1 //===- StraightLineStrengthReduce.cpp - -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements straight-line strength reduction (SLSR). Unlike loop 10 // strength reduction, this algorithm is designed to reduce arithmetic 11 // redundancy in straight-line code instead of loops. It has proven to be 12 // effective in simplifying arithmetic statements derived from an unrolled loop. 13 // It can also simplify the logic of SeparateConstOffsetFromGEP. 14 // 15 // There are many optimizations we can perform in the domain of SLSR. This file 16 // for now contains only an initial step. Specifically, we look for strength 17 // reduction candidates in the following forms: 18 // 19 // Form 1: B + i * S 20 // Form 2: (B + i) * S 21 // Form 3: &B[i * S] 22 // 23 // where S is an integer variable, and i is a constant integer. If we found two 24 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 25 // in a simpler way with respect to S1. For example, 26 // 27 // S1: X = B + i * S 28 // S2: Y = B + i' * S => X + (i' - i) * S 29 // 30 // S1: X = (B + i) * S 31 // S2: Y = (B + i') * S => X + (i' - i) * S 32 // 33 // S1: X = &B[i * S] 34 // S2: Y = &B[i' * S] => &X[(i' - i) * S] 35 // 36 // Note: (i' - i) * S is folded to the extent possible. 37 // 38 // This rewriting is in general a good idea. The code patterns we focus on 39 // usually come from loop unrolling, so (i' - i) * S is likely the same 40 // across iterations and can be reused. When that happens, the optimized form 41 // takes only one add starting from the second iteration. 42 // 43 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has 44 // multiple bases, we choose to rewrite S2 with respect to its "immediate" 45 // basis, the basis that is the closest ancestor in the dominator tree. 46 // 47 // TODO: 48 // 49 // - Floating point arithmetics when fast math is enabled. 50 // 51 // - SLSR may decrease ILP at the architecture level. Targets that are very 52 // sensitive to ILP may want to disable it. Having SLSR to consider ILP is 53 // left as future work. 54 // 55 // - When (i' - i) is constant but i and i' are not, we could still perform 56 // SLSR. 57 58 #include "llvm/ADT/APInt.h" 59 #include "llvm/ADT/DepthFirstIterator.h" 60 #include "llvm/ADT/SmallVector.h" 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/GetElementPtrTypeIterator.h" 69 #include "llvm/IR/IRBuilder.h" 70 #include "llvm/IR/InstrTypes.h" 71 #include "llvm/IR/Instruction.h" 72 #include "llvm/IR/Instructions.h" 73 #include "llvm/IR/Module.h" 74 #include "llvm/IR/Operator.h" 75 #include "llvm/IR/PatternMatch.h" 76 #include "llvm/IR/Type.h" 77 #include "llvm/IR/Value.h" 78 #include "llvm/InitializePasses.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include <cassert> 85 #include <cstdint> 86 #include <limits> 87 #include <list> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 static const unsigned UnknownAddressSpace = 94 std::numeric_limits<unsigned>::max(); 95 96 namespace { 97 98 class StraightLineStrengthReduce : public FunctionPass { 99 public: 100 // SLSR candidate. Such a candidate must be in one of the forms described in 101 // the header comments. 102 struct Candidate { 103 enum Kind { 104 Invalid, // reserved for the default constructor 105 Add, // B + i * S 106 Mul, // (B + i) * S 107 GEP, // &B[..][i * S][..] 108 }; 109 110 Candidate() = default; 111 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 112 Instruction *I) 113 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {} 114 115 Kind CandidateKind = Invalid; 116 117 const SCEV *Base = nullptr; 118 119 // Note that Index and Stride of a GEP candidate do not necessarily have the 120 // same integer type. In that case, during rewriting, Stride will be 121 // sign-extended or truncated to Index's type. 122 ConstantInt *Index = nullptr; 123 124 Value *Stride = nullptr; 125 126 // The instruction this candidate corresponds to. It helps us to rewrite a 127 // candidate with respect to its immediate basis. Note that one instruction 128 // can correspond to multiple candidates depending on how you associate the 129 // expression. For instance, 130 // 131 // (a + 1) * (b + 2) 132 // 133 // can be treated as 134 // 135 // <Base: a, Index: 1, Stride: b + 2> 136 // 137 // or 138 // 139 // <Base: b, Index: 2, Stride: a + 1> 140 Instruction *Ins = nullptr; 141 142 // Points to the immediate basis of this candidate, or nullptr if we cannot 143 // find any basis for this candidate. 