1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/Utils/Local.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/InstrTypes.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Use.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/GenericDomTree.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/Cloning.h" 50 #include "llvm/Transforms/Utils/LoopUtils.h" 51 #include "llvm/Transforms/Utils/ValueMapper.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <numeric> 56 #include <utility> 57 58 #define DEBUG_TYPE "simple-loop-unswitch" 59 60 using namespace llvm; 61 62 STATISTIC(NumBranches, "Number of branches unswitched"); 63 STATISTIC(NumSwitches, "Number of switches unswitched"); 64 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 65 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 66 STATISTIC( 67 NumCostMultiplierSkipped, 68 "Number of unswitch candidates that had their cost multiplier skipped"); 69 70 static cl::opt<bool> EnableNonTrivialUnswitch( 71 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 72 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 73 "following the configuration passed into the pass.")); 74 75 static cl::opt<int> 76 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 77 cl::desc("The cost threshold for unswitching a loop.")); 78 79 static cl::opt<bool> EnableUnswitchCostMultiplier( 80 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 81 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 82 "explosion in nontrivial unswitch.")); 83 static cl::opt<int> UnswitchSiblingsToplevelDiv( 84 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 85 cl::desc("Toplevel siblings divisor for cost multiplier.")); 86 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 87 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 88 cl::desc("Number of unswitch candidates that are ignored when calculating " 89 "cost multiplier.")); 90 static cl::opt<bool> UnswitchGuards( 91 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 92 cl::desc("If enabled, simple loop unswitching will also consider " 93 "llvm.experimental.guard intrinsics as unswitch candidates.")); 94 95 /// Collect all of the loop invariant input values transitively used by the 96 /// homogeneous instruction graph from a given root. 97 /// 98 /// This essentially walks from a root recursively through loop variant operands 99 /// which have the exact same opcode and finds all inputs which are loop 100 /// invariant. For some operations these can be re-associated and unswitched out 101 /// of the loop entirely. 102 static TinyPtrVector<Value *> 103 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 104 LoopInfo &LI) { 105 assert(!L.isLoopInvariant(&Root) && 106 "Only need to walk the graph if root itself is not invariant."); 107 TinyPtrVector<Value *> Invariants; 108 109 // Build a worklist and recurse through operators collecting invariants. 110 SmallVector<Instruction *, 4> Worklist; 111 SmallPtrSet<Instruction *, 8> Visited; 112 Worklist.push_back(&Root); 113 Visited.insert(&Root); 114 do { 115 Instruction &I = *Worklist.pop_back_val(); 116 for (Value *OpV : I.operand_values()) { 117 // Skip constants as unswitching isn't interesting for them. 118 if (isa<Constant>(OpV)) 119 continue; 120 121 // Add it to our result if loop invariant. 122 if (L.isLoopInvariant(OpV)) { 123 Invariants.push_back(OpV); 124 continue; 125 } 126 127 // If not an instruction with the same opcode, nothing we can do. 128 Instruction *OpI = dyn_cast<Instruction>(OpV); 129 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 130 continue; 131 132 // Visit this operand. 133 if (Visited.insert(OpI).second) 134 Worklist.push_back(OpI); 135 } 136 } while (!Worklist.empty()); 137 138 return Invariants; 139 } 140 141 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 142 Constant &Replacement) { 143 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 144 145 // Replace uses of LIC in the loop with the given constant. 146 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 147 // Grab the use and walk past it so we can clobber it in the use list. 148 Use *U = &*UI++; 149 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 150 151 // Replace this use within the loop body. 152 if (UserI && L.contains(UserI)) 153 U->set(&Replacement); 154 } 155 } 156 157 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 158 /// incoming values along this edge. 159 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 160 BasicBlock &ExitBB) { 161 for (Instruction &I : ExitBB) { 162 auto *PN = dyn_cast<PHINode>(&I); 163 if (!PN) 164 // No more PHIs to check. 165 return true; 166 167 // If the incoming value for this edge isn't loop invariant the unswitch 168 // won't be trivial. 169 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 170 return false; 171 } 172 llvm_unreachable("Basic blocks should never be empty!"); 173 } 174 175 /// Insert code to test a set of loop invariant values, and conditionally branch 176 /// on them. 177 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 178 ArrayRef<Value *> Invariants, 179 bool Direction, 180 BasicBlock &UnswitchedSucc, 181 BasicBlock &NormalSucc) { 182 IRBuilder<> IRB(&BB); 183 184 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 185 IRB.CreateAnd(Invariants); 186 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 187 Direction ? &NormalSucc : &UnswitchedSucc); 188 } 189 190 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 191 /// 192 /// Requires that the loop exit and unswitched basic block are the same, and 193 /// that the exiting block was a unique predecessor of that block. Rewrites the 194 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 195 /// PHI nodes from the old preheader that now contains the unswitched 196 /// terminator. 197 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 198 BasicBlock &OldExitingBB, 199 BasicBlock &OldPH) { 200 for (PHINode &PN : UnswitchedBB.phis()) { 201 // When the loop exit is directly unswitched we just need to update the 202 // incoming basic block. We loop to handle weird cases with repeated 203 // incoming blocks, but expect to typically only have one operand here. 204 for (auto i : seq<int>(0, PN.getNumOperands())) { 205 assert(PN.getIncomingBlock(i) == &OldExitingBB && 206 "Found incoming block different from unique predecessor!"); 207 PN.setIncomingBlock(i, &OldPH); 208 } 209 } 210 } 211 212 /// Rewrite the PHI nodes in the loop exit basic block and the split off 213 /// unswitched block. 214 /// 215 /// Because the exit block remains an exit from the loop, this rewrites the 216 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 217 /// nodes into the unswitched basic block to select between the value in the 218 /// old preheader and the loop exit. 219 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 220 BasicBlock &UnswitchedBB, 221 BasicBlock &OldExitingBB, 222 BasicBlock &OldPH, 223 bool FullUnswitch) { 224 assert(&ExitBB != &UnswitchedBB && 225 "Must have different loop exit and unswitched blocks!"); 226 Instruction *InsertPt = &*UnswitchedBB.begin(); 227 for (PHINode &PN : ExitBB.phis()) { 228 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 229 PN.getName() + ".split", InsertPt); 230 231 // Walk backwards over the old PHI node's inputs to minimize the cost of 232 // removing each one. We have to do this weird loop manually so that we 233 // create the same number of new incoming edges in the new PHI as we expect 234 // each case-based edge to be included in the unswitched switch in some 235 // cases. 236 // FIXME: This is really, really gross. It would be much cleaner if LLVM 237 // allowed us to create a single entry for a predecessor block without 238 // having separate entries for each "edge" even though these edges are 239 // required to produce identical results. 240 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 241 if (PN.getIncomingBlock(i) != &OldExitingBB) 242 continue; 243 244 Value *Incoming = PN.getIncomingValue(i); 245 if (FullUnswitch) 246 // No more edge from the old exiting block to the exit block. 247 PN.removeIncomingValue(i); 248 249 NewPN->addIncoming(Incoming, &OldPH); 250 } 251 252 // Now replace the old PHI with the new one and wire the old one in as an 253 // input to the new one. 254 PN.replaceAllUsesWith(NewPN); 255 NewPN->addIncoming(&PN, &ExitBB); 256 } 257 } 258 259 /// Hoist the current loop up to the innermost loop containing a remaining exit. 260 /// 261 /// Because we've removed an exit from the loop, we may have changed the set of 262 /// loops reachable and need to move the current loop up the loop nest or even 263 /// to an entirely separate nest. 264 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 265 DominatorTree &DT, LoopInfo &LI, 266 MemorySSAUpdater *MSSAU) { 267 // If the loop is already at the top level, we can't hoist it anywhere. 268 Loop *OldParentL = L.getParentLoop(); 269 if (!OldParentL) 270 return; 271 272 SmallVector<BasicBlock *, 4> Exits; 273 L.getExitBlocks(Exits); 274 Loop *NewParentL = nullptr; 275 for (auto *ExitBB : Exits) 276 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 277 if (!NewParentL || NewParentL->contains(ExitL)) 278 NewParentL = ExitL; 279 280 if (NewParentL == OldParentL) 281 return; 282 283 // The new parent loop (if different) should always contain the old one. 284 if (NewParentL) 285 assert(NewParentL->contains(OldParentL) && 286 "Can only hoist this loop up the nest!"); 287 288 // The preheader will need to move with the body of this loop. However, 289 // because it isn't in this loop we also need to update the primary loop map. 290 assert(OldParentL == LI.getLoopFor(&Preheader) && 291 "Parent loop of this loop should contain this loop's preheader!"); 292 LI.changeLoopFor(&Preheader, NewParentL); 293 294 // Remove this loop from its old parent. 295 OldParentL->removeChildLoop(&L); 296 297 // Add the loop either to the new parent or as a top-level loop. 298 if (NewParentL) 299 NewParentL->addChildLoop(&L); 300 else 301 LI.addTopLevelLoop(&L); 302 303 // Remove this loops blocks from the old parent and every other loop up the 304 // nest until reaching the new parent. Also update all of these 305 // no-longer-containing loops to reflect the nesting change. 306 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 307 OldContainingL = OldContainingL->getParentLoop()) { 308 llvm::erase_if(OldContainingL->getBlocksVector(), 309 [&](const BasicBlock *BB) { 310 return BB == &Preheader || L.contains(BB); 311 }); 312 313 OldContainingL->getBlocksSet().erase(&Preheader); 314 for (BasicBlock *BB : L.blocks()) 315 OldContainingL->getBlocksSet().erase(BB); 316 317 // Because we just hoisted a loop out of this one, we have essentially 318 // created new exit paths from it. That means we need to form LCSSA PHI 319 // nodes for values used in the no-longer-nested loop. 320 formLCSSA(*OldContainingL, DT, &LI, nullptr); 321 322 // We shouldn't need to form dedicated exits because the exit introduced 323 // here is the (just split by unswitching) preheader. However, after trivial 324 // unswitching it is possible to get new non-dedicated exits out of parent 325 // loop so let's conservatively form dedicated exit blocks and figure out 326 // if we can optimize later. 327 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 328 /*PreserveLCSSA*/ true); 329 } 330 } 331 332 /// Unswitch a trivial branch if the condition is loop invariant. 333 /// 334 /// This routine should only be called when loop code leading to the branch has 335 /// been validated as trivial (no side effects). This routine checks if the 336 /// condition is invariant and one of the successors is a loop exit. This 337 /// allows us to unswitch without duplicating the loop, making it trivial. 338 /// 339 /// If this routine fails to unswitch the branch it returns false. 340 /// 341 /// If the branch can be unswitched, this routine splits the preheader and 342 /// hoists the branch above that split. Preserves loop simplified form 343 /// (splitting the exit block as necessary). It simplifies the branch within 344 /// the loop to an unconditional branch but doesn't remove it entirely. Further 345 /// cleanup can be done with some simplify-cfg like pass. 346 /// 347 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 348 /// invalidated by this. 349 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 350 LoopInfo &LI, ScalarEvolution *SE, 351 MemorySSAUpdater *MSSAU) { 352 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 353 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 354 355 // The loop invariant values that we want to unswitch. 356 TinyPtrVector<Value *> Invariants; 357 358 // When true, we're fully unswitching the branch rather than just unswitching 359 // some input conditions to the branch. 360 bool FullUnswitch = false; 361 362 if (L.isLoopInvariant(BI.getCondition())) { 363 Invariants.push_back(BI.getCondition()); 364 FullUnswitch = true; 365 } else { 366 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 367 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 368 if (Invariants.empty()) 369 // Couldn't find invariant inputs! 370 return false; 371 } 372 373 // Check that one of the branch's successors exits, and which one. 374 bool ExitDirection = true; 375 int LoopExitSuccIdx = 0; 376 auto *LoopExitBB = BI.getSuccessor(0); 377 if (L.contains(LoopExitBB)) { 378 ExitDirection = false; 379 LoopExitSuccIdx = 1; 380 LoopExitBB = BI.getSuccessor(1); 381 if (L.contains(LoopExitBB)) 382 return false; 383 } 384 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 385 auto *ParentBB = BI.getParent(); 386 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 387 return false; 388 389 // When unswitching only part of the branch's condition, we need the exit 390 // block to be reached directly from the partially unswitched input. This can 391 // be done when the exit block is along the true edge and the branch condition 392 // is a graph of `or` operations, or the exit block is along the false edge 393 // and the condition is a graph of `and` operations. 394 if (!FullUnswitch) { 395 if (ExitDirection) { 396 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 397 return false; 398 } else { 399 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 400 return false; 401 } 402 } 403 404 LLVM_DEBUG({ 405 dbgs() << " unswitching trivial invariant conditions for: " << BI 406 << "\n"; 407 for (Value *Invariant : Invariants) { 408 dbgs() << " " << *Invariant << " == true"; 409 if (Invariant != Invariants.back()) 410 dbgs() << " ||"; 411 dbgs() << "\n"; 412 } 413 }); 414 415 // If we have scalar evolutions, we need to invalidate them including this 416 // loop and the loop containing the exit block. 417 if (SE) { 418 if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) 419 SE->forgetLoop(ExitL); 420 else 421 // Forget the entire nest as this exits the entire nest. 422 SE->forgetTopmostLoop(&L); 423 } 424 425 if (MSSAU && VerifyMemorySSA) 426 MSSAU->getMemorySSA()->verifyMemorySSA(); 427 428 // Split the preheader, so that we know that there is a safe place to insert 429 // the conditional branch. We will change the preheader to have a conditional 430 // branch on LoopCond. 