xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===- StraightLineStrengthReduce.cpp - -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements straight-line strength reduction (SLSR). Unlike loop
10 // strength reduction, this algorithm is designed to reduce arithmetic
11 // redundancy in straight-line code instead of loops. It has proven to be
12 // effective in simplifying arithmetic statements derived from an unrolled loop.
13 // It can also simplify the logic of SeparateConstOffsetFromGEP.
14 //
15 // There are many optimizations we can perform in the domain of SLSR. This file
16 // for now contains only an initial step. Specifically, we look for strength
17 // reduction candidates in the following forms:
18 //
19 // Form 1: B + i * S
20 // Form 2: (B + i) * S
21 // Form 3: &B[i * S]
22 //
23 // where S is an integer variable, and i is a constant integer. If we found two
24 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
25 // in a simpler way with respect to S1. For example,
26 //
27 // S1: X = B + i * S
28 // S2: Y = B + i' * S   => X + (i' - i) * S
29 //
30 // S1: X = (B + i) * S
31 // S2: Y = (B + i') * S => X + (i' - i) * S
32 //
33 // S1: X = &B[i * S]
34 // S2: Y = &B[i' * S]   => &X[(i' - i) * S]
35 //
36 // Note: (i' - i) * S is folded to the extent possible.
37 //
38 // This rewriting is in general a good idea. The code patterns we focus on
39 // usually come from loop unrolling, so (i' - i) * S is likely the same
40 // across iterations and can be reused. When that happens, the optimized form
41 // takes only one add starting from the second iteration.
42 //
43 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
44 // multiple bases, we choose to rewrite S2 with respect to its "immediate"
45 // basis, the basis that is the closest ancestor in the dominator tree.
46 //
47 // TODO:
48 //
49 // - Floating point arithmetics when fast math is enabled.
50 //
51 // - SLSR may decrease ILP at the architecture level. Targets that are very
52 //   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
53 //   left as future work.
54 //
55 // - When (i' - i) is constant but i and i' are not, we could still perform
56 //   SLSR.
57 
58 #include "llvm/Transforms/Scalar/StraightLineStrengthReduce.h"
59 #include "llvm/ADT/APInt.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/Analysis/ScalarEvolution.h"
63 #include "llvm/Analysis/TargetTransformInfo.h"
64 #include "llvm/Analysis/ValueTracking.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/GetElementPtrTypeIterator.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/Module.h"
75 #include "llvm/IR/Operator.h"
76 #include "llvm/IR/PatternMatch.h"
77 #include "llvm/IR/Type.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Transforms/Utils/Local.h"
85 #include <cassert>
86 #include <cstdint>
87 #include <limits>
88 #include <list>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 static const unsigned UnknownAddressSpace =
95     std::numeric_limits<unsigned>::max();
96 
97 namespace {
98 
99 class StraightLineStrengthReduceLegacyPass : public FunctionPass {
100   const DataLayout *DL = nullptr;
101 
102 public:
103   static char ID;
104 
105   StraightLineStrengthReduceLegacyPass() : FunctionPass(ID) {
106     initializeStraightLineStrengthReduceLegacyPassPass(
107         *PassRegistry::getPassRegistry());
108   }
109 
110   void getAnalysisUsage(AnalysisUsage &AU) const override {
111     AU.addRequired<DominatorTreeWrapperPass>();
112     AU.addRequired<ScalarEvolutionWrapperPass>();
113     AU.addRequired<TargetTransformInfoWrapperPass>();
114     // We do not modify the shape of the CFG.
115     AU.setPreservesCFG();
116   }
117 
118   bool doInitialization(Module &M) override {
119     DL = &M.getDataLayout();
120     return false;
121   }
122 
123   bool runOnFunction(Function &F) override;
124 };
125 
126 class StraightLineStrengthReduce {
127 public:
128   StraightLineStrengthReduce(const DataLayout *DL, DominatorTree *DT,
129                              ScalarEvolution *SE, TargetTransformInfo *TTI)
130       : DL(DL), DT(DT), SE(SE), TTI(TTI) {}
131 
132   // SLSR candidate. Such a candidate must be in one of the forms described in
133   // the header comments.
