 return !AI || AI->isStaticAlloca(); 99 }); 100 } 101 102 namespace { 103 struct AllocaDerivedValueTracker { 104 // Start at a root value and walk its use-def chain to mark calls that use the 105 // value or a derived value in AllocaUsers, and places where it may escape in 106 // EscapePoints. 107 void walk(Value *Root) { 108 SmallVector<Use *, 32> Worklist; 109 SmallPtrSet<Use *, 32> Visited; 110 111 auto AddUsesToWorklist = [&](Value *V) { 112 for (auto &U : V->uses()) { 113 if (!Visited.insert(&U).second) 114 continue; 115 Worklist.push_back(&U); 116 } 117 }; 118 119 AddUsesToWorklist(Root); 120 121 while (!Worklist.empty()) { 122 Use *U = Worklist.pop_back_val(); 123 Instruction *I = cast<Instruction>(U->getUser()); 124 125 switch (I->getOpcode()) { 126 case Instruction::Call: 127 case Instruction::Invoke: { 128 auto &CB = cast<CallBase>(*I); 129 // If the alloca-derived argument is passed byval it is not an escape 130 // point, or a use of an alloca. Calling with byval copies the contents 131 // of the alloca into argument registers or stack slots, which exist 132 // beyond the lifetime of the current frame. 133 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U))) 134 continue; 135 bool IsNocapture = 136 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U)); 137 callUsesLocalStack(CB, IsNocapture); 138 if (IsNocapture) { 139 // If the alloca-derived argument is passed in as nocapture, then it 140 // can't propagate to the call's return. That would be capturing. 141 continue; 142 } 143 break; 144 } 145 case Instruction::Load: { 146 // The result of a load is not alloca-derived (unless an alloca has 147 // otherwise escaped, but this is a local analysis). 148 continue; 149 } 150 case Instruction::Store: { 151 if (U->getOperandNo() == 0) 152 EscapePoints.insert(I); 153 continue; // Stores have no users to analyze. 154 } 155 case Instruction::BitCast: 156 case Instruction::GetElementPtr: 157 case Instruction::PHI: 158 case Instruction::Select: 159 case Instruction::AddrSpaceCast: 160 break; 161 default: 162 EscapePoints.insert(I); 163 break; 164 } 165 166 AddUsesToWorklist(I); 167 } 168 } 169 170 void callUsesLocalStack(CallBase &CB, bool IsNocapture) { 171 // Add it to the list of alloca users. 172 AllocaUsers.insert(&CB); 173 174 // If it's nocapture then it can't capture this alloca. 175 if (IsNocapture) 176 return; 177 178 // If it can write to memory, it can leak the alloca value. 179 if (!CB.onlyReadsMemory()) 180 EscapePoints.insert(&CB); 181 } 182 183 SmallPtrSet<Instruction *, 32> AllocaUsers; 184 SmallPtrSet<Instruction *, 32> EscapePoints; 185 }; 186 } 187 188 static bool markTails(Function &F, bool &AllCallsAreTailCalls, 189 OptimizationRemarkEmitter *ORE) { 190 if (F.callsFunctionThatReturnsTwice()) 191 return false; 192 AllCallsAreTailCalls = true; 193 194 // The local stack holds all alloca instructions and all byval arguments. 195 AllocaDerivedValueTracker Tracker; 196 for (Argument &Arg : F.args()) { 197 if (Arg.hasByValAttr()) 198 Tracker.walk(&Arg); 199 } 200 for (auto &BB : F) { 201 for (auto &I : BB) 202 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 203 Tracker.walk(AI); 204 } 205 206 bool Modified = false; 207 208 // Track whether a block is reachable after an alloca has escaped. Blocks that 209 // contain the escaping instruction will be marked as being visited without an 210 // escaped alloca, since that is how the block began. 211 enum VisitType { 212 UNVISITED, 213 UNESCAPED, 214 ESCAPED 215 }; 216 DenseMap<BasicBlock *, VisitType> Visited; 217 218 // We propagate the fact that an alloca has escaped from block to successor. 219 // Visit the blocks that are propagating the escapedness first. To do this, we 220 // maintain two worklists. 221 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 222 223 // We may enter a block and visit it thinking that no alloca has escaped yet, 224 // then see an escape point and go back around a loop edge and come back to 225 // the same block twice. Because of this, we defer setting tail on calls when 226 // we first encounter them in a block. Every entry in this list does not 227 // statically use an alloca via use-def chain analysis, but may find an alloca 228 // through other means if the block turns out to be reachable after an escape 229 // point. 