431 BasicBlock *OldPH = L.getLoopPreheader(); 432 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 433 434 // Now that we have a place to insert the conditional branch, create a place 435 // to branch to: this is the exit block out of the loop that we are 436 // unswitching. We need to split this if there are other loop predecessors. 437 // Because the loop is in simplified form, *any* other predecessor is enough. 438 BasicBlock *UnswitchedBB; 439 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 440 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 441 "A branch's parent isn't a predecessor!"); 442 UnswitchedBB = LoopExitBB; 443 } else { 444 UnswitchedBB = 445 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 446 } 447 448 if (MSSAU && VerifyMemorySSA) 449 MSSAU->getMemorySSA()->verifyMemorySSA(); 450 451 // Actually move the invariant uses into the unswitched position. If possible, 452 // we do this by moving the instructions, but when doing partial unswitching 453 // we do it by building a new merge of the values in the unswitched position. 454 OldPH->getTerminator()->eraseFromParent(); 455 if (FullUnswitch) { 456 // If fully unswitching, we can use the existing branch instruction. 457 // Splice it into the old PH to gate reaching the new preheader and re-point 458 // its successors. 459 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 460 BI); 461 if (MSSAU) { 462 // Temporarily clone the terminator, to make MSSA update cheaper by 463 // separating "insert edge" updates from "remove edge" ones. 464 ParentBB->getInstList().push_back(BI.clone()); 465 } else { 466 // Create a new unconditional branch that will continue the loop as a new 467 // terminator. 468 BranchInst::Create(ContinueBB, ParentBB); 469 } 470 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 471 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 472 } else { 473 // Only unswitching a subset of inputs to the condition, so we will need to 474 // build a new branch that merges the invariant inputs. 475 if (ExitDirection) 476 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 477 Instruction::Or && 478 "Must have an `or` of `i1`s for the condition!"); 479 else 480 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 481 Instruction::And && 482 "Must have an `and` of `i1`s for the condition!"); 483 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 484 *UnswitchedBB, *NewPH); 485 } 486 487 // Update the dominator tree with the added edge. 488 DT.insertEdge(OldPH, UnswitchedBB); 489 490 // After the dominator tree was updated with the added edge, update MemorySSA 491 // if available. 492 if (MSSAU) { 493 SmallVector<CFGUpdate, 1> Updates; 494 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 495 MSSAU->applyInsertUpdates(Updates, DT); 496 } 497 498 // Finish updating dominator tree and memory ssa for full unswitch. 499 if (FullUnswitch) { 500 if (MSSAU) { 501 // Remove the cloned branch instruction. 502 ParentBB->getTerminator()->eraseFromParent(); 503 // Create unconditional branch now. 504 BranchInst::Create(ContinueBB, ParentBB); 505 MSSAU->removeEdge(ParentBB, LoopExitBB); 506 } 507 DT.deleteEdge(ParentBB, LoopExitBB); 508 } 509 510 if (MSSAU && VerifyMemorySSA) 511 MSSAU->getMemorySSA()->verifyMemorySSA(); 512 513 // Rewrite the relevant PHI nodes. 514 if (UnswitchedBB == LoopExitBB) 515 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 516 else 517 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 518 *ParentBB, *OldPH, FullUnswitch); 519 520 // The constant we can replace all of our invariants with inside the loop 521 // body. If any of the invariants have a value other than this the loop won't 522 // be entered. 523 ConstantInt *Replacement = ExitDirection 524 ? ConstantInt::getFalse(BI.getContext()) 525 : ConstantInt::getTrue(BI.getContext()); 526 527 // Since this is an i1 condition we can also trivially replace uses of it 528 // within the loop with a constant. 529 for (Value *Invariant : Invariants) 530 replaceLoopInvariantUses(L, Invariant, *Replacement); 531 532 // If this was full unswitching, we may have changed the nesting relationship 533 // for this loop so hoist it to its correct parent if needed. 534 if (FullUnswitch) 535 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU); 536 537 if (MSSAU && VerifyMemorySSA) 538 MSSAU->getMemorySSA()->verifyMemorySSA(); 539 540 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 541 ++NumTrivial; 542 ++NumBranches; 543 return true; 544 } 545 546 /// Unswitch a trivial switch if the condition is loop invariant. 547 /// 548 /// This routine should only be called when loop code leading to the switch has 549 /// been validated as trivial (no side effects). This routine checks if the 550 /// condition is invariant and that at least one of the successors is a loop 551 /// exit. This allows us to unswitch without duplicating the loop, making it 552 /// trivial. 553 /// 554 /// If this routine fails to unswitch the switch it returns false. 555 /// 556 /// If the switch can be unswitched, this routine splits the preheader and 557 /// copies the switch above that split. If the default case is one of the 558 /// exiting cases, it copies the non-exiting cases and points them at the new 559 /// preheader. If the default case is not exiting, it copies the exiting cases 560 /// and points the default at the preheader. It preserves loop simplified form 561 /// (splitting the exit blocks as necessary). It simplifies the switch within 562 /// the loop by removing now-dead cases. If the default case is one of those 563 /// unswitched, it replaces its destination with a new basic block containing 564 /// only unreachable. Such basic blocks, while technically loop exits, are not 565 /// considered for unswitching so this is a stable transform and the same 566 /// switch will not be revisited. If after unswitching there is only a single 567 /// in-loop successor, the switch is further simplified to an unconditional 568 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 569 /// 570 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 571 /// invalidated by this. 572 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 573 LoopInfo &LI, ScalarEvolution *SE, 574 MemorySSAUpdater *MSSAU) { 575 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 576 Value *LoopCond = SI.getCondition(); 577 578 // If this isn't switching on an invariant condition, we can't unswitch it. 579 if (!L.isLoopInvariant(LoopCond)) 580 return false; 581 582 auto *ParentBB = SI.getParent(); 583 584 SmallVector<int, 4> ExitCaseIndices; 585 for (auto Case : SI.cases()) { 586 auto *SuccBB = Case.getCaseSuccessor(); 587 if (!L.contains(SuccBB) && 588 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 589 ExitCaseIndices.push_back(Case.getCaseIndex()); 590 } 591 BasicBlock *DefaultExitBB = nullptr; 592 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 593 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 594 if (!L.contains(SI.getDefaultDest()) && 595 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 596 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) { 597 DefaultExitBB = SI.getDefaultDest(); 598 } else if (ExitCaseIndices.empty()) 599 return false; 600 601 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 602 603 if (MSSAU && VerifyMemorySSA) 604 MSSAU->getMemorySSA()->verifyMemorySSA(); 605 606 // We may need to invalidate SCEVs for the outermost loop reached by any of 607 // the exits. 608 Loop *OuterL = &L; 609 610 if (DefaultExitBB) { 611 // Clear out the default destination temporarily to allow accurate 612 // predecessor lists to be examined below. 613 SI.setDefaultDest(nullptr); 614 // Check the loop containing this exit. 615 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 616 if (!ExitL || ExitL->contains(OuterL)) 617 OuterL = ExitL; 618 } 619 620 // Store the exit cases into a separate data structure and remove them from 621 // the switch. 622 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 623 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 624 4> ExitCases; 625 ExitCases.reserve(ExitCaseIndices.size()); 626 SwitchInstProfUpdateWrapper SIW(SI); 627 // We walk the case indices backwards so that we remove the last case first 628 // and don't disrupt the earlier indices. 629 for (unsigned Index : reverse(ExitCaseIndices)) { 630 auto CaseI = SI.case_begin() + Index; 631 // Compute the outer loop from this exit. 632 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 633 if (!ExitL || ExitL->contains(OuterL)) 634 OuterL = ExitL; 635 // Save the value of this case. 636 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 637 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 638 // Delete the unswitched cases. 639 SIW.removeCase(CaseI); 640 } 641 642 if (SE) { 643 if (OuterL) 644 SE->forgetLoop(OuterL); 645 else 646 SE->forgetTopmostLoop(&L); 647 } 648 649 // Check if after this all of the remaining cases point at the same 650 // successor. 651 BasicBlock *CommonSuccBB = nullptr; 652 if (SI.getNumCases() > 0 && 653 std::all_of(std::next(SI.case_begin()), SI.case_end(), 654 [&SI](const SwitchInst::CaseHandle &Case) { 655 return Case.getCaseSuccessor() == 656 SI.case_begin()->getCaseSuccessor(); 657 })) 658 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 659 if (!DefaultExitBB) { 660 // If we're not unswitching the default, we need it to match any cases to 661 // have a common successor or if we have no cases it is the common 662 // successor. 663 if (SI.getNumCases() == 0) 664 CommonSuccBB = SI.getDefaultDest(); 665 else if (SI.getDefaultDest() != CommonSuccBB) 666 CommonSuccBB = nullptr; 667 } 668 669 // Split the preheader, so that we know that there is a safe place to insert 670 // the switch. 671 BasicBlock *OldPH = L.getLoopPreheader(); 672 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 673 OldPH->getTerminator()->eraseFromParent(); 674 675 // Now add the unswitched switch. 676 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 677 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 678 679 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 680 // First, we split any exit blocks with remaining in-loop predecessors. Then 681 // we update the PHIs in one of two ways depending on if there was a split. 682 // We walk in reverse so that we split in the same order as the cases 683 // appeared. This is purely for convenience of reading the resulting IR, but 684 // it doesn't cost anything really. 685 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 686 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 687 // Handle the default exit if necessary. 688 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 689 // ranges aren't quite powerful enough yet. 690 if (DefaultExitBB) { 691 if (pred_empty(DefaultExitBB)) { 692 UnswitchedExitBBs.insert(DefaultExitBB); 693 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 694 } else { 695 auto *SplitBB = 696 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 697 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 698 *ParentBB, *OldPH, 699 /*FullUnswitch*/ true); 700 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 701 } 702 } 703 // Note that we must use a reference in the for loop so that we update the 704 // container. 705 for (auto &ExitCase : reverse(ExitCases)) { 706 // Grab a reference to the exit block in the pair so that we can update it. 707 BasicBlock *ExitBB = std::get<1>(ExitCase); 708 709 // If this case is the last edge into the exit block, we can simply reuse it 710 // as it will no longer be a loop exit. No mapping necessary. 711 if (pred_empty(ExitBB)) { 712 // Only rewrite once. 713 if (UnswitchedExitBBs.insert(ExitBB).second) 714 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 715 continue; 716 } 717 718 // Otherwise we need to split the exit block so that we retain an exit 719 // block from the loop and a target for the unswitched condition. 720 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 721 if (!SplitExitBB) { 722 // If this is the first time we see this, do the split and remember it. 723 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 724 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 725 *ParentBB, *OldPH, 726 /*FullUnswitch*/ true); 727 } 728 // Update the case pair to point to the split block. 729 std::get<1>(ExitCase) = SplitExitBB; 730 } 731 732 // Now add the unswitched cases. We do this in reverse order as we built them 733 // in reverse order. 734 for (auto &ExitCase : reverse(ExitCases)) { 735 ConstantInt *CaseVal = std::get<0>(ExitCase); 736 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 737 738 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 739 } 740 741 // If the default was unswitched, re-point it and add explicit cases for 742 // entering the loop. 743 if (DefaultExitBB) { 744 NewSIW->setDefaultDest(DefaultExitBB); 745 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 746 747 // We removed all the exit cases, so we just copy the cases to the 748 // unswitched switch. 749 for (const auto &Case : SI.cases()) 750 NewSIW.addCase(Case.getCaseValue(), NewPH, 751 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 752 } else if (DefaultCaseWeight) { 753 // We have to set branch weight of the default case. 754 uint64_t SW = *DefaultCaseWeight; 755 for (const auto &Case : SI.cases()) { 756 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 757 assert(W && 758 "case weight must be defined as default case weight is defined"); 759 SW += *W; 760 } 761 NewSIW.setSuccessorWeight(0, SW); 762 } 763 764 // If we ended up with a common successor for every path through the switch 765 // after unswitching, rewrite it to an unconditional branch to make it easy 766 // to recognize. Otherwise we potentially have to recognize the default case 767 // pointing at unreachable and other complexity. 768 if (CommonSuccBB) { 769 BasicBlock *BB = SI.getParent(); 770 // We may have had multiple edges to this common successor block, so remove 771 // them as predecessors. We skip the first one, either the default or the 772 // actual first case. 773 bool SkippedFirst = DefaultExitBB == nullptr; 774 for (auto Case : SI.cases()) { 775 assert(Case.getCaseSuccessor() == CommonSuccBB && 776 "Non-common successor!"); 777 (void)Case; 778 if (!SkippedFirst) { 779 SkippedFirst = true; 780 continue; 781 } 782 CommonSuccBB->removePredecessor(BB, 783 /*KeepOneInputPHIs*/ true); 784 } 785 // Now nuke the switch and replace it with a direct branch. 786 SIW.eraseFromParent(); 787 BranchInst::Create(CommonSuccBB, BB); 788 } else if (DefaultExitBB) { 789 assert(SI.getNumCases() > 0 && 790 "If we had no cases we'd have a common successor!"); 791 // Move the last case to the default successor. This is valid as if the 792 // default got unswitched it cannot be reached. This has the advantage of 793 // being simple and keeping the number of edges from this switch to 794 // successors the same, and avoiding any PHI update complexity. 