1 //===- StraightLineStrengthReduce.cpp - -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements straight-line strength reduction (SLSR). Unlike loop 10 // strength reduction, this algorithm is designed to reduce arithmetic 11 // redundancy in straight-line code instead of loops. It has proven to be 12 // effective in simplifying arithmetic statements derived from an unrolled loop. 13 // It can also simplify the logic of SeparateConstOffsetFromGEP. 14 // 15 // There are many optimizations we can perform in the domain of SLSR. This file 16 // for now contains only an initial step. Specifically, we look for strength 17 // reduction candidates in the following forms: 18 // 19 // Form 1: B + i * S 20 // Form 2: (B + i) * S 21 // Form 3: &B[i * S] 22 // 23 // where S is an integer variable, and i is a constant integer. If we found two 24 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 25 // in a simpler way with respect to S1. For example, 26 // 27 // S1: X = B + i * S 28 // S2: Y = B + i' * S => X + (i' - i) * S 29 // 30 // S1: X = (B + i) * S 31 // S2: Y = (B + i') * S => X + (i' - i) * S 32 // 33 // S1: X = &B[i * S] 34 // S2: Y = &B[i' * S] => &X[(i' - i) * S] 35 // 36 // Note: (i' - i) * S is folded to the extent possible. 37 // 38 // This rewriting is in general a good idea. The code patterns we focus on 39 // usually come from loop unrolling, so (i' - i) * S is likely the same 40 // across iterations and can be reused. When that happens, the optimized form 41 // takes only one add starting from the second iteration. 42 // 43 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has 44 // multiple bases, we choose to rewrite S2 with respect to its "immediate" 45 // basis, the basis that is the closest ancestor in the dominator tree. 46 // 47 // TODO: 48 // 49 // - Floating point arithmetics when fast math is enabled. 50 // 51 // - SLSR may decrease ILP at the architecture level. Targets that are very 52 // sensitive to ILP may want to disable it. Having SLSR to consider ILP is 53 // left as future work. 54 // 55 // - When (i' - i) is constant but i and i' are not, we could still perform 56 // SLSR. 57 58 #include "llvm/Transforms/Scalar/StraightLineStrengthReduce.h" 59 #include "llvm/ADT/APInt.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 #include "llvm/ADT/SmallVector.h" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/Analysis/TargetTransformInfo.h" 64 #include "llvm/Analysis/ValueTracking.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/GetElementPtrTypeIterator.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/Instruction.h" 72 #include "llvm/IR/Instructions.h" 73 #include "llvm/IR/Module.h" 74 #include "llvm/IR/Operator.h" 75 #include "llvm/IR/PatternMatch.h" 76 #include "llvm/IR/Type.h" 77 #include "llvm/IR/Value.h" 78 #include "llvm/InitializePasses.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include <cassert> 85 #include <cstdint> 86 #include <limits> 87 #include <list> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 static const unsigned UnknownAddressSpace = 94 std::numeric_limits<unsigned>::max(); 95 96 namespace { 97 98 class StraightLineStrengthReduceLegacyPass : public FunctionPass { 99 const DataLayout *DL = nullptr; 100 101 public: 102 static char ID; 103 104 StraightLineStrengthReduceLegacyPass() : FunctionPass(ID) { 105 initializeStraightLineStrengthReduceLegacyPassPass( 106 *PassRegistry::getPassRegistry()); 107 } 108 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 AU.addRequired<DominatorTreeWrapperPass>(); 111 AU.addRequired<ScalarEvolutionWrapperPass>(); 112 AU.addRequired<TargetTransformInfoWrapperPass>(); 113 // We do not modify the shape of the CFG. 114 AU.setPreservesCFG(); 115 } 116 117 bool doInitialization(Module &M) override { 118 DL = &M.getDataLayout(); 119 return false; 120 } 121 122 bool runOnFunction(Function &F) override; 123 }; 124 125 class StraightLineStrengthReduce { 126 public: 127 StraightLineStrengthReduce(const DataLayout *DL, DominatorTree *DT, 128 ScalarEvolution *SE, TargetTransformInfo *TTI) 129 : DL(DL), DT(DT), SE(SE), TTI(TTI) {} 130 131 // SLSR candidate. Such a candidate must be in one of the forms described in 132 // the header comments. 133 struct Candidate { 134 enum Kind { 135 Invalid, // reserved for the default constructor 136 Add, // B + i * S 137 Mul, // (B + i) * S 138 GEP, // &B[..][i * S][..] 