144 Candidate *Basis = nullptr; 145 }; 146 147 static char ID; 148 149 StraightLineStrengthReduce() : FunctionPass(ID) { 150 initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry()); 151 } 152 153 void getAnalysisUsage(AnalysisUsage &AU) const override { 154 AU.addRequired<DominatorTreeWrapperPass>(); 155 AU.addRequired<ScalarEvolutionWrapperPass>(); 156 AU.addRequired<TargetTransformInfoWrapperPass>(); 157 // We do not modify the shape of the CFG. 158 AU.setPreservesCFG(); 159 } 160 161 bool doInitialization(Module &M) override { 162 DL = &M.getDataLayout(); 163 return false; 164 } 165 166 bool runOnFunction(Function &F) override; 167 168 private: 169 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they 170 // share the same base and stride. 171 bool isBasisFor(const Candidate &Basis, const Candidate &C); 172 173 // Returns whether the candidate can be folded into an addressing mode. 174 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, 175 const DataLayout *DL); 176 177 // Returns true if C is already in a simplest form and not worth being 178 // rewritten. 179 bool isSimplestForm(const Candidate &C); 180 181 // Checks whether I is in a candidate form. If so, adds all the matching forms 182 // to Candidates, and tries to find the immediate basis for each of them. 183 void allocateCandidatesAndFindBasis(Instruction *I); 184 185 // Allocate candidates and find bases for Add instructions. 186 void allocateCandidatesAndFindBasisForAdd(Instruction *I); 187 188 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a 189 // candidate. 190 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, 191 Instruction *I); 192 // Allocate candidates and find bases for Mul instructions. 193 void allocateCandidatesAndFindBasisForMul(Instruction *I); 194 195 // Splits LHS into Base + Index and, if succeeds, calls 196 // allocateCandidatesAndFindBasis. 197 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, 198 Instruction *I); 199 200 // Allocate candidates and find bases for GetElementPtr instructions. 201 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); 202 203 // A helper function that scales Idx with ElementSize before invoking 204 // allocateCandidatesAndFindBasis. 205 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, 206 Value *S, uint64_t ElementSize, 207 Instruction *I); 208 209 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate 210 // basis. 211 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, 212 ConstantInt *Idx, Value *S, 213 Instruction *I); 214 215 // Rewrites candidate C with respect to Basis. 216 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); 217 218 // A helper function that factors ArrayIdx to a product of a stride and a 219 // constant index, and invokes allocateCandidatesAndFindBasis with the 220 // factorings. 221 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, 222 GetElementPtrInst *GEP); 223 224 // Emit code that computes the "bump" from Basis to C. If the candidate is a 225 // GEP and the bump is not divisible by the element size of the GEP, this 226 // function sets the BumpWithUglyGEP flag to notify its caller to bump the 227 // basis using an ugly GEP. 228 static Value *emitBump(const Candidate &Basis, const Candidate &C, 229 IRBuilder<> &Builder, const DataLayout *DL, 230 bool &BumpWithUglyGEP); 231 232 const DataLayout *DL = nullptr; 233 DominatorTree *DT = nullptr; 234 ScalarEvolution *SE; 235 TargetTransformInfo *TTI = nullptr; 236 std::list<Candidate> Candidates; 237 238 // Temporarily holds all instructions that are unlinked (but not deleted) by 239 // rewriteCandidateWithBasis. These instructions will be actually removed 240 // after all rewriting finishes. 241 std::vector<Instruction *> UnlinkedInstructions; 242 }; 243 244 } // end anonymous namespace 245 246 char StraightLineStrengthReduce::ID = 0; 247 248 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr", 249 "Straight line strength reduction", false, false) 250 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 251 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 252 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 253 INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr", 254 "Straight line strength reduction", false, false) 255 256 FunctionPass *llvm::createStraightLineStrengthReducePass() { 257 return new StraightLineStrengthReduce(); 258 } 259 260 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, 261 const Candidate &C) { 262 return (Basis.Ins != C.Ins && // skip the same instruction 263 // They must have the same type too. Basis.Base == C.Base doesn't 264 // guarantee their types are the same (PR23975). 265 Basis.Ins->getType() == C.Ins->getType() && 266 // Basis must dominate C in order to rewrite C with respect to Basis. 