795 auto LastCaseI = std::prev(SI.case_end()); 796 797 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 798 SIW.setSuccessorWeight( 799 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 800 SIW.removeCase(LastCaseI); 801 } 802 803 // Walk the unswitched exit blocks and the unswitched split blocks and update 804 // the dominator tree based on the CFG edits. While we are walking unordered 805 // containers here, the API for applyUpdates takes an unordered list of 806 // updates and requires them to not contain duplicates. 807 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 808 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 809 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 810 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 811 } 812 for (auto SplitUnswitchedPair : SplitExitBBMap) { 813 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 814 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 815 } 816 DT.applyUpdates(DTUpdates); 817 818 if (MSSAU) { 819 MSSAU->applyUpdates(DTUpdates, DT); 820 if (VerifyMemorySSA) 821 MSSAU->getMemorySSA()->verifyMemorySSA(); 822 } 823 824 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 825 826 // We may have changed the nesting relationship for this loop so hoist it to 827 // its correct parent if needed. 828 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU); 829 830 if (MSSAU && VerifyMemorySSA) 831 MSSAU->getMemorySSA()->verifyMemorySSA(); 832 833 ++NumTrivial; 834 ++NumSwitches; 835 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 836 return true; 837 } 838 839 /// This routine scans the loop to find a branch or switch which occurs before 840 /// any side effects occur. These can potentially be unswitched without 841 /// duplicating the loop. If a branch or switch is successfully unswitched the 842 /// scanning continues to see if subsequent branches or switches have become 843 /// trivial. Once all trivial candidates have been unswitched, this routine 844 /// returns. 845 /// 846 /// The return value indicates whether anything was unswitched (and therefore 847 /// changed). 848 /// 849 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 850 /// invalidated by this. 851 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 852 LoopInfo &LI, ScalarEvolution *SE, 853 MemorySSAUpdater *MSSAU) { 854 bool Changed = false; 855 856 // If loop header has only one reachable successor we should keep looking for 857 // trivial condition candidates in the successor as well. An alternative is 858 // to constant fold conditions and merge successors into loop header (then we 859 // only need to check header's terminator). The reason for not doing this in 860 // LoopUnswitch pass is that it could potentially break LoopPassManager's 861 // invariants. Folding dead branches could either eliminate the current loop 862 // or make other loops unreachable. LCSSA form might also not be preserved 863 // after deleting branches. The following code keeps traversing loop header's 864 // successors until it finds the trivial condition candidate (condition that 865 // is not a constant). Since unswitching generates branches with constant 866 // conditions, this scenario could be very common in practice. 867 BasicBlock *CurrentBB = L.getHeader(); 868 SmallPtrSet<BasicBlock *, 8> Visited; 869 Visited.insert(CurrentBB); 870 do { 871 // Check if there are any side-effecting instructions (e.g. stores, calls, 872 // volatile loads) in the part of the loop that the code *would* execute 873 // without unswitching. 874 if (MSSAU) // Possible early exit with MSSA 875 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 876 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 877 return Changed; 878 if (llvm::any_of(*CurrentBB, 879 [](Instruction &I) { return I.mayHaveSideEffects(); })) 880 return Changed; 881 882 Instruction *CurrentTerm = CurrentBB->getTerminator(); 883 884 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 885 // Don't bother trying to unswitch past a switch with a constant 886 // condition. This should be removed prior to running this pass by 887 // simplify-cfg. 888 if (isa<Constant>(SI->getCondition())) 889 return Changed; 890 891 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 892 // Couldn't unswitch this one so we're done. 893 return Changed; 894 895 // Mark that we managed to unswitch something. 896 Changed = true; 897 898 // If unswitching turned the terminator into an unconditional branch then 899 // we can continue. The unswitching logic specifically works to fold any 900 // cases it can into an unconditional branch to make it easier to 901 // recognize here. 902 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 903 if (!BI || BI->isConditional()) 904 return Changed; 905 906 CurrentBB = BI->getSuccessor(0); 907 continue; 908 } 909 910 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 911 if (!BI) 912 // We do not understand other terminator instructions. 913 return Changed; 914 915 // Don't bother trying to unswitch past an unconditional branch or a branch 916 // with a constant value. These should be removed by simplify-cfg prior to 917 // running this pass. 918 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 919 return Changed; 920 921 // Found a trivial condition candidate: non-foldable conditional branch. If 922 // we fail to unswitch this, we can't do anything else that is trivial. 923 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 924 return Changed; 925 926 // Mark that we managed to unswitch something. 927 Changed = true; 928 929 // If we only unswitched some of the conditions feeding the branch, we won't 930 // have collapsed it to a single successor. 931 BI = cast<BranchInst>(CurrentBB->getTerminator()); 932 if (BI->isConditional()) 933 return Changed; 934 935 // Follow the newly unconditional branch into its successor. 936 CurrentBB = BI->getSuccessor(0); 937 938 // When continuing, if we exit the loop or reach a previous visited block, 939 // then we can not reach any trivial condition candidates (unfoldable 940 // branch instructions or switch instructions) and no unswitch can happen. 941 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 942 943 return Changed; 944 } 945 946 /// Build the cloned blocks for an unswitched copy of the given loop. 947 /// 948 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 949 /// after the split block (`SplitBB`) that will be used to select between the 950 /// cloned and original loop. 951 /// 952 /// This routine handles cloning all of the necessary loop blocks and exit 953 /// blocks including rewriting their instructions and the relevant PHI nodes. 954 /// Any loop blocks or exit blocks which are dominated by a different successor 955 /// than the one for this clone of the loop blocks can be trivially skipped. We 956 /// use the `DominatingSucc` map to determine whether a block satisfies that 957 /// property with a simple map lookup. 958 /// 959 /// It also correctly creates the unconditional branch in the cloned 960 /// unswitched parent block to only point at the unswitched successor. 961 /// 962 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 963 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 964 /// the cloned blocks (and their loops) are left without full `LoopInfo` 965 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 966 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 967 /// instead the caller must recompute an accurate DT. It *does* correctly 968 /// update the `AssumptionCache` provided in `AC`. 969 static BasicBlock *buildClonedLoopBlocks( 970 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 971 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 972 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 973 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 974 ValueToValueMapTy &VMap, 975 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 976 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 977 SmallVector<BasicBlock *, 4> NewBlocks; 978 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 979 980 // We will need to clone a bunch of blocks, wrap up the clone operation in 981 // a helper. 982 auto CloneBlock = [&](BasicBlock *OldBB) { 983 // Clone the basic block and insert it before the new preheader. 984 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 985 NewBB->moveBefore(LoopPH); 986 987 // Record this block and the mapping. 988 NewBlocks.push_back(NewBB); 989 VMap[OldBB] = NewBB; 990 991 return NewBB; 992 }; 993 994 // We skip cloning blocks when they have a dominating succ that is not the 995 // succ we are cloning for. 996 auto SkipBlock = [&](BasicBlock *BB) { 997 auto It = DominatingSucc.find(BB); 998 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 999 }; 1000 1001 // First, clone the preheader. 1002 auto *ClonedPH = CloneBlock(LoopPH); 1003 1004 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1005 for (auto *LoopBB : L.blocks()) 1006 if (!SkipBlock(LoopBB)) 1007 CloneBlock(LoopBB); 1008 1009 // Split all the loop exit edges so that when we clone the exit blocks, if 1010 // any of the exit blocks are *also* a preheader for some other loop, we 1011 // don't create multiple predecessors entering the loop header. 1012 for (auto *ExitBB : ExitBlocks) { 1013 if (SkipBlock(ExitBB)) 1014 continue; 1015 1016 // When we are going to clone an exit, we don't need to clone all the 1017 // instructions in the exit block and we want to ensure we have an easy 1018 // place to merge the CFG, so split the exit first. This is always safe to 1019 // do because there cannot be any non-loop predecessors of a loop exit in 1020 // loop simplified form. 1021 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1022 1023 // Rearrange the names to make it easier to write test cases by having the 1024 // exit block carry the suffix rather than the merge block carrying the 1025 // suffix. 1026 MergeBB->takeName(ExitBB); 1027 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1028 1029 // Now clone the original exit block. 1030 auto *ClonedExitBB = CloneBlock(ExitBB); 1031 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1032 "Exit block should have been split to have one successor!"); 1033 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1034 "Cloned exit block has the wrong successor!"); 1035 1036 // Remap any cloned instructions and create a merge phi node for them. 1037 for (auto ZippedInsts : llvm::zip_first( 1038 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1039 llvm::make_range(ClonedExitBB->begin(), 1040 std::prev(ClonedExitBB->end())))) { 1041 Instruction &I = std::get<0>(ZippedInsts); 1042 Instruction &ClonedI = std::get<1>(ZippedInsts); 1043 1044 // The only instructions in the exit block should be PHI nodes and 1045 // potentially a landing pad. 1046 assert( 1047 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1048 "Bad instruction in exit block!"); 1049 // We should have a value map between the instruction and its clone. 1050 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1051 1052 auto *MergePN = 1053 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1054 &*MergeBB->getFirstInsertionPt()); 1055 I.replaceAllUsesWith(MergePN); 1056 MergePN->addIncoming(&I, ExitBB); 1057 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1058 } 1059 } 1060 1061 // Rewrite the instructions in the cloned blocks to refer to the instructions 1062 // in the cloned blocks. We have to do this as a second pass so that we have 1063 // everything available. Also, we have inserted new instructions which may 1064 // include assume intrinsics, so we update the assumption cache while 1065 // processing this. 1066 for (auto *ClonedBB : NewBlocks) 1067 for (Instruction &I : *ClonedBB) { 1068 RemapInstruction(&I, VMap, 1069 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1070 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1071 if (II->getIntrinsicID() == Intrinsic::assume) 1072 AC.registerAssumption(II); 1073 } 1074 1075 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1076 // have spurious incoming values. 1077 for (auto *LoopBB : L.blocks()) 1078 if (SkipBlock(LoopBB)) 1079 for (auto *SuccBB : successors(LoopBB)) 1080 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1081 for (PHINode &PN : ClonedSuccBB->phis()) 1082 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1083 1084 // Remove the cloned parent as a predecessor of any successor we ended up 1085 // cloning other than the unswitched one. 1086 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1087 for (auto *SuccBB : successors(ParentBB)) { 1088 if (SuccBB == UnswitchedSuccBB) 1089 continue; 1090 1091 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1092 if (!ClonedSuccBB) 1093 continue; 1094 1095 ClonedSuccBB->removePredecessor(ClonedParentBB, 1096 /*KeepOneInputPHIs*/ true); 1097 } 1098 1099 // Replace the cloned branch with an unconditional branch to the cloned 1100 // unswitched successor. 1101 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1102 ClonedParentBB->getTerminator()->eraseFromParent(); 1103 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1104 1105 // If there are duplicate entries in the PHI nodes because of multiple edges 1106 // to the unswitched successor, we need to nuke all but one as we replaced it 1107 // with a direct branch. 1108 for (PHINode &PN : ClonedSuccBB->phis()) { 1109 bool Found = false; 1110 // Loop over the incoming operands backwards so we can easily delete as we 1111 // go without invalidating the index. 1112 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1113 if (PN.getIncomingBlock(i) != ClonedParentBB) 1114 continue; 1115 if (!Found) { 1116 Found = true; 1117 continue; 1118 } 1119 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1120 } 1121 } 1122 1123 // Record the domtree updates for the new blocks. 1124 SmallPtrSet<BasicBlock *, 4> SuccSet; 1125 for (auto *ClonedBB : NewBlocks) { 1126 for (auto *SuccBB : successors(ClonedBB)) 1127 if (SuccSet.insert(SuccBB).second) 1128 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1129 SuccSet.clear(); 1130 } 1131 1132 return ClonedPH; 1133 } 1134 1135 /// Recursively clone the specified loop and all of its children. 1136 /// 1137 /// The target parent loop for the clone should be provided, or can be null if 1138 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1139 /// with the provided value map. The entire original loop must be present in 1140 /// the value map. The cloned loop is returned. 1141 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1142 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1143 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1144 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1145 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1146 for (auto *BB : OrigL.blocks()) { 1147 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1148 ClonedL.addBlockEntry(ClonedBB); 1149 if (LI.getLoopFor(BB) == &OrigL) 1150 LI.changeLoopFor(ClonedBB, &ClonedL); 1151 } 1152 }; 1153 1154 // We specially handle the first loop because it may get cloned into 1155 // a different parent and because we most commonly are cloning leaf loops. 