139 }; 140 141 Candidate() = default; 142 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 143 Instruction *I) 144 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {} 145 146 Kind CandidateKind = Invalid; 147 148 const SCEV *Base = nullptr; 149 150 // Note that Index and Stride of a GEP candidate do not necessarily have the 151 // same integer type. In that case, during rewriting, Stride will be 152 // sign-extended or truncated to Index's type. 153 ConstantInt *Index = nullptr; 154 155 Value *Stride = nullptr; 156 157 // The instruction this candidate corresponds to. It helps us to rewrite a 158 // candidate with respect to its immediate basis. Note that one instruction 159 // can correspond to multiple candidates depending on how you associate the 160 // expression. For instance, 161 // 162 // (a + 1) * (b + 2) 163 // 164 // can be treated as 165 // 166 // <Base: a, Index: 1, Stride: b + 2> 167 // 168 // or 169 // 170 // <Base: b, Index: 2, Stride: a + 1> 171 Instruction *Ins = nullptr; 172 173 // Points to the immediate basis of this candidate, or nullptr if we cannot 174 // find any basis for this candidate. 175 Candidate *Basis = nullptr; 176 }; 177 178 bool runOnFunction(Function &F); 179 180 private: 181 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they 182 // share the same base and stride. 183 bool isBasisFor(const Candidate &Basis, const Candidate &C); 184 185 // Returns whether the candidate can be folded into an addressing mode. 186 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, 187 const DataLayout *DL); 188 189 // Returns true if C is already in a simplest form and not worth being 190 // rewritten. 191 bool isSimplestForm(const Candidate &C); 192 193 // Checks whether I is in a candidate form. If so, adds all the matching forms 194 // to Candidates, and tries to find the immediate basis for each of them. 195 void allocateCandidatesAndFindBasis(Instruction *I); 196 197 // Allocate candidates and find bases for Add instructions. 198 void allocateCandidatesAndFindBasisForAdd(Instruction *I); 199 200 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a 201 // candidate. 202 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, 203 Instruction *I); 204 // Allocate candidates and find bases for Mul instructions. 205 void allocateCandidatesAndFindBasisForMul(Instruction *I); 206 207 // Splits LHS into Base + Index and, if succeeds, calls 208 // allocateCandidatesAndFindBasis. 209 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, 210 Instruction *I); 211 212 // Allocate candidates and find bases for GetElementPtr instructions. 213 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); 214 215 // A helper function that scales Idx with ElementSize before invoking 216 // allocateCandidatesAndFindBasis. 217 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, 218 Value *S, uint64_t ElementSize, 219 Instruction *I); 220 221 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate 222 // basis. 223 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, 224 ConstantInt *Idx, Value *S, 225 Instruction *I); 226 227 // Rewrites candidate C with respect to Basis. 228 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); 229 230 // A helper function that factors ArrayIdx to a product of a stride and a 231 // constant index, and invokes allocateCandidatesAndFindBasis with the 232 // factorings. 233 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, 234 GetElementPtrInst *GEP); 235 236 // Emit code that computes the "bump" from Basis to C. If the candidate is a 237 // GEP and the bump is not divisible by the element size of the GEP, this 238 // function sets the BumpWithUglyGEP flag to notify its caller to bump the 239 // basis using an ugly GEP. 240 static Value *emitBump(const Candidate &Basis, const Candidate &C, 241 IRBuilder<> &Builder, const DataLayout *DL, 242 bool &BumpWithUglyGEP); 243 244 const DataLayout *DL = nullptr; 245 DominatorTree *DT = nullptr; 246 ScalarEvolution *SE; 247 TargetTransformInfo *TTI = nullptr; 248 std::list<Candidate> Candidates; 249 250 // Temporarily holds all instructions that are unlinked (but not deleted) by 251 // rewriteCandidateWithBasis. These instructions will be actually removed 252 // after all rewriting finishes. 253 std::vector<Instruction *> UnlinkedInstructions; 254 }; 255 256 } // end anonymous namespace 257 258 char StraightLineStrengthReduceLegacyPass::ID = 0; 259 260 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduceLegacyPass, "slsr", 261 "Straight line strength reduction", false, false) 262 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 263 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 264 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 265 INITIALIZE_PASS_END(StraightLineStrengthReduceLegacyPass, "slsr", 266 "Straight line strength reduction", false, false) 267 268 FunctionPass *llvm::createStraightLineStrengthReducePass() { 269 return new StraightLineStrengthReduceLegacyPass(); 270 } 271 272 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, 273 const Candidate &C) { 274 return (Basis.Ins != C.Ins && // skip the same instruction 275 // They must have the same type too. Basis.Base == C.Base doesn't 276 // guarantee their types are the same (PR23975). 