134   struct Candidate {
135     enum Kind {
136       Invalid, // reserved for the default constructor
137       Add,     // B + i * S
138       Mul,     // (B + i) * S
139       GEP,     // &B[..][i * S][..]
140     };
141 
142     Candidate() = default;
143     Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
144               Instruction *I)
145         : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {}
146 
147     Kind CandidateKind = Invalid;
148 
149     const SCEV *Base = nullptr;
150 
151     // Note that Index and Stride of a GEP candidate do not necessarily have the
152     // same integer type. In that case, during rewriting, Stride will be
153     // sign-extended or truncated to Index's type.
154     ConstantInt *Index = nullptr;
155 
156     Value *Stride = nullptr;
157 
158     // The instruction this candidate corresponds to. It helps us to rewrite a
159     // candidate with respect to its immediate basis. Note that one instruction
160     // can correspond to multiple candidates depending on how you associate the
161     // expression. For instance,
162     //
163     // (a + 1) * (b + 2)
164     //
165     // can be treated as
166     //
167     // <Base: a, Index: 1, Stride: b + 2>
168     //
169     // or
170     //
171     // <Base: b, Index: 2, Stride: a + 1>
172     Instruction *Ins = nullptr;
173 
174     // Points to the immediate basis of this candidate, or nullptr if we cannot
175     // find any basis for this candidate.
176     Candidate *Basis = nullptr;
177   };
178 
179   bool runOnFunction(Function &F);
180 
181 private:
182   // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
183   // share the same base and stride.
184   bool isBasisFor(const Candidate &Basis, const Candidate &C);
185 
186   // Returns whether the candidate can be folded into an addressing mode.
187   bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
188                   const DataLayout *DL);
189 
190   // Returns true if C is already in a simplest form and not worth being
191   // rewritten.
192   bool isSimplestForm(const Candidate &C);
193 
194   // Checks whether I is in a candidate form. If so, adds all the matching forms
195   // to Candidates, and tries to find the immediate basis for each of them.
196   void allocateCandidatesAndFindBasis(Instruction *I);
197 
198   // Allocate candidates and find bases for Add instructions.
199   void allocateCandidatesAndFindBasisForAdd(Instruction *I);
200 
201   // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
202   // candidate.
203   void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
204                                             Instruction *I);
205   // Allocate candidates and find bases for Mul instructions.
206   void allocateCandidatesAndFindBasisForMul(Instruction *I);
207 
208   // Splits LHS into Base + Index and, if succeeds, calls
209   // allocateCandidatesAndFindBasis.
210   void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
211                                             Instruction *I);
212 
213   // Allocate candidates and find bases for GetElementPtr instructions.
214   void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
215 
216   // A helper function that scales Idx with ElementSize before invoking
217   // allocateCandidatesAndFindBasis.
218   void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
219                                             Value *S, uint64_t ElementSize,
220                                             Instruction *I);
221 
222   // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
223   // basis.
224   void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
225                                       ConstantInt *Idx, Value *S,
226                                       Instruction *I);
227 
228   // Rewrites candidate C with respect to Basis.
229   void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
230 
231   // A helper function that factors ArrayIdx to a product of a stride and a
232   // constant index, and invokes allocateCandidatesAndFindBasis with the
233   // factorings.
234   void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
235                         GetElementPtrInst *GEP);
236 
237   // Emit code that computes the "bump" from Basis to C. If the candidate is a
238   // GEP and the bump is not divisible by the element size of the GEP, this
239   // function sets the BumpWithUglyGEP flag to notify its caller to bump the
240   // basis using an ugly GEP.
241   static Value *emitBump(const Candidate &Basis, const Candidate &C,
242                          IRBuilder<> &Builder, const DataLayout *DL,
243                          bool &BumpWithUglyGEP);
244 
245   const DataLayout *DL = nullptr;
246   DominatorTree *DT = nullptr;
247   ScalarEvolution *SE;
248   TargetTransformInfo *TTI = nullptr;
249   std::list<Candidate> Candidates;
250 
251   // Temporarily holds all instructions that are unlinked (but not deleted) by
252   // rewriteCandidateWithBasis. These instructions will be actually removed
253   // after all rewriting finishes.