1156 Loop *ClonedRootL = LI.AllocateLoop(); 1157 if (RootParentL) 1158 RootParentL->addChildLoop(ClonedRootL); 1159 else 1160 LI.addTopLevelLoop(ClonedRootL); 1161 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1162 1163 if (OrigRootL.empty()) 1164 return ClonedRootL; 1165 1166 // If we have a nest, we can quickly clone the entire loop nest using an 1167 // iterative approach because it is a tree. We keep the cloned parent in the 1168 // data structure to avoid repeatedly querying through a map to find it. 1169 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1170 // Build up the loops to clone in reverse order as we'll clone them from the 1171 // back. 1172 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1173 LoopsToClone.push_back({ClonedRootL, ChildL}); 1174 do { 1175 Loop *ClonedParentL, *L; 1176 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1177 Loop *ClonedL = LI.AllocateLoop(); 1178 ClonedParentL->addChildLoop(ClonedL); 1179 AddClonedBlocksToLoop(*L, *ClonedL); 1180 for (Loop *ChildL : llvm::reverse(*L)) 1181 LoopsToClone.push_back({ClonedL, ChildL}); 1182 } while (!LoopsToClone.empty()); 1183 1184 return ClonedRootL; 1185 } 1186 1187 /// Build the cloned loops of an original loop from unswitching. 1188 /// 1189 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1190 /// operation. We need to re-verify that there even is a loop (as the backedge 1191 /// may not have been cloned), and even if there are remaining backedges the 1192 /// backedge set may be different. However, we know that each child loop is 1193 /// undisturbed, we only need to find where to place each child loop within 1194 /// either any parent loop or within a cloned version of the original loop. 1195 /// 1196 /// Because child loops may end up cloned outside of any cloned version of the 1197 /// original loop, multiple cloned sibling loops may be created. All of them 1198 /// are returned so that the newly introduced loop nest roots can be 1199 /// identified. 1200 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1201 const ValueToValueMapTy &VMap, LoopInfo &LI, 1202 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1203 Loop *ClonedL = nullptr; 1204 1205 auto *OrigPH = OrigL.getLoopPreheader(); 1206 auto *OrigHeader = OrigL.getHeader(); 1207 1208 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1209 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1210 1211 // We need to know the loops of the cloned exit blocks to even compute the 1212 // accurate parent loop. If we only clone exits to some parent of the 1213 // original parent, we want to clone into that outer loop. We also keep track 1214 // of the loops that our cloned exit blocks participate in. 1215 Loop *ParentL = nullptr; 1216 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1217 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1218 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1219 for (auto *ExitBB : ExitBlocks) 1220 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1221 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1222 ExitLoopMap[ClonedExitBB] = ExitL; 1223 ClonedExitsInLoops.push_back(ClonedExitBB); 1224 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1225 ParentL = ExitL; 1226 } 1227 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1228 ParentL->contains(OrigL.getParentLoop())) && 1229 "The computed parent loop should always contain (or be) the parent of " 1230 "the original loop."); 1231 1232 // We build the set of blocks dominated by the cloned header from the set of 1233 // cloned blocks out of the original loop. While not all of these will 1234 // necessarily be in the cloned loop, it is enough to establish that they 1235 // aren't in unreachable cycles, etc. 1236 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1237 for (auto *BB : OrigL.blocks()) 1238 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1239 ClonedLoopBlocks.insert(ClonedBB); 1240 1241 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1242 // skipped cloning some region of this loop which can in turn skip some of 1243 // the backedges so we have to rebuild the blocks in the loop based on the 1244 // backedges that remain after cloning. 1245 SmallVector<BasicBlock *, 16> Worklist; 1246 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1247 for (auto *Pred : predecessors(ClonedHeader)) { 1248 // The only possible non-loop header predecessor is the preheader because 1249 // we know we cloned the loop in simplified form. 1250 if (Pred == ClonedPH) 1251 continue; 1252 1253 // Because the loop was in simplified form, the only non-loop predecessor 1254 // should be the preheader. 1255 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1256 "header other than the preheader " 1257 "that is not part of the loop!"); 1258 1259 // Insert this block into the loop set and on the first visit (and if it 1260 // isn't the header we're currently walking) put it into the worklist to 1261 // recurse through. 1262 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1263 Worklist.push_back(Pred); 1264 } 1265 1266 // If we had any backedges then there *is* a cloned loop. Put the header into 1267 // the loop set and then walk the worklist backwards to find all the blocks 1268 // that remain within the loop after cloning. 1269 if (!BlocksInClonedLoop.empty()) { 1270 BlocksInClonedLoop.insert(ClonedHeader); 1271 1272 while (!Worklist.empty()) { 1273 BasicBlock *BB = Worklist.pop_back_val(); 1274 assert(BlocksInClonedLoop.count(BB) && 1275 "Didn't put block into the loop set!"); 1276 1277 // Insert any predecessors that are in the possible set into the cloned 1278 // set, and if the insert is successful, add them to the worklist. Note 1279 // that we filter on the blocks that are definitely reachable via the 1280 // backedge to the loop header so we may prune out dead code within the 1281 // cloned loop. 1282 for (auto *Pred : predecessors(BB)) 1283 if (ClonedLoopBlocks.count(Pred) && 1284 BlocksInClonedLoop.insert(Pred).second) 1285 Worklist.push_back(Pred); 1286 } 1287 1288 ClonedL = LI.AllocateLoop(); 1289 if (ParentL) { 1290 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1291 ParentL->addChildLoop(ClonedL); 1292 } else { 1293 LI.addTopLevelLoop(ClonedL); 1294 } 1295 NonChildClonedLoops.push_back(ClonedL); 1296 1297 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1298 // We don't want to just add the cloned loop blocks based on how we 1299 // discovered them. The original order of blocks was carefully built in 1300 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1301 // that logic, we just re-walk the original blocks (and those of the child 1302 // loops) and filter them as we add them into the cloned loop. 1303 for (auto *BB : OrigL.blocks()) { 1304 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1305 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1306 continue; 1307 1308 // Directly add the blocks that are only in this loop. 1309 if (LI.getLoopFor(BB) == &OrigL) { 1310 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1311 continue; 1312 } 1313 1314 // We want to manually add it to this loop and parents. 1315 // Registering it with LoopInfo will happen when we clone the top 1316 // loop for this block. 1317 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1318 PL->addBlockEntry(ClonedBB); 1319 } 1320 1321 // Now add each child loop whose header remains within the cloned loop. All 1322 // of the blocks within the loop must satisfy the same constraints as the 1323 // header so once we pass the header checks we can just clone the entire 1324 // child loop nest. 1325 for (Loop *ChildL : OrigL) { 1326 auto *ClonedChildHeader = 1327 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1328 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1329 continue; 1330 1331 #ifndef NDEBUG 1332 // We should never have a cloned child loop header but fail to have 1333 // all of the blocks for that child loop. 1334 for (auto *ChildLoopBB : ChildL->blocks()) 1335 assert(BlocksInClonedLoop.count( 1336 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1337 "Child cloned loop has a header within the cloned outer " 1338 "loop but not all of its blocks!"); 1339 #endif 1340 1341 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1342 } 1343 } 1344 1345 // Now that we've handled all the components of the original loop that were 1346 // cloned into a new loop, we still need to handle anything from the original 1347 // loop that wasn't in a cloned loop. 1348 1349 // Figure out what blocks are left to place within any loop nest containing 1350 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1351 // them. 1352 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1353 if (BlocksInClonedLoop.empty()) 1354 UnloopedBlockSet.insert(ClonedPH); 1355 for (auto *ClonedBB : ClonedLoopBlocks) 1356 if (!BlocksInClonedLoop.count(ClonedBB)) 1357 UnloopedBlockSet.insert(ClonedBB); 1358 1359 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1360 // backwards across these to process them inside out. The order shouldn't 1361 // matter as we're just trying to build up the map from inside-out; we use 1362 // the map in a more stably ordered way below. 1363 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1364 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1365 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1366 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1367 }); 1368 1369 // Populate the existing ExitLoopMap with everything reachable from each 1370 // exit, starting from the inner most exit. 1371 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1372 assert(Worklist.empty() && "Didn't clear worklist!"); 1373 1374 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1375 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1376 1377 // Walk the CFG back until we hit the cloned PH adding everything reachable 1378 // and in the unlooped set to this exit block's loop. 1379 Worklist.push_back(ExitBB); 1380 do { 1381 BasicBlock *BB = Worklist.pop_back_val(); 1382 // We can stop recursing at the cloned preheader (if we get there). 1383 if (BB == ClonedPH) 1384 continue; 1385 1386 for (BasicBlock *PredBB : predecessors(BB)) { 1387 // If this pred has already been moved to our set or is part of some 1388 // (inner) loop, no update needed. 1389 if (!UnloopedBlockSet.erase(PredBB)) { 1390 assert( 1391 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1392 "Predecessor not mapped to a loop!"); 1393 continue; 1394 } 1395 1396 // We just insert into the loop set here. We'll add these blocks to the 1397 // exit loop after we build up the set in an order that doesn't rely on 1398 // predecessor order (which in turn relies on use list order). 1399 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1400 (void)Inserted; 1401 assert(Inserted && "Should only visit an unlooped block once!"); 1402 1403 // And recurse through to its predecessors. 1404 Worklist.push_back(PredBB); 1405 } 1406 } while (!Worklist.empty()); 1407 } 1408 1409 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1410 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1411 // in their original order adding them to the correct loop. 1412 1413 // We need a stable insertion order. We use the order of the original loop 1414 // order and map into the correct parent loop. 1415 for (auto *BB : llvm::concat<BasicBlock *const>( 1416 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1417 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1418 OuterL->addBasicBlockToLoop(BB, LI); 1419 1420 #ifndef NDEBUG 1421 for (auto &BBAndL : ExitLoopMap) { 1422 auto *BB = BBAndL.first; 1423 auto *OuterL = BBAndL.second; 1424 assert(LI.getLoopFor(BB) == OuterL && 1425 "Failed to put all blocks into outer loops!"); 1426 } 1427 #endif 1428 1429 // Now that all the blocks are placed into the correct containing loop in the 1430 // absence of child loops, find all the potentially cloned child loops and 1431 // clone them into whatever outer loop we placed their header into. 1432 for (Loop *ChildL : OrigL) { 1433 auto *ClonedChildHeader = 1434 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1435 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1436 continue; 1437 1438 #ifndef NDEBUG 1439 for (auto *ChildLoopBB : ChildL->blocks()) 1440 assert(VMap.count(ChildLoopBB) && 1441 "Cloned a child loop header but not all of that loops blocks!"); 1442 #endif 1443 1444 NonChildClonedLoops.push_back(cloneLoopNest( 1445 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1446 } 1447 } 1448 1449 static void 1450 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1451 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1452 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1453 // Find all the dead clones, and remove them from their successors. 1454 SmallVector<BasicBlock *, 16> DeadBlocks; 1455 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1456 for (auto &VMap : VMaps) 1457 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1458 if (!DT.isReachableFromEntry(ClonedBB)) { 1459 for (BasicBlock *SuccBB : successors(ClonedBB)) 1460 SuccBB->removePredecessor(ClonedBB); 1461 DeadBlocks.push_back(ClonedBB); 1462 } 1463 1464 // Remove all MemorySSA in the dead blocks 1465 if (MSSAU) { 1466 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1467 DeadBlocks.end()); 1468 MSSAU->removeBlocks(DeadBlockSet); 1469 } 1470 1471 // Drop any remaining references to break cycles. 1472 for (BasicBlock *BB : DeadBlocks) 1473 BB->dropAllReferences(); 1474 // Erase them from the IR. 1475 for (BasicBlock *BB : DeadBlocks) 1476 BB->eraseFromParent(); 1477 } 1478 1479 static void deleteDeadBlocksFromLoop(Loop &L, 1480 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1481 DominatorTree &DT, LoopInfo &LI, 1482 MemorySSAUpdater *MSSAU) { 1483 // Find all the dead blocks tied to this loop, and remove them from their 1484 // successors. 1485 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1486 1487 // Start with loop/exit blocks and get a transitive closure of reachable dead 1488 // blocks. 1489 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1490 ExitBlocks.end()); 1491 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1492 while (!DeathCandidates.empty()) { 1493 auto *BB = DeathCandidates.pop_back_val(); 1494 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1495 for (BasicBlock *SuccBB : successors(BB)) { 1496 SuccBB->removePredecessor(BB); 1497 DeathCandidates.push_back(SuccBB); 1498 } 1499 DeadBlockSet.insert(BB); 1500 } 1501 } 1502 1503 // Remove all MemorySSA in the dead blocks 1504 if (MSSAU) 1505 MSSAU->removeBlocks(DeadBlockSet); 1506 1507 // Filter out the dead blocks from the exit blocks list so that it can be 1508 // used in the caller. 1509 llvm::erase_if(ExitBlocks, 1510 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1511 1512 // Walk from this loop up through its parents removing all of the dead blocks. 