277 Basis.Ins->getType() == C.Ins->getType() && 278 // Basis must dominate C in order to rewrite C with respect to Basis. 279 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && 280 // They share the same base, stride, and candidate kind. 281 Basis.Base == C.Base && Basis.Stride == C.Stride && 282 Basis.CandidateKind == C.CandidateKind); 283 } 284 285 static bool isGEPFoldable(GetElementPtrInst *GEP, 286 const TargetTransformInfo *TTI) { 287 SmallVector<const Value *, 4> Indices(GEP->indices()); 288 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), 289 Indices) == TargetTransformInfo::TCC_Free; 290 } 291 292 // Returns whether (Base + Index * Stride) can be folded to an addressing mode. 293 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, 294 TargetTransformInfo *TTI) { 295 // Index->getSExtValue() may crash if Index is wider than 64-bit. 296 return Index->getBitWidth() <= 64 && 297 TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, 298 Index->getSExtValue(), UnknownAddressSpace); 299 } 300 301 bool StraightLineStrengthReduce::isFoldable(const Candidate &C, 302 TargetTransformInfo *TTI, 303 const DataLayout *DL) { 304 if (C.CandidateKind == Candidate::Add) 305 return isAddFoldable(C.Base, C.Index, C.Stride, TTI); 306 if (C.CandidateKind == Candidate::GEP) 307 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI); 308 return false; 309 } 310 311 // Returns true if GEP has zero or one non-zero index. 312 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { 313 unsigned NumNonZeroIndices = 0; 314 for (Use &Idx : GEP->indices()) { 315 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(Idx); 316 if (ConstIdx == nullptr || !ConstIdx->isZero()) 317 ++NumNonZeroIndices; 318 } 319 return NumNonZeroIndices <= 1; 320 } 321 322 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { 323 if (C.CandidateKind == Candidate::Add) { 324 // B + 1 * S or B + (-1) * S 325 return C.Index->isOne() || C.Index->isMinusOne(); 326 } 327 if (C.CandidateKind == Candidate::Mul) { 328 // (B + 0) * S 329 return C.Index->isZero(); 330 } 331 if (C.CandidateKind == Candidate::GEP) { 332 // (char*)B + S or (char*)B - S 333 return ((C.Index->isOne() || C.Index->isMinusOne()) && 334 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins))); 335 } 336 return false; 337 } 338 339 // TODO: We currently implement an algorithm whose time complexity is linear in 340 // the number of existing candidates. However, we could do better by using 341 // ScopedHashTable. Specifically, while traversing the dominator tree, we could 342 // maintain all the candidates that dominate the basic block being traversed in 343 // a ScopedHashTable. This hash table is indexed by the base and the stride of 344 // a candidate. Therefore, finding the immediate basis of a candidate boils down 345 // to one hash-table look up. 346 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 347 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 348 Instruction *I) { 349 Candidate C(CT, B, Idx, S, I); 350 // SLSR can complicate an instruction in two cases: 351 // 352 // 1. If we can fold I into an addressing mode, computing I is likely free or 353 // takes only one instruction. 354 // 355 // 2. I is already in a simplest form. For example, when 356 // X = B + 8 * S 357 // Y = B + S, 358 // rewriting Y to X - 7 * S is probably a bad idea. 359 // 360 // In the above cases, we still add I to the candidate list so that I can be 361 // the basis of other candidates, but we leave I's basis blank so that I 362 // won't be rewritten. 363 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { 364 // Try to compute the immediate basis of C. 365 unsigned NumIterations = 0; 366 // Limit the scan radius to avoid running in quadratice time. 367 static const unsigned MaxNumIterations = 50; 368 for (auto Basis = Candidates.rbegin(); 369 Basis != Candidates.rend() && NumIterations < MaxNumIterations; 370 ++Basis, ++NumIterations) { 371 if (isBasisFor(*Basis, C)) { 372 C.Basis = &(*Basis); 373 break; 374 } 375 } 376 } 377 // Regardless of whether we find a basis for C, we need to push C to the 378 // candidate list so that it can be the basis of other candidates. 