254   std::vector<Instruction *> UnlinkedInstructions;
255 };
256 
257 } // end anonymous namespace
258 
259 char StraightLineStrengthReduceLegacyPass::ID = 0;
260 
261 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduceLegacyPass, "slsr",
262                       "Straight line strength reduction", false, false)
263 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
264 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
265 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
266 INITIALIZE_PASS_END(StraightLineStrengthReduceLegacyPass, "slsr",
267                     "Straight line strength reduction", false, false)
268 
269 FunctionPass *llvm::createStraightLineStrengthReducePass() {
270   return new StraightLineStrengthReduceLegacyPass();
271 }
272 
273 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
274                                             const Candidate &C) {
275   return (Basis.Ins != C.Ins && // skip the same instruction
276           // They must have the same type too. Basis.Base == C.Base doesn't
277           // guarantee their types are the same (PR23975).
278           Basis.Ins->getType() == C.Ins->getType() &&
279           // Basis must dominate C in order to rewrite C with respect to Basis.
280           DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
281           // They share the same base, stride, and candidate kind.
282           Basis.Base == C.Base && Basis.Stride == C.Stride &&
283           Basis.CandidateKind == C.CandidateKind);
284 }
285 
286 static bool isGEPFoldable(GetElementPtrInst *GEP,
287                           const TargetTransformInfo *TTI) {
288   SmallVector<const Value *, 4> Indices(GEP->indices());
289   return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
290                          Indices) == TargetTransformInfo::TCC_Free;
291 }
292 
293 // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
294 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
295                           TargetTransformInfo *TTI) {
296   // Index->getSExtValue() may crash if Index is wider than 64-bit.
297   return Index->getBitWidth() <= 64 &&
298          TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
299                                     Index->getSExtValue(), UnknownAddressSpace);
300 }
301 
302 bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
303                                             TargetTransformInfo *TTI,
304                                             const DataLayout *DL) {
305   if (C.CandidateKind == Candidate::Add)
306     return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
307   if (C.CandidateKind == Candidate::GEP)
308     return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
309   return false;
310 }
311 
312 // Returns true if GEP has zero or one non-zero index.
313 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
314   unsigned NumNonZeroIndices = 0;
315   for (Use &Idx : GEP->indices()) {
316     ConstantInt *ConstIdx = dyn_cast<ConstantInt>(Idx);
317     if (ConstIdx == nullptr || !ConstIdx->isZero())
318       ++NumNonZeroIndices;
319   }
320   return NumNonZeroIndices <= 1;
321 }
322 
323 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
324   if (C.CandidateKind == Candidate::Add) {
325     // B + 1 * S or B + (-1) * S
326     return C.Index->isOne() || C.Index->isMinusOne();
327   }
328   if (C.CandidateKind == Candidate::Mul) {
329     // (B + 0) * S
330     return C.Index->isZero();
331   }
332   if (C.CandidateKind == Candidate::GEP) {
333     // (char*)B + S or (char*)B - S
334     return ((C.Index->isOne() || C.Index->isMinusOne()) &&
335             hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
336   }
337   return false;
338 }
339 
340 // TODO: We currently implement an algorithm whose time complexity is linear in
341 // the number of existing candidates. However, we could do better by using
342 // ScopedHashTable. Specifically, while traversing the dominator tree, we could
343 // maintain all the candidates that dominate the basic block being traversed in
344 // a ScopedHashTable. This hash table is indexed by the base and the stride of
345 // a candidate. Therefore, finding the immediate basis of a candidate boils down
346 // to one hash-table look up.
347 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
348     Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
349     Instruction *I) {
350   Candidate C(CT, B, Idx, S, I);
351   // SLSR can complicate an instruction in two cases:
352   //
353   // 1. If we can fold I into an addressing mode, computing I is likely free or
354   // takes only one instruction.
355   //
356   // 2. I is already in a simplest form. For example, when
357   //      X = B + 8 * S
358   //      Y = B + S,
359   //    rewriting Y to X - 7 * S is probably a bad idea.
360   //
361   // In the above cases, we still add I to the candidate list so that I can be
362   // the basis of other candidates, but we leave I's basis blank so that I
363   // won't be rewritten.
364   if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
365     // Try to compute the immediate basis of C.
366     unsigned NumIterations = 0;
367     // Limit the scan radius to avoid running in quadratice time.
368     static const unsigned MaxNumIterations = 50;
369     for (auto Basis = Candidates.rbegin();
370          Basis != Candidates.rend() && NumIterations < MaxNumIterations;
371          ++Basis, ++NumIterations) {
372       if (isBasisFor(*Basis, C)) {
373         C.Basis = &(*Basis);
374         break;
375       }
376     }
377   }
378   // Regardless of whether we find a basis for C, we need to push C to the
379   // candidate list so that it can be the basis of other candidates.