267 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && 268 // They share the same base, stride, and candidate kind. 269 Basis.Base == C.Base && Basis.Stride == C.Stride && 270 Basis.CandidateKind == C.CandidateKind); 271 } 272 273 static bool isGEPFoldable(GetElementPtrInst *GEP, 274 const TargetTransformInfo *TTI) { 275 SmallVector<const Value*, 4> Indices; 276 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) 277 Indices.push_back(*I); 278 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), 279 Indices) == TargetTransformInfo::TCC_Free; 280 } 281 282 // Returns whether (Base + Index * Stride) can be folded to an addressing mode. 283 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, 284 TargetTransformInfo *TTI) { 285 // Index->getSExtValue() may crash if Index is wider than 64-bit. 286 return Index->getBitWidth() <= 64 && 287 TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, 288 Index->getSExtValue(), UnknownAddressSpace); 289 } 290 291 bool StraightLineStrengthReduce::isFoldable(const Candidate &C, 292 TargetTransformInfo *TTI, 293 const DataLayout *DL) { 294 if (C.CandidateKind == Candidate::Add) 295 return isAddFoldable(C.Base, C.Index, C.Stride, TTI); 296 if (C.CandidateKind == Candidate::GEP) 297 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI); 298 return false; 299 } 300 301 // Returns true if GEP has zero or one non-zero index. 302 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { 303 unsigned NumNonZeroIndices = 0; 304 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { 305 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); 306 if (ConstIdx == nullptr || !ConstIdx->isZero()) 307 ++NumNonZeroIndices; 308 } 309 return NumNonZeroIndices <= 1; 310 } 311 312 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { 313 if (C.CandidateKind == Candidate::Add) { 314 // B + 1 * S or B + (-1) * S 315 return C.Index->isOne() || C.Index->isMinusOne(); 316 } 317 if (C.CandidateKind == Candidate::Mul) { 318 // (B + 0) * S 319 return C.Index->isZero(); 320 } 321 if (C.CandidateKind == Candidate::GEP) { 322 // (char*)B + S or (char*)B - S 323 return ((C.Index->isOne() || C.Index->isMinusOne()) && 324 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins))); 325 } 326 return false; 327 } 328 329 // TODO: We currently implement an algorithm whose time complexity is linear in 330 // the number of existing candidates. However, we could do better by using 331 // ScopedHashTable. Specifically, while traversing the dominator tree, we could 332 // maintain all the candidates that dominate the basic block being traversed in 333 // a ScopedHashTable. This hash table is indexed by the base and the stride of 334 // a candidate. Therefore, finding the immediate basis of a candidate boils down 335 // to one hash-table look up. 336 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 337 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 338 Instruction *I) { 339 Candidate C(CT, B, Idx, S, I); 340 // SLSR can complicate an instruction in two cases: 341 // 342 // 1. If we can fold I into an addressing mode, computing I is likely free or 343 // takes only one instruction. 344 // 345 // 2. I is already in a simplest form. For example, when 346 // X = B + 8 * S 347 // Y = B + S, 348 // rewriting Y to X - 7 * S is probably a bad idea. 349 // 350 // In the above cases, we still add I to the candidate list so that I can be 351 // the basis of other candidates, but we leave I's basis blank so that I 352 // won't be rewritten. 353 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { 354 // Try to compute the immediate basis of C. 355 unsigned NumIterations = 0; 356 // Limit the scan radius to avoid running in quadratice time. 357 static const unsigned MaxNumIterations = 50; 358 for (auto Basis = Candidates.rbegin(); 359 Basis != Candidates.rend() && NumIterations < MaxNumIterations; 360 ++Basis, ++NumIterations) { 361 if (isBasisFor(*Basis, C)) { 362 C.Basis = &(*Basis); 363 break; 364 } 365 } 366 } 367 // Regardless of whether we find a basis for C, we need to push C to the 368 // candidate list so that it can be the basis of other candidates. 