379 Candidates.push_back(C); 380 } 381 382 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 383 Instruction *I) { 384 switch (I->getOpcode()) { 385 case Instruction::Add: 386 allocateCandidatesAndFindBasisForAdd(I); 387 break; 388 case Instruction::Mul: 389 allocateCandidatesAndFindBasisForMul(I); 390 break; 391 case Instruction::GetElementPtr: 392 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); 393 break; 394 } 395 } 396 397 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 398 Instruction *I) { 399 // Try matching B + i * S. 400 if (!isa<IntegerType>(I->getType())) 401 return; 402 403 assert(I->getNumOperands() == 2 && "isn't I an add?"); 404 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 405 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); 406 if (LHS != RHS) 407 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); 408 } 409 410 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 411 Value *LHS, Value *RHS, Instruction *I) { 412 Value *S = nullptr; 413 ConstantInt *Idx = nullptr; 414 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { 415 // I = LHS + RHS = LHS + Idx * S 416 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 417 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { 418 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) 419 APInt One(Idx->getBitWidth(), 1); 420 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); 421 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 422 } else { 423 // At least, I = LHS + 1 * RHS 424 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); 425 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, 426 I); 427 } 428 } 429 430 // Returns true if A matches B + C where C is constant. 431 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) { 432 return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) || 433 match(A, m_Add(m_ConstantInt(C), m_Value(B)))); 434 } 435 436 // Returns true if A matches B | C where C is constant. 437 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) { 438 return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) || 439 match(A, m_Or(m_ConstantInt(C), m_Value(B)))); 440 } 441 442 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 443 Value *LHS, Value *RHS, Instruction *I) { 444 Value *B = nullptr; 445 ConstantInt *Idx = nullptr; 446 if (matchesAdd(LHS, B, Idx)) { 447 // If LHS is in the form of "Base + Index", then I is in the form of 448 // "(Base + Index) * RHS". 449 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); 450 } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) { 451 // If LHS is in the form of "Base | Index" and Base and Index have no common 452 // bits set, then 453 // Base | Index = Base + Index 454 // and I is thus in the form of "(Base + Index) * RHS". 455 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); 456 } else { 457 // Otherwise, at least try the form (LHS + 0) * RHS. 458 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); 459 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, 460 I); 461 } 462 } 463 464 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 465 Instruction *I) { 466 // Try matching (B + i) * S. 467 // TODO: we could extend SLSR to float and vector types. 468 if (!isa<IntegerType>(I->getType())) 469 return; 470 471 assert(I->getNumOperands() == 2 && "isn't I a mul?"); 472 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 473 allocateCandidatesAndFindBasisForMul(LHS, RHS, I); 474 if (LHS != RHS) { 475 // Symmetrically, try to split RHS to Base + Index. 476 allocateCandidatesAndFindBasisForMul(RHS, LHS, I); 477 } 478 } 479 480 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 481 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, 482 Instruction *I) { 483 // I = B + sext(Idx *nsw S) * ElementSize 484 // = B + (sext(Idx) * sext(S)) * ElementSize 485 // = B + (sext(Idx) * ElementSize) * sext(S) 486 // Casting to IntegerType is safe because we skipped vector GEPs. 487 IntegerType *PtrIdxTy = cast<IntegerType>(DL->getIndexType(I->getType())); 488 ConstantInt *ScaledIdx = ConstantInt::get( 489 PtrIdxTy, Idx->getSExtValue() * (int64_t)ElementSize, true); 490 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); 491 } 492 493 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, 494 const SCEV *Base, 495 uint64_t ElementSize, 496 GetElementPtrInst *GEP) { 497 // At least, ArrayIdx = ArrayIdx *nsw 1. 498 allocateCandidatesAndFindBasisForGEP( 499 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1), 500 ArrayIdx, ElementSize, GEP); 501 Value *LHS = nullptr; 502 ConstantInt *RHS = nullptr; 503 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx 504 // itself. This would allow us to handle the shl case for free. However, 505 // matching SCEVs has two issues: 506 // 507 // 1. this would complicate rewriting because the rewriting procedure 508 // would have to translate SCEVs back to IR instructions. This translation 509 // is difficult when LHS is further evaluated to a composite SCEV. 510 // 511 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends 512 // to strip nsw/nuw flags which are critical for SLSR to trace into 513 // sext'ed multiplication. 514 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { 515 // SLSR is currently unsafe if i * S may overflow. 