380   Candidates.push_back(C);
381 }
382 
383 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
384     Instruction *I) {
385   switch (I->getOpcode()) {
386   case Instruction::Add:
387     allocateCandidatesAndFindBasisForAdd(I);
388     break;
389   case Instruction::Mul:
390     allocateCandidatesAndFindBasisForMul(I);
391     break;
392   case Instruction::GetElementPtr:
393     allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
394     break;
395   }
396 }
397 
398 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
399     Instruction *I) {
400   // Try matching B + i * S.
401   if (!isa<IntegerType>(I->getType()))
402     return;
403 
404   assert(I->getNumOperands() == 2 && "isn't I an add?");
405   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
406   allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
407   if (LHS != RHS)
408     allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
409 }
410 
411 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
412     Value *LHS, Value *RHS, Instruction *I) {
413   Value *S = nullptr;
414   ConstantInt *Idx = nullptr;
415   if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
416     // I = LHS + RHS = LHS + Idx * S
417     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
418   } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
419     // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
420     APInt One(Idx->getBitWidth(), 1);
421     Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
422     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
423   } else {
424     // At least, I = LHS + 1 * RHS
425     ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
426     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
427                                    I);
428   }
429 }
430 
431 // Returns true if A matches B + C where C is constant.
432 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
433   return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
434           match(A, m_Add(m_ConstantInt(C), m_Value(B))));
435 }
436 
437 // Returns true if A matches B | C where C is constant.
438 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
439   return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
440           match(A, m_Or(m_ConstantInt(C), m_Value(B))));
441 }
442 
443 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
444     Value *LHS, Value *RHS, Instruction *I) {
445   Value *B = nullptr;
446   ConstantInt *Idx = nullptr;
447   if (matchesAdd(LHS, B, Idx)) {
448     // If LHS is in the form of "Base + Index", then I is in the form of
449     // "(Base + Index) * RHS".
450     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
451   } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
452     // If LHS is in the form of "Base | Index" and Base and Index have no common
453     // bits set, then
454     //   Base | Index = Base + Index
455     // and I is thus in the form of "(Base + Index) * RHS".
456     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
457   } else {
458     // Otherwise, at least try the form (LHS + 0) * RHS.
459     ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
460     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
461                                    I);
462   }
463 }
464 
465 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
466     Instruction *I) {
467   // Try matching (B + i) * S.
468   // TODO: we could extend SLSR to float and vector types.
469   if (!isa<IntegerType>(I->getType()))
470     return;
471 
472   assert(I->getNumOperands() == 2 && "isn't I a mul?");
473   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
474   allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
475   if (LHS != RHS) {
476     // Symmetrically, try to split RHS to Base + Index.
477     allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
478   }
479 }
480 
481 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
482     const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
483     Instruction *I) {
484   // I = B + sext(Idx *nsw S) * ElementSize
485   //   = B + (sext(Idx) * sext(S)) * ElementSize
486   //   = B + (sext(Idx) * ElementSize) * sext(S)
487   // Casting to IntegerType is safe because we skipped vector GEPs.
488   IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
489   ConstantInt *ScaledIdx = ConstantInt::get(
490       IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
491   allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
492 }
493 
494 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
495                                                   const SCEV *Base,
496                                                   uint64_t ElementSize,
497                                                   GetElementPtrInst *GEP) {
498   // At least, ArrayIdx = ArrayIdx *nsw 1.
499   allocateCandidatesAndFindBasisForGEP(
500       Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
501       ArrayIdx, ElementSize, GEP);
502   Value *LHS = nullptr;
503   ConstantInt *RHS = nullptr;
504   // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
505   // itself. This would allow us to handle the shl case for free. However,
506   // matching SCEVs has two issues:
507   //
508   // 1. this would complicate rewriting because the rewriting procedure
509   // would have to translate SCEVs back to IR instructions. This translation
510   // is difficult when LHS is further evaluated to a composite SCEV.
511   //
512   // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
513   // to strip nsw/nuw flags which are critical for SLSR to trace into
514   // sext'ed multiplication.
515   if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
516     // SLSR is currently unsafe if i * S may overflow.