369 Candidates.push_back(C); 370 } 371 372 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 373 Instruction *I) { 374 switch (I->getOpcode()) { 375 case Instruction::Add: 376 allocateCandidatesAndFindBasisForAdd(I); 377 break; 378 case Instruction::Mul: 379 allocateCandidatesAndFindBasisForMul(I); 380 break; 381 case Instruction::GetElementPtr: 382 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); 383 break; 384 } 385 } 386 387 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 388 Instruction *I) { 389 // Try matching B + i * S. 390 if (!isa<IntegerType>(I->getType())) 391 return; 392 393 assert(I->getNumOperands() == 2 && "isn't I an add?"); 394 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 395 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); 396 if (LHS != RHS) 397 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); 398 } 399 400 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 401 Value *LHS, Value *RHS, Instruction *I) { 402 Value *S = nullptr; 403 ConstantInt *Idx = nullptr; 404 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { 405 // I = LHS + RHS = LHS + Idx * S 406 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 407 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { 408 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) 409 APInt One(Idx->getBitWidth(), 1); 410 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); 411 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 412 } else { 413 // At least, I = LHS + 1 * RHS 414 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); 415 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, 416 I); 417 } 418 } 419 420 // Returns true if A matches B + C where C is constant. 421 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) { 422 return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) || 423 match(A, m_Add(m_ConstantInt(C), m_Value(B)))); 424 } 425 426 // Returns true if A matches B | C where C is constant. 427 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) { 428 return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) || 429 match(A, m_Or(m_ConstantInt(C), m_Value(B)))); 430 } 431 432 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 433 Value *LHS, Value *RHS, Instruction *I) { 434 Value *B = nullptr; 435 ConstantInt *Idx = nullptr; 436 if (matchesAdd(LHS, B, Idx)) { 437 // If LHS is in the form of "Base + Index", then I is in the form of 438 // "(Base + Index) * RHS". 439 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); 440 } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) { 441 // If LHS is in the form of "Base | Index" and Base and Index have no common 442 // bits set, then 443 // Base | Index = Base + Index 444 // and I is thus in the form of "(Base + Index) * RHS". 445 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); 446 } else { 447 // Otherwise, at least try the form (LHS + 0) * RHS. 448 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); 449 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, 450 I); 451 } 452 } 453 454 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 455 Instruction *I) { 456 // Try matching (B + i) * S. 457 // TODO: we could extend SLSR to float and vector types. 458 if (!isa<IntegerType>(I->getType())) 459 return; 460 461 assert(I->getNumOperands() == 2 && "isn't I a mul?"); 462 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 463 allocateCandidatesAndFindBasisForMul(LHS, RHS, I); 464 if (LHS != RHS) { 465 // Symmetrically, try to split RHS to Base + Index. 466 allocateCandidatesAndFindBasisForMul(RHS, LHS, I); 467 } 468 } 469 470 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 471 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, 472 Instruction *I) { 473 // I = B + sext(Idx *nsw S) * ElementSize 474 // = B + (sext(Idx) * sext(S)) * ElementSize 475 // = B + (sext(Idx) * ElementSize) * sext(S) 476 // Casting to IntegerType is safe because we skipped vector GEPs. 477 IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType())); 478 ConstantInt *ScaledIdx = ConstantInt::get( 479 IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true); 480 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); 481 } 482 483 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, 484 const SCEV *Base, 485 uint64_t ElementSize, 486 GetElementPtrInst *GEP) { 487 // At least, ArrayIdx = ArrayIdx *nsw 1. 488 allocateCandidatesAndFindBasisForGEP( 489 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1), 490 ArrayIdx, ElementSize, GEP); 491 Value *LHS = nullptr; 492 ConstantInt *RHS = nullptr; 493 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx 494 // itself. This would allow us to handle the shl case for free. However, 495 // matching SCEVs has two issues: 496 // 497 // 1. this would complicate rewriting because the rewriting procedure 498 // would have to translate SCEVs back to IR instructions. This translation 499 // is difficult when LHS is further evaluated to a composite SCEV. 500 // 501 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends 502 // to strip nsw/nuw flags which are critical for SLSR to trace into 503 // sext'ed multiplication. 