230 SmallVector<CallInst *, 32> DeferredTails; 231 232 BasicBlock *BB = &F.getEntryBlock(); 233 VisitType Escaped = UNESCAPED; 234 do { 235 for (auto &I : *BB) { 236 if (Tracker.EscapePoints.count(&I)) 237 Escaped = ESCAPED; 238 239 CallInst *CI = dyn_cast<CallInst>(&I); 240 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I)) 241 continue; 242 243 bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles(); 244 245 if (!IsNoTail && CI->doesNotAccessMemory()) { 246 // A call to a readnone function whose arguments are all things computed 247 // outside this function can be marked tail. Even if you stored the 248 // alloca address into a global, a readnone function can't load the 249 // global anyhow. 250 // 251 // Note that this runs whether we know an alloca has escaped or not. If 252 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 253 bool SafeToTail = true; 254 for (auto &Arg : CI->arg_operands()) { 255 if (isa<Constant>(Arg.getUser())) 256 continue; 257 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 258 if (!A->hasByValAttr()) 259 continue; 260 SafeToTail = false; 261 break; 262 } 263 if (SafeToTail) { 264 using namespace ore; 265 ORE->emit([&]() { 266 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) 267 << "marked as tail call candidate (readnone)"; 268 }); 269 CI->setTailCall(); 270 Modified = true; 271 continue; 272 } 273 } 274 275 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { 276 DeferredTails.push_back(CI); 277 } else { 278 AllCallsAreTailCalls = false; 279 } 280 } 281 282 for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) { 283 auto &State = Visited[SuccBB]; 284 if (State < Escaped) { 285 State = Escaped; 286 if (State == ESCAPED) 287 WorklistEscaped.push_back(SuccBB); 288 else 289 WorklistUnescaped.push_back(SuccBB); 290 } 291 } 292 293 if (!WorklistEscaped.empty()) { 294 BB = WorklistEscaped.pop_back_val(); 295 Escaped = ESCAPED; 296 } else { 297 BB = nullptr; 298 while (!WorklistUnescaped.empty()) { 299 auto *NextBB = WorklistUnescaped.pop_back_val(); 300 if (Visited[NextBB] == UNESCAPED) { 301 BB = NextBB; 302 Escaped = UNESCAPED; 303 break; 304 } 305 } 306 } 307 } while (BB); 308 309 for (CallInst *CI : DeferredTails) { 310 if (Visited[CI->getParent()] != ESCAPED) { 311 // If the escape point was part way through the block, calls after the 312 // escape point wouldn't have been put into DeferredTails. 313 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); 314 CI->setTailCall(); 315 Modified = true; 316 } else { 317 AllCallsAreTailCalls = false; 318 } 319 } 320 321 return Modified; 322 } 323 324 /// Return true if it is safe to move the specified 325 /// instruction from after the call to before the call, assuming that all 326 /// instructions between the call and this instruction are movable. 327 /// 328 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { 329 // FIXME: We can move load/store/call/free instructions above the call if the 330 // call does not mod/ref the memory location being processed. 331 if (I->mayHaveSideEffects()) // This also handles volatile loads. 332 return false; 333 334 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 335 // Loads may always be moved above calls without side effects. 336 if (CI->mayHaveSideEffects()) { 337 // Non-volatile loads may be moved above a call with side effects if it 338 // does not write to memory and the load provably won't trap. 339 // Writes to memory only matter if they may alias the pointer 340 // being loaded from. 341 const DataLayout &DL = L->getModule()->getDataLayout(); 342 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || 343 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(), 344 L->getAlign(), DL, L)) 345 return false; 346 } 347 } 348 349 // Otherwise, if this is a side-effect free instruction, check to make sure 350 // that it does not use the return value of the call. If it doesn't use the 351 // return value of the call, it must only use things that are defined before 352 // the call, or movable instructions between the call and the instruction 353 // itself. 354 return !is_contained(I->operands(), CI); 355 } 356 357 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { 358 if (!I->isAssociative() || !I->isCommutative()) 359 return false; 360 361 assert(I->getNumOperands() == 2 && 362 "Associative/commutative operations should have 2 args!"); 363 364 // Exactly one operand should be the result of the call instruction. 