1 //===-- Sink.cpp - Code Sinking -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks, when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/Sink.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/IR/Dominators.h" 19 #include "llvm/InitializePasses.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Transforms/Scalar.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "sink" 26 27 STATISTIC(NumSunk, "Number of instructions sunk"); 28 STATISTIC(NumSinkIter, "Number of sinking iterations"); 29 30 static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA, 31 SmallPtrSetImpl<Instruction *> &Stores) { 32 33 if (Inst->mayWriteToMemory()) { 34 Stores.insert(Inst); 35 return false; 36 } 37 38 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { 39 MemoryLocation Loc = MemoryLocation::get(L); 40 for (Instruction *S : Stores) 41 if (isModSet(AA.getModRefInfo(S, Loc))) 42 return false; 43 } 44 45 if (Inst->isTerminator() || isa<PHINode>(Inst) || Inst->isEHPad() || 46 Inst->mayThrow() || !Inst->willReturn()) 47 return false; 48 49 if (auto *Call = dyn_cast<CallBase>(Inst)) { 50 // Convergent operations cannot be made control-dependent on additional 51 // values. 52 if (Call->isConvergent()) 53 return false; 54 55 for (Instruction *S : Stores) 56 if (isModSet(AA.getModRefInfo(S, Call))) 57 return false; 58 } 59 60 return true; 61 } 62 63 /// IsAcceptableTarget - Return true if it is possible to sink the instruction 64 /// in the specified basic block. 65 static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo, 66 DominatorTree &DT, LoopInfo &LI) { 67 assert(Inst && "Instruction to be sunk is null"); 68 assert(SuccToSinkTo && "Candidate sink target is null"); 69 70 // It's never legal to sink an instruction into a block which terminates in an 71 // EH-pad. 72 if (SuccToSinkTo->getTerminator()->isExceptionalTerminator()) 73 return false; 74 75 // If the block has multiple predecessors, this would introduce computation 76 // on different code paths. We could split the critical edge, but for now we 77 // just punt. 78 // FIXME: Split critical edges if not backedges. 79 if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) { 80 // We cannot sink a load across a critical edge - there may be stores in 81 // other code paths. 82 if (Inst->mayReadFromMemory()) 83 return false; 84 85 // We don't want to sink across a critical edge if we don't dominate the 86 // successor. We could be introducing calculations to new code paths. 87 if (!DT.dominates(Inst->getParent(), SuccToSinkTo)) 88 return false; 89 90 // Don't sink instructions into a loop. 91 Loop *succ = LI.getLoopFor(SuccToSinkTo); 92 Loop *cur = LI.getLoopFor(Inst->getParent()); 93 if (succ != nullptr && succ != cur) 94 return false; 95 } 96 97 return true; 98 } 99 100 /// SinkInstruction - Determine whether it is safe to sink the specified machine 101 /// instruction out of its current block into a successor. 102 static bool SinkInstruction(Instruction *Inst, 103 SmallPtrSetImpl<Instruction *> &Stores, 104 DominatorTree &DT, LoopInfo &LI, AAResults &AA) { 105 106 // Don't sink static alloca instructions. CodeGen assumes allocas outside the 107 // entry block are dynamically sized stack objects. 108 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 109 if (AI->isStaticAlloca()) 110 return false; 111 112 // Check if it's safe to move the instruction. 113 if (!isSafeToMove(Inst, AA, Stores)) 114 return false; 115 116 // FIXME: This should include support for sinking instructions within the 117 // block they are currently in to shorten the live ranges. We often get 118 // instructions sunk into the top of a large block, but it would be better to 119 // also sink them down before their first use in the block. This xform has to 120 // be careful not to *increase* register pressure though, e.g. sinking 121 // "x = y + z" down if it kills y and z would increase the live ranges of y 122 // and z and only shrink the live range of x. 123 124 // SuccToSinkTo - This is the successor to sink this instruction to, once we 125 // decide. 126 BasicBlock *SuccToSinkTo = nullptr; 127 128 // Find the nearest common dominator of all users as the candidate. 129 BasicBlock *BB = Inst->getParent(); 130 for (Use &U : Inst->uses()) { 131 Instruction *UseInst = cast<Instruction>(U.getUser()); 132 BasicBlock *UseBlock = UseInst->getParent(); 133 // Don't worry about dead users. 134 if (!DT.isReachableFromEntry(UseBlock)) 135 continue; 136 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { 137 // PHI nodes use the operand in the predecessor block, not the block with 138 // the PHI. 139 unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 140 UseBlock = PN->getIncomingBlock(Num); 141 } 142 if (SuccToSinkTo) 143 SuccToSinkTo = DT.findNearestCommonDominator(SuccToSinkTo, UseBlock); 144 else 145 SuccToSinkTo = UseBlock; 146 // The current basic block needs to dominate the candidate. 