1513 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1514 for (auto *BB : DeadBlockSet) 1515 ParentL->getBlocksSet().erase(BB); 1516 llvm::erase_if(ParentL->getBlocksVector(), 1517 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1518 } 1519 1520 // Now delete the dead child loops. This raw delete will clear them 1521 // recursively. 1522 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1523 if (!DeadBlockSet.count(ChildL->getHeader())) 1524 return false; 1525 1526 assert(llvm::all_of(ChildL->blocks(), 1527 [&](BasicBlock *ChildBB) { 1528 return DeadBlockSet.count(ChildBB); 1529 }) && 1530 "If the child loop header is dead all blocks in the child loop must " 1531 "be dead as well!"); 1532 LI.destroy(ChildL); 1533 return true; 1534 }); 1535 1536 // Remove the loop mappings for the dead blocks and drop all the references 1537 // from these blocks to others to handle cyclic references as we start 1538 // deleting the blocks themselves. 1539 for (auto *BB : DeadBlockSet) { 1540 // Check that the dominator tree has already been updated. 1541 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1542 LI.changeLoopFor(BB, nullptr); 1543 BB->dropAllReferences(); 1544 } 1545 1546 // Actually delete the blocks now that they've been fully unhooked from the 1547 // IR. 1548 for (auto *BB : DeadBlockSet) 1549 BB->eraseFromParent(); 1550 } 1551 1552 /// Recompute the set of blocks in a loop after unswitching. 1553 /// 1554 /// This walks from the original headers predecessors to rebuild the loop. We 1555 /// take advantage of the fact that new blocks can't have been added, and so we 1556 /// filter by the original loop's blocks. This also handles potentially 1557 /// unreachable code that we don't want to explore but might be found examining 1558 /// the predecessors of the header. 1559 /// 1560 /// If the original loop is no longer a loop, this will return an empty set. If 1561 /// it remains a loop, all the blocks within it will be added to the set 1562 /// (including those blocks in inner loops). 1563 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1564 LoopInfo &LI) { 1565 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1566 1567 auto *PH = L.getLoopPreheader(); 1568 auto *Header = L.getHeader(); 1569 1570 // A worklist to use while walking backwards from the header. 1571 SmallVector<BasicBlock *, 16> Worklist; 1572 1573 // First walk the predecessors of the header to find the backedges. This will 1574 // form the basis of our walk. 1575 for (auto *Pred : predecessors(Header)) { 1576 // Skip the preheader. 1577 if (Pred == PH) 1578 continue; 1579 1580 // Because the loop was in simplified form, the only non-loop predecessor 1581 // is the preheader. 1582 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1583 "than the preheader that is not part of the " 1584 "loop!"); 1585 1586 // Insert this block into the loop set and on the first visit and, if it 1587 // isn't the header we're currently walking, put it into the worklist to 1588 // recurse through. 1589 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1590 Worklist.push_back(Pred); 1591 } 1592 1593 // If no backedges were found, we're done. 1594 if (LoopBlockSet.empty()) 1595 return LoopBlockSet; 1596 1597 // We found backedges, recurse through them to identify the loop blocks. 1598 while (!Worklist.empty()) { 1599 BasicBlock *BB = Worklist.pop_back_val(); 1600 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1601 1602 // No need to walk past the header. 1603 if (BB == Header) 1604 continue; 1605 1606 // Because we know the inner loop structure remains valid we can use the 1607 // loop structure to jump immediately across the entire nested loop. 1608 // Further, because it is in loop simplified form, we can directly jump 1609 // to its preheader afterward. 1610 if (Loop *InnerL = LI.getLoopFor(BB)) 1611 if (InnerL != &L) { 1612 assert(L.contains(InnerL) && 1613 "Should not reach a loop *outside* this loop!"); 1614 // The preheader is the only possible predecessor of the loop so 1615 // insert it into the set and check whether it was already handled. 1616 auto *InnerPH = InnerL->getLoopPreheader(); 1617 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1618 "but not contain the inner loop " 1619 "preheader!"); 1620 if (!LoopBlockSet.insert(InnerPH).second) 1621 // The only way to reach the preheader is through the loop body 1622 // itself so if it has been visited the loop is already handled. 1623 continue; 1624 1625 // Insert all of the blocks (other than those already present) into 1626 // the loop set. We expect at least the block that led us to find the 1627 // inner loop to be in the block set, but we may also have other loop 1628 // blocks if they were already enqueued as predecessors of some other 1629 // outer loop block. 1630 for (auto *InnerBB : InnerL->blocks()) { 1631 if (InnerBB == BB) { 1632 assert(LoopBlockSet.count(InnerBB) && 1633 "Block should already be in the set!"); 1634 continue; 1635 } 1636 1637 LoopBlockSet.insert(InnerBB); 1638 } 1639 1640 // Add the preheader to the worklist so we will continue past the 1641 // loop body. 1642 Worklist.push_back(InnerPH); 1643 continue; 1644 } 1645 1646 // Insert any predecessors that were in the original loop into the new 1647 // set, and if the insert is successful, add them to the worklist. 1648 for (auto *Pred : predecessors(BB)) 1649 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1650 Worklist.push_back(Pred); 1651 } 1652 1653 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1654 1655 // We've found all the blocks participating in the loop, return our completed 1656 // set. 1657 return LoopBlockSet; 1658 } 1659 1660 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1661 /// 1662 /// The removal may have removed some child loops entirely but cannot have 1663 /// disturbed any remaining child loops. However, they may need to be hoisted 1664 /// to the parent loop (or to be top-level loops). The original loop may be 1665 /// completely removed. 1666 /// 1667 /// The sibling loops resulting from this update are returned. If the original 1668 /// loop remains a valid loop, it will be the first entry in this list with all 1669 /// of the newly sibling loops following it. 1670 /// 1671 /// Returns true if the loop remains a loop after unswitching, and false if it 1672 /// is no longer a loop after unswitching (and should not continue to be 1673 /// referenced). 1674 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1675 LoopInfo &LI, 1676 SmallVectorImpl<Loop *> &HoistedLoops) { 1677 auto *PH = L.getLoopPreheader(); 1678 1679 // Compute the actual parent loop from the exit blocks. Because we may have 1680 // pruned some exits the loop may be different from the original parent. 1681 Loop *ParentL = nullptr; 1682 SmallVector<Loop *, 4> ExitLoops; 1683 SmallVector<BasicBlock *, 4> ExitsInLoops; 1684 ExitsInLoops.reserve(ExitBlocks.size()); 1685 for (auto *ExitBB : ExitBlocks) 1686 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1687 ExitLoops.push_back(ExitL); 1688 ExitsInLoops.push_back(ExitBB); 1689 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1690 ParentL = ExitL; 1691 } 1692 1693 // Recompute the blocks participating in this loop. This may be empty if it 1694 // is no longer a loop. 1695 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1696 1697 // If we still have a loop, we need to re-set the loop's parent as the exit 1698 // block set changing may have moved it within the loop nest. Note that this 1699 // can only happen when this loop has a parent as it can only hoist the loop 1700 // *up* the nest. 1701 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1702 // Remove this loop's (original) blocks from all of the intervening loops. 1703 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1704 IL = IL->getParentLoop()) { 1705 IL->getBlocksSet().erase(PH); 1706 for (auto *BB : L.blocks()) 1707 IL->getBlocksSet().erase(BB); 1708 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1709 return BB == PH || L.contains(BB); 1710 }); 1711 } 1712 1713 LI.changeLoopFor(PH, ParentL); 1714 L.getParentLoop()->removeChildLoop(&L); 1715 if (ParentL) 1716 ParentL->addChildLoop(&L); 1717 else 1718 LI.addTopLevelLoop(&L); 1719 } 1720 1721 // Now we update all the blocks which are no longer within the loop. 1722 auto &Blocks = L.getBlocksVector(); 1723 auto BlocksSplitI = 1724 LoopBlockSet.empty() 1725 ? Blocks.begin() 1726 : std::stable_partition( 1727 Blocks.begin(), Blocks.end(), 1728 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1729 1730 // Before we erase the list of unlooped blocks, build a set of them. 1731 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1732 if (LoopBlockSet.empty()) 1733 UnloopedBlocks.insert(PH); 1734 1735 // Now erase these blocks from the loop. 1736 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1737 L.getBlocksSet().erase(BB); 1738 Blocks.erase(BlocksSplitI, Blocks.end()); 1739 1740 // Sort the exits in ascending loop depth, we'll work backwards across these 1741 // to process them inside out. 1742 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1743 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1744 }); 1745 1746 // We'll build up a set for each exit loop. 1747 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1748 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1749 1750 auto RemoveUnloopedBlocksFromLoop = 1751 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1752 for (auto *BB : UnloopedBlocks) 1753 L.getBlocksSet().erase(BB); 1754 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1755 return UnloopedBlocks.count(BB); 1756 }); 1757 }; 1758 1759 SmallVector<BasicBlock *, 16> Worklist; 1760 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1761 assert(Worklist.empty() && "Didn't clear worklist!"); 1762 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1763 1764 // Grab the next exit block, in decreasing loop depth order. 1765 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1766 Loop &ExitL = *LI.getLoopFor(ExitBB); 1767 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1768 1769 // Erase all of the unlooped blocks from the loops between the previous 1770 // exit loop and this exit loop. This works because the ExitInLoops list is 1771 // sorted in increasing order of loop depth and thus we visit loops in 1772 // decreasing order of loop depth. 1773 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1774 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1775 1776 // Walk the CFG back until we hit the cloned PH adding everything reachable 1777 // and in the unlooped set to this exit block's loop. 1778 Worklist.push_back(ExitBB); 1779 do { 1780 BasicBlock *BB = Worklist.pop_back_val(); 1781 // We can stop recursing at the cloned preheader (if we get there). 1782 if (BB == PH) 1783 continue; 1784 1785 for (BasicBlock *PredBB : predecessors(BB)) { 1786 // If this pred has already been moved to our set or is part of some 1787 // (inner) loop, no update needed. 1788 if (!UnloopedBlocks.erase(PredBB)) { 1789 assert((NewExitLoopBlocks.count(PredBB) || 1790 ExitL.contains(LI.getLoopFor(PredBB))) && 1791 "Predecessor not in a nested loop (or already visited)!"); 1792 continue; 1793 } 1794 1795 // We just insert into the loop set here. We'll add these blocks to the 1796 // exit loop after we build up the set in a deterministic order rather 1797 // than the predecessor-influenced visit order. 1798 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1799 (void)Inserted; 1800 assert(Inserted && "Should only visit an unlooped block once!"); 1801 1802 // And recurse through to its predecessors. 1803 Worklist.push_back(PredBB); 1804 } 1805 } while (!Worklist.empty()); 1806 1807 // If blocks in this exit loop were directly part of the original loop (as 1808 // opposed to a child loop) update the map to point to this exit loop. This 1809 // just updates a map and so the fact that the order is unstable is fine. 1810 for (auto *BB : NewExitLoopBlocks) 1811 if (Loop *BBL = LI.getLoopFor(BB)) 1812 if (BBL == &L || !L.contains(BBL)) 1813 LI.changeLoopFor(BB, &ExitL); 1814 1815 // We will remove the remaining unlooped blocks from this loop in the next 1816 // iteration or below. 1817 NewExitLoopBlocks.clear(); 1818 } 1819 1820 // Any remaining unlooped blocks are no longer part of any loop unless they 1821 // are part of some child loop. 1822 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1823 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1824 for (auto *BB : UnloopedBlocks) 1825 if (Loop *BBL = LI.getLoopFor(BB)) 1826 if (BBL == &L || !L.contains(BBL)) 1827 LI.changeLoopFor(BB, nullptr); 1828 1829 // Sink all the child loops whose headers are no longer in the loop set to 1830 // the parent (or to be top level loops). We reach into the loop and directly 1831 // update its subloop vector to make this batch update efficient. 1832 auto &SubLoops = L.getSubLoopsVector(); 1833 auto SubLoopsSplitI = 1834 LoopBlockSet.empty() 1835 ? SubLoops.begin() 1836 : std::stable_partition( 1837 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1838 return LoopBlockSet.count(SubL->getHeader()); 1839 }); 1840 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1841 HoistedLoops.push_back(HoistedL); 1842 HoistedL->setParentLoop(nullptr); 1843 1844 // To compute the new parent of this hoisted loop we look at where we 1845 // placed the preheader above. We can't lookup the header itself because we 1846 // retained the mapping from the header to the hoisted loop. But the 1847 // preheader and header should have the exact same new parent computed 1848 // based on the set of exit blocks from the original loop as the preheader 1849 // is a predecessor of the header and so reached in the reverse walk. And 1850 // because the loops were all in simplified form the preheader of the 1851 // hoisted loop can't be part of some *other* loop. 1852 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1853 NewParentL->addChildLoop(HoistedL); 1854 else 1855 LI.addTopLevelLoop(HoistedL); 1856 } 1857 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1858 1859 // Actually delete the loop if nothing remained within it. 1860 if (Blocks.empty()) { 1861 assert(SubLoops.empty() && 1862 "Failed to remove all subloops from the original loop!"); 1863 if (Loop *ParentL = L.getParentLoop()) 1864 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1865 else 1866 LI.removeLoop(llvm::find(LI, &L)); 1867 LI.destroy(&L); 1868 return false; 1869 } 1870 1871 return true; 1872 } 1873 1874 /// Helper to visit a dominator subtree, invoking a callable on each node. 1875 /// 1876 /// Returning false at any point will stop walking past that node of the tree. 1877 template <typename CallableT> 1878 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1879 SmallVector<DomTreeNode *, 4> DomWorklist; 1880 DomWorklist.push_back(DT[BB]); 1881 #ifndef NDEBUG 1882 SmallPtrSet<DomTreeNode *, 4> Visited; 1883 Visited.insert(DT[BB]); 1884 #endif 1885 do { 1886 DomTreeNode *N = DomWorklist.pop_back_val(); 1887 1888 // Visit this node. 1889 if (!Callable(N->getBlock())) 1890 continue; 1891 1892 // Accumulate the child nodes. 