516 // GEP = Base + sext(LHS *nsw RHS) * ElementSize 517 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); 518 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) { 519 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize 520 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize 521 APInt One(RHS->getBitWidth(), 1); 522 ConstantInt *PowerOf2 = 523 ConstantInt::get(RHS->getContext(), One << RHS->getValue()); 524 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP); 525 } 526 } 527 528 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 529 GetElementPtrInst *GEP) { 530 // TODO: handle vector GEPs 531 if (GEP->getType()->isVectorTy()) 532 return; 533 534 SmallVector<const SCEV *, 4> IndexExprs; 535 for (Use &Idx : GEP->indices()) 536 IndexExprs.push_back(SE->getSCEV(Idx)); 537 538 gep_type_iterator GTI = gep_type_begin(GEP); 539 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 540 if (GTI.isStruct()) 541 continue; 542 543 const SCEV *OrigIndexExpr = IndexExprs[I - 1]; 544 IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType()); 545 546 // The base of this candidate is GEP's base plus the offsets of all 547 // indices except this current one. 548 const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs); 549 Value *ArrayIdx = GEP->getOperand(I); 550 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 551 if (ArrayIdx->getType()->getIntegerBitWidth() <= 552 DL->getIndexSizeInBits(GEP->getAddressSpace())) { 553 // Skip factoring if ArrayIdx is wider than the index size, because 554 // ArrayIdx is implicitly truncated to the index size. 555 factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP); 556 } 557 // When ArrayIdx is the sext of a value, we try to factor that value as 558 // well. Handling this case is important because array indices are 559 // typically sign-extended to the pointer index size. 560 Value *TruncatedArrayIdx = nullptr; 561 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) && 562 TruncatedArrayIdx->getType()->getIntegerBitWidth() <= 563 DL->getIndexSizeInBits(GEP->getAddressSpace())) { 564 // Skip factoring if TruncatedArrayIdx is wider than the pointer size, 565 // because TruncatedArrayIdx is implicitly truncated to the pointer size. 566 factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP); 567 } 568 569 IndexExprs[I - 1] = OrigIndexExpr; 570 } 571 } 572 573 // A helper function that unifies the bitwidth of A and B. 574 static void unifyBitWidth(APInt &A, APInt &B) { 575 if (A.getBitWidth() < B.getBitWidth()) 576 A = A.sext(B.getBitWidth()); 577 else if (A.getBitWidth() > B.getBitWidth()) 578 B = B.sext(A.getBitWidth()); 579 } 580 581 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, 582 const Candidate &C, 583 IRBuilder<> &Builder, 584 const DataLayout *DL, 585 bool &BumpWithUglyGEP) { 586 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); 587 unifyBitWidth(Idx, BasisIdx); 588 APInt IndexOffset = Idx - BasisIdx; 589 590 BumpWithUglyGEP = false; 591 if (Basis.CandidateKind == Candidate::GEP) { 592 APInt ElementSize( 593 IndexOffset.getBitWidth(), 594 DL->getTypeAllocSize( 595 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType())); 596 APInt Q, R; 597 APInt::sdivrem(IndexOffset, ElementSize, Q, R); 598 if (R == 0) 599 IndexOffset = Q; 600 else 601 BumpWithUglyGEP = true; 602 } 603 604 // Compute Bump = C - Basis = (i' - i) * S. 605 // Common case 1: if (i' - i) is 1, Bump = S. 606 if (IndexOffset == 1) 607 return C.Stride; 608 // Common case 2: if (i' - i) is -1, Bump = -S. 609 if (IndexOffset.isAllOnes()) 610 return Builder.CreateNeg(C.Stride); 611 612 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may 613 // have different bit widths. 614 IntegerType *DeltaType = 615 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth()); 616 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); 617 if (IndexOffset.isPowerOf2()) { 618 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). 619 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2()); 620 return Builder.CreateShl(ExtendedStride, Exponent); 621 } 622 if (IndexOffset.isNegatedPowerOf2()) { 623 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). 624 ConstantInt *Exponent = 625 ConstantInt::get(DeltaType, (-IndexOffset).logBase2()); 626 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent)); 627 } 628 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset); 629 return Builder.CreateMul(ExtendedStride, Delta); 630 } 631 632 void StraightLineStrengthReduce::rewriteCandidateWithBasis( 633 const Candidate &C, const Candidate &Basis) { 634 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && 635 C.Stride == Basis.Stride); 636 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the 637 // basis of a candidate cannot be unlinked before the candidate. 