147 if (!DT.dominates(BB, SuccToSinkTo)) 148 return false; 149 } 150 151 if (SuccToSinkTo) { 152 // The nearest common dominator may be in a parent loop of BB, which may not 153 // be beneficial. Find an ancestor. 154 while (SuccToSinkTo != BB && 155 !IsAcceptableTarget(Inst, SuccToSinkTo, DT, LI)) 156 SuccToSinkTo = DT.getNode(SuccToSinkTo)->getIDom()->getBlock(); 157 if (SuccToSinkTo == BB) 158 SuccToSinkTo = nullptr; 159 } 160 161 // If we couldn't find a block to sink to, ignore this instruction. 162 if (!SuccToSinkTo) 163 return false; 164 165 LLVM_DEBUG(dbgs() << "Sink" << *Inst << " ("; 166 Inst->getParent()->printAsOperand(dbgs(), false); dbgs() << " -> "; 167 SuccToSinkTo->printAsOperand(dbgs(), false); dbgs() << ")\n"); 168 169 // Move the instruction. 170 Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt()); 171 return true; 172 } 173 174 static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI, 175 AAResults &AA) { 176 // Can't sink anything out of a block that has less than two successors. 177 if (BB.getTerminator()->getNumSuccessors() <= 1) return false; 178 179 // Don't bother sinking code out of unreachable blocks. In addition to being 180 // unprofitable, it can also lead to infinite looping, because in an 181 // unreachable loop there may be nowhere to stop. 182 if (!DT.isReachableFromEntry(&BB)) return false; 183 184 bool MadeChange = false; 185 186 // Walk the basic block bottom-up. Remember if we saw a store. 187 BasicBlock::iterator I = BB.end(); 188 --I; 189 bool ProcessedBegin = false; 190 SmallPtrSet<Instruction *, 8> Stores; 191 do { 192 Instruction *Inst = &*I; // The instruction to sink. 193 194 // Predecrement I (if it's not begin) so that it isn't invalidated by 195 // sinking. 196 ProcessedBegin = I == BB.begin(); 197 if (!ProcessedBegin) 198 --I; 199 200 if (Inst->isDebugOrPseudoInst()) 201 continue; 202 203 if (SinkInstruction(Inst, Stores, DT, LI, AA)) { 204 ++NumSunk; 205 MadeChange = true; 206 } 207 208 // If we just processed the first instruction in the block, we're done. 209 } while (!ProcessedBegin); 210 211 return MadeChange; 212 } 213 214 static bool iterativelySinkInstructions(Function &F, DominatorTree &DT, 215 LoopInfo &LI, AAResults &AA) { 216 bool MadeChange, EverMadeChange = false; 217 218 do { 219 MadeChange = false; 220 LLVM_DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n"); 221 // Process all basic blocks. 222 for (BasicBlock &I : F) 223 MadeChange |= ProcessBlock(I, DT, LI, AA); 224 EverMadeChange |= MadeChange; 225 NumSinkIter++; 226 } while (MadeChange); 227 228 return EverMadeChange; 229 } 230 231 PreservedAnalyses SinkingPass::run(Function &F, FunctionAnalysisManager &AM) { 232 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 233 auto &LI = AM.getResult<LoopAnalysis>(F); 234 auto &AA = AM.getResult<AAManager>(F); 235 236 if (!iterativelySinkInstructions(F, DT, LI, AA)) 237 return PreservedAnalyses::all(); 238 239 PreservedAnalyses PA; 240 PA.preserveSet<CFGAnalyses>(); 241 return PA; 242 } 243 244 namespace { 245 class SinkingLegacyPass : public FunctionPass { 246 public: 247 static char ID; // Pass identification 248 SinkingLegacyPass() : FunctionPass(ID) { 249 initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry()); 250 } 251 252 bool runOnFunction(Function &F) override { 253 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 254 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 255 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 256 257 return iterativelySinkInstructions(F, DT, LI, AA); 258 } 259 260 void getAnalysisUsage(AnalysisUsage &AU) const override { 261 AU.setPreservesCFG(); 262 FunctionPass::getAnalysisUsage(AU); 263 AU.addRequired<AAResultsWrapperPass>(); 264 AU.addRequired<DominatorTreeWrapperPass>(); 265 AU.addRequired<LoopInfoWrapperPass>(); 266 AU.addPreserved<DominatorTreeWrapperPass>(); 267 AU.addPreserved<LoopInfoWrapperPass>(); 268 } 269 }; 270 } // end anonymous namespace 271 272 char SinkingLegacyPass::ID = 0; 273 INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink", "Code sinking", false, false) 274 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 275 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 276 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 277 INITIALIZE_PASS_END(SinkingLegacyPass, "sink", "Code sinking", false, false) 278 279 FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); } 280