365 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 366 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 367 return false; 368 369 // The only user of this instruction we allow is a single return instruction. 370 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 371 return false; 372 373 return true; 374 } 375 376 static Instruction *firstNonDbg(BasicBlock::iterator I) { 377 while (isa<DbgInfoIntrinsic>(I)) 378 ++I; 379 return &*I; 380 } 381 382 namespace { 383 class TailRecursionEliminator { 384 Function &F; 385 const TargetTransformInfo *TTI; 386 AliasAnalysis *AA; 387 OptimizationRemarkEmitter *ORE; 388 DomTreeUpdater &DTU; 389 390 // The below are shared state we want to have available when eliminating any 391 // calls in the function. There values should be populated by 392 // createTailRecurseLoopHeader the first time we find a call we can eliminate. 393 BasicBlock *HeaderBB = nullptr; 394 SmallVector<PHINode *, 8> ArgumentPHIs; 395 bool RemovableCallsMustBeMarkedTail = false; 396 397 // PHI node to store our return value. 398 PHINode *RetPN = nullptr; 399 400 // i1 PHI node to track if we have a valid return value stored in RetPN. 401 PHINode *RetKnownPN = nullptr; 402 403 // Vector of select instructions we insereted. These selects use RetKnownPN 404 // to either propagate RetPN or select a new return value. 405 SmallVector<SelectInst *, 8> RetSelects; 406 407 // The below are shared state needed when performing accumulator recursion. 408 // There values should be populated by insertAccumulator the first time we 409 // find an elimination that requires an accumulator. 410 411 // PHI node to store our current accumulated value. 412 PHINode *AccPN = nullptr; 413 414 // The instruction doing the accumulating. 415 Instruction *AccumulatorRecursionInstr = nullptr; 416 417 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI, 418 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 419 DomTreeUpdater &DTU) 420 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {} 421 422 CallInst *findTRECandidate(Instruction *TI, 423 bool CannotTailCallElimCallsMarkedTail); 424 425 void createTailRecurseLoopHeader(CallInst *CI); 426 427 void insertAccumulator(Instruction *AccRecInstr); 428 429 bool eliminateCall(CallInst *CI); 430 431 bool foldReturnAndProcessPred(ReturnInst *Ret, 432 bool CannotTailCallElimCallsMarkedTail); 433 434 bool processReturningBlock(ReturnInst *Ret, 435 bool CannotTailCallElimCallsMarkedTail); 436 437 void cleanupAndFinalize(); 438 439 public: 440 static bool eliminate(Function &F, const TargetTransformInfo *TTI, 441 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 442 DomTreeUpdater &DTU); 443 }; 444 } // namespace 445 446 CallInst *TailRecursionEliminator::findTRECandidate( 447 Instruction *TI, bool CannotTailCallElimCallsMarkedTail) { 448 BasicBlock *BB = TI->getParent(); 449 450 if (&BB->front() == TI) // Make sure there is something before the terminator. 451 return nullptr; 452 453 // Scan backwards from the return, checking to see if there is a tail call in 454 // this block. If so, set CI to it. 455 CallInst *CI = nullptr; 456 BasicBlock::iterator BBI(TI); 457 while (true) { 458 CI = dyn_cast<CallInst>(BBI); 459 if (CI && CI->getCalledFunction() == &F) 460 break; 461 462 if (BBI == BB->begin()) 463 return nullptr; // Didn't find a potential tail call. 464 --BBI; 465 } 466 467 // If this call is marked as a tail call, and if there are dynamic allocas in 468 // the function, we cannot perform this optimization. 469 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 470 return nullptr; 471 472 // As a special case, detect code like this: 473 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 474 // and disable this xform in this case, because the code generator will 475 // lower the call to fabs into inline code. 476 if (BB == &F.getEntryBlock() && 477 firstNonDbg(BB->front().getIterator()) == CI && 478 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 479 !TTI->isLoweredToCall(CI->getCalledFunction())) { 480 // A single-block function with just a call and a return. Check that 481 // the arguments match. 