1893 for (DomTreeNode *ChildN : *N) { 1894 assert(Visited.insert(ChildN).second && 1895 "Cannot visit a node twice when walking a tree!"); 1896 DomWorklist.push_back(ChildN); 1897 } 1898 } while (!DomWorklist.empty()); 1899 } 1900 1901 static void unswitchNontrivialInvariants( 1902 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1903 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1904 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1905 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1906 auto *ParentBB = TI.getParent(); 1907 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1908 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1909 1910 // We can only unswitch switches, conditional branches with an invariant 1911 // condition, or combining invariant conditions with an instruction. 1912 assert((SI || (BI && BI->isConditional())) && 1913 "Can only unswitch switches and conditional branch!"); 1914 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1915 if (FullUnswitch) 1916 assert(Invariants.size() == 1 && 1917 "Cannot have other invariants with full unswitching!"); 1918 else 1919 assert(isa<Instruction>(BI->getCondition()) && 1920 "Partial unswitching requires an instruction as the condition!"); 1921 1922 if (MSSAU && VerifyMemorySSA) 1923 MSSAU->getMemorySSA()->verifyMemorySSA(); 1924 1925 // Constant and BBs tracking the cloned and continuing successor. When we are 1926 // unswitching the entire condition, this can just be trivially chosen to 1927 // unswitch towards `true`. However, when we are unswitching a set of 1928 // invariants combined with `and` or `or`, the combining operation determines 1929 // the best direction to unswitch: we want to unswitch the direction that will 1930 // collapse the branch. 1931 bool Direction = true; 1932 int ClonedSucc = 0; 1933 if (!FullUnswitch) { 1934 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1935 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1936 Instruction::And && 1937 "Only `or` and `and` instructions can combine invariants being " 1938 "unswitched."); 1939 Direction = false; 1940 ClonedSucc = 1; 1941 } 1942 } 1943 1944 BasicBlock *RetainedSuccBB = 1945 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1946 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1947 if (BI) 1948 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1949 else 1950 for (auto Case : SI->cases()) 1951 if (Case.getCaseSuccessor() != RetainedSuccBB) 1952 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1953 1954 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1955 "Should not unswitch the same successor we are retaining!"); 1956 1957 // The branch should be in this exact loop. Any inner loop's invariant branch 1958 // should be handled by unswitching that inner loop. The caller of this 1959 // routine should filter out any candidates that remain (but were skipped for 1960 // whatever reason). 1961 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1962 1963 // Compute the parent loop now before we start hacking on things. 1964 Loop *ParentL = L.getParentLoop(); 1965 // Get blocks in RPO order for MSSA update, before changing the CFG. 1966 LoopBlocksRPO LBRPO(&L); 1967 if (MSSAU) 1968 LBRPO.perform(&LI); 1969 1970 // Compute the outer-most loop containing one of our exit blocks. This is the 1971 // furthest up our loopnest which can be mutated, which we will use below to 1972 // update things. 1973 Loop *OuterExitL = &L; 1974 for (auto *ExitBB : ExitBlocks) { 1975 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1976 if (!NewOuterExitL) { 1977 // We exited the entire nest with this block, so we're done. 1978 OuterExitL = nullptr; 1979 break; 1980 } 1981 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1982 OuterExitL = NewOuterExitL; 1983 } 1984 1985 // At this point, we're definitely going to unswitch something so invalidate 1986 // any cached information in ScalarEvolution for the outer most loop 1987 // containing an exit block and all nested loops. 1988 if (SE) { 1989 if (OuterExitL) 1990 SE->forgetLoop(OuterExitL); 1991 else 1992 SE->forgetTopmostLoop(&L); 1993 } 1994 1995 // If the edge from this terminator to a successor dominates that successor, 1996 // store a map from each block in its dominator subtree to it. This lets us 1997 // tell when cloning for a particular successor if a block is dominated by 1998 // some *other* successor with a single data structure. We use this to 1999 // significantly reduce cloning. 2000 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2001 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2002 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2003 if (SuccBB->getUniquePredecessor() || 2004 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2005 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2006 })) 2007 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2008 DominatingSucc[BB] = SuccBB; 2009 return true; 2010 }); 2011 2012 // Split the preheader, so that we know that there is a safe place to insert 2013 // the conditional branch. We will change the preheader to have a conditional 2014 // branch on LoopCond. The original preheader will become the split point 2015 // between the unswitched versions, and we will have a new preheader for the 2016 // original loop. 2017 BasicBlock *SplitBB = L.getLoopPreheader(); 2018 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2019 2020 // Keep track of the dominator tree updates needed. 2021 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2022 2023 // Clone the loop for each unswitched successor. 2024 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2025 VMaps.reserve(UnswitchedSuccBBs.size()); 2026 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2027 for (auto *SuccBB : UnswitchedSuccBBs) { 2028 VMaps.emplace_back(new ValueToValueMapTy()); 2029 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2030 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2031 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2032 } 2033 2034 // The stitching of the branched code back together depends on whether we're 2035 // doing full unswitching or not with the exception that we always want to 2036 // nuke the initial terminator placed in the split block. 2037 SplitBB->getTerminator()->eraseFromParent(); 2038 if (FullUnswitch) { 2039 // Splice the terminator from the original loop and rewrite its 2040 // successors. 2041 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2042 2043 // Keep a clone of the terminator for MSSA updates. 2044 Instruction *NewTI = TI.clone(); 2045 ParentBB->getInstList().push_back(NewTI); 2046 2047 // First wire up the moved terminator to the preheaders. 2048 if (BI) { 2049 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2050 BI->setSuccessor(ClonedSucc, ClonedPH); 2051 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2052 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2053 } else { 2054 assert(SI && "Must either be a branch or switch!"); 2055 2056 // Walk the cases and directly update their successors. 2057 assert(SI->getDefaultDest() == RetainedSuccBB && 2058 "Not retaining default successor!"); 2059 SI->setDefaultDest(LoopPH); 2060 for (auto &Case : SI->cases()) 2061 if (Case.getCaseSuccessor() == RetainedSuccBB) 2062 Case.setSuccessor(LoopPH); 2063 else 2064 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2065 2066 // We need to use the set to populate domtree updates as even when there 2067 // are multiple cases pointing at the same successor we only want to 2068 // remove and insert one edge in the domtree. 2069 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2070 DTUpdates.push_back( 2071 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2072 } 2073 2074 if (MSSAU) { 2075 DT.applyUpdates(DTUpdates); 2076 DTUpdates.clear(); 2077 2078 // Remove all but one edge to the retained block and all unswitched 2079 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2080 // when we know we only keep a single edge for each case. 2081 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2082 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2083 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2084 2085 for (auto &VMap : VMaps) 2086 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2087 /*IgnoreIncomingWithNoClones=*/true); 2088 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2089 2090 // Remove all edges to unswitched blocks. 2091 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2092 MSSAU->removeEdge(ParentBB, SuccBB); 2093 } 2094 2095 // Now unhook the successor relationship as we'll be replacing 2096 // the terminator with a direct branch. This is much simpler for branches 2097 // than switches so we handle those first. 2098 if (BI) { 2099 // Remove the parent as a predecessor of the unswitched successor. 2100 assert(UnswitchedSuccBBs.size() == 1 && 2101 "Only one possible unswitched block for a branch!"); 2102 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2103 UnswitchedSuccBB->removePredecessor(ParentBB, 2104 /*KeepOneInputPHIs*/ true); 2105 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2106 } else { 2107 // Note that we actually want to remove the parent block as a predecessor 2108 // of *every* case successor. The case successor is either unswitched, 2109 // completely eliminating an edge from the parent to that successor, or it 2110 // is a duplicate edge to the retained successor as the retained successor 2111 // is always the default successor and as we'll replace this with a direct 2112 // branch we no longer need the duplicate entries in the PHI nodes. 2113 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2114 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2115 "Not retaining default successor!"); 2116 for (auto &Case : NewSI->cases()) 2117 Case.getCaseSuccessor()->removePredecessor( 2118 ParentBB, 2119 /*KeepOneInputPHIs*/ true); 2120 2121 // We need to use the set to populate domtree updates as even when there 2122 // are multiple cases pointing at the same successor we only want to 2123 // remove and insert one edge in the domtree. 2124 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2125 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2126 } 2127 2128 // After MSSAU update, remove the cloned terminator instruction NewTI. 2129 ParentBB->getTerminator()->eraseFromParent(); 2130 2131 // Create a new unconditional branch to the continuing block (as opposed to 2132 // the one cloned). 2133 BranchInst::Create(RetainedSuccBB, ParentBB); 2134 } else { 2135 assert(BI && "Only branches have partial unswitching."); 2136 assert(UnswitchedSuccBBs.size() == 1 && 2137 "Only one possible unswitched block for a branch!"); 2138 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2139 // When doing a partial unswitch, we have to do a bit more work to build up 2140 // the branch in the split block. 2141 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2142 *ClonedPH, *LoopPH); 2143 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2144 2145 if (MSSAU) { 2146 DT.applyUpdates(DTUpdates); 2147 DTUpdates.clear(); 2148 2149 // Perform MSSA cloning updates. 2150 for (auto &VMap : VMaps) 2151 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2152 /*IgnoreIncomingWithNoClones=*/true); 2153 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2154 } 2155 } 2156 2157 // Apply the updates accumulated above to get an up-to-date dominator tree. 2158 DT.applyUpdates(DTUpdates); 2159 2160 // Now that we have an accurate dominator tree, first delete the dead cloned 2161 // blocks so that we can accurately build any cloned loops. It is important to 2162 // not delete the blocks from the original loop yet because we still want to 2163 // reference the original loop to understand the cloned loop's structure. 2164 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2165 2166 // Build the cloned loop structure itself. This may be substantially 2167 // different from the original structure due to the simplified CFG. This also 2168 // handles inserting all the cloned blocks into the correct loops. 2169 SmallVector<Loop *, 4> NonChildClonedLoops; 2170 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2171 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2172 2173 // Now that our cloned loops have been built, we can update the original loop. 2174 // First we delete the dead blocks from it and then we rebuild the loop 2175 // structure taking these deletions into account. 2176 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2177 2178 if (MSSAU && VerifyMemorySSA) 2179 MSSAU->getMemorySSA()->verifyMemorySSA(); 2180 2181 SmallVector<Loop *, 4> HoistedLoops; 2182 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2183 2184 if (MSSAU && VerifyMemorySSA) 2185 MSSAU->getMemorySSA()->verifyMemorySSA(); 2186 2187 // This transformation has a high risk of corrupting the dominator tree, and 2188 // the below steps to rebuild loop structures will result in hard to debug 2189 // errors in that case so verify that the dominator tree is sane first. 2190 // FIXME: Remove this when the bugs stop showing up and rely on existing 2191 // verification steps. 2192 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2193 2194 if (BI) { 2195 // If we unswitched a branch which collapses the condition to a known 2196 // constant we want to replace all the uses of the invariants within both 2197 // the original and cloned blocks. We do this here so that we can use the 2198 // now updated dominator tree to identify which side the users are on. 2199 assert(UnswitchedSuccBBs.size() == 1 && 2200 "Only one possible unswitched block for a branch!"); 2201 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2202 2203 // When considering multiple partially-unswitched invariants 2204 // we cant just go replace them with constants in both branches. 2205 // 2206 // For 'AND' we infer that true branch ("continue") means true 2207 // for each invariant operand. 2208 // For 'OR' we can infer that false branch ("continue") means false 2209 // for each invariant operand. 2210 // So it happens that for multiple-partial case we dont replace 2211 // in the unswitched branch. 2212 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2213 2214 ConstantInt *UnswitchedReplacement = 2215 Direction ? ConstantInt::getTrue(BI->getContext()) 2216 : ConstantInt::getFalse(BI->getContext()); 2217 ConstantInt *ContinueReplacement = 2218 Direction ? ConstantInt::getFalse(BI->getContext()) 2219 : ConstantInt::getTrue(BI->getContext()); 2220 for (Value *Invariant : Invariants) 2221 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2222 UI != UE;) { 2223 // Grab the use and walk past it so we can clobber it in the use list. 2224 Use *U = &*UI++; 2225 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2226 if (!UserI) 2227 continue; 2228 2229 // Replace it with the 'continue' side if in the main loop body, and the 2230 // unswitched if in the cloned blocks. 