517     // GEP = Base + sext(LHS *nsw RHS) * ElementSize
518     allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
519   } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
520     // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
521     //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
522     APInt One(RHS->getBitWidth(), 1);
523     ConstantInt *PowerOf2 =
524         ConstantInt::get(RHS->getContext(), One << RHS->getValue());
525     allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
526   }
527 }
528 
529 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
530     GetElementPtrInst *GEP) {
531   // TODO: handle vector GEPs
532   if (GEP->getType()->isVectorTy())
533     return;
534 
535   SmallVector<const SCEV *, 4> IndexExprs;
536   for (Use &Idx : GEP->indices())
537     IndexExprs.push_back(SE->getSCEV(Idx));
538 
539   gep_type_iterator GTI = gep_type_begin(GEP);
540   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
541     if (GTI.isStruct())
542       continue;
543 
544     const SCEV *OrigIndexExpr = IndexExprs[I - 1];
545     IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
546 
547     // The base of this candidate is GEP's base plus the offsets of all
548     // indices except this current one.
549     const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
550     Value *ArrayIdx = GEP->getOperand(I);
551     uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
552     if (ArrayIdx->getType()->getIntegerBitWidth() <=
553         DL->getPointerSizeInBits(GEP->getAddressSpace())) {
554       // Skip factoring if ArrayIdx is wider than the pointer size, because
555       // ArrayIdx is implicitly truncated to the pointer size.
556       factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
557     }
558     // When ArrayIdx is the sext of a value, we try to factor that value as
559     // well.  Handling this case is important because array indices are
560     // typically sign-extended to the pointer size.
561     Value *TruncatedArrayIdx = nullptr;
562     if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
563         TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
564             DL->getPointerSizeInBits(GEP->getAddressSpace())) {
565       // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
566       // because TruncatedArrayIdx is implicitly truncated to the pointer size.
567       factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
568     }
569 
570     IndexExprs[I - 1] = OrigIndexExpr;
571   }
572 }
573 
574 // A helper function that unifies the bitwidth of A and B.
575 static void unifyBitWidth(APInt &A, APInt &B) {
576   if (A.getBitWidth() < B.getBitWidth())
577     A = A.sext(B.getBitWidth());
578   else if (A.getBitWidth() > B.getBitWidth())
579     B = B.sext(A.getBitWidth());
580 }
581 
582 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
583                                             const Candidate &C,
584                                             IRBuilder<> &Builder,
585                                             const DataLayout *DL,
586                                             bool &BumpWithUglyGEP) {
587   APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
588   unifyBitWidth(Idx, BasisIdx);
589   APInt IndexOffset = Idx - BasisIdx;
590 
591   BumpWithUglyGEP = false;
592   if (Basis.CandidateKind == Candidate::GEP) {
593     APInt ElementSize(
594         IndexOffset.getBitWidth(),
595         DL->getTypeAllocSize(
596             cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
597     APInt Q, R;
598     APInt::sdivrem(IndexOffset, ElementSize, Q, R);
599     if (R == 0)
600       IndexOffset = Q;
601     else
602       BumpWithUglyGEP = true;
603   }
604 
605   // Compute Bump = C - Basis = (i' - i) * S.
606   // Common case 1: if (i' - i) is 1, Bump = S.
607   if (IndexOffset == 1)
608     return C.Stride;
609   // Common case 2: if (i' - i) is -1, Bump = -S.
610   if (IndexOffset.isAllOnes())
611     return Builder.CreateNeg(C.Stride);
612 
613   // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
614   // have different bit widths.
615   IntegerType *DeltaType =
616       IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
617   Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
618   if (IndexOffset.isPowerOf2()) {
619     // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
620     ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
621     return Builder.CreateShl(ExtendedStride, Exponent);
622   }
623   if (IndexOffset.isNegatedPowerOf2()) {
624     // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
625     ConstantInt *Exponent =
626         ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
627     return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
628   }
629   Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
630   return Builder.CreateMul(ExtendedStride, Delta);
631 }
632 
633 void StraightLineStrengthReduce::rewriteCandidateWithBasis(
634     const Candidate &C, const Candidate &Basis) {
635   assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
636          C.Stride == Basis.Stride);
637   // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
638   // basis of a candidate cannot be unlinked before the candidate.
639   assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
640 
641   // An instruction can correspond to multiple candidates. Therefore, instead of
642   // simply deleting an instruction when we rewrite it, we mark its parent as
643   // nullptr (i.e. unlink it) so that we can skip the candidates whose
644   // instruction is already rewritten.