638 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked"); 639 640 // An instruction can correspond to multiple candidates. Therefore, instead of 641 // simply deleting an instruction when we rewrite it, we mark its parent as 642 // nullptr (i.e. unlink it) so that we can skip the candidates whose 643 // instruction is already rewritten. 644 if (!C.Ins->getParent()) 645 return; 646 647 IRBuilder<> Builder(C.Ins); 648 bool BumpWithUglyGEP; 649 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP); 650 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins 651 switch (C.CandidateKind) { 652 case Candidate::Add: 653 case Candidate::Mul: { 654 // C = Basis + Bump 655 Value *NegBump; 656 if (match(Bump, m_Neg(m_Value(NegBump)))) { 657 // If Bump is a neg instruction, emit C = Basis - (-Bump). 658 Reduced = Builder.CreateSub(Basis.Ins, NegBump); 659 // We only use the negative argument of Bump, and Bump itself may be 660 // trivially dead. 661 RecursivelyDeleteTriviallyDeadInstructions(Bump); 662 } else { 663 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's 664 // usually unsound, e.g., 665 // 666 // X = (-2 +nsw 1) *nsw INT_MAX 667 // Y = (-2 +nsw 3) *nsw INT_MAX 668 // => 669 // Y = X + 2 * INT_MAX 670 // 671 // Neither + and * in the resultant expression are nsw. 672 Reduced = Builder.CreateAdd(Basis.Ins, Bump); 673 } 674 break; 675 } 676 case Candidate::GEP: 677 { 678 Type *OffsetTy = DL->getIndexType(C.Ins->getType()); 679 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); 680 if (BumpWithUglyGEP) { 681 // C = (char *)Basis + Bump 682 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace(); 683 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS); 684 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy); 685 Reduced = 686 Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump, "", InBounds); 687 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType()); 688 } else { 689 // C = gep Basis, Bump 690 // Canonicalize bump to pointer size. 691 Bump = Builder.CreateSExtOrTrunc(Bump, OffsetTy); 692 Reduced = Builder.CreateGEP( 693 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(), Basis.Ins, 694 Bump, "", InBounds); 695 } 696 break; 697 } 698 default: 699 llvm_unreachable("C.CandidateKind is invalid"); 700 }; 701 Reduced->takeName(C.Ins); 702 C.Ins->replaceAllUsesWith(Reduced); 703 // Unlink C.Ins so that we can skip other candidates also corresponding to 704 // C.Ins. The actual deletion is postponed to the end of runOnFunction. 705 C.Ins->removeFromParent(); 706 UnlinkedInstructions.push_back(C.Ins); 707 } 708 709 bool StraightLineStrengthReduceLegacyPass::runOnFunction(Function &F) { 710 if (skipFunction(F)) 711 return false; 712 713 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 714 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 715 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 716 return StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F); 717 } 718 719 bool StraightLineStrengthReduce::runOnFunction(Function &F) { 720 // Traverse the dominator tree in the depth-first order. This order makes sure 721 // all bases of a candidate are in Candidates when we process it. 722 for (const auto Node : depth_first(DT)) 723 for (auto &I : *(Node->getBlock())) 724 allocateCandidatesAndFindBasis(&I); 725 726 // Rewrite candidates in the reverse depth-first order. This order makes sure 727 // a candidate being rewritten is not a basis for any other candidate. 728 while (!Candidates.empty()) { 729 const Candidate &C = Candidates.back(); 730 if (C.Basis != nullptr) { 731 rewriteCandidateWithBasis(C, *C.Basis); 732 } 733 Candidates.pop_back(); 734 } 735 736 // Delete all unlink instructions. 737 for (auto *UnlinkedInst : UnlinkedInstructions) { 738 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) { 739 Value *Op = UnlinkedInst->getOperand(I); 740 UnlinkedInst->setOperand(I, nullptr); 741 RecursivelyDeleteTriviallyDeadInstructions(Op); 742 } 743 UnlinkedInst->deleteValue(); 744 } 745 bool Ret = !UnlinkedInstructions.empty(); 746 UnlinkedInstructions.clear(); 747 return Ret; 748 } 749 750 namespace llvm { 751 752 PreservedAnalyses 753 StraightLineStrengthReducePass::run(Function &F, FunctionAnalysisManager &AM) { 754 const DataLayout *DL = &F.getParent()->getDataLayout(); 755 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 756 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 757 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 758 759 if (!StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F)) 760 return PreservedAnalyses::all(); 761 762 PreservedAnalyses PA; 763 PA.preserveSet<CFGAnalyses>(); 764 PA.preserve<DominatorTreeAnalysis>(); 765 PA.preserve<ScalarEvolutionAnalysis>(); 766 PA.preserve<TargetIRAnalysis>(); 767 return PA; 768 } 769 770 } // namespace llvm 771