482 auto I = CI->arg_begin(), E = CI->arg_end(); 483 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end(); 484 for (; I != E && FI != FE; ++I, ++FI) 485 if (*I != &*FI) break; 486 if (I == E && FI == FE) 487 return nullptr; 488 } 489 490 return CI; 491 } 492 493 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) { 494 HeaderBB = &F.getEntryBlock(); 495 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB); 496 NewEntry->takeName(HeaderBB); 497 HeaderBB->setName("tailrecurse"); 498 BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry); 499 BI->setDebugLoc(CI->getDebugLoc()); 500 501 // If this function has self recursive calls in the tail position where some 502 // are marked tail and some are not, only transform one flavor or another. 503 // We have to choose whether we move allocas in the entry block to the new 504 // entry block or not, so we can't make a good choice for both. We make this 505 // decision here based on whether the first call we found to remove is 506 // marked tail. 507 // NOTE: We could do slightly better here in the case that the function has 508 // no entry block allocas. 509 RemovableCallsMustBeMarkedTail = CI->isTailCall(); 510 511 // If this tail call is marked 'tail' and if there are any allocas in the 512 // entry block, move them up to the new entry block. 513 if (RemovableCallsMustBeMarkedTail) 514 // Move all fixed sized allocas from HeaderBB to NewEntry. 515 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(), 516 NEBI = NewEntry->begin(); 517 OEBI != E;) 518 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 519 if (isa<ConstantInt>(AI->getArraySize())) 520 AI->moveBefore(&*NEBI); 521 522 // Now that we have created a new block, which jumps to the entry 523 // block, insert a PHI node for each argument of the function. 524 // For now, we initialize each PHI to only have the real arguments 525 // which are passed in. 526 Instruction *InsertPos = &HeaderBB->front(); 527 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 528 PHINode *PN = 529 PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos); 530 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 531 PN->addIncoming(&*I, NewEntry); 532 ArgumentPHIs.push_back(PN); 533 } 534 535 // If the function doen't return void, create the RetPN and RetKnownPN PHI 536 // nodes to track our return value. We initialize RetPN with undef and 537 // RetKnownPN with false since we can't know our return value at function 538 // entry. 539 Type *RetType = F.getReturnType(); 540 if (!RetType->isVoidTy()) { 541 Type *BoolType = Type::getInt1Ty(F.getContext()); 542 RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos); 543 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos); 544 545 RetPN->addIncoming(UndefValue::get(RetType), NewEntry); 546 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry); 547 } 548 549 // The entry block was changed from HeaderBB to NewEntry. 550 // The forward DominatorTree needs to be recalculated when the EntryBB is 551 // changed. In this corner-case we recalculate the entire tree. 552 DTU.recalculate(*NewEntry->getParent()); 553 } 554 555 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) { 556 assert(!AccPN && "Trying to insert multiple accumulators"); 557 558 AccumulatorRecursionInstr = AccRecInstr; 559 560 // Start by inserting a new PHI node for the accumulator. 561 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB); 562 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1, 563 "accumulator.tr", &HeaderBB->front()); 564 565 // Loop over all of the predecessors of the tail recursion block. For the 566 // real entry into the function we seed the PHI with the identity constant for 567 // the accumulation operation. For any other existing branches to this block 568 // (due to other tail recursions eliminated) the accumulator is not modified. 569 // Because we haven't added the branch in the current block to HeaderBB yet, 570 // it will not show up as a predecessor. 