645   if (!C.Ins->getParent())
646     return;
647 
648   IRBuilder<> Builder(C.Ins);
649   bool BumpWithUglyGEP;
650   Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
651   Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
652   switch (C.CandidateKind) {
653   case Candidate::Add:
654   case Candidate::Mul: {
655     // C = Basis + Bump
656     Value *NegBump;
657     if (match(Bump, m_Neg(m_Value(NegBump)))) {
658       // If Bump is a neg instruction, emit C = Basis - (-Bump).
659       Reduced = Builder.CreateSub(Basis.Ins, NegBump);
660       // We only use the negative argument of Bump, and Bump itself may be
661       // trivially dead.
662       RecursivelyDeleteTriviallyDeadInstructions(Bump);
663     } else {
664       // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
665       // usually unsound, e.g.,
666       //
667       // X = (-2 +nsw 1) *nsw INT_MAX
668       // Y = (-2 +nsw 3) *nsw INT_MAX
669       //   =>
670       // Y = X + 2 * INT_MAX
671       //
672       // Neither + and * in the resultant expression are nsw.
673       Reduced = Builder.CreateAdd(Basis.Ins, Bump);
674     }
675     break;
676   }
677   case Candidate::GEP:
678     {
679       Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
680       bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
681       if (BumpWithUglyGEP) {
682         // C = (char *)Basis + Bump
683         unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
684         Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
685         Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
686         if (InBounds)
687           Reduced =
688               Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
689         else
690           Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
691         Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
692       } else {
693         // C = gep Basis, Bump
694         // Canonicalize bump to pointer size.
695         Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
696         if (InBounds)
697           Reduced = Builder.CreateInBoundsGEP(
698               cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
699               Basis.Ins, Bump);
700         else
701           Reduced = Builder.CreateGEP(
702               cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
703               Basis.Ins, Bump);
704       }
705       break;
706     }
707   default:
708     llvm_unreachable("C.CandidateKind is invalid");
709   };
710   Reduced->takeName(C.Ins);
711   C.Ins->replaceAllUsesWith(Reduced);
712   // Unlink C.Ins so that we can skip other candidates also corresponding to
713   // C.Ins. The actual deletion is postponed to the end of runOnFunction.
714   C.Ins->removeFromParent();
715   UnlinkedInstructions.push_back(C.Ins);
716 }
717 
718 bool StraightLineStrengthReduceLegacyPass::runOnFunction(Function &F) {
719   if (skipFunction(F))
720     return false;
721 
722   auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
723   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
724   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
725   return StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F);
726 }
727 
728 bool StraightLineStrengthReduce::runOnFunction(Function &F) {
729   // Traverse the dominator tree in the depth-first order. This order makes sure
730   // all bases of a candidate are in Candidates when we process it.
731   for (const auto Node : depth_first(DT))
732     for (auto &I : *(Node->getBlock()))
733       allocateCandidatesAndFindBasis(&I);
734 
735   // Rewrite candidates in the reverse depth-first order. This order makes sure
736   // a candidate being rewritten is not a basis for any other candidate.
737   while (!Candidates.empty()) {
738     const Candidate &C = Candidates.back();
739     if (C.Basis != nullptr) {
740       rewriteCandidateWithBasis(C, *C.Basis);
741     }
742     Candidates.pop_back();
743   }
744 
745   // Delete all unlink instructions.
746   for (auto *UnlinkedInst : UnlinkedInstructions) {
747     for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
748       Value *Op = UnlinkedInst->getOperand(I);
749       UnlinkedInst->setOperand(I, nullptr);
750       RecursivelyDeleteTriviallyDeadInstructions(Op);
751     }
752     UnlinkedInst->deleteValue();
753   }
754   bool Ret = !UnlinkedInstructions.empty();
755   UnlinkedInstructions.clear();
756   return Ret;
757 }
758 
759 namespace llvm {
760 
761 PreservedAnalyses
762 StraightLineStrengthReducePass::run(Function &F, FunctionAnalysisManager &AM) {
763   const DataLayout *DL = &F.getParent()->getDataLayout();
764   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
765   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
766   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
767 
768   if (!StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F))
769     return PreservedAnalyses::all();
770 
771   PreservedAnalyses PA;
772   PA.preserveSet<CFGAnalyses>();
773   PA.preserve<DominatorTreeAnalysis>();
774   PA.preserve<ScalarEvolutionAnalysis>();
775   PA.preserve<TargetIRAnalysis>();
776   return PA;
777 }
778 
779 } // namespace llvm
780