504 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { 505 // SLSR is currently unsafe if i * S may overflow. 506 // GEP = Base + sext(LHS *nsw RHS) * ElementSize 507 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); 508 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) { 509 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize 510 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize 511 APInt One(RHS->getBitWidth(), 1); 512 ConstantInt *PowerOf2 = 513 ConstantInt::get(RHS->getContext(), One << RHS->getValue()); 514 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP); 515 } 516 } 517 518 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 519 GetElementPtrInst *GEP) { 520 // TODO: handle vector GEPs 521 if (GEP->getType()->isVectorTy()) 522 return; 523 524 SmallVector<const SCEV *, 4> IndexExprs; 525 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) 526 IndexExprs.push_back(SE->getSCEV(*I)); 527 528 gep_type_iterator GTI = gep_type_begin(GEP); 529 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 530 if (GTI.isStruct()) 531 continue; 532 533 const SCEV *OrigIndexExpr = IndexExprs[I - 1]; 534 IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType()); 535 536 // The base of this candidate is GEP's base plus the offsets of all 537 // indices except this current one. 538 const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs); 539 Value *ArrayIdx = GEP->getOperand(I); 540 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 541 if (ArrayIdx->getType()->getIntegerBitWidth() <= 542 DL->getPointerSizeInBits(GEP->getAddressSpace())) { 543 // Skip factoring if ArrayIdx is wider than the pointer size, because 544 // ArrayIdx is implicitly truncated to the pointer size. 545 factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP); 546 } 547 // When ArrayIdx is the sext of a value, we try to factor that value as 548 // well. Handling this case is important because array indices are 549 // typically sign-extended to the pointer size. 550 Value *TruncatedArrayIdx = nullptr; 551 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) && 552 TruncatedArrayIdx->getType()->getIntegerBitWidth() <= 553 DL->getPointerSizeInBits(GEP->getAddressSpace())) { 554 // Skip factoring if TruncatedArrayIdx is wider than the pointer size, 555 // because TruncatedArrayIdx is implicitly truncated to the pointer size. 556 factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP); 557 } 558 559 IndexExprs[I - 1] = OrigIndexExpr; 560 } 561 } 562 563 // A helper function that unifies the bitwidth of A and B. 564 static void unifyBitWidth(APInt &A, APInt &B) { 565 if (A.getBitWidth() < B.getBitWidth()) 566 A = A.sext(B.getBitWidth()); 567 else if (A.getBitWidth() > B.getBitWidth()) 568 B = B.sext(A.getBitWidth()); 569 } 570 571 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, 572 const Candidate &C, 573 IRBuilder<> &Builder, 574 const DataLayout *DL, 575 bool &BumpWithUglyGEP) { 576 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); 577 unifyBitWidth(Idx, BasisIdx); 578 APInt IndexOffset = Idx - BasisIdx; 579 580 BumpWithUglyGEP = false; 581 if (Basis.CandidateKind == Candidate::GEP) { 582 APInt ElementSize( 583 IndexOffset.getBitWidth(), 584 DL->getTypeAllocSize( 585 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType())); 586 APInt Q, R; 587 APInt::sdivrem(IndexOffset, ElementSize, Q, R); 588 if (R == 0) 589 IndexOffset = Q; 590 else 591 BumpWithUglyGEP = true; 592 } 593 594 // Compute Bump = C - Basis = (i' - i) * S. 595 // Common case 1: if (i' - i) is 1, Bump = S. 596 if (IndexOffset == 1) 597 return C.Stride; 598 // Common case 2: if (i' - i) is -1, Bump = -S. 599 if (IndexOffset.isAllOnesValue()) 600 return Builder.CreateNeg(C.Stride); 601 602 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may 603 // have different bit widths. 604 IntegerType *DeltaType = 605 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth()); 606 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); 607 if (IndexOffset.isPowerOf2()) { 608 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). 609 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2()); 610 return Builder.CreateShl(ExtendedStride, Exponent); 611 } 612 if ((-IndexOffset).isPowerOf2()) { 613 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). 