2231 if (DT.dominates(LoopPH, UserI->getParent())) 2232 U->set(ContinueReplacement); 2233 else if (ReplaceUnswitched && 2234 DT.dominates(ClonedPH, UserI->getParent())) 2235 U->set(UnswitchedReplacement); 2236 } 2237 } 2238 2239 // We can change which blocks are exit blocks of all the cloned sibling 2240 // loops, the current loop, and any parent loops which shared exit blocks 2241 // with the current loop. As a consequence, we need to re-form LCSSA for 2242 // them. But we shouldn't need to re-form LCSSA for any child loops. 2243 // FIXME: This could be made more efficient by tracking which exit blocks are 2244 // new, and focusing on them, but that isn't likely to be necessary. 2245 // 2246 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2247 // loop nest and update every loop that could have had its exits changed. We 2248 // also need to cover any intervening loops. We add all of these loops to 2249 // a list and sort them by loop depth to achieve this without updating 2250 // unnecessary loops. 2251 auto UpdateLoop = [&](Loop &UpdateL) { 2252 #ifndef NDEBUG 2253 UpdateL.verifyLoop(); 2254 for (Loop *ChildL : UpdateL) { 2255 ChildL->verifyLoop(); 2256 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2257 "Perturbed a child loop's LCSSA form!"); 2258 } 2259 #endif 2260 // First build LCSSA for this loop so that we can preserve it when 2261 // forming dedicated exits. We don't want to perturb some other loop's 2262 // LCSSA while doing that CFG edit. 2263 formLCSSA(UpdateL, DT, &LI, nullptr); 2264 2265 // For loops reached by this loop's original exit blocks we may 2266 // introduced new, non-dedicated exits. At least try to re-form dedicated 2267 // exits for these loops. This may fail if they couldn't have dedicated 2268 // exits to start with. 2269 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2270 }; 2271 2272 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2273 // and we can do it in any order as they don't nest relative to each other. 2274 // 2275 // Also check if any of the loops we have updated have become top-level loops 2276 // as that will necessitate widening the outer loop scope. 2277 for (Loop *UpdatedL : 2278 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2279 UpdateLoop(*UpdatedL); 2280 if (!UpdatedL->getParentLoop()) 2281 OuterExitL = nullptr; 2282 } 2283 if (IsStillLoop) { 2284 UpdateLoop(L); 2285 if (!L.getParentLoop()) 2286 OuterExitL = nullptr; 2287 } 2288 2289 // If the original loop had exit blocks, walk up through the outer most loop 2290 // of those exit blocks to update LCSSA and form updated dedicated exits. 2291 if (OuterExitL != &L) 2292 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2293 OuterL = OuterL->getParentLoop()) 2294 UpdateLoop(*OuterL); 2295 2296 #ifndef NDEBUG 2297 // Verify the entire loop structure to catch any incorrect updates before we 2298 // progress in the pass pipeline. 2299 LI.verify(DT); 2300 #endif 2301 2302 // Now that we've unswitched something, make callbacks to report the changes. 2303 // For that we need to merge together the updated loops and the cloned loops 2304 // and check whether the original loop survived. 2305 SmallVector<Loop *, 4> SibLoops; 2306 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2307 if (UpdatedL->getParentLoop() == ParentL) 2308 SibLoops.push_back(UpdatedL); 2309 UnswitchCB(IsStillLoop, SibLoops); 2310 2311 if (MSSAU && VerifyMemorySSA) 2312 MSSAU->getMemorySSA()->verifyMemorySSA(); 2313 2314 if (BI) 2315 ++NumBranches; 2316 else 2317 ++NumSwitches; 2318 } 2319 2320 /// Recursively compute the cost of a dominator subtree based on the per-block 2321 /// cost map provided. 2322 /// 2323 /// The recursive computation is memozied into the provided DT-indexed cost map 2324 /// to allow querying it for most nodes in the domtree without it becoming 2325 /// quadratic. 2326 static int 2327 computeDomSubtreeCost(DomTreeNode &N, 2328 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2329 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2330 // Don't accumulate cost (or recurse through) blocks not in our block cost 2331 // map and thus not part of the duplication cost being considered. 2332 auto BBCostIt = BBCostMap.find(N.getBlock()); 2333 if (BBCostIt == BBCostMap.end()) 2334 return 0; 2335 2336 // Lookup this node to see if we already computed its cost. 2337 auto DTCostIt = DTCostMap.find(&N); 2338 if (DTCostIt != DTCostMap.end()) 2339 return DTCostIt->second; 2340 2341 // If not, we have to compute it. We can't use insert above and update 2342 // because computing the cost may insert more things into the map. 2343 int Cost = std::accumulate( 2344 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2345 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2346 }); 2347 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2348 (void)Inserted; 2349 assert(Inserted && "Should not insert a node while visiting children!"); 2350 return Cost; 2351 } 2352 2353 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2354 /// making the following replacement: 2355 /// 2356 /// --code before guard-- 2357 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2358 /// --code after guard-- 2359 /// 2360 /// into 2361 /// 2362 /// --code before guard-- 2363 /// br i1 %cond, label %guarded, label %deopt 2364 /// 2365 /// guarded: 2366 /// --code after guard-- 2367 /// 2368 /// deopt: 2369 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2370 /// unreachable 2371 /// 2372 /// It also makes all relevant DT and LI updates, so that all structures are in 2373 /// valid state after this transform. 2374 static BranchInst * 2375 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2376 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2377 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2378 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2379 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2380 BasicBlock *CheckBB = GI->getParent(); 2381 2382 if (MSSAU && VerifyMemorySSA) 2383 MSSAU->getMemorySSA()->verifyMemorySSA(); 2384 2385 // Remove all CheckBB's successors from DomTree. A block can be seen among 2386 // successors more than once, but for DomTree it should be added only once. 2387 SmallPtrSet<BasicBlock *, 4> Successors; 2388 for (auto *Succ : successors(CheckBB)) 2389 if (Successors.insert(Succ).second) 2390 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2391 2392 Instruction *DeoptBlockTerm = 2393 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2394 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2395 // SplitBlockAndInsertIfThen inserts control flow that branches to 2396 // DeoptBlockTerm if the condition is true. We want the opposite. 2397 CheckBI->swapSuccessors(); 2398 2399 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2400 GuardedBlock->setName("guarded"); 2401 CheckBI->getSuccessor(1)->setName("deopt"); 2402 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2403 2404 // We now have a new exit block. 2405 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2406 2407 if (MSSAU) 2408 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2409 2410 GI->moveBefore(DeoptBlockTerm); 2411 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2412 2413 // Add new successors of CheckBB into DomTree. 2414 for (auto *Succ : successors(CheckBB)) 2415 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2416 2417 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2418 // successors. 2419 for (auto *Succ : Successors) 2420 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2421 2422 // Make proper changes to DT. 2423 DT.applyUpdates(DTUpdates); 2424 // Inform LI of a new loop block. 2425 L.addBasicBlockToLoop(GuardedBlock, LI); 2426 2427 if (MSSAU) { 2428 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2429 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End); 2430 if (VerifyMemorySSA) 2431 MSSAU->getMemorySSA()->verifyMemorySSA(); 2432 } 2433 2434 ++NumGuards; 2435 return CheckBI; 2436 } 2437 2438 /// Cost multiplier is a way to limit potentially exponential behavior 2439 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2440 /// candidates available. Also accounting for the number of "sibling" loops with 2441 /// the idea to account for previous unswitches that already happened on this 2442 /// cluster of loops. There was an attempt to keep this formula simple, 2443 /// just enough to limit the worst case behavior. Even if it is not that simple 2444 /// now it is still not an attempt to provide a detailed heuristic size 2445 /// prediction. 2446 /// 2447 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2448 /// unswitch candidates, making adequate predictions instead of wild guesses. 2449 /// That requires knowing not just the number of "remaining" candidates but 2450 /// also costs of unswitching for each of these candidates. 2451 static int calculateUnswitchCostMultiplier( 2452 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2453 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2454 UnswitchCandidates) { 2455 2456 // Guards and other exiting conditions do not contribute to exponential 2457 // explosion as soon as they dominate the latch (otherwise there might be 2458 // another path to the latch remaining that does not allow to eliminate the 2459 // loop copy on unswitch). 2460 BasicBlock *Latch = L.getLoopLatch(); 2461 BasicBlock *CondBlock = TI.getParent(); 2462 if (DT.dominates(CondBlock, Latch) && 2463 (isGuard(&TI) || 2464 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2465 return L.contains(SuccBB); 2466 }) <= 1)) { 2467 NumCostMultiplierSkipped++; 2468 return 1; 2469 } 2470 2471 auto *ParentL = L.getParentLoop(); 2472 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2473 : std::distance(LI.begin(), LI.end())); 2474 // Count amount of clones that all the candidates might cause during 2475 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2476 int UnswitchedClones = 0; 2477 for (auto Candidate : UnswitchCandidates) { 2478 Instruction *CI = Candidate.first; 2479 BasicBlock *CondBlock = CI->getParent(); 2480 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2481 if (isGuard(CI)) { 2482 if (!SkipExitingSuccessors) 2483 UnswitchedClones++; 2484 continue; 2485 } 2486 int NonExitingSuccessors = llvm::count_if( 2487 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2488 return !SkipExitingSuccessors || L.contains(SuccBB); 2489 }); 2490 UnswitchedClones += Log2_32(NonExitingSuccessors); 2491 } 2492 2493 // Ignore up to the "unscaled candidates" number of unswitch candidates 2494 // when calculating the power-of-two scaling of the cost. The main idea 2495 // with this control is to allow a small number of unswitches to happen 2496 // and rely more on siblings multiplier (see below) when the number 2497 // of candidates is small. 2498 unsigned ClonesPower = 2499 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2500 2501 // Allowing top-level loops to spread a bit more than nested ones. 2502 int SiblingsMultiplier = 2503 std::max((ParentL ? SiblingsCount 2504 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2505 1); 2506 // Compute the cost multiplier in a way that won't overflow by saturating 2507 // at an upper bound. 2508 int CostMultiplier; 2509 if (ClonesPower > Log2_32(UnswitchThreshold) || 2510 SiblingsMultiplier > UnswitchThreshold) 2511 CostMultiplier = UnswitchThreshold; 2512 else 2513 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2514 (int)UnswitchThreshold); 2515 2516 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2517 << " (siblings " << SiblingsMultiplier << " * clones " 2518 << (1 << ClonesPower) << ")" 2519 << " for unswitch candidate: " << TI << "\n"); 2520 return CostMultiplier; 2521 } 2522 2523 static bool 2524 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2525 AssumptionCache &AC, TargetTransformInfo &TTI, 2526 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2527 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2528 // Collect all invariant conditions within this loop (as opposed to an inner 2529 // loop which would be handled when visiting that inner loop). 2530 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2531 UnswitchCandidates; 2532 2533 // Whether or not we should also collect guards in the loop. 2534 bool CollectGuards = false; 2535 if (UnswitchGuards) { 2536 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2537 Intrinsic::getName(Intrinsic::experimental_guard)); 2538 if (GuardDecl && !GuardDecl->use_empty()) 2539 CollectGuards = true; 2540 } 2541 2542 for (auto *BB : L.blocks()) { 2543 if (LI.getLoopFor(BB) != &L) 2544 continue; 2545 2546 if (CollectGuards) 2547 for (auto &I : *BB) 2548 if (isGuard(&I)) { 2549 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2550 // TODO: Support AND, OR conditions and partial unswitching. 2551 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2552 UnswitchCandidates.push_back({&I, {Cond}}); 2553 } 2554 2555 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2556 // We can only consider fully loop-invariant switch conditions as we need 2557 // to completely eliminate the switch after unswitching. 2558 if (!isa<Constant>(SI->getCondition()) && 2559 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2560 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2561 continue; 2562 } 2563 2564 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2565 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2566 BI->getSuccessor(0) == BI->getSuccessor(1)) 2567 continue; 2568 2569 if (L.isLoopInvariant(BI->getCondition())) { 2570 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2571 continue; 2572 } 2573 2574 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2575 if (CondI.getOpcode() != Instruction::And && 2576 CondI.getOpcode() != Instruction::Or) 2577 continue; 2578 2579 TinyPtrVector<Value *> Invariants = 2580 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2581 if (Invariants.empty()) 2582 continue; 2583 2584 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2585 } 2586 2587 // If we didn't find any candidates, we're done. 2588 if (UnswitchCandidates.empty()) 2589 return false; 2590 2591 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2592 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2593 // irreducible control flow into reducible control flow and introduce new 2594 // loops "out of thin air". If we ever discover important use cases for doing 2595 // this, we can add support to loop unswitch, but it is a lot of complexity 2596 // for what seems little or no real world benefit. 2597 LoopBlocksRPO RPOT(&L); 2598 RPOT.perform(&LI); 2599 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2600 return false; 2601 2602 SmallVector<BasicBlock *, 4> ExitBlocks; 2603 L.getUniqueExitBlocks(ExitBlocks); 2604 2605 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2606 // don't know how to split those exit blocks. 2607 // FIXME: We should teach SplitBlock to handle this and remove this 2608 // restriction. 