571 for (pred_iterator PI = PB; PI != PE; ++PI) { 572 BasicBlock *P = *PI; 573 if (P == &F.getEntryBlock()) { 574 Constant *Identity = ConstantExpr::getBinOpIdentity( 575 AccRecInstr->getOpcode(), AccRecInstr->getType()); 576 AccPN->addIncoming(Identity, P); 577 } else { 578 AccPN->addIncoming(AccPN, P); 579 } 580 } 581 582 ++NumAccumAdded; 583 } 584 585 bool TailRecursionEliminator::eliminateCall(CallInst *CI) { 586 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator()); 587 588 // Ok, we found a potential tail call. We can currently only transform the 589 // tail call if all of the instructions between the call and the return are 590 // movable to above the call itself, leaving the call next to the return. 591 // Check that this is the case now. 592 Instruction *AccRecInstr = nullptr; 593 BasicBlock::iterator BBI(CI); 594 for (++BBI; &*BBI != Ret; ++BBI) { 595 if (canMoveAboveCall(&*BBI, CI, AA)) 596 continue; 597 598 // If we can't move the instruction above the call, it might be because it 599 // is an associative and commutative operation that could be transformed 600 // using accumulator recursion elimination. Check to see if this is the 601 // case, and if so, remember which instruction accumulates for later. 602 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI)) 603 return false; // We cannot eliminate the tail recursion! 604 605 // Yes, this is accumulator recursion. Remember which instruction 606 // accumulates. 607 AccRecInstr = &*BBI; 608 } 609 610 BasicBlock *BB = Ret->getParent(); 611 612 using namespace ore; 613 ORE->emit([&]() { 614 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) 615 << "transforming tail recursion into loop"; 616 }); 617 618 // OK! We can transform this tail call. If this is the first one found, 619 // create the new entry block, allowing us to branch back to the old entry. 620 if (!HeaderBB) 621 createTailRecurseLoopHeader(CI); 622 623 if (RemovableCallsMustBeMarkedTail && !CI->isTailCall()) 624 return false; 625 626 // Ok, now that we know we have a pseudo-entry block WITH all of the 627 // required PHI nodes, add entries into the PHI node for the actual 628 // parameters passed into the tail-recursive call. 629 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 630 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 631 632 if (AccRecInstr) { 633 insertAccumulator(AccRecInstr); 634 635 // Rewrite the accumulator recursion instruction so that it does not use 636 // the result of the call anymore, instead, use the PHI node we just 637 // inserted. 638 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 639 } 640 641 // Update our return value tracking 642 if (RetPN) { 643 if (Ret->getReturnValue() == CI || AccRecInstr) { 644 // Defer selecting a return value 645 RetPN->addIncoming(RetPN, BB); 646 RetKnownPN->addIncoming(RetKnownPN, BB); 647 } else { 648 // We found a return value we want to use, insert a select instruction to 649 // select it if we don't already know what our return value will be and 650 // store the result in our return value PHI node. 651 SelectInst *SI = SelectInst::Create( 652 RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret); 653 RetSelects.push_back(SI); 654 655 RetPN->addIncoming(SI, BB); 656 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB); 657 } 658 659 if (AccPN) 660 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB); 661 } 662 663 // Now that all of the PHI nodes are in place, remove the call and 664 // ret instructions, replacing them with an unconditional branch. 665 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret); 666 NewBI->setDebugLoc(CI->getDebugLoc()); 667 668 BB->getInstList().erase(Ret); // Remove return. 669 BB->getInstList().erase(CI); // Remove call. 670 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}}); 671 ++NumEliminated; 672 return true; 673 } 674 675 bool TailRecursionEliminator::foldReturnAndProcessPred( 676 ReturnInst *Ret, bool CannotTailCallElimCallsMarkedTail) { 677 BasicBlock *BB = Ret->getParent(); 678 679 bool Change = false; 680 681 // Make sure this block is a trivial return block. 682 assert(BB->getFirstNonPHIOrDbg() == Ret && 683 "Trying to fold non-trivial return block"); 684 685 // If the return block contains nothing but the return and PHI's, 686 // there might be an opportunity to duplicate the return in its 687 // predecessors and perform TRE there. Look for predecessors that end 688 // in unconditional branch and recursive call(s). 