614 ConstantInt *Exponent = 615 ConstantInt::get(DeltaType, (-IndexOffset).logBase2()); 616 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent)); 617 } 618 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset); 619 return Builder.CreateMul(ExtendedStride, Delta); 620 } 621 622 void StraightLineStrengthReduce::rewriteCandidateWithBasis( 623 const Candidate &C, const Candidate &Basis) { 624 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && 625 C.Stride == Basis.Stride); 626 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the 627 // basis of a candidate cannot be unlinked before the candidate. 628 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked"); 629 630 // An instruction can correspond to multiple candidates. Therefore, instead of 631 // simply deleting an instruction when we rewrite it, we mark its parent as 632 // nullptr (i.e. unlink it) so that we can skip the candidates whose 633 // instruction is already rewritten. 634 if (!C.Ins->getParent()) 635 return; 636 637 IRBuilder<> Builder(C.Ins); 638 bool BumpWithUglyGEP; 639 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP); 640 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins 641 switch (C.CandidateKind) { 642 case Candidate::Add: 643 case Candidate::Mul: { 644 // C = Basis + Bump 645 Value *NegBump; 646 if (match(Bump, m_Neg(m_Value(NegBump)))) { 647 // If Bump is a neg instruction, emit C = Basis - (-Bump). 648 Reduced = Builder.CreateSub(Basis.Ins, NegBump); 649 // We only use the negative argument of Bump, and Bump itself may be 650 // trivially dead. 651 RecursivelyDeleteTriviallyDeadInstructions(Bump); 652 } else { 653 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's 654 // usually unsound, e.g., 655 // 656 // X = (-2 +nsw 1) *nsw INT_MAX 657 // Y = (-2 +nsw 3) *nsw INT_MAX 658 // => 659 // Y = X + 2 * INT_MAX 660 // 661 // Neither + and * in the resultant expression are nsw. 662 Reduced = Builder.CreateAdd(Basis.Ins, Bump); 663 } 664 break; 665 } 666 case Candidate::GEP: 667 { 668 Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType()); 669 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); 670 if (BumpWithUglyGEP) { 671 // C = (char *)Basis + Bump 672 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace(); 673 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS); 674 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy); 675 if (InBounds) 676 Reduced = 677 Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump); 678 else 679 Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump); 680 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType()); 681 } else { 682 // C = gep Basis, Bump 683 // Canonicalize bump to pointer size. 684 Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy); 685 if (InBounds) 686 Reduced = Builder.CreateInBoundsGEP( 687 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(), 688 Basis.Ins, Bump); 689 else 690 Reduced = Builder.CreateGEP( 691 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(), 692 Basis.Ins, Bump); 693 } 694 break; 695 } 696 default: 697 llvm_unreachable("C.CandidateKind is invalid"); 698 }; 699 Reduced->takeName(C.Ins); 700 C.Ins->replaceAllUsesWith(Reduced); 701 // Unlink C.Ins so that we can skip other candidates also corresponding to 702 // C.Ins. The actual deletion is postponed to the end of runOnFunction. 703 C.Ins->removeFromParent(); 704 UnlinkedInstructions.push_back(C.Ins); 705 } 706 707 bool StraightLineStrengthReduce::runOnFunction(Function &F) { 708 if (skipFunction(F)) 709 return false; 710 711 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 712 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 713 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 714 // Traverse the dominator tree in the depth-first order. This order makes sure 715 // all bases of a candidate are in Candidates when we process it. 716 for (const auto Node : depth_first(DT)) 717 for (auto &I : *(Node->getBlock())) 718 allocateCandidatesAndFindBasis(&I); 719 720 // Rewrite candidates in the reverse depth-first order. This order makes sure 721 // a candidate being rewritten is not a basis for any other candidate. 722 while (!Candidates.empty()) { 723 const Candidate &C = Candidates.back(); 724 if (C.Basis != nullptr) { 725 rewriteCandidateWithBasis(C, *C.Basis); 726 } 727 Candidates.pop_back(); 728 } 729 730 // Delete all unlink instructions. 731 for (auto *UnlinkedInst : UnlinkedInstructions) { 732 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) { 733 Value *Op = UnlinkedInst->getOperand(I); 734 UnlinkedInst->setOperand(I, nullptr); 735 RecursivelyDeleteTriviallyDeadInstructions(Op); 736 } 737 UnlinkedInst->deleteValue(); 738 } 739 bool Ret = !UnlinkedInstructions.empty(); 740 UnlinkedInstructions.clear(); 741 return Ret; 742 } 743