2609 for (auto *ExitBB : ExitBlocks) 2610 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2611 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2612 return false; 2613 } 2614 2615 LLVM_DEBUG( 2616 dbgs() << "Considering " << UnswitchCandidates.size() 2617 << " non-trivial loop invariant conditions for unswitching.\n"); 2618 2619 // Given that unswitching these terminators will require duplicating parts of 2620 // the loop, so we need to be able to model that cost. Compute the ephemeral 2621 // values and set up a data structure to hold per-BB costs. We cache each 2622 // block's cost so that we don't recompute this when considering different 2623 // subsets of the loop for duplication during unswitching. 2624 SmallPtrSet<const Value *, 4> EphValues; 2625 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2626 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2627 2628 // Compute the cost of each block, as well as the total loop cost. Also, bail 2629 // out if we see instructions which are incompatible with loop unswitching 2630 // (convergent, noduplicate, or cross-basic-block tokens). 2631 // FIXME: We might be able to safely handle some of these in non-duplicated 2632 // regions. 2633 int LoopCost = 0; 2634 for (auto *BB : L.blocks()) { 2635 int Cost = 0; 2636 for (auto &I : *BB) { 2637 if (EphValues.count(&I)) 2638 continue; 2639 2640 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2641 return false; 2642 if (auto CS = CallSite(&I)) 2643 if (CS.isConvergent() || CS.cannotDuplicate()) 2644 return false; 2645 2646 Cost += TTI.getUserCost(&I); 2647 } 2648 assert(Cost >= 0 && "Must not have negative costs!"); 2649 LoopCost += Cost; 2650 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2651 BBCostMap[BB] = Cost; 2652 } 2653 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2654 2655 // Now we find the best candidate by searching for the one with the following 2656 // properties in order: 2657 // 2658 // 1) An unswitching cost below the threshold 2659 // 2) The smallest number of duplicated unswitch candidates (to avoid 2660 // creating redundant subsequent unswitching) 2661 // 3) The smallest cost after unswitching. 2662 // 2663 // We prioritize reducing fanout of unswitch candidates provided the cost 2664 // remains below the threshold because this has a multiplicative effect. 2665 // 2666 // This requires memoizing each dominator subtree to avoid redundant work. 2667 // 2668 // FIXME: Need to actually do the number of candidates part above. 2669 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2670 // Given a terminator which might be unswitched, computes the non-duplicated 2671 // cost for that terminator. 2672 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2673 BasicBlock &BB = *TI.getParent(); 2674 SmallPtrSet<BasicBlock *, 4> Visited; 2675 2676 int Cost = LoopCost; 2677 for (BasicBlock *SuccBB : successors(&BB)) { 2678 // Don't count successors more than once. 2679 if (!Visited.insert(SuccBB).second) 2680 continue; 2681 2682 // If this is a partial unswitch candidate, then it must be a conditional 2683 // branch with a condition of either `or` or `and`. In that case, one of 2684 // the successors is necessarily duplicated, so don't even try to remove 2685 // its cost. 2686 if (!FullUnswitch) { 2687 auto &BI = cast<BranchInst>(TI); 2688 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2689 Instruction::And) { 2690 if (SuccBB == BI.getSuccessor(1)) 2691 continue; 2692 } else { 2693 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2694 Instruction::Or && 2695 "Only `and` and `or` conditions can result in a partial " 2696 "unswitch!"); 2697 if (SuccBB == BI.getSuccessor(0)) 2698 continue; 2699 } 2700 } 2701 2702 // This successor's domtree will not need to be duplicated after 2703 // unswitching if the edge to the successor dominates it (and thus the 2704 // entire tree). This essentially means there is no other path into this 2705 // subtree and so it will end up live in only one clone of the loop. 2706 if (SuccBB->getUniquePredecessor() || 2707 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2708 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2709 })) { 2710 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2711 assert(Cost >= 0 && 2712 "Non-duplicated cost should never exceed total loop cost!"); 2713 } 2714 } 2715 2716 // Now scale the cost by the number of unique successors minus one. We 2717 // subtract one because there is already at least one copy of the entire 2718 // loop. This is computing the new cost of unswitching a condition. 2719 // Note that guards always have 2 unique successors that are implicit and 2720 // will be materialized if we decide to unswitch it. 2721 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2722 assert(SuccessorsCount > 1 && 2723 "Cannot unswitch a condition without multiple distinct successors!"); 2724 return Cost * (SuccessorsCount - 1); 2725 }; 2726 Instruction *BestUnswitchTI = nullptr; 2727 int BestUnswitchCost = 0; 2728 ArrayRef<Value *> BestUnswitchInvariants; 2729 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2730 Instruction &TI = *TerminatorAndInvariants.first; 2731 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2732 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2733 int CandidateCost = ComputeUnswitchedCost( 2734 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2735 Invariants[0] == BI->getCondition())); 2736 // Calculate cost multiplier which is a tool to limit potentially 2737 // exponential behavior of loop-unswitch. 2738 if (EnableUnswitchCostMultiplier) { 2739 int CostMultiplier = 2740 calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2741 assert( 2742 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2743 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2744 CandidateCost *= CostMultiplier; 2745 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2746 << " (multiplier: " << CostMultiplier << ")" 2747 << " for unswitch candidate: " << TI << "\n"); 2748 } else { 2749 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2750 << " for unswitch candidate: " << TI << "\n"); 2751 } 2752 2753 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2754 BestUnswitchTI = &TI; 2755 BestUnswitchCost = CandidateCost; 2756 BestUnswitchInvariants = Invariants; 2757 } 2758 } 2759 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2760 2761 if (BestUnswitchCost >= UnswitchThreshold) { 2762 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2763 << BestUnswitchCost << "\n"); 2764 return false; 2765 } 2766 2767 // If the best candidate is a guard, turn it into a branch. 2768 if (isGuard(BestUnswitchTI)) 2769 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2770 ExitBlocks, DT, LI, MSSAU); 2771 2772 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2773 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2774 << "\n"); 2775 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2776 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2777 return true; 2778 } 2779 2780 /// Unswitch control flow predicated on loop invariant conditions. 2781 /// 2782 /// This first hoists all branches or switches which are trivial (IE, do not 2783 /// require duplicating any part of the loop) out of the loop body. It then 2784 /// looks at other loop invariant control flows and tries to unswitch those as 2785 /// well by cloning the loop if the result is small enough. 2786 /// 2787 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2788 /// updated based on the unswitch. 2789 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2790 /// 2791 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2792 /// true, we will attempt to do non-trivial unswitching as well as trivial 2793 /// unswitching. 2794 /// 2795 /// The `UnswitchCB` callback provided will be run after unswitching is 2796 /// complete, with the first parameter set to `true` if the provided loop 2797 /// remains a loop, and a list of new sibling loops created. 2798 /// 2799 /// If `SE` is non-null, we will update that analysis based on the unswitching 2800 /// done. 2801 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2802 AssumptionCache &AC, TargetTransformInfo &TTI, 2803 bool NonTrivial, 2804 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2805 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2806 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2807 "Loops must be in LCSSA form before unswitching."); 2808 bool Changed = false; 2809 2810 // Must be in loop simplified form: we need a preheader and dedicated exits. 2811 if (!L.isLoopSimplifyForm()) 2812 return false; 2813 2814 // Try trivial unswitch first before loop over other basic blocks in the loop. 2815 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2816 // If we unswitched successfully we will want to clean up the loop before 2817 // processing it further so just mark it as unswitched and return. 2818 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2819 return true; 2820 } 2821 2822 // If we're not doing non-trivial unswitching, we're done. We both accept 2823 // a parameter but also check a local flag that can be used for testing 2824 // a debugging. 2825 if (!NonTrivial && !EnableNonTrivialUnswitch) 2826 return false; 2827 2828 // For non-trivial unswitching, because it often creates new loops, we rely on 2829 // the pass manager to iterate on the loops rather than trying to immediately 2830 // reach a fixed point. There is no substantial advantage to iterating 2831 // internally, and if any of the new loops are simplified enough to contain 2832 // trivial unswitching we want to prefer those. 2833 2834 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2835 // a partial unswitch when possible below the threshold. 2836 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2837 return true; 2838 2839 // No other opportunities to unswitch. 2840 return Changed; 2841 } 2842 2843 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2844 LoopStandardAnalysisResults &AR, 2845 LPMUpdater &U) { 2846 Function &F = *L.getHeader()->getParent(); 2847 (void)F; 2848 2849 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2850 << "\n"); 2851 2852 // Save the current loop name in a variable so that we can report it even 2853 // after it has been deleted. 2854 std::string LoopName = L.getName(); 2855 2856 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2857 ArrayRef<Loop *> NewLoops) { 2858 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2859 if (!NewLoops.empty()) 2860 U.addSiblingLoops(NewLoops); 2861 2862 // If the current loop remains valid, we should revisit it to catch any 2863 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2864 if (CurrentLoopValid) 2865 U.revisitCurrentLoop(); 2866 else 2867 U.markLoopAsDeleted(L, LoopName); 2868 }; 2869 2870 Optional<MemorySSAUpdater> MSSAU; 2871 if (AR.MSSA) { 2872 MSSAU = MemorySSAUpdater(AR.MSSA); 2873 if (VerifyMemorySSA) 2874 AR.MSSA->verifyMemorySSA(); 2875 } 2876 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2877 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2878 return PreservedAnalyses::all(); 2879 2880 if (AR.MSSA && VerifyMemorySSA) 2881 AR.MSSA->verifyMemorySSA(); 2882 2883 // Historically this pass has had issues with the dominator tree so verify it 2884 // in asserts builds. 2885 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2886 2887 auto PA = getLoopPassPreservedAnalyses(); 2888 if (AR.MSSA) 2889 PA.preserve<MemorySSAAnalysis>(); 2890 return PA; 2891 } 2892 2893 namespace { 2894 2895 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2896 bool NonTrivial; 2897 2898 public: 2899 static char ID; // Pass ID, replacement for typeid 2900 2901 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2902 : LoopPass(ID), NonTrivial(NonTrivial) { 2903 initializeSimpleLoopUnswitchLegacyPassPass( 2904 *PassRegistry::getPassRegistry()); 2905 } 2906 2907 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2908 2909 void getAnalysisUsage(AnalysisUsage &AU) const override { 2910 AU.addRequired<AssumptionCacheTracker>(); 2911 AU.addRequired<TargetTransformInfoWrapperPass>(); 2912 if (EnableMSSALoopDependency) { 2913 AU.addRequired<MemorySSAWrapperPass>(); 2914 AU.addPreserved<MemorySSAWrapperPass>(); 2915 } 2916 getLoopAnalysisUsage(AU); 2917 } 2918 }; 2919 2920 } // end anonymous namespace 2921 2922 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2923 if (skipLoop(L)) 2924 return false; 2925 2926 Function &F = *L->getHeader()->getParent(); 2927 2928 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2929 << "\n"); 2930 2931 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2932 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2933 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2934 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2935 MemorySSA *MSSA = nullptr; 2936 Optional<MemorySSAUpdater> MSSAU; 2937 if (EnableMSSALoopDependency) { 2938 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2939 MSSAU = MemorySSAUpdater(MSSA); 2940 } 2941 2942 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2943 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2944 2945 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2946 ArrayRef<Loop *> NewLoops) { 2947 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2948 for (auto *NewL : NewLoops) 2949 LPM.addLoop(*NewL); 2950 2951 // If the current loop remains valid, re-add it to the queue. This is 2952 // a little wasteful as we'll finish processing the current loop as well, 2953 // but it is the best we can do in the old PM. 2954 if (CurrentLoopValid) 2955 LPM.addLoop(*L); 2956 else 2957 LPM.markLoopAsDeleted(*L); 2958 }; 2959 2960 if (MSSA && VerifyMemorySSA) 2961 MSSA->verifyMemorySSA(); 2962 2963 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 2964 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 2965 2966 if (MSSA && VerifyMemorySSA) 2967 MSSA->verifyMemorySSA(); 2968 2969 // If anything was unswitched, also clear any cached information about this 2970 // loop. 2971 LPM.deleteSimpleAnalysisLoop(L); 2972 2973 // Historically this pass has had issues with the dominator tree so verify it 2974 // in asserts builds. 2975 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2976 2977 return Changed; 2978 } 2979 2980 char SimpleLoopUnswitchLegacyPass::ID = 0; 2981 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2982 "Simple unswitch loops", false, false) 2983 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2984 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2985 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2986 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2987 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 2988 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2989 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2990 "Simple unswitch loops", false, false) 2991 2992 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2993 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2994 } 2995