689 SmallVector<BranchInst*, 8> UncondBranchPreds; 690 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 691 BasicBlock *Pred = *PI; 692 Instruction *PTI = Pred->getTerminator(); 693 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) 694 if (BI->isUnconditional()) 695 UncondBranchPreds.push_back(BI); 696 } 697 698 while (!UncondBranchPreds.empty()) { 699 BranchInst *BI = UncondBranchPreds.pop_back_val(); 700 BasicBlock *Pred = BI->getParent(); 701 if (CallInst *CI = 702 findTRECandidate(BI, CannotTailCallElimCallsMarkedTail)) { 703 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 704 << "INTO UNCOND BRANCH PRED: " << *Pred); 705 FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU); 706 707 // Cleanup: if all predecessors of BB have been eliminated by 708 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 709 // because the ret instruction in there is still using a value which 710 // eliminateRecursiveTailCall will attempt to remove. 711 if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 712 DTU.deleteBB(BB); 713 714 eliminateCall(CI); 715 ++NumRetDuped; 716 Change = true; 717 } 718 } 719 720 return Change; 721 } 722 723 bool TailRecursionEliminator::processReturningBlock( 724 ReturnInst *Ret, bool CannotTailCallElimCallsMarkedTail) { 725 CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail); 726 if (!CI) 727 return false; 728 729 return eliminateCall(CI); 730 } 731 732 void TailRecursionEliminator::cleanupAndFinalize() { 733 // If we eliminated any tail recursions, it's possible that we inserted some 734 // silly PHI nodes which just merge an initial value (the incoming operand) 735 // with themselves. Check to see if we did and clean up our mess if so. This 736 // occurs when a function passes an argument straight through to its tail 737 // call. 738 for (PHINode *PN : ArgumentPHIs) { 739 // If the PHI Node is a dynamic constant, replace it with the value it is. 740 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { 741 PN->replaceAllUsesWith(PNV); 742 PN->eraseFromParent(); 743 } 744 } 745 746 if (RetPN) { 747 if (RetSelects.empty()) { 748 // If we didn't insert any select instructions, then we know we didn't 749 // store a return value and we can remove the PHI nodes we inserted. 750 RetPN->dropAllReferences(); 751 RetPN->eraseFromParent(); 752 753 RetKnownPN->dropAllReferences(); 754 RetKnownPN->eraseFromParent(); 755 756 if (AccPN) { 757 // We need to insert a copy of our accumulator instruction before any 758 // return in the function, and return its result instead. 759 Instruction *AccRecInstr = AccumulatorRecursionInstr; 760 for (BasicBlock &BB : F) { 761 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 762 if (!RI) 763 continue; 764 765 Instruction *AccRecInstrNew = AccRecInstr->clone(); 766 AccRecInstrNew->setName("accumulator.ret.tr"); 767 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 768 RI->getOperand(0)); 769 AccRecInstrNew->insertBefore(RI); 770 RI->setOperand(0, AccRecInstrNew); 771 } 772 } 773 } else { 774 // We need to insert a select instruction before any return left in the 775 // function to select our stored return value if we have one. 776 for (BasicBlock &BB : F) { 777 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 778 if (!RI) 779 continue; 780 781 SelectInst *SI = SelectInst::Create( 782 RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI); 783 RetSelects.push_back(SI); 784 RI->setOperand(0, SI); 785 } 786 787 if (AccPN) { 788 // We need to insert a copy of our accumulator instruction before any 789 // of the selects we inserted, and select its result instead. 790 Instruction *AccRecInstr = AccumulatorRecursionInstr; 791 for (SelectInst *SI : RetSelects) { 792 Instruction *AccRecInstrNew = AccRecInstr->clone(); 793 AccRecInstrNew->setName("accumulator.ret.tr"); 794 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 795 SI->getFalseValue()); 796 AccRecInstrNew->insertBefore(SI); 797 SI->setFalseValue(AccRecInstrNew); 798 } 799 } 800 } 801 } 802 } 803 804 bool TailRecursionEliminator::eliminate(Function &F, 805 const TargetTransformInfo *TTI, 806 AliasAnalysis *AA, 807 OptimizationRemarkEmitter *ORE, 808 DomTreeUpdater &DTU) { 809 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 810 return false; 811 812 bool MadeChange = false; 813 bool AllCallsAreTailCalls = false; 814 MadeChange |= markTails(F, AllCallsAreTailCalls, ORE); 815 if (!AllCallsAreTailCalls) 816 return MadeChange; 817 818 // If this function is a varargs function, we won't be able to PHI the args 819 // right, so don't even try to convert it... 820 if (F.getFunctionType()->isVarArg()) 821 return MadeChange; 822 823 // If false, we cannot perform TRE on tail calls marked with the 'tail' 824 // attribute, because doing so would cause the stack size to increase (real 825 // TRE would deallocate variable sized allocas, TRE doesn't). 826 bool CanTRETailMarkedCall = canTRE(F); 827 828 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU); 829 830 // Change any tail recursive calls to loops. 831 // 832 // FIXME: The code generator produces really bad code when an 'escaping 833 // alloca' is changed from being a static alloca to being a dynamic alloca. 834 // Until this is resolved, disable this transformation if that would ever 835 // happen. This bug is PR962. 836 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) { 837 BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB. 838 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { 839 bool Change = TRE.processReturningBlock(Ret, !CanTRETailMarkedCall); 840 if (!Change && BB->getFirstNonPHIOrDbg() == Ret) 841 Change = TRE.foldReturnAndProcessPred(Ret, !CanTRETailMarkedCall); 842 MadeChange |= Change; 843 } 844 } 845 846 TRE.cleanupAndFinalize(); 847 848 return MadeChange; 849 } 850 851 namespace { 852 struct TailCallElim : public FunctionPass { 853 static char ID; // Pass identification, replacement for typeid 854 TailCallElim() : FunctionPass(ID) { 855 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 856 } 857 858 void getAnalysisUsage(AnalysisUsage &AU) const override { 859 AU.addRequired<TargetTransformInfoWrapperPass>(); 860 AU.addRequired<AAResultsWrapperPass>(); 861 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 862 AU.addPreserved<GlobalsAAWrapperPass>(); 863 AU.addPreserved<DominatorTreeWrapperPass>(); 864 AU.addPreserved<PostDominatorTreeWrapperPass>(); 865 } 866 867 bool runOnFunction(Function &F) override { 868 if (skipFunction(F)) 869 return false; 870 871 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 872 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 873 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 874 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 875 // There is no noticable performance difference here between Lazy and Eager 876 // UpdateStrategy based on some test results. It is feasible to switch the 877 // UpdateStrategy to Lazy if we find it profitable later. 878 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 879 880 return TailRecursionEliminator::eliminate( 881 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 882 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 883 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU); 884 } 885 }; 886 } 887 888 char TailCallElim::ID = 0; 889 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", 890 false, false) 891 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 892 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 893 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", 894 false, false) 895 896 // Public interface to the TailCallElimination pass 897 FunctionPass *llvm::createTailCallEliminationPass() { 898 return new TailCallElim(); 899 } 900 901 PreservedAnalyses TailCallElimPass::run(Function &F, 902 FunctionAnalysisManager &AM) { 903 904 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 905 AliasAnalysis &AA = AM.getResult<AAManager>(F); 906 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 907 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 908 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F); 909 // There is no noticable performance difference here between Lazy and Eager 910 // UpdateStrategy based on some test results. It is feasible to switch the 911 // UpdateStrategy to Lazy if we find it profitable later. 912 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 913 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU); 914 915 if (!Changed) 916 return PreservedAnalyses::all(); 917 PreservedAnalyses PA; 918 PA.preserve<GlobalsAA>(); 919 PA.preserve<DominatorTreeAnalysis>(); 920 PA.preserve<PostDominatorTreeAnalysis>(); 921 return PA; 922 } 923